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High-Frequency Quoting: 

Short-Term Volatility in Bids and Offers 

Abstract 

 

High-frequency changes, reversals, and oscillations induce volatility in a market’s bid and offer quotes. 

This volatility degrades the informational content of the quotes, exacerbates execution price risk for 

marketable orders, and impairs the reliability of the quotes as reference marks for the pricing of dark 

trades. This paper examines variance on time scales as short as fifty milliseconds for the National Best 

Bid and Offer (NBBO) in the US equity market. On average, in a 2011 sample, NBBO variance at the 

fifty millisecond time scale is approximately four times larger than can be attributed to long-term 

fundamental price variance. The historical picture over 2001-2011 is complex. The average volatility has 

not increased between 2001 and 2011, but its nature has changed. In the earlier years quote volatility is 

due to large spikes in bids and offers; in later years, to oscillations of low amplitude. The highest quote 

volatilities arise during the 2004-2006 period corresponding to the phase-in of Reg NMS and the 

transition to electronic trading. 
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I. Introduction 

Recent developments in market technology have called attention to the practice of high frequency 

trading. The term is used commonly and broadly in reference to all sorts of fast-paced market 

activity, not just “trades”, but trades have certainly received the most attention. There are good 

reasons for this, as trades signify the actual transfers of income streams and risk. Quotes also play 

a significant role in trading process, however.  This paper examines short-term volatility in bids 

and offers of US equities, a consequence of what might be called high frequency quoting. 

 By way of illustration, Figure 1 depicts the bid and offer for AEP Industries (a 

NASDAQ-listed manufacturer of packaging products) on April 29, 2011.1 In terms of broad price 

moves, the day is not a particularly volatile one, and the bid and offer quotes are stable for long 

intervals. The placidity is broken, though, by several intervals where the bid undergoes extremely 

rapid changes.  The average price levels, before, during and after the episodes are not 

dramatically different. Moreover, the episodes are largely one-sided: the bid volatility is 

associated with an only moderately elevated volatility in the offer quote. Nor is the volatility 

associated with increased executions. These considerations suggest that the volatility is unrelated 

to fundamental public or private information. It appears to be an artifact of the trading process.  

It is not, however, an innocuous artifact. Bids and offers in all markets represent price 

signals, and, to the extent that they are firm and accessible, immediate trading opportunities. 

From this perspective, the noise added by quote volatility impairs the informational value of the 

public price. Most agents furthermore experience latency in ascertaining the market center with 

the best price and in timing of their order delivery. Elevated short-term volatility increases the 

execution price risk associated with these delays. In US equity markets the bid and offer are 

particularly important, because they are used as benchmarks to assign prices in so-called dark 

trades, a category that includes roughly thirty percent of all volume.2  

                                                      
1 The bid is the National Best Bid (NBB), the maximum bid across all exchanges. The offer is the 

National Best Offer (NBO), the minimum offer. They are often jointly referred to as the NBBO. 

Unless otherwise noted, or where clarity requires a distinction, “bid” and “offer” indicate the 

NBBO. 
2 Dark mechanisms do not publish visible bids and offers. They establish buyer-seller matches, 

either customer-to-customer (as in a crossing network) or dealer-to-customer (as in the case of an 

internalizing broker-dealer). The matches are priced by reference to the NBBO: generally at the 

NBBO midpoint in a crossing network, or at the NBB or the NBO in a dealer-to-customer trade. 
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In the context of the paper’s data sample, the AEPI episode does not represent typical 

behavior. Nor, however, is it a singular event. It therefore serves to motivate the paper’s key 

questions. What is the extent of short-term volatility? How can we distinguish fundamental 

(informational) and transient (microstructure) volatility? Finally, given the current public policy 

debate surrounding low-latency activity, how has it changed over time? 

These questions are addressed empirically in a broad sample of US equity market data 

using summary statistics that are essentially short-term variances of bids and offers. Such 

constructions, though, inevitably raise the question of what horizon constitutes the “short term” (a 

millisecond? a minute?). The answer obviously depends a trader’s latency, which presently 

ranges from the sub-millisecond (for a collocated algorithm) to seconds or minutes (for a 

remotely situated human trader). The indeterminacy motivates empirical approaches that 

accommodate flexible time horizons. This analysis uses time scale variance decompositions to 

measure bid and offer volatility over horizons ranging from under 50 ms to about 27 minutes. 

The next section establishes the economic and institutional motivation for the 

consideration of local bid and offer variances with sliding time scales. Section III discusses the 

methodological framework. The paper then turns to applications. Section IV presents an analysis 

of a recent sample of US equity data featuring millisecond time stamps. To extend the analysis to 

historical samples in which time stamps are to the second, Section V describes estimation in a 

Bayesian framework where millisecond time stamps are simulated. Section VI applies this 

approach to a historical sample of US data from 2001 to 2011. Connections to high frequency 

trading and volatility modeling are discussed in Section VII. A summary concludes the paper in 

Section VIII. 

II. The economic effects of quote volatility. 

High frequency quote volatility may be provisionally defined as the short-term variance of the bid 

or offer, the usual variance calculation applied to the bid or offer level over a relatively brief 

window of time.  This section is devoted to establishing the economic relevance of such a 

variance in a trading context.  The case is a simple one, based on the function and uses of the bid 

and offer, the barriers to their instantaneous availability, the role of the time-weighted price mean 

as a benchmark, and the interpretation of the variance about this mean as a measure of risk. 

 In current thinking about markets, most timing imperfections are either first-mover 

advantages arising from market structure or delays attributed to costly monitoring. The former are 
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exemplified by the dealer’s option on incoming orders described in Parlour and Seppi (2003), and 

currently figure in some characterizations of high frequency traders (Biais, Foucault, and Moinas, 

2012; Jarrow and Protter, 2012). The latter are noted by Bessembinder, Panayides, and 

Venkataraman (2009) and discussed by O’Hara and Ye (2009) as an important special case of 

inattention which, albeit rational and optimal, leads to infrequent trading, limited participation, 

and transient price effects. 

 As a group these models feature a wide range of effects bearing on agents’ arrivals and 

their information asymmetries. An agent’s market presence may be driven by monitoring 

decisions, periodic participation, or random arrival intensity. Asymmetries mostly relate to 

fundamental (cash-flow) information or lagged information from other markets. Agents in these 

models generally possess, however, timely and extensive market information. Once she “arrives” 

in a given market, an agent accurately observes the state of that market, generally including the 

best bid and offer, depth of the book and so on. Moreover, when she contemplates an action that 

changes the state of the book (such as submitting, revising or canceling an order), she knows that 

her action will occur before any others’.  

 A notable and recent exception arises in Baruch and Glosten (2013). In their model, limit 

order traders pursue randomized order placement strategies, in an ongoing fashion and even in the 

absence of any trades. Quote volatility is an obvious consequence of such behavior. 

 Even without randomized strategies, however, random latencies in receiving information 

and transmitting intentions combine to frustrate certainties about the state of the market and terms 

of trade. The perspective of this paper is that for some agents these random latencies generate 

randomness in the execution prices, and that short-term quote variances can meaningfully 

measure this risk. Furthermore, although all agents incur random latency, the distributions of 

these delays vary among participants. An agent’s latency distribution can be summarized by time 

scale, and this in turn motivates time scale decompositions of bid and offer variances. 

 While random latencies might well affect strategies of all traders, the situation is clearest 

for someone who intends to submit a marketable order (one that seeks immediate execution) or an 

order to a dark pool. In either case, ignoring hidden orders, an execution will occur at the bid, the 

offer or at an average of the two. A trader whose order arrival time is random over an interval 
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faces price risk. For a marketable sell order, if the arrival time is uniformly distributed, the 

interval variance of the bid quantifies the price risk around the interval mean.3 

 The situations discussed to this point involve a single trader and single market. In a 

fragmented market, the number of relevant latencies may be substantially larger. In the US there 

are presently about 17 “lit” market centers, which publish quotes. A given lit market’s quotes are 

referenced by the other lit markets, dark pools (currently around 30 in number), by executing 

broker-dealers (approximately 200), and by data consolidators (U.S. Securities and Exchange 

Commission, 2010). The National Best Bid and Offer (NBBO) is in principle well-defined. The 

NBBO perceived by any given market center, consolidator or other agent, however, comprises 

information subject to random transmission delays that differ across markets and receiving 

agents.  These delays introduce noise into the determination. Local time-averaging (smoothing) 

can help to mitigate the effects of this noise, and the local variance measures the magnitude of the 

noise. 

 If the execution price risk associated with quote volatility is zero-mean and diversifiable 

across trades, it might appear to be economically trivial. In general, however, agents do not have 

symmetric exposure to this risk. Market-order traders with faster technology possess a systematic 

advantage relative to those with slower technology. This can be viewed as an information 

asymmetry that leads (in the usual fashion) to a transfer of wealth from the slower to the faster 

participants. 

                                                      
3 The use of an average price in the presence of execution timing uncertainty is a common 

principle in transaction cost analysis. Perold’s implementation shortfall measure is usually 

operationally defined for a buy order as the execution price (or prices) less some hypothetical 

benchmark price, and for a sell order as the benchmark less the execution price, (Perold, 1988).  

As a benchmark price, Perold suggests the bid-offer midpoint prevailing at the time of the 

decision to trade. Many theoretical analyses of optimal trading strategies use this or a similar pre-

trade benchmark.  Practitioners, however, and many empirical analyses rely on prices averaged 

over some comparison period.  The most common choice is the value-weighted average price 

(VWAP), although the time-weighted average price (TWAP) is also used. One industry compiler 

of comparative transaction cost data notes, “In many cases the trade data which is available for 

analysis does not contain time stamps. …. When time stamps are not available, pension funds and 

investment managers compare their execution to the volume weighted average price of the stock 

on the day of the trade” (Elkins-McSherry, 2012).  This passage attests to the importance of 

execution time uncertainty, although a day is certainly too long to capture volatility on the scale 

of transmission and processing delays.  Average prices are also used as objectives by certain 

execution strategies.  A substantial portion of the orders analyzed by Engle, Furstenberg and 

Russell (2012) target VWAP, for example. 
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 Asymmetric exposure to quote volatility is also likely to place customers at a 

disadvantage relative to their dealers. The recent SEC concept release notes that virtually all retail 

orders are routed to OTC market-makers, who execute the orders by matching the prevailing 

NBBO (U.S. Securities and Exchange Commission, 2010). Stoll and Schenzler  (2006) note that 

these market-makers have flexibility in delaying executions to obtain favorable reference prices. 

They describe this as a look-back option, and find support for this behavior in a 1999 sample. 

Dark trading venues also face this sort of problem. A customer sending a sell order to a dark pool 

or crossing network can submit a buy order to a lit market center that will briefly boost quote 

midpoint, thereby achieving a better price if he receives a dark execution of his sell order.  This 

practice (a form of “spoofing”) is forbidden in the Dodd-Frank framework, but remains difficult 

to detect and prove in the presence of timing uncertainties. Quote volatility might also arise from 

“quote stuffing” (Egginton, Van Ness, and Van Ness, 2012). 

 The SEC’s Reg NMS ruling on trade-through protection recognized the problem of 

“flickering quotes”, and mandated a one-second grace period: “… pursuant to Rule 611(b)(8) 

trading centers would be entitled to trade at any price equal to or better than the least aggressive 

best bid or best offer, as applicable, displayed by the other trading center during that one-second 

window.”  Sub-second intervals were considered, but the benefits were not believed sufficient to 

justify the costs (U.S. Securities and Exchange Commission, 2005). Clearly, quote volatility 

within the one-second window weakens the trade-through protection.4 

                                                      
4 The SEC has recently mandated a consolidated audit trail intended to track all events in an 

order’s life cycle, such as receipt, routing, execution and cancellation, (U.S. Securities and 

Exchange Commission, 2012).  In the final rule, the Commission recognized the importance of 

accurately sequencing the events, and mandated time-stamps at least to the granularity of the 

millisecond, and, “to the extent that the order handling and execution systems of any SRO or 

broker-dealer utilize time stamps in increments finer than the minimum required by the NMS plan 

time stamps, such SRO or member must use time stamps in such finer increments when reporting 

data to the central repository.” 
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III. Methodology 

III.A. Time scale decompositions 

 A number of texts cover time scale decompositions. The present material summarizes the 

intuition of the approach. (Percival and Walden, 2000) discuss the details.5,6 To illustrate the 

computations, consider a discrete sequence of prices  1, , Tp p p . A time scale 

decomposition resolves p into a set of local averages of varying lengths and corresponding 

residuals. The averages in this context are called smoothed components (or simply “smooths”) 

and are denoted by S; the residuals are roughs, denoted by R. The smooths and roughs are 

indexed by j, which maps to the length of the average. It is computationally convenient to let 

these lengths vary dyadically (increasing as powers of two). The shortest meaningful average we 

might form is of length two, so the smooths at level j, , 1, , ,jS j J correspond to averages over 

subsamples of lengths 2  for 1, ,  where 2 .j Jj J T   The corresponding roughs are defined by 

,j jR p S  and they are mean-zero by construction. 

 As level j increases, it is useful to consider the incremental changes in the roughs. For 

example, writing  2 2 2 2 1 1,p S R S R R R      the middle term reflects the change in the 

overall residual associated with moving from an averaging length of four to two. These 

                                                      
5 Time scale and multi-resolution decompositions are widely used across many fields. In addition 

to Percival and Walden, (Gençay, Selçuk, and Whitcher, 2002) discuss economic and financial 

applications in the broader context of filtering. (Nason, 2008) discusses time series and other 

applications of wavelets in statistics. Ramsey (1999, 2002) provides other useful economic and 

financial perspectives. Walker (2008) is clear and concise, but oriented more toward engineering 

applications. 
6 Studies that apply time scale decompositions in the economic analysis of stock prices loosely 

fall into two groups. The first set explores time scale aspects of stock comovements. A stock’s 

beta is a summary statistic that reflects short-term linkages (like index membership or trading-

clientele effects) and long-term linkages (like earnings or national prosperity).  Wavelet analyses 

can characterize the strength and direction of these horizon-related effects (Gençay, Selçuk, and 

Whitcher, 2005; In and Kim, 2006). Most of these studies use wavelet transforms of stock prices 

at daily or longer horizons. A second group of studies uses wavelet methods to characterize 

volatility persistence (Dacorogna, Gencay, Muller, Olsen, and Pictet, 2001; Gençay et al., 2002; 

Høg and Lunde, 2003; Elder and Jin, 2007; Teyssière and Abry, 2007; Gençay, Selçuk, 

Gradojevic, and Whitcher, 2010). These studies generally involve absolute or squared returns at 

minute or longer horizons. Wavelet methods have also proven useful for jump detection and jump 

volatility modeling (Fan and Wang, 2007). Beyond studies where the focus is primarily economic 

or econometric lie many more analyses where wavelet transforms are employed for ad hoc stock 

price forecasting (Atsalakis and Valavanis, 2009; Hsieh, Hsiao, and Yeh, 2011, for example). An 

early draft of Hasbrouck and Saar (2013) used wavelet analyses of message count data to locate 

periods of intense message traffic on NASDAQ’s Inet system. 
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incremental components are the details, 1 1 1 and  for 1.j j jD R D R R j    The time scale 

decomposition of the price series may then be written as 1 1J Jp S D D     (also known as a 

multi-resolution analysis). Since the elements of the smooth Sj average over 2j points, the 

elements corresponding rough Rj capture variation at shorter intervals, that is, over intervals of 

length 1 22 ,2 , ,1j j  . In keeping with the incremental approach, a detail component Dj is said to 

capture variation at a single time scale defined by 12 j

j
 . 

 Given a suitable stochastic framework, there exists a time scale decomposition of 

variance corresponding to that of the series itself. To achieve this, we assume that the first 

differences of p constitute a stationary stochastic process. Note that while this condition is stated 

in terms of the first differences, the calculations are still performed (as indicated above) on price 

levels. This condition suffices to define the rough and detail variances  2

j jVar R  and 

 2

j jVar D  . 

 Time scale decomposition was historically based on Fourier analysis, the decomposition 

of a series as a sum of sine and cosine basis functions. Trigonometric functions cycle over the full 

support of the signal. Modern signal processing approaches use alternative bases that are 

localized and therefore better suited to picking up phenomena like the AEPI movements that are 

concentrated in time. The present analysis uses a wavelet basis (the Haar). In this framework, the 

detail variances 2

j are conventionally called wavelet variances. It is important to emphasize, 

though, that they can be defined (as above) and even computed (albeit suboptimally) without 

wavelet transforms. Denoting it as the wavelet variance simply places it in an extensive and 

established literature. 

 From an economic perspective, rough and wavelet (detail) variances correspond to the 

timing uncertainty risks discussed in the preceding section. If p is a millisecond-stamped bid 

quote, for example, a trader submitting a marketable sell order with arrival time uncertainty of 

62 64  ms faces a price uncertainty of 2

6j  . Were she to cut her arrival uncertainty in half, this 

risk would be reduced by 2

6j  .  For ease of economic interpretation, therefore, estimates of the 

2 2 and j j   are this paper’s key summary statistics. For purposes of gauging magnitude or 

historical trend, however, it is useful to have measures of high-frequency volatility that are 

normalized relative to long-term volatility. This is achieved by variance ratios. 
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III.B. Variance ratios 

 There is a long tradition of variance ratios in empirical market microstructure (Barnea, 

1974; Amihud and Mendelson, 1987; Hasbrouck and Schwartz, 1988, among others).7 A typical 

ratio compares the variance of a one-period price difference to an n-period price difference: 

 
 

 
1t t

n

t t n

n Var p p
V

Var p p





 



 (1) 

If pt follows a random-walk, 1nV  for all n. In actual sample data, variance ratios are generally 

elevated due to short-term microstructure effects. The motivation for using a long-term variance 

in the denominator of nV is the desire for an estimate of “fundamental” volatility, on the 

assumption that a long-term price change is dominated by informational components.  

 The end-points of the n-period price change are subject, however, to microstructure 

effects just as strong (in absolute terms) as those of the short-term price change. That is, both pt 

and pt-n are subject to bid-ask bounce, discreteness effects, and so on. A long-term wavelet 

variance, however, is in principle purged of the short-term variation, and so may serve as a better 

estimate of fundamental long-term variance. Fan and Gençay (2010) apply this principle to unit 

root tests based on time scale decompositions. Gençay and Signori (2012) explore the use of 

variance ratios at different time scales to test for serial correlation. The variance ratios used here 

are special cases or minor modifications of theirs. 

 Like the conventional variance ratio, a wavelet variance ratio is benchmarked to a 

random-walk. A standard result (summarized in appendix) establishes that if the price evolves in 

continuous time with variance per unit time 2

u  (not necessarily a Gaussian diffusion) and that the 

prices are initially averaged over successive intervals of length M0 units of time, then 

2 1 2

02 3j

j uM   and 2 2 2

02 3.j

j uM   With this result, the wavelet variance ratio used here is  

 2 2

, 2 ,J j

j J j JV    (2) 

where J denotes the largest index (longest time scale) considered in the study and  j

 with 0 j J   corresponds to a shorter time scale. Like the conventional variance ratio, a 

random-walk implies , 1j JV  . The rough variance ratio is similarly defined as 

                                                      
7 Return variance ratios are also used more broadly in economics and finance to characterize 

deviations from random-walk behavior over longer horizons (Lo and MacKinlay, 1988). 
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 1 2 2

, 2J j

j J j JVR     (3) 

Note that while the variance in the numerator is a rough variance, the denominator is a wavelet 

variance. For a random walk, , 1j JVR  , and any excess indicates elevated short-term volatility. 

(Whereas , 1J JV  by construction, however, 2 2

,J J J JVR   , which need not equal one.) 

III.C. Estimation 

 Percival and Walden (for detail and rough variances) and Gençay and Signori (for 

variance ratios) discuss asymptotic results. For example, one could compute confidence bounds 

for a data sample consisting of one stock and one day. The present goal, however, is 

summarization of the broad aspects of high-frequency volatility across firms and time. The 

inferences therefore involve averages across firms and time computed from correlated 

observations. As an illustration, consider a wavelet standard deviation estimate 

, ,i d j computed for firm i on day d at resolution level j. In constructing an overall sample average 

across firms and days, observations on the same firm are likely to be correlated across days. For 

this reason, reported standard errors are clustered by firm. This corresponds to an error 

components model of the form: , , ,i d j j i i du e    , where iu is a firm-specific error and the ,i de

are assumed uncorrelated across firms and days. Since stock volatilities are commonly assumed 

to possess cross-firm commonalities, there is an argument in favor of clustering by day as well. 

Spot-calculations suggested, though, that standard errors clustered by firm and day were only 

slightly (less than five percent) higher than those clustered by firm alone. 

IV. A cross-sectional analysis 

 From a trading perspective, stocks differ most significantly in their general level of 

activity (volume measured by number of trades, shares or values). The first analysis aims to 

measure the general level of high frequency quote volatility and to relate the measures to trading 

activity in the cross-section for a recent sample of firms. 

IV.A. Data and sample construction. 

 The analyses are performed for a subsample of US firms using quote data from April, 

2011 (the first month of my institution’s subscription.) The subsample is constructed from all 

firms present on the CRSP and TAQ databases from January through April of 2011 with share 

codes of 10 or 11, with closing prices between two and one thousand dollars, and with a primary 
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listing on the New York, Amex or NASDAQ exchanges. 8 I compute the daily average dollar 

volume based on trading in January through March, and randomly select 15 firms from each 

decile. For brevity, reported results are grouped into quintiles. 

The U.S. equity market is highly fragmented, but all exchanges post their quotes to the 

Consolidated Quote System (CQS).9 The CQ and NBBO files from the NYSE’s daily TAQ 

dataset used here are definitive transcripts of the consolidated activity, time-stamped to the 

millisecond.10 A record in the consolidated quote (CQ) file contains the latest bid and offer 

originating at a particular exchange. If the bid and offer establish the NBBO this fact is noted on 

the record. If the CQ record causes the NBBO to change for some other reason, a message is 

posted to another file (the NBBO file). Thus, the NBBO can be obtained by merging the CQ and 

NBBO files. It can also be constructed (with a somewhat more involved computation) directly 

from the CQ file. Spot checks confirm that these two approaches are consistent. 

Studies involving TAQ data have traditionally used error filters to suppress quotes that 

appear spurious. Recent daily TAQ data, though, appear to be much cleaner than older samples. 

In particular, the NBBO construction provided by the NYSE clearly defines what market 

participants would have perceived. Some quotes present in the CQ file are not incorporated into 

the NBBO because they are not firm, indicative or otherwise deemed “not NBBO-eligible”. 

Beyond these exclusions, however, I impose no additional filters for the estimates discussed in 

this section. Error filters are used, however, in the subsequent historical analysis, and will be 

discussed in greater detail at that point. 

 Table 1 reports summary statistics. Post-Reg NMS US exchanges have become more 

similar in structures and trading mechanisms. With respect to listing characteristics, though, 

differences persist. The NYSE “classic” has the largest proportion of high-volume stocks, NYSE 

                                                      
8 The American Stock Exchange merged with NYSE Euronext in 2008, and was renamed NYSE 

Amex LLC. In May, 2012, the name was changed to NYSE MKT LLC. For the sake of clarity, it 

is identified here simply as “Amex”. 
9 At the same time that an exchange sends a quote update to the consolidated system, it can also 

transmit the update on its own subscriber line. For subscribers this can reduce the delay 

associated with consolidation and retransmission (which is on the order of about five 

milliseconds). Thus, while the CQS is a widely-used single-source of market data, it is not the 

fastest. Moreover, bids and offers with sizes under 100 shares are not reported. 
10 The “daily” reference in the Daily TAQ dataset refers to the release frequency. Each morning 

the NYSE posts files that cover the previous day’s trading. The Monthly TAQ dataset, more 

commonly used by academics is released with a monthly frequency and contains time stamps in 

seconds.  



 Page 11 

 

Amex has the smallest, and NASDAQ falls in the middle. In some instances, a stock that is 

present in CRSP and TAQ’s master file is absent from a day’s quote file. Stocks missing more 

than half of the days in the sample are dropped. 

 Market event counts (trades, quotes, and so forth) display some interesting patterns. 

There are large numbers of quote records, since one is generated when any market center changes 

its best bid, best offer, or size at the bid or offer. If the action establishes the bid and offer as the 

NBBO this fact is noted on the quote record. But if the action causes some other change in the 

aggregate prices or sizes at the NBBO, an NBBO record is generated. Since many quote records 

don’t induce such a change, there are substantially fewer NBBO records. Finally, many actions 

might change one of sizes or one side of the quote. Thus, the numbers of NBB and NBO changes 

are smaller yet. 

 Volatility and spreads tend to be elevated at the start and end of trading sessions (9:30 to 

16:00). To remove the effect of these deterministic effects, I confine the variance estimates to the 

9:45 to 15:45 subperiod. The estimates are computed using the maximal overlap Haar 

transform.11 Variance estimates are computed separately for the bid and offer, and then averaged 

for convenience in presentation. Reported standard errors are clustered on firms. 

 To facilitate economic interpretation, I report the time scale variances in three ways: mils 

($0.001) per share, basis points relative to average price, and as a short/long-term variance ratio.  

The mils per share scaling is useful because many trading fees (such as commissions and clearing 

fees) are assessed on a per share basis. Access fees, the charges levied by exchanges on taker 

(aggressor) sides of executions are also assessed per share. US SEC Regulation NMS caps access 

                                                      
11 A maximal overlap transform mitigates alignment problems. In the example discussed in 

Section III and depicted in Figure 2, the components are always aligned on dyadic boundaries. A 

maximal overlap transform essentially averages over all possible alignments. The computation of 

a one-second variance, for example, would involve not only periods aligned exactly on the one-

second boundaries (1, 2, 3, …), but also one-second periods aligned on half-second boundaries 

(1.5, 2.5, 3.5, …). I assume no overlap across days, and discard boundary values affected by 

wrap-around. 

 The computations were performed in Matlab using the WMTSA package (Cornish, 

2006). These routines conform closely to Percival and Walden. Although Matlab has its own 

wavelet toolbox, the data structures and other conventions differ significantly from those of 

Percival and Walden. I also find the Mathematica wavelet functions to be consistent with Percival 

and Walden. 

 Bid and offer series are piece-wise constant, a property shared by Haar basis functions. In 

applications such as audio and video processing, the signals are better described as locally linear, 

and other wavelet families (such as the Daubechies) are generally preferred to the Haar. 
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fees at 3 mils ($0.003) per share, and in practice most exchanges are close to this level. 

Practitioners regard access fees as significant to the determination of order routing decisions, and 

this magnitude therefore serves an approximate threshold of economic importance.  Basis point 

scaling is meaningful because most analyses involving investment returns or comparison across 

firms assume that share normalizations are arbitrary. Variance ratios provide a summary measure 

of short-term variance inflation relative to what would be expected from a random-walk 

calibrated to long-term variance. 

IV.B. Results 

Table 2 summarizes the averages for all time scales of wavelet and rough variances under 

all three normalizations. For example, a trader facing arrival time uncertainty of 50 milliseconds 

is exposed to a price risk standard deviation of  0.40 mils per share (from column (1)), or 0.32 bp 

(from column (2)). The entry in column (3), 3.99, implies that the price risk is roughly four times 

what would be implied by a random-walk calibrated to longest time scale in the analysis (27.3 

minutes). At 400 ms, the rough volatility risk crosses the one mil threshold (1.06, column (2)). At 

1,600 ms, it is on the order of one basis point. The variance ratios (columns (3) and (6)) increase 

monotonically in moving to shorter time scales.  

 Column (7) of Table 2 reports the wavelet correlations between bids and offers. The 

wavelet covariance between two processes is defined analogously to the wavelet variance: the 

covariance between the bid and offer is denoted 2

, ,bid offer j . The wavelet correlation, denoted 

2 2 2

, , , , , ,bid offer j bid offer j bid j offer j    , is used to assess the extent to which the bid and offer co-move 

at different time scales. If the bid and offer always moved in lock step, this correlation would be 

unity at every time scale. At longer time scales this correlation is indeed quite high, but at shorter 

time scales it is only moderately positive. 

Table 3 reports results for a subset of the measures and time scales, but provides standard 

errors and detail across dollar volume subsamples.  Panels A and B report estimates of rough 

variances in mils per share and basis points, respectively. Stocks in the two lowest dollar volume 

quintiles have sharply higher short-term volatility. In comparing the two normalizations, it is 

apparent that volatility in mils per share (Panel A) at the shorter scales is somewhat more stable 

across dollar volume quintiles than volatility in basis points (Panel B). In moving from lowest to 

highest quintiles, short time scale volatilities in mils per share approximately double; while 

volatilities in basis points decline by a factor of four. This decline appears to be mostly caused by 
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the increase in share prices across the quintiles (cf. Table 1). Put another way, it appears that 

quote volatility is best characterized as a “mils per share” phenomenon, perhaps due to the tick 

size effects or the use of per-share cost schedules in assessing trading fees. 

Table 3 Panel C reports selected rough variance ratios across dollar volume quintiles. 

Figure 2 graphs the average wavelet variance ratios.  From this graph, for the highest volume 

quintile, the excess variance seems to be about 30% at the shortest time scales. For the lowest 

volume quintile, however, the excess is, at ten or above, substantially higher. The wavelet bid-

offer correlations are reported in Table 3 Panel D, and graphed in Figure 3. These also exhibit 

marked variation across dollar volume. For the highest quintile, they are close to unity at a time 

scale of 25.6 seconds; for the lowest, the correlation at 27.4 minutes is a modest 0.52. This 

indicates a pronounced de-coupling of the bid and offer for smaller firms. 

 Hansen and Lunde (2006) note that to the extent that volatility is fundamental, we would 

expect bid and offer variation to be perfectly correlated, that is, that a public information 

revelation would shift both prices by the same amount. Against this presumption, the short-term 

correlation estimates are striking. At time scales of 200 ms or lower, the correlation is below 0.7 

for all activity quintiles. For the shortest time scales and lower activity quintiles, the correlation is 

only slightly positive. This suggests that substantial high frequency quote volatility is of a 

distinctly transient nature.  

V. Analysis with truncated time stamps. 

The analysis in the preceding section relies on a recent one-month sample of daily TAQ data. For 

addressing policy issues related to low-latency activity, it would be useful to conduct a historical 

analysis, spanning the period over which low-latency technology was deployed. Extending the 

analysis backwards, however, is not straightforward. Millisecond time-stamps are only available 

in the daily TAQ data from 2006 onwards.  Monthly TAQ data (the standard source used in 

academic research) is available back to 1993 (and the precursor ISSM data go back to the mid-

1980s). These data are substantially less expensive than the daily TAQ, and they have a simpler 

logical structure. 

The time stamps on the Monthly TAQ and ISSM datasets are reported only to the second, 

a limitation that might seem to render these data useless for characterizing sub-second variation.  

This is unduly pessimistic. It is the purpose of this section to propose, implement and validate an 

approach for estimating sub-second characteristics of the bid and offer series using the second-
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stamped data. This is possible because the data generation and reporting process is richer than it 

initially seems.  

The usual sampling situation in discrete time series analysis involves either aggregation 

over periodic intervals (such as quarterly GDP) or point-in-time periodic sampling (such as the 

end-of-day S&P index). In both cases there is one observation per interval, and in neither case do 

the data support resolution of components shorter than one interval. In the present situation, 

however, quote updates occur in continuous time and are disseminated continuously. The one 

second time-stamps arise as a truncation (or equivalently, a rounding) of the continuous event 

times. The Monthly TAQ data include all quote records, and it is not uncommon for a second to 

contain ten or even a hundred quote records. 

Assume that quote updates arrive as a Poisson process of constant intensity. If the 

interval  0,t  contains n updates, then the update times have the same distribution as the order 

statistics in a sample of n independent random variables uniformly distributed on the interval  

(0,t), (Ross, 1996, Theorem 2.3.1). Within a one-second interval containing n updates, therefore, 

we can simulate continuous arrival times by drawing n realizations from the standard uniform 

distribution, sorting, and assigning them to quotes (in order) as the fractional portions of the 

arrival times. These simulated time-stamps are essentially random draws from true distribution. 

This result does not require knowledge of the underlying Poisson arrival intensity. 

We make the additional assumption that the quote update times are independent of the 

updated bid and offer prices. (That is, the “marks” associated with the arrival times are 

independent of the times.) Then all estimates based on the simulated time stamp series constitute 

draws from their corresponding posterior distributions. This procedure can be formalized in a 

Bayesian Markov-Chain Monte Carlo (MCMC) framework.  To refine the estimates, we would 

normally make repeated simulations (“sweeps”) over the sample, but due to computational 

considerations and programming complexity, I make only one draw for each CQ record. 

 It is readily granted that few of the assumptions underlying this model are completely 

satisfied in practice. For a time-homogeneous Poisson process, interevent durations are 

independent. In fact, inter-event times in market data frequently exhibit pronounced serial 

dependence, and this feature is a staple of the autoregressive conditional duration and stochastic 

duration literature (Engle and Russell, 1998; Hautsch, 2004). In NASDAQ data, Hasbrouck and 

Saar (2013) show that event times exhibit intra-second deterministic patterns. Suboordinated 
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stochastic process models of security prices suggest that transactions (not wall-clock time) are 

effectively the “clock” of the process (Shephard, 2005). 

 We can assess the reliability of the randomization approach, however, by a simple test. 

The time-stamps of the data analyzed in the last section are stripped of their millisecond 

remainders. New millisecond remainders are simulated, the random-time-stamped data are 

analyzed, and we examine the correlations between the two sets (original and randomized) of 

estimates. Let 2

, , ,bid i j d denote the bid wavelet variance estimate for firm i on day d at level j based 

on the original time stamps, and let 2

, , ,bid i j d denote the estimate based on the simulated time 

stamps. (Results are similar for estimates on the offer side.) Table 4, Panel A reports estimates 

across firms and days of  2 2

, , , , , ,,bid i j d bid i j dCorr   .The agreement between original and randomized 

estimates is very high for all time scales and in all subsamples. Even at the time scale of less than 

fifty ms, the mean correlation is 0.952. At time scales above one second, the agreement is nearly 

perfect. 

Given the questionable validity of some of the assumptions, and the fact that only one 

draw is made for each second’s activity, this agreement might seem surprising. It becomes more 

reasonable, however, when one considers the extent of averaging underlying the construction of 

both original and randomized estimates. There is explicit averaging in that each wavelet variance 

estimate is formed over a sample of roughly six hours. As long as the order is maintained, a small 

shift in a data point has little impact over the overall estimate.12 

In parallel fashion let 2

, , , ,bid offer i j d and 2

, , , ,bid offer i j d denote the bid-offer covariance estimates 

based (respectively) on original and simulated millisecond time stamps. Table 4, Panel B reports 

estimates across firms and days of  2 2

, , , , , , , ,,bid offer i j d bid offer i j dCorr   . The agreement is somewhat 

weaker than in the case of the variances. The correlation of under-50 ms components is 0.775 (in 

the full sample), although this climbs to 0.979 at a time scale of 200 ms. The reason for the 

relatively poorer performance of the randomized covariance estimates is simply that the wavelet 

covariance between two series is sensitive to alignment. For a given CQ record, the bid and offer 

quotes are paired, but in a typical record sequence the NBB and NBO are not changed in the same 

record. When a bid change is shifted even by a small amount relative to the offer, the inferred 

pattern of co-movement is distorted.  

                                                      
12 Also, inherent in the wavelet transformation is an (undesirable) averaging across time scales 

known as leakage, wherein the variance at one time scale affects to a small degree the estimate at 

neighboring time scale (Percival and Walden, p. 303). 
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 Across dollar volume quintiles, the correlations generally improve for all time scales. 

This is true for both wavelet variances and covariances, but is more evident in the latter. This is a 

likely consequence of the greater incidence, in the higher quintiles, of multiple quote records 

within the same second. Specifically, for a set of n draws from the uniform distribution, the 

distribution of any order statistic tightens as n increases. (For example, the distribution of the first 

order statistic in a sample of five hundred is tighter than the distribution of the first order statistic 

in a sample of one.) Essentially, an event time can be located more precisely within the second if 

the second contains more events. This observation will have bearing on the analysis of historical 

samples with varying numbers of events. 

 In working with Monthly TAQ data, (Holden and Jacobsen, 2013, HJ) suggest assigning 

sub-second time stamps by evenly-spaced interpolation. If there is one quote record in the second, 

it is assigned a millisecond remainder of 0.500 seconds; if two records, 0.333 and 0.667 seconds, 

and so on. HJ show that interpolation yields good estimates of effective spreads. It is not, 

however, equivalent to the present approach. Consider a sample in which each one-second 

interval contains one quote record. Even spacing places each quote at its half-second point. As a 

result, the separation between each quote is one second. For example, a sequence of second time 

stamps such as 10:00:01, 10:00:02, 10:00:03 … maps to 10:00:01.500, 10:00:02.500, 

10:00:03.500, and so on. The interpolated time stamps are still separated by one second, and 

therefore the sample has no information regarding sub-second components.  In contrast, a 

randomized procedure would sweep the space of all possibilities, including 10:00:01.999, 

10:00:02.000, …, which provides for attribution of one-millisecond components.  Of course, as 

the number of events in a given one-second interval increases, the two approaches converge: the 

distribution of the kth order statistic in a sample of n uniform observations collapses around its 

expectation,  1k n  as n increases.13 

                                                      
13 For one class of time-weighted statistics in this setting, interpolated time stamps lead to 

unbiased estimates.  Consider a unit interval where the initial price, p0, is known, and there are n 

subsequent price updates ,  1, ,ip i n   at occurring at times 10 1nt t    . The time-weighted 

average of any price function ( )f p  is 10
( )( )

nTW
i i ii

Avg f p t t
  , where 0 10 and  1nt t   . 

Assuming a time-homogeneous Poisson arrival process, the ti are distributed (as above) as 

uniform order statistics. This implies  / 1iEt i n  , the linear interpolated values. If the marks 
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1

0
1 ( )TW

i

n

i
E Avg n f p




      . This result 



 Page 17 

 

VI. Historical evidence 

This section describes the construction and analysis of variance estimates for a sample of US 

stocks from 2001 to 2011. In each year, I construct variance estimates for a single representative 

month (April) for a subsample of firms. 

The period covers significant changes in market structure and technology. Decimalization 

had been mandated, but was not completely implemented by April, 2001. Reg NMS was 

proposed, adopted, and implemented.14 Dark trading grew over the period. Market information 

and access systems were improved, and latency emerged as a key concern of participants. The 

period also includes many events related to the financial crisis, which are relatively exogenous to 

equity market structure. 

The regulatory and technological shifts over the period caused changes in the 

fundamental nature of bid and offer quotations. Markets in 2001 were still dominated by what 

would later be called “slow” procedures. Quotes were often set manually. Opportunities for 

automated execution against these quotes were few (cf. the NYSE’s odd-lot system, and 

NASDAQ’s Small Order Execution System).  Trade-through protection was limited and weakly 

enforced. Quotes for 100 shares or less were not protected. With the advent of Reg NMS, the bids 

and offers became much more accessible (for automated execution). These considerations are 

important in interpreting the results that follow. 

VI.A. Data 

The data for this phase of the analysis are drawn from CRSP and Monthly TAQ datasets. The 

sample selection procedure in each year is essentially identical to that described for the 2011 

cross-sectional sample. In each year, from all firms present on CRSP and TAQ in April, with 

share codes in (10 and 11), and with primary listings on the NYSE, Amex and NASDAQ 

exchanges, I draw fifteen firms from each dollar trading volume decile.15 Quote data are drawn 

from TAQ. 

                                                      

applies to time-weighted means of prices and spreads (assuming simultaneous updates of bids and 

offers). It also applies to wavelet transforms and other linear convolutions. It does not apply to 

variances (or wavelet variances), however, which are nonlinear functions of arrival times. 
14 Reg NMS was proposed in February, 2004, and adopted in June 2005 with an effective date of 

August 2005. It was implemented in stages, mostly over 2006. 
15 As of April, 2001, NASDAQ had not fully implemented decimalization. For this year, I do not 

sample from stocks that traded in sixteenths. 
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 Table 5 reports summary statistics. The oft-remarked increase in the intensity of trading 

activity is clearly visible in the trends for median number of trade and quote records. From 2001 

to 2011, the average annual compound growth rate is about 23% percent for trades, and about 

32% for quotes. As described in the last section, all of a firm’s quote records in a given second 

are assigned random, but order preserving, millisecond remainders. The NBBO is constructed 

from these quote records. This yields a NBBO series with (simulated) millisecond time stamps. 

The 2011 numbers differ slightly from those reported in Table 1. These differences are a 

consequence of the randomization, and (as will be indicated) the use of error filters. 

 Prior to the construction of the NBBO the bid and offer are filtered for extreme values. 

The following quotes (bids or offers) are eliminated: those with zero size and/or zero price; those 

quotes priced at 20% or lower of the smallest closing price reported on CRSP in the month; those 

priced at 500% or higher of highest closing price. Quotes that crossed the market are only 

eliminated if the crossing is a dollar or more, or more than 10 percent of the midpoint price. Other 

filters use the previously prevailing bid and offer midpoint as a benchmark. For stocks priced at 

ten dollars or less, the bid and offer has to be within forty percent of the benchmark; for stocks 

between ten and one hundred dollars, the cutoff is twenty percent; for stocks between one 

hundred and 250, ten percent; above 250, five percent.16 These filters do not eliminate all 

suspicious bids and offers, a point to which the discussion will subsequently return. 

VI.B. Results 

In analyzing 2001-2011, it is best to begin with the wavelet variance ratios. By construction they 

are normalized with respect to long-term variance, and over this period there are large swings in 

market-wide long-term volatility (evident from a cursory examination of  the VIX). These would 

be expected to affect the short term variances as well. Table 6 Panel A reports the mean wavelet 

variance ratios for the shorter time scales.  As in the 2011 sample, there is substantial variance 

inflation relative to the random-walk in all years. Perhaps surprisingly, though, the excess 

variance is high in all years, including the early years of the decade. The estimates are higher in 

2001 than in 2011. The pattern does not suggest an increasing trend. 

                                                      
16 The error filters are applied uniformly for the Monthly TAQ data in all years 2001-2011. For 

2011 this causes a small apparent discrepancy in the counts for NBB and NBO changes, between 

Tables 1 and 5. The inputs to Table 5 are filtered, and hence have slightly fewer NBB and NBO 

changes relative to the unfiltered inputs to Table 1. 
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 Given the recent media attention devoted to low-latency activity and the undeniable 

growth in quote volume, the absence of a strong trend in quote volatility seems surprising. There 

are several possible explanations. In the first place, “flickering quotes” drew comment well 

before the start of the sample, in an era when quotes were dominated by human market makers 

(Harris, 1999; U.S. Commodities Futures Trading Commission Technology Advisor Committee, 

2001). Also an artifact of this era is the specialist practice of “gapping” the quotes to indicate 

larger quantities at worse prices (Jennings and Thirumalai, 2007). In short, the quotes may have 

in reality been less unwavering than popular memory holds. The apparent discrepancy between 

quote volatility and quote volume can be explained by appealing to the increase in market 

fragmentation and consequent growth in matching quotes. 

 Exploring this finding further, bid-offer plots for firm-days in each year that correspond 

to extreme realizations of the variances exhibit an interesting pattern. In later years, these outlier 

plots tend to resemble the initial AEPI example, with rapid oscillations of relatively low 

amplitude. In the earlier years, they are more likely to feature small number of prominent spikes 

associated with a sharply lower bid or elevated offer that persists for a minute or less. 

 As an example, Figure 4 (Panel A) depicts the NBBO for PRK (Park National 

Corporation, Amex-listed) on April 6, 2001. At around 10:00 there is a downward spike in the 

NBB. Shortly after noon there is a sharp drop in the NBB of roughly three dollars and a sharp rise 

in the NBO of about one dollar. To better document this behavior, Table 7 details the CQ records 

in the vicinity of the noon episode. There are multiple exchanges active in the market, but Amex 

(A) is the apparent price leader. At 12:02:22, A establishes the NBB at 86.74. At 12:03:11, A bids 

83.63, exposing the previous T (NASDAQ) bid of 86.68 as the new NBB. At 12:03:16, T backs 

off, leaving A’s 83.63 as best. Within half a minute, however, the NBB is back at 86.50. The 

lower bid is not marketed by any special mode flag. It is not a penny (“stub”) bid. The size of the 

bid at two (hundred shares) is typical for the market on that day.  A similar sequence of events 

sends the NBO up a dollar for about one second. 

 These quotes are not so far off the mark as to be clearly erroneous. We must nevertheless 

question whether they were “real”? Did they reliably indicate the consensus market values at 

those instances? Were they accessible for execution? Were they truly the best in the market? 

There were no trades between 11:38 and 12:13, but if a market order had been entered, would it 
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in fact have been executed at the NBBO?17 These are meaningful questions because they bear 

directly on market quality. Ultimately, though, the record is unlikely to provide clear answers. 

The US equity market in 2001 reflected a blend of human and automated mechanisms, practices 

and conventions that defies detailed description even at a distance of only twelve years. 

 Discerning whether or not quote volatility increased over the period, therefore, requires 

that we sharpen the question. The quote volatility in the initial AEPI example is of high 

frequency, but low amplitude. This is visually distinct from the spikes of high frequency and high 

amplitude found in PRK. The latter is sometimes called “pop” noise, in reference to its sound in 

audio signals (Walker, 2008).  As in the de-noising of audio signals, the goal is to remove the 

pops from the signals of lower amplitude. The wavelet literature has developed many denoising 

approaches (see Percival and Walden, Gençay et al, and Walker). When the stochastic properties 

of the noise and signal processes are known, optimal methods can often be established. In the 

present case, though, I adopt a simpler method. 

 As indicated in Section III, wavelet transforms facilitate the direct computation of smooth 

and rough components. This process, known as multiresolution analysis, isolates components at 

different time scales. As an example, Panel B of Figure 4 plots the rough component of the PRK 

bid at a time scale of 51.2 seconds. It is zero mean by construction, and the spikes are cleanly 

resolved.  On the principle that high frequency quoting (as in the AEPI example) should not be 

substantially larger than the bid-offer spread in magnitude, I set acceptance bands at 

  1.5 ,$0.25 .Min average spread   The minimum of $0.25 is set to accommodate stocks with 

very tight spreads. For PRK, the bands are approximately ±$0.33, and they are indicated in the 

figure by horizontal black lines. Values lying outside of the band are set to the band limits. This 

clips the high-amplitude peaks, while leaving the low-amplitude components, some of which are 

highly oscillatory, untouched. The signal (bid or offer) is reconstituted using the clipped rough, 

and analysis proceeds on this denoised signal. I recompute all estimates for all firms using the 

denoised bids and offers. 

 Table 6 Panel B reports the wavelet variance ratios for the denoised quotes. The results 

are striking. In the early years, the variance ratios computed from the denoised quotes are much 

                                                      
17 The Amex (like the NYSE) had specialists in 2001. Specialists generally had affirmative price 

continuity obligations that would have discouraged (though not expressly forbidden) trades 

occurring at prices substantially different from those prevailing immediately before and 

immediately after.  A broker-dealer, however, would not have been subject to this restriction. 
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lower than those computed from the raw data. In later years, however, the reduction associated 

with the denoising is small.  For the 200 ms variance ratio, for example, the 2001 drop is from 

5.35 (for the raw quotes) to 1.56 (for the denoised quotes), but the 2011 value only drops from 

3.75 to 3.57.   

 These results are consistent with the view that the overall level of quote volatility did not 

change very much over the decade. The nature of the volatility has apparently, however, evolved. 

In the early years, the volatility was of relatively high amplitude but non-oscillatory. It is 

removed by the pop-denoising procedure. The procedure does not attenuate the low-amplitude 

highly oscillatory components, however, which drive quote volatility in the later years. The 

difference between the raw and denoised ratios generally declines throughout the decade, but the 

convergence appears to be strongest during the Reg NMS transition period.  

 The denoising procedure accentuates low-amplitude oscillatory volatility. Since one 

might expect that this would be tied more closely to low-latency technology, it is sensible to ask 

whether the denoised volatilities have increased. Table 8 therefore presents rough volatilities for 

the denoised quotes in mils per share (Panel A) and basis points (Panel B), and as a variance ratio 

(Panel C) for a representative subset of time scales. Figure 5 plots these quantities at the 800 ms 

time scale. The table and figure suggest that neither the mils per share volatility (Panel A) nor the 

basis point volatility (Panel B) evinces an upward trend. The variance ratio (Panel C) appears to 

climb from 2001 to 2004, but thereafter drifts distinctly downwards. In summary, the climb that 

might be expected from ongoing enhancements to trading technology or the growth in quote 

traffic is conspicuously absent. 

VII. Discussion 

From an economic perspective, high frequency quote volatility is connected most closely to other 

high frequency and low latency phenomena in modern markets. From a statistical perspective, it 

is connected to volatility modeling. I discuss both in turn. 
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VII.A. High frequency quoting and high frequency trading 

Most definitions of algorithmic and high frequency trading encompass many aspects of market 

behavior (not just executions), and would be presumed to cover quoting as well.18  Executions 

and quotations are nevertheless very different events. It is therefore useful to consider their 

relation in the high frequency context.  

 Quote volatility is not necessarily associated with high frequency executions. One can 

envision regimes where relatively stable quotes are hit intensively when fundamental valuations 

change, and periods (such as Figure 1) where frenetic quoting occurs in the absence of 

executions. Nevertheless, the same technology that makes high frequency executions possible 

also facilitates the rapid submission, cancellation and repricing of the nonmarketable orders that 

define the bid and offer.  One might expect this commonality of technology to link the two 

activities in practice. 

 Executions are generally emphasized over quotes when identifying agents as high 

frequency traders. For example, (Kirilenko, Kyle, Samadi, and Tuzun, 2010) select on high 

volume and low inventory. The low inventory criterion excludes institutional investors who might 

use algorithmic techniques to accumulate or liquidate a large position. The NASDAQ HFT 

dataset uses similar criteria (Brogaard, 2012; Brogaard, Hendershott, and Riordan, 2012).  Once 

high frequency traders are identified, their executions and the attributes of these executions lead 

to direct measures of HF activity in panel samples. 

 In some situations, however, identifications based on additional, non-trade information 

are possible. Menkveld (2013) identifies one Chi-X participant on the basis of size and 

prominence.  The Automated Trading Program on the German XETRA system allows and 

provides incentives for designating an order as algorithmic (Hendershott and Riordan, 2013).  

Other studies analyze indirect measures of low-latency activity. Hendershott, Jones, and 

Menkveld (2011) use NYSE message traffic. Hasbrouck and Saar (2013) suggest strategic runs 

(order chains) of cancel and replace messages linked at intervals of 100 ms or lower.  

                                                      
18 A CFTC draft definition reads: “High frequency trading is a form of automated trading that 

employs: (a) algorithms for decision making, order initiation, generation, routing, or execution, 

for each individual transaction without human direction; (b) low-latency technology that is 

designed to minimize response times, including proximity and co-location services; (c) high 

speed connections to markets for order entry; and (d) high message rates (orders, quotes or 

cancellations)” (U.S. Commodities Futures Trading Commission, 2011). 
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 Most of these studies find a positive association between low-latency activity and market 

quality. Low-latency activity, for example, tends to be negatively correlated with as posted and 

effective spreads, which are inverse measures of market quality.  Most also find a zero or 

negative association between low-latency activity and volatility, although the constructed 

volatility measures usually span intervals that are long relative to those of the present paper. With 

respect to algorithmic or high frequency activity, Hendershott and Riordan (2012) find an 

insignificantly negative association with the absolute value of the prior 15-minute return; 

Hasbrouck and Saar (2013) find a negative association with the high-low difference of the quote 

midpoint over 10-minute intervals.   

 The time-scaled variance estimates used here clearly aim at a richer characterization of 

volatility than the high/low or absolute return proxies used in the studies above. The present study 

does not, on the other hand, attempt to correlate the variance measures with intraday proxies for 

high frequency trading.  One would further suspect, of course, that the ultimate strategic purpose 

of high frequency quoting is to facilitate a trade or to affect the price of a trade. The mechanics of 

this are certainly deserving of further research. 

 The discussion in Section II associates short-term quote volatility with price uncertainty 

for those who submit marketable orders, use dark mechanisms that price by reference, or face 

monitoring difficulties. From this perspective, quote volatility is an inverse measure of market 

quality.  Although the present study finds evidence of economically significant and elevated 

quote volatility, it does not establish a simple connection to technological trends associated with 

low latency activity. 

VII.B. High frequency quoting and volatility modeling 

Security prices at all horizons are a mix of integrated and stationary components. The former are 

usually identified with persistent fundamental information innovations; the latter, with transient 

microstructure effects.  The former are important to long-term hedging and investment; the latter, 

to trading and market-making. The dichotomy is sometimes reflected in different statistical tools 

and models.  

 Between the two approaches, the greatest common concerns arise in the analysis of 

realized volatility (Andersen, Bollerslev, Diebold, and Ebens, 2001; Andersen, Bollerslev, 

Diebold, and Labys, 2003b, a).  RVs are calculated from short-term price changes. They are 

useful as estimates of fundamental integrated volatility (IV), and typically serve as inputs to 



 Page 24 

 

longer-term forecasting models. RVs constructed directly from trade, bid and offer prices are 

typically noisy, however, due to the presence of microstructure components. Local averaging 

moderates these effects [see Hansen and Lunde (2006) and accompanying comments].  Other 

approaches are discussed in (Zhang, Mykland, and Aït-Sahalia, 2005; Zhang, 2006; Aït-Sahalia, 

Mykland, and Zhang, 2011). There is a methodological connection here, in that long-term 

wavelet variances are computed from short-term averages, much like the pre-averaged inputs to 

realized volatility. 

 The present study draws on several themes in the RV literature. The volatility ratio plots 

in Figure 2 serve a purpose similar to the volatility signature plots introduced by Fang (1996), and 

used by Andersen, Bollerslev, Diebold, and Ebens (2002) and Hansen and Lunde (2006), among 

others Hansen and Lunde also articulate the connection between bid-offer comovement and 

fundamental volatility: since the bid and offer have economic fundamentals in common, 

divergent movements must be short-term, transient, and unconnected to fundamentals. 

 One strand in the RV literature emphasizes analysis of multiple time-scales. Zhang et al. 

(2005) posit a framework consisting of a Brownian motion with time-varying parameters, 

,t t tdX dt dz   and a discretely-sampled noisy observation process, .
i i it t tY X    The 

it
Y are 

viewed as transaction prices, and 
it

 constitute i.i.d. microstructure noise. The objective is 

estimation of the integrated volatility 2

t dt over a sample. They propose a two-scale variance 

estimator in which a long-scale estimate is corrected for bias with an adjustment based on 

properties of the noise estimated at a short scale. While the present analysis also features multiple 

time scales, there are major differences in the perspective. In the present situation, execution price 

risk is caused by volatility in the observed process (the quote, not the underlying latent value, 

tX ); the quote process is right-continuous (and continuously observable);  the noise is not 

necessarily i.i.d. (cf. the AEPI episodes in Figure 1); and, the noise is possibly correlated with the

tX increments. 

 The paper also departs from the RV literature in other respects. The millisecond time 

scales employed in this paper are several orders of magnitude shorter than those typically 

encountered. Most RV studies also focus on relatively liquid assets (index securities, Dow-Jones 

stocks, etc.).  The low-activity securities included in the present paper’s samples are important 

because, due to their larger spreads and fewer participants, they are likely to exhibit relatively 

strong, persistent and distinctive microstructure-related components. 
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VIII. Conclusion 

High frequency volatility in the bid and offer quotes induces price risk for agents who experience 

delay in communicating with the market. The risk may be quantified as the price variance over 

the interval of delay, relative to the average price over the interval. This volatility degrades the 

informational value of the quotes. Furthermore, because the bid and offer are often used as 

reference prices for dealer trades against customers, the volatility increases the value of a dealer’s 

look-back option and exacerbates monitoring problems for customers, exchanges, and regulators. 

 This study is a preliminary analysis of short-term quote volatility in the US equity 

market. Estimates of sub-second high frequency variance for the National Best Bid and Offer 

(NBBO) are well in excess of what would be expected relative to random-walk volatility 

estimated over longer intervals. The excess volatility is more pronounced for stocks that have 

lower average activity. The sub-second volatility is comparable in magnitude to access fees and 

other transaction expenses. Furthermore, the correlations between bids and offers at these time 

scales are positive, but low. That the bid and offer are not moving together also suggests that the 

volatility is not fundamental. 

 The paper proposes a simulation approach to measuring millisecond-level volatility in US 

equity data (like the Monthly TAQ) that possess all quote records, but are time-stamped only to 

the second. In data time-stamped to the millisecond I compare two sets of estimates: one set 

based on the original time-stamps; the other based on simulated time stamps. I find high 

correlations between the two estimates, establishing the reliability of the simulation procedure. 

 With these results, the paper turns to a longer US historical sample, 2001-2011, with one-

second time-stamps. Despite the current public scrutiny of high frequency trading, the rapid 

growth in the number of quote records, and the presumption that low-latency technology is a new 

and recent phenomenon, the excess short-term quote volatility found in the 2011 data also 

appears in earlier years. The nature of quote volatility has changed over the decade, however. In 

the earlier years, the volatility apparently arises from spikes in with bids and offers that are 

neither clearly erroneous nor reliably valid. In later years the volatility is more attributable to 

oscillatory low-amplitude changes: rapid movements not substantially larger than the spread. The 

highest excess volatilities, though are found in 2004-2006, a period that corresponds to the 

discussion and implementation of Reg NMS. These mid-decade volatilities, therefore, might 

constitute a transitional or learning period as markets scrambled to adapt to a new era. 
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Appendix: Deviations about averages of random walks 

Consider a price series that evolves as 1t t tp p u  where ut is a white-noise process with unit 

variance. Without loss of generality, we initialize 0 0p   and consider the mean-squared 

deviations about the mean over the first n observations. 
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1 1 1 1 1 1

1 1 1 1
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Taking expectations (noting that 1 for ,  and zero otherwisei jEu u i j  ) and simplifying the 

sums gives 
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For the sequence of averaging periods 
0 2  for 0,1,2,...j

jn n j  , the corresponding sequence of 

variances is 
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In moving from 1 to j j the incremental change in variance (also known as the wavelet variance) 

is 
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 We now reinterpret these results in a slightly expanded framework. Suppose that the 

original time subscript t indexes periods of  time units (“milliseconds”) and that the variance per 

unit time of the ut process is 2

u . Let M denote the averaging period measured in units of time, 

and correspondingly, 0 2  for 0,1,...j

jM M j  Then the rough and wavelet variances become 

 
2 2 2 2

2 2

1 2

0 0

2 2

0 0(4 ) (4 2 )
 and 

3 2 3 2

j j

u u
j jj jM M

M M 
 

 

  
  . 

In the continuous time limit, as 0 , that 2 1 2

02 3j

j uM   and 2 2 2

02 3j

j uM  . These 

results suffice to define and characterize the variances considered in the paper.  
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Table 1. Sample Summary Statistics 

Source: CRSP and Daily TAQ data, April 2011. The sample is 150 firms randomly selected from 

CRSP with stratification based on average dollar trading volume in the first quarter of 2011, 

grouped in quintiles by dollar trading volume. NBB is the National Best Bid; NBO the National 

Best Offer.  Except for the counts (first four rows), all table entries are cross-firm medians. 

 

  Dollar trading volume quintile 

 Full sample 1 (low) 2 3 4 5 (high) 

No. of firms 149 29 30 30 30 30 

NYSE 47 0 5 7 16 19 

Amex 6 2 2 0 1 1 

NASDAQ 96 27 23 23 13 10 

Avg. daily CT records (trades) 1,346 33 431 1,126 3,478 16,987 

Avg. daily CQ records (quotes) 24,053 1,067 7,706 24,026 53,080 181,457 

Avg. daily NBBO records 7,203 354 3,029 7,543 16,026 46,050 

Avg. daily NBB changes 1,265 121 511 1,351 2,415 4,124 

Avg. daily NBO changes 1,179 106 460 1,361 2,421 4,214 

Avg. price (bid-offer midpoint) $15.77 $4.76 $5.46 $17.86 $27.76 $51.60 

Market capitalization of equity, $Million $690 $41 $202 $747 $1,502 $8,739 
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Table 2. Time scale volatility estimates for US equities in 2011 

Estimates of time scale variances and related measures for 150 US firms during April, 2011. The wavelet 

variances, 2 ,j  are estimates of the price variance at the time scale 150 2 j

j
  . The rough variances, 

2 ,j measure cumulative variation at all time scales j . For presentation, I report the square-roots of the 

variances, in mils ($0.001) per share and basis points (0.01%). The wavelet variance ratio is 
2 2

, 2J j

j J j JV    where 16J   is the longest time-scale in the analysis, and the rough variance ratio is 

similarly defined as 2 2

, 2J j

j J j JVR   . For a random-walk, both ratios would be unity at all horizons. 

The bid-offer correlation is the wavelet correlation (correlation between detail components) at the 

indicated time scale. All entries are cross-firm means. The National Best Bid and Offer are computed 

from TAQ data; the bid and offer are separately transformed using the Haar basis; the reported variance 

estimates are averages of the bid and offer variances. The data are time stamped to the millisecond. Prior 

to transformation, I take the average of the bid or offer over non-overlapping 50 millisecond intervals. 

Entries for 0j  are variances within the 50 ms intervals. 

 

 

  Rough variances Wavelet variances  

  (1) (2) (3) (4) (5) (6) (7) 

Level, j Time scale 

j (mils 

per share) 

j  (basis 

pts) 

Ratio, 

,j JVR  
j (mils 

per share) 

j  (basis 

pts) 

Ratio, 

,j JV  

 Correlation 

, ,bid offer j  

 < 50 ms 0.29 0.17 4.22     

1 50 ms 0.40 0.23 3.99 0.28 0.16 3.76 0.32 

2 100 ms 0.56 0.32 3.79 0.38 0.22 3.59 0.36 

3 200 ms 0.77 0.44 3.53 0.53 0.30 3.27 0.41 

4 400 ms 1.06 0.61 3.21 0.73 0.42 2.89 0.44 

5 800 ms 1.47 0.84 2.90 1.02 0.58 2.60 0.48 

6 1,600 ms 2.04 1.17 2.64 1.41 0.81 2.38 0.52 

7 3.2 sec 2.84 1.61 2.40 1.97 1.11 2.16 0.55 

8 6.4 sec 3.94 2.22 2.12 2.74 1.52 1.84 0.60 

9 12.8 sec 5.48 3.04 1.88 3.80 2.08 1.65 0.65 

10 25.6 sec 7.61 4.17 1.69 5.27 2.83 1.51 0.70 

11 51.2 sec 10.57 5.70 1.54 7.31 3.88 1.39 0.75 

12 102.4 sec 14.65 7.80 1.42 10.12 5.30 1.29 0.79 

13 3.4 min 20.29 10.67 1.32 13.99 7.25 1.21 0.83 

14 6.8 min 28.11 14.61 1.23 19.38 9.93 1.15 0.86 

15 13.7 min 38.85 19.98 1.16 26.66 13.53 1.08 0.89 

16 (=J) 27.3 min 53.24 27.16 1.08 36.00 18.17 1.00 0.90 
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Table 3. Time scale volatility estimates for US equities in 2011,  

across dollar trading volume quintiles. 

Estimates of time scale variances and related measures for 150 US firms during April, 2011, for quintiles 

constructed on dollar trading volume.  The wavelet variances, 2 ,j  are estimates of the price variance at 

the time scale 150 2 j

j
  . The rough volatilities, 2 ,j measure cumulative variation at all time scales 

j . For presentation, I report the rough volatilities (square-roots of the rough variances) in mils ($0.001) 

per share (Panel A) and basis points (0.01%, Panel B).The rough wavelet variance ratio is 
2 2

, 2J j

j J j JVR    where 16J   is the longest time-scale in the analysis (Panel C). For a random-walk 

,j JVR  would be unity at all horizons. The bid-offer correlation (Panel D) is the wavelet correlation 

(correlation between bid and offer components) at the indicated time scale. Table entries are cross-firm 

means with standard errors in parentheses. The National Best Bid and Offer are computed from TAQ 

data; the bid and offer are separately transformed using the Haar basis; the reported variance estimates are 

averages of the bid and offer variances. The data are time stamped to the millisecond. Prior to 

transformation, I take the average of the bid or offer over non-overlapping 50 millisecond intervals. 

Entries for 0j  are variances within the 50 ms intervals. Transforms are performed through level 

16;J   for brevity only a subset of time-scales are reported. 

 

Panel A. Rough volatility, j , mils per share 

   Dollar trading volume quintiles 

Level, j Time scale Full sample 1 (low) 2 3 4 5 (high) 

0 < 50 ms 0.29 0.16 0.20 0.30 0.37 0.40 

  (0.02) (0.02) (0.04) (0.04) (0.05) (0.05) 

1 50 ms 0.40 0.23 0.27 0.40 0.52 0.57 

  (0.03) (0.03) (0.05) (0.05) (0.07) (0.07) 

3 200 ms 0.77 0.43 0.51 0.77 1.00 1.11 

  (0.05) (0.05) (0.10) (0.10) (0.13) (0.13) 

5 800 ms 1.47 0.83 0.96 1.45 1.91 2.14 

  (0.10) (0.10) (0.18) (0.18) (0.25) (0.26) 

7 3.2 sec 2.84 1.58 1.81 2.76 3.71 4.19 

  (0.20) (0.19) (0.34) (0.34) (0.49) (0.51) 

10 25.6 sec 7.61 3.90 4.54 7.06 10.13 12.02 

  (0.55) (0.47) (0.83) (0.86) (1.36) (1.51) 

14 6.8 min 28.11 12.77 15.35 24.77 38.36 47.61 

  (2.17) (1.68) (2.74) (3.00) (5.32) (6.23) 

16 27.3 min 53.24 22.57 28.16 46.88 74.70 90.49 

  (4.19) (3.07) (4.82) (5.76) (10.52) (11.87) 
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Table 3. Time scale volatility estimates for US equities in 2011 

across dollar trading volume quintiles (continued). 

Panel B. Rough volatility, j , basis points 

   Dollar trading volume quintiles 

Level, j Time scale Full sample 1 (low) 2 3 4 5 (high) 

0 < 50 ms 0.17 0.29 0.22 0.15 0.12 0.08 

  (0.01) (0.02) (0.02) (0.01) (0.01) (0.01) 

1 50 ms 0.23 0.39 0.30 0.20 0.16 0.11 

  (0.01) (0.03) (0.02) (0.02) (0.01) (0.01) 

3 200 ms 0.44 0.75 0.57 0.38 0.31 0.22 

  (0.02) (0.06) (0.05) (0.03) (0.02) (0.02) 

5 800 ms 0.84 1.44 1.08 0.74 0.59 0.43 

  (0.04) (0.11) (0.09) (0.06) (0.03) (0.03) 

7 3.2 sec 1.61 2.74 2.05 1.41 1.15 0.85 

  (0.08) (0.20) (0.17) (0.12) (0.06) (0.06) 

10 25.6 sec 4.17 6.70 5.20 3.65 3.13 2.43 

  (0.19) (0.48) (0.43) (0.31) (0.18) (0.18) 

14 6.8 min 14.61 21.37 17.89 12.97 11.92 9.64 

  (0.62) (1.54) (1.55) (1.11) (0.75) (0.75) 

16 27.3 min 27.16 37.68 33.26 24.42 23.20 18.38 

  (1.13) (2.82) (2.93) (2.02) (1.48) (1.46) 

 

Panel C. Rough variance ratio, ,j JVR  

   Dollar trading volume quintiles 

Level, j Time scale Full sample 1 (low) 2 3 4 5 (high) 

0 < 50 ms 4.22 12.86 3.45 2.62 1.76 1.37 

  (1.29) (7.01) (0.43) (0.22) (0.16) (0.05) 

1 50 ms 3.99 12.14 3.23 2.44 1.69 1.35 

  (1.26) (6.85) (0.39) (0.18) (0.15) (0.05) 

3 200 ms 3.53 10.51 2.83 2.20 1.57 1.30 

  (1.07) (5.80) (0.30) (0.15) (0.13) (0.05) 

5 800 ms 2.90 7.90 2.50 2.02 1.43 1.21 

  (0.66) (3.56) (0.23) (0.13) (0.11) (0.04) 

7 3.2 sec 2.40 5.92 2.17 1.82 1.32 1.15 

  (0.40) (2.09) (0.17) (0.10) (0.10) (0.04) 

10 25.6 sec 1.69 3.07 1.70 1.49 1.19 1.17 

  (0.13) (0.64) (0.12) (0.06) (0.07) (0.04) 

14 6.8 min 1.23 1.59 1.24 1.17 1.04 1.16 

  (0.03) (0.11) (0.06) (0.03) (0.03) (0.02) 

16 27.3 min 1.08 1.19 1.08 1.06 1.01 1.06 

  (0.01) (0.03) (0.02) (0.01) (0.01) (0.01) 
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Table 3. Time scale volatility estimates for US equities in 2011 

across dollar trading volume quintiles (continued). 

Panel D. Wavelet bid-offer correlations. 

   Dollar trading volume quintiles 

Level, j Time scale Full sample 1 (low) 2 3 4 5 (high) 

1 50 ms 0.32 0.05 0.23 0.31 0.41 0.56 

  (0.02) (0.01) (0.03) (0.03) (0.03) (0.04) 

3 200 ms 0.41 0.11 0.33 0.42 0.49 0.65 

  (0.02) (0.01) (0.03) (0.03) (0.03) (0.03) 

5 800 ms 0.48 0.16 0.40 0.51 0.56 0.72 

  (0.02) (0.02) (0.03) (0.03) (0.03) (0.03) 

7 3.2 sec 0.55 0.19 0.47 0.59 0.66 0.82 

  (0.02) (0.02) (0.03) (0.03) (0.03) (0.02) 

10 25.6 sec 0.70 0.27 0.61 0.75 0.85 0.95 

  (0.02) (0.03) (0.03) (0.02) (0.02) (0.01) 

14 6.8 min 0.86 0.44 0.88 0.97 0.99 1.00 

  (0.02) (0.05) (0.02) (<0.01) (<0.01) (<0.01) 

16 27.3 min 0.90 0.52 0.96 0.99 1.00 1.00 

  (0.02) (0.05) (0.01) (<0.01) (<0.01) (<0.01) 
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Table 4. Correlations between statistics based on actual vs. simulated millisecond time stamps. 

This table assesses the reliability of wavelet estimates based on simulated millisecond time stamps. For 

the sample of 150 US firms during April, 2011, I compute two sorts of estimates. Let 2

, , ,bid j i d denote the 

bid wavelet variance estimate for firm i on day d at level j based on the original millisecond time stamps. 

For the alternative estimates, I round the timestamps down to the next second (thereby stripping the 

millisecond portions) and assign randomly-generated millisecond remainders. Let 2

, , ,bid j i d denote the 

estimate from the data with simulated time stamps. Panel A reports the estimated  2 2

, , , , , ,,bid i j d bid i j dCorr    

computed over all days and firms in the full sample (or the indicated dollar volume quintile subsample). 

Results for the offer side are similar and omitted for brevity. Now let 2

, , , ,bid offer i j d denote the estimate of 

the wavelet covariance between the bid and offer for firm i on day d at level j based on the original 

millisecond time stamps; 2

, , , ,bid offer i j d  denotes the corresponding estimate based on the simulated 

millisecond time stamps. Panel B reports the estimated  2 2

, , , , , , , ,,bid offer i j d bid offer i j dCorr    computed over all 

days and firms in the full sample (or the indicated dollar volume quintile subsample).  

Panel A. Correlations for bid wavelet variance estimates,  2 2

, , , , , ,,bid i j d bid i j dCorr    

   Dollar trading volume quintiles 

Level, j Time scale Full sample 1 (low) 2 3 4 5 (high) 

0 < 50 ms 0.952 0.948 0.960 0.958 0.916 0.979 

1 50 ms 0.953 0.944 0.952 0.952 0.937 0.982 

3 200 ms 0.975 0.965 0.969 0.975 0.977 0.988 

5 800 ms 0.994 0.991 0.989 0.995 0.996 0.998 

7 3.2 sec 0.999 0.999 0.999 1.000 1.000 1.000 

10 25.6 sec 1.000 1.000 1.000 1.000 1.000 1.000 

14 6.8 min 1.000 1.000 1.000 1.000 1.000 1.000 

16 27.3 min 1.000 1.000 1.000 1.000 1.000 1.000 

Panel B. Correlations for bid-offer wavelet covariance estimates,  2 2

, , , , , , , ,,bid offer i j d bid offer i j dCorr    

   Dollar trading volume quintiles 

Level, j Time scale Full sample 1 (low) 2 3 4 5 (high) 

0 < 50 ms 0.775 0.333 0.768 0.896 0.919 0.943 

1 50 ms 0.900 0.662 0.926 0.965 0.972 0.978 

3 200 ms 0.979 0.921 0.986 0.995 0.995 0.998 

5 800 ms 0.999 0.998 0.999 1.000 1.000 1.000 

7 3.2 sec 1.000 1.000 1.000 1.000 1.000 1.000 

10 25.6 sec 1.000 1.000 1.000 1.000 1.000 1.000 

14 6.8 min 1.000 1.000 1.000 1.000 1.000 1.000 

16 27.3 min 1.000 1.000 1.000 1.000 1.000 1.000 

 



 Page 37 

 

Table 5. Summary statistics for US equities, 2001-2011 

From the CRSP file, for each year, 2001-2011 and all stocks present in January through April of that year with share codes equal to 10 or 11, I 

draw 150 firms in a random sample stratified by dollar trading volume in January through March. NBB is the National Best Bid; NBO, the 

National Best Offer; CT, Consolidated Trade; CQ, Consolidated Quote. Trade and quote counts are from the Monthly TAQ database (one-second 

time stamps). Except for the number of firms, table entries are cross-firm medians. 

 

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

No. firms 137 122 141 148 144 150 150 147 145 149 149 

 NYSE 106 46 51 44 48 44 55 53 56 54 47 

Amex 16 4 10 12 8 15 14 6 5 14 6 

NASDAQ 15 72 80 92 88 91 81 88 84 81 96 

Avg. daily CT records (trades) 167 228 231 399 448 605 970 1,217 1,993 1,141 1,346 

Avg. daily CQ records (quotes) 1,525 1,053 1,470 3,917 6,004 7,307 12,521 16,791 41,571 23,530 24,053 

Avg. daily NBB changes 128 162 210 514 611 761 772 1,183 1,787 1,468 1,225 

Avg. daily NBO changes 127 163 226 545 729 751 789 1,142 1,789 1,461 1,146 

Avg. price (bid-offer midpoint) $20.57 $20.98 $14.41 $16.53 $16.10 $21.14 $15.81 $14.12 $11.25 $16.79 $15.77 

Market capitalization of equity, $Million $976 $410 $205 $352 $348 $411 $480 $411 $382 $490 $690 
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Table 6. Wavelet variance ratios for US firms, 2001-2011 

In each year 2001-2011, 150 US firms are randomly selected from CRSP (stratified by average daily dollar 

trading volume during the first quarter of the year).  Quote records for April are taken from the NYSE Monthly 

TAQ database. Within each second, quotes are randomly assigned order-preserving millisecond fractional 

portions. Wavelet variances, 2 ,j  are estimates of the price variance at the time scale. The wavelet variance ratio 

is 2 2

, 2J j

j J j JV    where 16J   is the longest time-scale in the analysis. For random-walk, the ratio would be 

unity at all horizons. All entries are cross-firm means. The National Best Bid and Offer are computed from TAQ 

data; the bid and offer are separately transformed using the Haar basis; variance estimates are formed as the 

average of the bid and offer variances. Estimates in Panel A are constructed from bids and offers that were filtered 

for errors, but not otherwise adjusted. Estimates in Panel B are constructed from denoised bids and offers (with 

short-term peaks clipped). 

Panel A. Wavelet variance ratios, , 16j JV  , computed from raw bids and offers 

Level, j Time scale 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 50 ms 5.29 7.36 5.96 10.31 6.56 8.57 6.96 6.07 4.53 7.09 4.71 

2 100 ms 5.52 6.75 5.20 9.71 6.38 8.07 6.27 5.39 4.12 6.27 4.33 

3 200 ms 5.35 6.44 5.05 9.06 6.10 7.34 5.33 4.65 3.68 5.41 3.75 

4 400 ms 4.65 5.35 4.92 8.18 5.64 6.30 4.25 3.84 3.21 4.54 3.07 

5 800 ms 3.16 4.12 3.86 5.59 4.93 5.10 3.41 3.11 2.76 3.71 2.56 

6 1,600 ms 2.13 2.56 3.19 4.11 4.06 4.05 2.89 2.59 2.42 3.04 2.23 

7 3.2 sec 2.00 2.25 2.91 3.39 3.42 3.37 2.56 2.28 2.16 2.53 2.01 

8 6.4 sec 1.95 2.12 2.61 2.91 2.88 2.92 2.35 2.08 1.94 2.16 1.82 

Panel B. Wavelet variance ratios, , 16j JV  , computed from denoised bids and offers 

Level, j Time scale 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 50 ms 1.61 2.38 3.07 7.03 5.95 8.24 6.56 5.84 4.22 6.81 4.47 

2 100 ms 1.58 2.33 3.02 6.84 5.76 7.76 5.89 5.18 3.85 6.01 4.08 

3 200 ms 1.56 2.28 2.96 6.50 5.49 7.04 4.99 4.46 3.43 5.19 3.57 

4 400 ms 1.56 2.24 2.88 5.92 5.05 6.02 3.96 3.68 2.99 4.37 3.01 

5 800 ms 1.57 2.20 2.77 5.01 4.37 4.82 3.13 2.98 2.58 3.58 2.52 

6 1,600 ms 1.64 2.21 2.68 4.00 3.52 3.79 2.63 2.51 2.28 2.94 2.20 

7 3.2 sec 1.82 2.31 2.60 3.45 2.96 3.16 2.33 2.22 2.05 2.46 1.99 

8 6.4 sec 2.12 2.54 2.58 3.20 2.60 2.75 2.15 2.04 1.86 2.11 1.82 
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Table 7. Consolidated quote record for PRK, April 6, 2001. 

The table contains the consecutive records from the monthly TAQ consolidated quote file for the Park National Corporation. The first five 

columns are directly from the CQ file. The national best bid and offer (NBBO), and the exchange(s) at the NBBO are inferred. The NBBO 

columns contain entries only when there is a change. The size is units of 100 shares. (“4x2” means that 400 shares are bid for and 200 shares are 

offered.) The exchange codes are “A” (the American Stock Exchange, the primary listing exchange [presently named “NYSE MKT LLC”]); “M,” 

Midwest; “C,” Cincinnati; “T,” NASDAQ. 

 

Time Bid Offer Size Ex Mode NBB  NBO   Time Bid Offer Size Ex Mode NBB  NBO  

12:01:33 86.73 86.90 4x2 A 12 86.73 A 86.90 A  12:03:37 83.75 86.96 1x1 T 12     

12:01:34 86.63 87.00 1x1 M 12      12:03:38 86.50 86.90 2x2 A 12 86.50 A   

12:01:35 86.35 87.28 1x1 C 12      12:03:39 86.40 87.00 1x1 M 12     

12:01:35 86.67 86.96 1x1 T 12      12:03:40 86.50 86.90 2x2 A 12     

12:01:35 86.67 86.96 1x1 T 12      12:03:40 86.12 87.28 1x1 C 12     

12:02:22 86.74 86.90 3x2 A 12 86.74 A    12:03:45 86.44 86.96 1x1 T 12     

12:02:23 86.64 87.00 1x1 M 12      12:03:45 86.44 86.96 1x1 T 12     

12:02:25 86.68 86.96 1x1 T 12      12:03:46 86.50 88.00 2x9 A 12   86.96 T 

12:02:25 86.68 86.96 1x1 T 12      12:03:48 86.40 88.10 1x1 M 12     

12:03:11 83.63 86.90 1x2 A 12 86.68 T    12:03:49 86.12 88.38 1x1 C 12     

12:03:13 83.53 87.00 1x1 M 12      12:03:51 86.44 88.06 1x1 T 12   88.00 A 

12:03:15 83.25 87.28 1x1 C 12      12:03:51 86.44 88.06 1x1 T 12     

12:03:15 83.60 86.90 2x2 A 12      12:03:52 86.50 86.90 2x2 A 12   86.90 A 

12:03:16 83.57 86.96 1x1 T 12 83.60 A    12:03:54 86.40 87.00 1x1 M 12     

12:03:16 83.57 86.96 1x1 T 12      12:03:55 86.12 87.28 1x1 C 12     

12:03:16 83.50 87.00 1x1 M 12      12:03:58 83.00 86.90 2x2 A 12 86.44 T   

12:03:21 83.54 86.96 1x1 T 12      12:03:58 86.44 86.96 1x1 T 12     

12:03:21 83.54 86.96 1x1 T 12      12:03:58 86.44 86.96 1x1 T 12     

12:03:27 83.81 86.90 1x2 A 12 83.81 A    12:04:00 82.90 87.00 1x1 M 12     

12:03:29 83.71 87.00 1x1 M 12      12:04:01 82.62 87.28 1x1 C 12     

12:03:30 83.43 87.28 1x1 C 12      12:04:01 82.94 86.96 1x1 T 12 83.00 A   

12:03:30 83.81 86.90 1x2 A 12      12:04:01 82.94 86.96 1x1 T 12     

12:03:32 83.75 86.96 1x1 T 12      12:04:06 86.50 86.90 2x2 A 12 86.50 A   
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Table 8. Time scale volatility estimates for US equities, 2001-2011 

In each year 2001-2011, 150 US firms are randomly selected from CRSP (stratified by average daily dollar 

trading volume during the first quarter of the year). Quote records for April are taken from the NYSE Monthly 

TAQ database. Within each second, quotes are randomly assigned order-preserving millisecond fractional 

portions. The rough volatilities, j , measure cumulative variation at all time scales 150 2 j

j
    ms. These are 

reported in mils ($0.001) per share (Panel A) and basis points (0.01%, Panel B). The rough wavelet variance ratio 

(Panel C) is 2 2

, 2J j

j J j JVR    where J=16 is the longest time-scale in the analysis. (For a random-walk ,j JVR  

would be unity at all horizons.) Table entries are cross-firm means; standard errors clustered within firm are given 

in parentheses. The National Best Bid and Offer are computed from TAQ data; the bid and offer are separately 

transformed using the Haar basis; the reported estimates are averages across bid and offer sides. Transforms are 

performed through level 16;J   for brevity only a subset of time-scales are reported. All estimates are 

constructed from denoised bids and offers (with short-term peaks clipped). 

Panel A. Rough volatility, j  mils per share 

Level, j Time scale 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 50 ms 0.39 0.35 0.27 0.39 0.36 0.41 0.29 0.38 0.44 0.46 0.31 

  (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.04) (0.03) (0.06) (0.02) 

3 200 ms 1.02 0.90 0.72 1.01 0.93 1.06 0.73 0.94 1.09 1.14 0.76 

  (0.06) (0.04) (0.04) (0.05) (0.04) (0.06) (0.06) (0.10) (0.06) (0.15) (0.05) 

5 800 ms 2.12 1.85 1.47 2.02 1.85 2.08 1.41 1.80 2.13 2.20 1.49 

  (0.13) (0.09) (0.09) (0.10) (0.08) (0.12) (0.11) (0.17) (0.13) (0.29) (0.10) 

7 3.2 sec 4.33 3.68 2.86 3.77 3.44 3.83 2.63 3.36 4.05 4.02 2.84 

  (0.26) (0.17) (0.17) (0.20) (0.15) (0.20) (0.21) (0.25) (0.25) (0.52) (0.19) 

10 25.6 sec 12.77 10.19 7.52 9.64 8.78 9.73 6.92 8.72 10.66 9.96 7.60 

  (0.78) (0.54) (0.44) (0.55) (0.39) (0.52) (0.56) (0.53) (0.70) (1.17) (0.54) 

14 6.8 min 46.19 35.17 25.32 32.53 30.36 33.85 24.86 31.28 38.82 34.44 28.11 

  (2.72) (1.67) (1.42) (1.96) (1.47) (1.92) (2.00) (1.86) (2.61) (3.47) (2.17) 

16 27.3 min 85.30 64.14 45.16 58.27 54.15 60.97 45.57 58.42 72.26 63.12 53.23 

  (5.31) (3.11) (2.57) (3.62) (2.68) (3.59) (3.52) (3.56) (4.93) (6.05) (4.18) 
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Table 8. Time scale volatility estimates for US equities, 2001-2011 (continued) 

 

Panel B. Rough volatility, j , basis points 

 

Level, j Time scale 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 50 ms 0.18 0.20 0.20 0.28 0.28 0.21 0.18 0.28 0.36 0.24 0.18 

  (0.01) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.02) (0.01) 

3 200 ms 0.48 0.52 0.52 0.73 0.73 0.52 0.45 0.68 0.88 0.58 0.44 

  (0.02) (0.03) (0.03) (0.05) (0.06) (0.03) (0.03) (0.05) (0.05) (0.04) (0.02) 

5 800 ms 1.01 1.07 1.07 1.46 1.45 1.02 0.84 1.29 1.70 1.09 0.86 

  (0.05) (0.05) (0.05) (0.10) (0.12) (0.05) (0.06) (0.09) (0.09) (0.06) (0.04) 

7 3.2 sec 2.06 2.13 2.08 2.65 2.61 1.86 1.53 2.37 3.14 1.94 1.62 

  (0.09) (0.11) (0.10) (0.16) (0.20) (0.08) (0.09) (0.14) (0.15) (0.10) (0.08) 

10 25.6 sec 6.01 5.81 5.42 6.43 6.34 4.60 3.88 6.00 7.94 4.69 4.19 

  (0.26) (0.29) (0.24) (0.34) (0.43) (0.18) (0.20) (0.30) (0.35) (0.21) (0.20) 

14 6.8 min 21.68 20.23 18.05 20.63 20.50 15.27 13.19 20.15 27.66 15.82 14.64 

  (0.96) (1.04) (0.77) (0.98) (1.28) (0.52) (0.59) (0.76) (1.12) (0.61) (0.63) 

16 27.3 min 39.55 36.64 31.82 35.95 35.79 27.19 23.84 36.67 50.49 28.75 27.18 

  (1.83) (1.87) (1.34) (1.62) (2.22) (0.92) (1.05) (1.21) (1.93) (1.06) (1.13) 

 

 

Panel C. Rough variance ratio, ,j JVR  

 

Level, j Time scale 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 50 ms 1.61 2.38 3.07 7.03 5.95 8.24 6.56 5.84 4.22 6.81 4.47 

  (0.07) (0.17) (0.17) (1.42) (0.83) (1.94) (1.37) (1.40) (0.44) (1.05) (1.43) 

3 200 ms 1.57 2.31 3.00 6.67 5.63 7.42 5.47 4.86 3.66 5.66 3.85 

  (0.07) (0.16) (0.16) (1.33) (0.78) (1.68) (1.06) (1.18) (0.36) (0.86) (1.17) 

5 800 ms 1.57 2.23 2.85 5.62 4.83 5.72 3.87 3.59 2.93 4.25 2.94 

  (0.07) (0.15) (0.15) (1.02) (0.63) (1.16) (0.61) (0.73) (0.25) (0.59) (0.69) 

7 3.2 sec 1.72 2.27 2.68 4.12 3.56 3.94 2.78 2.63 2.32 3.02 2.28 

  (0.11) (0.19) (0.14) (0.57) (0.38) (0.62) (0.33) (0.34) (0.16) (0.32) (0.36) 

10 25.6 sec 2.38 2.74 2.59 3.16 2.38 2.53 2.03 1.89 1.74 1.93 1.70 

  (0.37) (0.62) (0.30) (0.58) (0.16) (0.25) (0.16) (0.13) (0.08) (0.12) (0.13) 

14 6.8 min 1.38 1.41 1.49 1.58 1.47 1.52 1.37 1.29 1.30 1.30 1.23 

  (0.04) (0.06) (0.04) (0.07) (0.04) (0.06) (0.04) (0.03) (0.03) (0.03) (0.03) 

16 27.3 min 1.12 1.13 1.16 1.18 1.15 1.17 1.12 1.09 1.10 1.10 1.08 

  (0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) 
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Figure 1. The bid and offer for AEPI, April 29, 2011 

National best bid and offer (NBBO) from the NYSE Daily TAQ dataset. The National best bid (bottom line, in 

blue) is the maximum bid, taken over all market centers reporting to the Consolidated Tape Association; the 

National best offer (top line, red) is the minimum offer. 
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Figure 2. Variance ratios for US equities in 2011 

Estimates of time scale variance ratios for 150 US firms during April, 2011. The wavelet variances, 2 ,j  are 

estimates of the price variance at the time scale 150 2 j

j
  . The wavelet variance ratio is 2 2

, 2J j

j J j JV    

where 16J   is the longest time-scale in the analysis. For random-walk, both ratios would be unity at all 

horizons. Plotted points are means (across firms) of estimated variance ratios in quintiles constructed on dollar 

trading volume. The National Best Bid and Offer are computed from TAQ data; the bid and offer are separately 

transformed using the Haar basis; the reported variance estimates are averages of the bid and offer variances. The 

data are time stamped to the millisecond. Prior to transformation, I take the average of the bid or offer over non-

overlapping 50 millisecond intervals.  
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Figure 3. Wavelet correlations between the National Best Bid and National Best Offer 

Estimates of bid-offer wavelet correlations for 150 US firms during April, 2011. The wavelet correlation between 

the bid and offer at level j (and time scale 150 2 j

j
  ) is defined as 2 2 2

, , , , , ,bid offer j bid offer j bid j offer j    where 

2 2

, ,,bid j offer j  and 2

, ,bid offer j denote the bid wavelet variance, the offer wavelet variance, and the bid-offer wavelet 

covariance. Plotted points are means (across firms) of estimated correlations in quintiles constructed on dollar 

trading volume. The National Best Bid and Offer are computed from TAQ data; the bid and offer are separately 

transformed using the Haar basis; the reported variance estimates are averages of the bid and offer variances. The 

data are time stamped to the millisecond. Prior to transformation, I take the average of the bid or offer over non-

overlapping 50 millisecond intervals. The sample is 150 randomly chosen U.S. stocks, over April, 2011.  
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Figure 4. Bid and offer for PRK (Park National Corporation) on April 6, 2001. 

Panel A. National best bid and offer (NBBO) from the NYSE Daily TAQ dataset. The National best bid (bottom 

line, in blue) is the maximum bid, taken over all market centers reporting to the Consolidated Tape Association; 

the National best offer (top line, red) is the minimum offer. 

 

 
Panel B. Rough component of the National Best bid, constructed from a Haar wavelet transform and comprising 

components at time scales of 51.2 seconds and lower. The bands demarcate $0.33, approximately 150% of the 

average bid-ask spread for the day. 
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Figure 5. Time scale volatility estimates for U.S. Equities, 2001-2011 

Quote volatility at a time scale of 800 ms., in mils per share (Panel A), basis points (Panel B), and as a variance 

ratio (Panel C). In each year, the horizontal tick marks the mean and the vertical line demarcates the mean ± twice 

the standard error (clustered on firm). 

 

Panel A. Rough volatility, 5j   mils per share 

 
 

Panel B Rough volatility, 5j   basis points per share 
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Figure 6. Time scale volatility estimates for U.S. Equities, 2001-2011 (continued) 

 

Panel C. Rough variance ratio, 5,j JVR   
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