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Abstract
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time. In type I problem, the principal is ambiguous about the project cash flows, while

he is ambiguous about the agent’s beliefs in type II problem. The principal designs a

robust contract that maximizes his utility under the worst-case scenario subject to the

agent’s incentive and participation constraints. We implement the optimal contract by

cash reserves, debt and equity. In addition to receiving ordinary dividends when cash

reserves reach a threshold, outside equity holders also receive special dividends or inject

cash in the cash reserves to hedge against model uncertainty. Ambiguity aversion lowers
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for type I problem, but not for type II problem. The equity premium and the credit yield
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1 Introduction

Uncertainty and information play an important role in principal-agent problems. Consistent

with the rational expectations hypothesis, the traditional approach to these problems typically

assumes that both the principal and the agent share the same belief about the uncertainty

underlying an outcome, say output. The agent can take unobservable actions to influence the

output distribution. This distribution is common and known to both the principal and the

agent. This approach has generated important economic implications and found increasingly

widespread applications in practice, e.g., managerial compensation, insurance contracts, and

lending contracts, etc.

However, there are several good reasons for us to think about departures from the tradi-

tional approach. First, the Ellsberg (1961) paradox and related experimental evidence demon-

strate that there is a distinction between risk and uncertainty (or ambiguity). Risk refers to

the situation where there is a known probability distribution over the state of the world, while

ambiguity refers to the situation where the information is too vague to be adequately summa-

rized by a single probability distribution (Knight (1921)). As a result, a decision maker may

have multiple priors in mind (Gilboa an Schmeidler (1989)). Second, as Anderson, Hansen

and Sargent (2003) and Hansen and Sargent (2001, 2008) point out, economic agents view

economic models as an approximation to the true model. They believe that economic data

come from an unknown member of a set of unspecified models near the approximating model.

Concern about model misspecification induces a decision maker to want robust decision rules

that work over that set of nearby models.1

The goal of this paper is to study how to design robust contracts with hidden action in

a dynamic environment. We adopt a continuous-time framework to address this question.

More specifically, our model is based on DeMarzo and Sannikov (2006). The continuous-time

framework is analytically convenient for several reasons. First, it allows us to represent belief

distortions by perturbations of the drift of the Brownian motion using the powerful Girsanov

Theorem.2 Second, it allows us to adapt and extend the martingale approach to the dynamic

contracting problems recently developed by DeMarzo and Sannikov (2006), Sannikov (2008),

and Williams (2009, 2011). Third, it allows us to express solutions in terms of ordinary

differential equations (ODEs) which can be numerically solved tractably. Finally, it allows us

to conduct capital structure implementation so that we can analyze the impact of robustness

on asset pricing transparently.

1There is a growing literature on the applications of robustness and ambiguity to finance and macroeco-
nomics, e.g., Epstein and Wang (1994), Hansen (2007), Hansen and Sargent (2010), Ilut and Schneider (2011),
and Ju and Miao (2012), among others.

2See Karatzas and Shreve (1991).
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When formulating robust contracting problems in continuous time, we face two important

issues. The first issue is that we have to consider who faces model ambiguity in our two-party

contracting problems, unlike in the representative agent models. We study two possibilities.

First, the agent knows the output distribution chosen by himself. But the principal faces

model uncertainty in the sense that he believes that there may be multiple distributions

surrounding the output distribution. In this case, we call the contracting problem type I

robust contracting problem. Second, the principal trusts the output distribution chosen by the

agent. But the principal is ambiguous about what beliefs the agent has. This case corresponds

to type II robust contracting problem.

The second issue is how to model decision making under ambiguity. There are several

approaches in decision theory. A popular approach is to adopt the maxmin expected utility

model of Gilboa and Schmeidler (1989). Chen and Epstein (2002) formulate this approach in a

continuous-time framework. We find that this approach is hard to work with in our continuous-

time contracting problems because two types of inequality constraints (the constraint on the

set of priors and the incentive constraint) are involved in optimization. We thus adopt the

approach proposed by Anderson, Hansen, and Sargent (2003) and Hansen et al. (2006).3

This approach is especially useful for our analysis since model discrepancies are measured by

entropy, which is widely used in statistics and econometrics for model detection.

For both types of robust contracting problems, we assume that the principal copes with

model uncertainty by designing a robust contract that maximizes his utility in the worst-case

scenario subject to the agent’s incentive and participation constraints. For type I robust

contracting problem, the principal’s utility function is modeled as the multiplier preferences

proposed by Anderson, Hansen and Sargent (2003) and Hansen and Sargent (2001, 2008)

and axiomatized by Maccheroni, Marinacci and Rustichini (2006a,b) and Strzalecki (2011).

For type II robust contracting problem, we adopt Woodford’s (2010) approach.4 In this

approach, the principal evaluates his utility using his trusted approximating model. But

there is a penalty term in the utility function arising from the principal’s concerns about the

agent’s belief distortions. For both types of contracting problems, the principal solves maxmin

problems, which are related to the zero-sum differential game literature (e.g., Fleming and

Souganidis (1989))

We find the following new results. First, unlike the DeMarzo and Sannikov (2006) model,

our model of type I robust contracting problem implies that the optimal sensitivity of the

agent’s continuation value to the cash flow uncertainty is not always at the lower bound

3See Hansen and Sargent (2008) for a textbook treatment of this approach in discrete time.
4Woodford (2010) originally studies a discrete-time linear-quadratic problem. Hansen and Sargent (2012)

study a continuous-time limit of his problem.
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to ensure incentive compatibility. By contrast, for type II robust contracting problem, the

optimal sensitivity is always at the lower bound. The intuition is the following. In type I

robust contracting problem, the principal is ambiguous about the probability distribution of

the project cash flows. He wants to remove this ambiguity and transfer uncertainty to the

agent. But he does not want the agent to bear too much uncertainty since this may generate

excessive volatility and a high chance of liquidation. When the agent’s continuation value is

low, the principal is more concerned about liquidation and hence the optimal sensitivity is at

the lower bound so that the incentive constraint just binds. But when the agent’s continuation

value is high, the principal is more concerned about model uncertainty and hence the optimal

contract allows the agent to bear more uncertainty. In this case, the optimal sensitivity of the

agent’s continuation value to the cash flow is state dependent and exceeds its lower bound. The

situation is different for type II robust contracting problem in which the principal trusts the

distribution of cash flows but he has ambiguity about the agent’s beliefs. The robust contract

penalizes the agent’s belief distortions and makes the agent bears the minimal uncertainty

about the cash flow.

Second, we show that the robust contracts can be implemented by cash reserves, debt,

and equity as in Biais et al. (2007).5 Unlike their implementation, the equity payoffs consist

of regular dividends (paid only when the cash reserves reach a threshold level) and special

dividends (or new equity injection if negative). The special dividends or new equity injection

are used as a hedge against model uncertainty. They ensure that the cash reserves track the

agent’s continuation value so that the payout time and the liquidation time coincide with

those in the optimal contract. For type I robust contracting problem, special dividends or

cash injection occur only when the cash reserves are sufficiently high. In this case, when

the project performs well, outside equity holders inject cash to raise the cash reserves. But

when the project performs bad, outside equity holders receive special dividends, which lower

the cash reserves. By contrast, for type II robust contracting problem, special dividends are

distributed when the cash reserves are low and new equity injection occur when the cash

reserves are high.

Third, incorporating model uncertainty has important asset pricing implications. For

type I robust contracting problem, the principal’s worst-case belief generates a market price

of model uncertainty, which contributes to the uncertainty premium and hence the equity

premium. The uncertainty premium lowers the stock price and debt value and hence makes

some profitable projects unfunded. It also raises the credit yield spread. Importantly, the

5Our implementation and interpretation are also similar to those in DeMarzo et al. (2012). We can also
implement the robust contracts by credit lines, debt and equity as in DeMarzo and Sannikov (2006). We have
not pursued this route in this paper.
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equity premium and the credit yield spread are state dependent and high for distressed firms

with low cash reserves. This also implies that the equity premium and the credit yield spread

are high in recessions since cash reserves are low in bad times. By contrast, there is no

uncertainty premium for type II robust contracting problem just as in DeMarzo and Sannikov

(2006) and Biais et al. (2007). The reason is that outside investors (or the principal) are risk

neutral and have no distortion of beliefs about cash flows in type II problem.

To generate time-varying equity premium or credit yield spread, the existing literature

typically introduces one of the following assumptions: time-varying risk aversion as in the

Habit formation model of Campbell and Cochrane (1999), time-varying economic uncertainty

as in the long-run risk model of Bansal and Yaron (2004), or regime-switching consumption

and learning under ambiguity as in Ju and Miao (2012). By contrast, in our contracting model,

investors are risk neutral with endogenously distorted beliefs, dividends are endogenous, and

the driving state process is identically and independently distributed.

Finally, unlike DeMarzo and Sannikov (2006) and Biais et al. (2007), we show that the

stock price in both types of robust contracting problems is convex for low levels of cash

reserves and concave for high levels of cash reserves. Intuitively, after a sequence of low cash-

flow realizations, cash reserves are close to the liquidation boundary. The robust contract has

already taken into account the worst-case scenario. The equity price does not have to respond

strongly to a decrease in the cash reserves when they are low in the sense that the marginal

change in the stock price decreases when the cash reserves fall. But for high levels of cash

reserves, the principal pessimistically believes that the firm does not perform that well. Thus,

the stock price reacts strongly to a decrease in the cash reserves when they are large in the

sense that the marginal change in the stock price increases when the cash reserves fall. This

result implies that asset substitution problem is more likely to occur for financially distressed

firms or newly established firms with low cash reserves.

Our paper is related to a fast growing literature on dynamic contracting problems in

continuous time.6 Our paper is most closely related to the seminal contributions by DeMarzo

and Sannikov (2006) and Biais et al. (2007). Our main contribution is to introduce robustness

into their models and study capital structure implementation and asset pricing implications.

Our paper is also related to the microeconomic literature that introduces robustness into static

mechanism design problems (see Bergemann and Schlag (2011) and Bergemann and Morris

6See Holmstrom and Milgrom (1987), Schattler and Sung (1993), Ou-Yang (2003), DeMarzo and Sannikov
(2006), Biais (2007, 2010), Sannikov (2008), He (2009, 2011), Williams (2009, 2011), Zhang (2009), Piskorski
and Tchistyi (2010), Prat and Jovanovic (2010), DeMarzo et al. (2012), Cvitanic and Zhang (2012), Zhu
(2012), He, Wei and Yu (2012), Ju and Wan (2012), and Szydlowski (2012). This literature is closely related
to that on discrete-time dynamic contracts, e.g., Green (1987), Spear and Srivastava (1987), Thomas and
Worrall (1990), Atkeson and Lucas (1992), Albuquerque and Hopenhayn (2004), Quadrini (2004), Clementi
and Hopenhayn (2006), and DeMarzo and Fishman (2007a,b).
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(2012) and references cited therein). This literature typically focuses on static models with

hidden information instead of hidden action. Szydlowski (2012) introduces ambiguity into a

dynamic contracting problem in continuous time. He assumes that the principal is ambiguous

about the agent’s effort cost. His modeling of ambiguity is quite different from ours and can

be best understood as a behavioral approach. His utility model cannot be subsumed under

the decision-theoretic setting of Gilboa and Schmeidler (1989) and its continuous time version

by Chen and Epstein (2002).

Our modeling of two types of robust contracting problems is inspired by Hansen and

Sargent (2012) who classify four types of ambiguity in robust monetary policy problems

in which a Ramsey planner faces private agents. They argue that “a coherent multi-agent

setting with ambiguity must impute possibly distinct sets of models to different agents, and

also specify each agent’s understanding of the sets of models of other agents.” This point is

particularly relevant for contracting problems because such problems must involve at least two

parties. Their types II and III ambiguity corresponds to our types I and II, respectively. Both

types generate endogenous belief heterogeneity and deliver interesting contract dynamics and

asset pricing implications. We thus focus on these two types in the paper.

The remainder of the paper proceeds as follows. Section 2 lays out the conceptual frame-

work in both a static and a dynamic discrete-time settings. Section 3 presents the continuous-

time model. Sections 4 and 5 analyze types I and II robust contracting problems, respectively.

Section 6 studies capital structure implementation. Section 7 concludes. Technical details are

relegated to appendices.

2 A Conceptual Framework

In this section, we lay out a conceptual framework for studying robust contracts. We start with

a static setup and then present a dynamic discrete-time setup. The discrete-time framework

is helpful for understanding the continuous-time model studied later.

2.1 Static Setup

Consider a textbook model of the principal-agent problem under moral hazard (e.g., Mas-

Colell, Whinston and Green (1995)). A principal owns a technology of production and hires

an agent to manage this technology. The technology can generate stochastic output. Output

depends on the agent’s effort. Suppose that output x is drawn from a distribution with pdf

f (·|a) where the distribution depends on the effort level a. The principal does not observe

the agent’s effort. He receives output and pays the agent compensation c (x) contingent on
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the output level x. His realized utility is given by v (x− c (x)) for some function v. The

agent’s realized utility is given by u (c (x) , a) for some function u. A contract (c, a) specifies

a compensation scheme c and an effort choice a.

An optimal contract solves the following:

Problem 2.1 (standard static contract)

max
(c,a)

∫
v (x− c (x)) f (x|a) dx

subject to ∫
u (c (x) , a) f (x|a) dx ≥

∫
u (c (x) , â) f (x|â) dx, ∀â, (1)∫

u (c (x) , a) f (x|a) dx ≥ u0. (2)

Equation (1) is an incentive constraint and equation (2) is an individual rationality con-

straint or a participation constraint, where u0 is an outside utility level.

In this standard model, an important assumption is that both the principal and the

agent believe that f (·|a) is the true output distribution and use this common distribution to

evaluate their expected utility. Suppose that the true output distribution is unknown. Both

the principal and the agent view the distribution f as an approximating model. They may

fear that this model is misspecified. Surrounding this model there is a set of distributions

including the true distribution. The principal and the agent want to design a robust contract

that is less fragile to misspecification.

We start with the Gilboa-Schmeidler approach and call the resulting problem the type 0

robust contracting problem.

Problem 2.2 (type 0 static robust contract)

max
c,a

min
g∈G(a)

∫
v (x− c (x)) g (x|a) dx, (3)

subject to (1) and (2).

In this problem, the principal believes that there is a set of distributions G (a) containing

the reference distribution f conditional on a. He does not trust f and his utility function is

given by the maxmin utility model of Gilboa and Schmeidler (1989). By contrast, the agent

trusts f and his utility function is given by the expected utility model. Thus, the incentive

and participation constraints are given by (1) and (2).
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We modify type 0 robust contracting problem in two ways in the spirit of Hansen and Sar-

gent (2008). First, we impose some structure on the set G (a). Specifically, following Hansen

and Sargent (2008), we use relative entropy to measure discrepancies between distributions

and let the set of distributions G (a) be

G (a)=

{
g :

∫
g (x|a) ln

(
g (x|a)
f (x|a)

)
dx ≤ η,

∫
g (x|a) dx = 1

}
, η > 0. (4)

Second, instead of using the maxmin expected utility model, we use the multiplier model as

the principal’s utility function. This model removes the constraint set G (a) in (3) and imposes

an entropy penalty on utility.

Problem 2.3 (type I static robust contract)

max
c,a

min
g

∫
v (x− c (x)) g (x|a) dx+ θ

∫
g (x|a) ln

(
g (x|a)
f (x|a)

)
dx,

subject to (1) and (2).

The penalty parameter θ > 0 captures the degree of concerns for robustness. When

θ approaches infinity, g = f and type I robust contracting problem reduces to the standard

problem 2.1. A small value of θ implies a large degree of concerns for robustness. Alternatively,

one may view 1/θ as a parameter for ambiguity aversion following Maccheroni, Marinacci,

and Rustichini (2006a). A small value of θ means a large degree of ambiguity aversion. Type I

robust contracting problem is closely related to type 0 problem and the parameter θ is related

to the Lagrange multiplier associated with the constraint set G (a).

In the spirit of Woodford (2010), we also study a type II robust contract problem. In this

problem, the principal trusts the output distribution f and uses this distribution to evaluate

his expected utility. But he has ambiguity about agent’s beliefs and thinks the agent may use

a distorted model g. The degree of distortion is measured by an entropy criterion as in (4).

Problem 2.4 (type II static robust contract)

max
c,a

min
g

∫
v (x− c (x)) f (x|a) dx+ θ

∫
g (x|a) ln

(
g (x|a)
f (x|a)

)
dx, (5)

subject to ∫
u (c (x) , a) g (x|a) dx ≥

∫
u (c (x) , â) g (x|â) dx, ∀â, (6)∫

u (c (x) , a) g (x|a) dx ≥ u0. (7)
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The second term in (5) describes the cost of distortion of the agent’s beliefs. The parameter

θ > 0 may be viewed as the Lagrange multiplier associated with the constraint set (4) and

can be interpreted as the degree of concerns for robustness. A small value of θ means a

great degree of concerns for robustness. Alternatively, we may interpret 1/θ as an ambiguity

aversion parameter.

Note that in the incentive and participation constraints (6) and (7), the distorted distri-

bution g is used to evaluate the agent’s utility. For each possible distribution g, the contract

(c, a) must be incentive compatible and individually rational to the agent. The agent is not

averse to ambiguity and is an expected utility maximizer with distorted beliefs. The principal

is averse to the agent’s belief ambiguity and selects an optimal contract that works for the

worst-case distribution.

2.2 Dynamic Discrete-Time Setup

We now move on to a dynamic discrete-time setup closely related to Spear and Srivastava

(1987). Denote time by t = 0, 1, 2.... At time t, the agent chooses effort at. Then output xt is

drawn from the fixed distribution with pdf f (x|at) . For any fixed action, output is indepen-

dently and identically distributed over time. The principal pays the agent compensation ct

at time t. His period utility at time t is v (xt − ct) and the agent’s period utility at time t is

u (ct, at) . To incorporate moral hazard, we assume that the principal only observes the past

and current output and he does not observe the agent’s effort. Let xt = {x0,x1, ..., xt} denote

a history of realized output. Contracted compensation at time t depends on xt only and is

given by ct = c
(
xt
)
for some function c. The agent’s effort choice at depends on xt−1 and is

given by at = a
(
xt−1

)
for some function a. Let a

(
x−1

)
= a0.

Given (c, a) =
{(

c
(
xt
)
, a

(
xt−1

))
: all xt

}
, we can construct a sequence of probability

distributions
{
π
(
xt; a

)}
recursively for each history xt as follows:

dπ
(
x0; a

)
= f (x0|a0) dx0,

dπ
(
xt+1; a

)
= f

(
xt+1|a

(
xt
))

dπ
(
xt; a

)
dxt+1, t ≥ 0.

Assume that the subjective discount factors for the principal and the agent are given by β

and α respectively. We can now state the following:

Problem 2.5 (standard contract in discrete time)

max
(c,a)

∞∑
t=0

βt

∫
v
(
xt − c

(
xt
))

dπ
(
xt; a

)
,
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subject to

∞∑
t=0

αt

∫
u
(
c
(
xt
)
, a

(
xt−1

))
dπ

(
xt; a

)
(8)

≥
∞∑
t=0

αt

∫
u
(
c
(
xt
)
, â

(
xt−1

))
dπ

(
xt; â

)
, ∀â,

∞∑
t=0

αt

∫
u
(
c
(
xt
)
, a

(
xt−1

))
dπ

(
xt; a

)
≥ u0. (9)

Inequalities (8) and (9) are incentive and participation constraints, respectively. To incor-

porate model ambiguity, we have to extend the previous static setup to a dynamic environ-

ment. The first step is to construct multiple distributions in a dynamic environment.

2.2.1 Martingale Representation of Distortions

Given an effort choice a, an approximating model f and an alternative distorted distribution

g, we define the likelihood ratio as

mt+1

(
xt+1; a

)
=

g
(
xt+1|a

(
xt
))

f (xt+1|a (xt))
.

It is the Radon-Nikodym derivative of g with respect to f and satisfies∫
mt+1

(
xt+1; a

)
f
(
xt+1|a

(
xt
))

dxt+1 = 1. (10)

We then define a joint likelihood ratio recursively as

Mt+1

(
xt+1; a

)
= mt+1

(
xt+1; a

)
Mt

(
xt; a

)
, M0 = 1. (11)

{Mt} is a martingale under the distribution induced by f and is the Radon-Nikodym deriva-

tive for joint distributions on information up to date t. A process of densities {mt} induces

a distorted distribution that is absolutely continuously with respect to f. The choice of a

distorted distribution is equivalent to the choice of densities.

Following Hansen and Sargent (2008), we define the infinite-horizon relative entropy as

(1− β)

∞∑
t=0

βt

∫
Mt

(
xt; a

)
lnMt

(
xt; a

)
dπ

(
xt; a

)
(12)

= β

∞∑
t=0

βt

∫
Mt

(
xt; a

)
mt+1

(
xt+1; a

)
lnmt+1

(
xt+1; a

)
dπ

(
xt+1; a

)
,
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where the equality follows from the definition of {Mt} . Note that we have used the principal’s

subjective discount factor β to discount future entropy.

Woodford (2010) introduces a different measure of the infinite-horizon entropy. In our

context, his measure corresponds to

∞∑
t=0

βt

∫
mt+1

(
xt+1; a

)
lnmt+1

(
xt+1; a

)
dπ

(
xt+1; a

)
. (13)

As Hansen and Sargent (2012) point out, this is not a measure of the usual relative entropy.

But it is an expected value of the discounted local entropy for one-step-ahead measures.

2.2.2 Robust Contracts

We are now ready to formulate the three types of robust contracting problems in a dynamic

setup.

Problem 2.6 (type 0 robust contract in discrete time)

max
(c,a)

min
{mt+1}∈M(a)

∞∑
t=0

βt

∫
Mt

(
xt; a

)
v
(
xt − c

(
xt
))

dπ
(
xt; a

)
,

subject to (8), (9), (10), and (11).

The set M (a) corresponds to a set of distributions that contains the one induced by f

conditional on a. It describes the principal’s model ambiguity. The principal’s utility function

in the above problem belongs to the class of recursive multiple priors utility introduced by

Epstein and Wang (1994) and axiomatized by Epstein and Schneider (2003).

Problem 2.7 (type I robust contract in discrete time)

max
(c,a)

min
{mt+1}∈M(a)

∞∑
t=0

βt

∫
Mt

(
xt; a

)
v
(
xt − c

(
xt
))

dπ
(
xt; a

)
+ θβ

∞∑
t=0

βt

∫
Mt

(
xt; a

)
mt+1

(
xt+1; a

)
lnmt+1

(
xt+1; a

)
dπ

(
xt+1; a

)
,

subject to (8), (9), (10), and (11).

In type I dynamic robust contracting problem, we use the infinite-horizon entropy in (12)

as a measure of the cost of belief distortions. The principal’s utility function in this problem is

the dynamic multiplier model introduced in Hansen and Sargent (2001, 2008) and Maccheroni,

Marinacci and Rustichini (2006b).
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Finally, in type II robust contracting problem, the principal trusts the output distribution

chosen by the agent. But he has ambiguity about the agent’s beliefs. The agent’s belief

distortions impose costs to the principal, which are measured by the entropy in (13).

Problem 2.8 (type II dynamic robust contract in discrete time)

max
(c,a)

min
{mt+1}∈M(a)

∞∑
t=0

βt

∫
v
(
xt − c

(
xt
))

dπ
(
xt; a

)
+ θ

∞∑
t=0

βt

∫
mt+1

(
xt+1; a

)
lnmt+1

(
xt+1; a

)
dπ

(
xt+1; a

)
,

subject to (10), (11), and

∞∑
t=0

αt

∫
Mt

(
xt; a

)
u
(
c
(
xt
)
, a

(
xt−1

))
dπ

(
xt; a

)
≥

∞∑
t=0

αt

∫
Mt

(
xt; â

)
u
(
c
(
xt
)
, â

(
xt−1

))
dπ

(
xt−1; â

)
, ∀â

∞∑
t=0

αt

∫
Mt

(
xt; a

)
u
(
c
(
xt
)
, a

(
xt−1

))
dπ

(
xt; a

)
≥ u0.

The preceding two inequalities represent the incentive and participation constraints. The

expected values are computed using the agent’s distorted beliefs corresponding to {Mt} or

{mt} .

3 A Continuous-Time Model

In this section, we present a continuous-time model, which is our main focus. We start with

a benchmark model with common beliefs, which follows from DeMarzo and Sannikov (2006).

We then introduce belief distortions.

3.1 Benchmark

Time is continuous in the interval [0,∞). Fix a filtered probability space
(
Ω,F , (Ft)t≥0 , P̄

)
,

on which a one-dimensional standard Brownian motion
(
B̄t

)
t≥0

is defined. Define a state

process as

Xt = x+ σB̄t,

where x > 0 and σ > 0. Here (Ft)t≥0 is the filtration generated by B̄ or equivalently by X.
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Contracting Problem. An agent (or entrepreneur) owns a technology (or project) that

can generate a cumulative cash-flow process represented by (Xt)
7 The project needs initial

capital K > 0 to be started. The agent has no initial wealth and needs financing from

outside investors (the principal). Once the project is started, the agent affects the technology

performance by taking an action or effort level at ∈ [0, 1], which changes the distribution of

cash flows. Specifically, let

Ba
t = Bt −

µ

σ

∫ t

0
asds,

Ma
t = exp

(∫ t

0
asdBs −

1

2

∫ t

0
a2sds

)
,

dP a

dP̄
|Ft = Ma

t ,

where µ > 0. Then by the Girsanov Theorem, Ba is a standard Brownian motion under

measure P a and we have

dXt = µatdt+ σdBa
t , (14)

Note that the triple (X,Ba, P a) is a weak solution to the above stochastic differential equation

(SDE).

The agent can derive private benefits λµ (1− at) dt from the action at, where λ ∈ (0, 1].

Due to linearity, this modeling is also equivalent to the binary effort setup where the agent can

either shirk, at = 0, or work, at = 1. Hence, we adopt this simple assumption throughout the

paper. Alternatively, we can interpret 1−at as the fraction of cash flow that the agent diverts

for his private benefit, with λ equal to the agent’s net consumption per dollar diverted. In

either case, λ represents the severity of the agency problem. The choice of the agent’s action

is unobservable to the principal, creating the moral hazard issue. The principal only observes

past and current cash flows and his information set is represented by the filtration (Ft)t≥0

generated by (Xt) .

Both the principal and the agent are risk neutral and discount the future cash flows

according to r and γ respectively. Assume that r < γ so that the agent is more impatient

than the principal. The technology can be liquidated. If it is liquidated, the principal obtains

L and the agent gets outside value zero. Assume that L < µ/r so that liquidation is inefficient.

The principal offers to contribute capital K in exchange for a contract (C, τ , a) that

specifies a termination (stopping) time τ , a cash compensation C = {Ct : 0 ≤ t ≤ τ} to the

agent, and a suggested effort choice a = {at ∈ {0, 1} : 0 ≤ t ≤ τ}. Assume that C and a are

adapted to (Ft) and that C is a right continuous with left limits, and increasing process

7All processes in the paper are assumed to be progressively measurable with respect to {Ft} . Equalities
and inequalities in random variables or stochastic processes are understood to hold almost surely.
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satisfying8

EPa

[(∫ t

0
e−γsdCs

)2
]
< ∞, t ≥ 0, C0 ≥ 0.

The monotonicity requirement reflects the fact that the agent has limited liability.

Fix a contract (C, τ , a) and assume that the agent follows the recommended choice of

effort. His continuation value Wt at date t is defined as

Wt = EPa

t

[∫ τ

t
e−γ(s−t)(dCs + λµ(1− as)ds)

]
, (15)

where EPa

t denotes the conditional expectation operator with respect to the measure P a given

the information set Ft. His total expected utility at date 0 is equal to W0.

We now formulate the continuous-time contracting problem.

Problem 3.1 (DeMarzo and Sannikov (2006))

max
(C,τ,a)

EPa

[∫ τ

0
e−rs(dXs − dCs) + e−rτL

]
, (16)

subject to:

EPa

[∫ τ

0
e−γs(dCs + λµ(1− as)ds)

]
≥ EPa

[∫ τ

0
e−γs(dCs + λµ(1− âs)ds)

]
, ∀âs ∈ {0, 1} ,

(17)

EPa

[∫ τ

0
e−γs(dCs + λµ(1− as)ds)

]
= W0, (18)

where W0 ≥ 0 is given.

The principal’s utility is given by (16). Consistent with the rational expectations hy-

pothesis, both the principal and the agent use the measure P a to evaluate expected utility.

Inequality (17) is the incentive constraint and equation (18) is the promising-keeping or par-

ticipation constraint.9 Assume that the agent cannot save and both the principal and the

agent have full commitment.

Solution. We briefly outline the solution in DeMarzo and Sannikov (2006), which can also

be obtained as a special case in our analysis in Sections 4 and 5. We first transform the above

problem into a stochastic control problem with a single state variable: the continuation value

8The sequare integrability is imposed to ensure Wt defined in (15) has a martingale representation (see
Cvitanic and Zhang (2013), Chapter 7).

9It is technically more convenient to write the participation constraint as equality instead of inequality
“ ≥ 0” in (18).
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Wt. By the Martingale Representation Theorem (Cvitanic and Zhang (2013), Lemma 10.4.6),

the continuation value Wt satisfies the SDE:

dWt = γWtdt− dCt − λµ(1− at)dt+ ϕtdB
a
t , 0 ≤ t ≤ τ , (19)

where ϕt is the Ft-measurable sensitivity of the agent’s continuation value to the project

performance.

Suppose that the principal finds it optimal to never induce shirking.10 If the agent deviates

and chooses low effort at = 0 for an instant dt, output decreases by µdt. Since effort is not

observable to the principal, this is equivalent to dBa
t being reduced by µ/σdt. Thus, the agent

incurs a loss of ϕtµ/σdt and gets private benefit λµdt by (19). Therefore, exerting high effort

is optimal for the agent if and only if

ϕtµ/σ ≥ λµ or ϕt ≥ σλ. (20)

This is the incentive compatibility condition.

Let F (W0) denote the principal’s value function in Problem 3.1 when the agent’s contin-

uation value is equal to W0. DeMarzo and Sannikov (2006) show that F ′ (W ) ≥ −1 for all

W. Define W̄ as the lowest value such that F ′ (W̄ )
= −1. The value function F satisfies the

following differential equation on the interval [0, W̄ ]:

rF (W ) = max
ϕ≥σλ

µ+ F ′(W )γW +
F ′′(W )

2
ϕ2, (21)

with boundary conditions:

F (0) = L, F ′(W̄ ) = −1, F ′′(W̄ ) = 0.

DeMarzo and Sannikov (2006) show that F (W ) is strictly concave so that it is optimal to

set ϕ = σλ. The intuition is that it is not optimal to make the agent bear more risk than

the minimal amount required for him to exert effort. Inducing a higher volatility to the

agent’s continuation value will increase the probability of triggering inefficient liquidation of

the project. For Wt ∈ [0, W̄ ], the principal makes no payments to the agent, and only pays

him when Wt hits the boundary W̄ . The payment dCt is such that the process Wt reflects

on that boundary. When W > W̄, F (W ) = F
(
W̄

)
−
(
W − W̄

)
. The principal pays W − W̄

immediately to the agent and the contract continues with the agent’s new initial value W̄ .

10Sufficient conditions for this to hold are given in Propositions 1 and 8 of DeMarzo and Sannikov (2006).
Zhu (2012) relaxes this condition and solves for the optimal contract with shirking.

14



0 1 2 3 4 5 6 7 8 9 10
80

82

84

86

88

90

92

94

96

98

100

102

W̄

µ/r

L

Value functions

Figure 1: Value function for the benchmark model. The top straight line is the first-best
value function F (W ) = µ/r − W. The curve is the value function with agency. Parameter
values are µ = 10, r = 0.10, γ = 0.15, λ = 0.20, σ = 5, and L = 90.

Once Wt hits 0 for the first time, the contract is terminated. The point Wt = 0 is an absorbing

boundary.

Figure 1 depicts a typical value function F (W ) as a function of the state variable W .

It also plots the first-best solution F (W ) + W = µ/r. In the first-best case, the principal

delivers the agent a lump-sum value W immediately. The agent always exerts high effort and

the project is never liquidated.

Turn to the initial startup stage. The project can be funded if and only if maxw≥0 F (w) ≥
K. If the agent has all bargaining power due to competition of principals, he extracts the max-

imal W0 such that F (W0) = K. If the principal has all bargaining power due to competition

of agents, he delivers the agent W ∗ such that F ′ (W ∗) = 0.

Capital Structure Implementation. Now, we study the implementation of the optimal

contract. There are several ways of implementation. Instead of following DeMarzo and

Sannikov (2006), we follow the approach of Biais et al. (2007) that uses cash reserves, debt

and equity. Let the cash reserves (Mt) satisfy

dMt = rMtdt+ dXt − dCt − dΨt,
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where M0 = W0/λ and

dΨt = [µ− (γ − r)Mt] dt︸ ︷︷ ︸
coupon

+
1− λ

λ
dCt︸ ︷︷ ︸

dividends

.

The cash reserves are held on a bank account, and earn interests at the rate r. Project cash

flows dXt are added to the cash reserves. The agent holds a fraction λ of nontradable equity

and receives dividends dCt. Outside equity holders hold a fraction 1−λ of tradable equity and

receive dividends 1−λ
λ dCt. Outside debt holders receive coupon payments [µ− (γ − r)Mt] dt.

11

The agent uses proceeds from security issuance to finance investment costs K and hoard cash

M0 = W0/λ. He distributes total dividends dCt/λ when cash reserves meet an upper bound

M̄ = W̄/λ. The firm is liquidated if its cash reserves are exhausted (i.e., Mt = Wt/λ = 0).

By (19), Mt = Wt/λ for at = 1 and ϕt = σλ. In addition, Wt = EP 1

t

[∫ τ
t e−r(s−t)dCs

]
, where

P 1 is the measure corresponding to high effort a = 1. Thus, the above implementation is

incentive compatible and implements the optimal contract.

The equity price is given by

St = EP 1

t

[∫ τ

t
e−r(s−t) 1

λ
dCs

]
, (22)

where τ is the liquidation time. Note that the expected return on equity is equal to r which is

less than the agent’s discount rate γ. The agent has an incentive to sell the stock. Following

Biais (2007), we assume that the agent’s held equity cannot be traded.

The bond price Dt is given by

Dt = EP 1

t

[∫ τ

t
e−r(s−t) [µ− (γ − r)Ms] ds+ e−r(τ−t)L

]
. (23)

Bond holders obtain the liquidation value L when the cash reserves hit the liquidation bound-

ary.

As a measure of the default risk at time t ∈ [0, τ), we take the credit yield spread ∆t on

a console bond that pays one unit of account at each date until the time of default. For any

t ∈ [0, τ), ∆t is defined by the following formula:∫ ∞

t
e−(r+∆t)(s−t)ds = EP 1

t

[∫ τ

t
e−r(s−t)ds

]
. (24)

11Note that Mt is bounded. The coupon payment is positive when γ is close to r.
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Solving yields

∆t =
rTt

1− Tt
,

where Tt = Et

[
e−r(τ−t)

]
for all t ∈ [0, τ ] represents Arrow-Debreu price at time t of one unit

claim paid at the time of default.

3.2 Belief Distortions

We now consider the possibility of belief distortions due to concerns about model misspecifi-

cations or model ambiguity. Both the principal and the agent view the probability measure

P a as an approximating model. Either one of them may not trust this model and consider

alternative models as possible. We shall use the continuous-time analogue of the martingale

representation in Section 2.2.1 to express belief distortions.

Suppose that all distorted beliefs are described by mutually absolutely continuous mea-

sures with respect to P a over any finite time intervals. Denote the set of such measures by

Pa. We can then use the Girsanov Theorem to construct these measures. Define a density

generator to be a real-valued process (ht) satisfying
∫ t
0 h

2
sds < ∞ for all t > 0 such that the

process (zt) defined by

zt = exp

(∫ t

0
hsdB

a
s − 1

2

∫ t

0
h2sds

)
(25)

is a (P a,Ft)-martingale.12 Denote the set of density generators by Ha. By the Girsanov

Theorem, there is a measure Qh corresponding to h defined on (Ω,F) such that zt is the

Radon-Nikodym derivative of Qh with respect to P a when restricted to Ft,

dQh

dP a
|Ft = zt, (26)

and the process
(
Bh

t

)
defined by

Bh
t = Ba

t −
∫ t

0
hsds,

is a standard Brownian motion under the measure Qh. Under measure Qh, cash flows follow

dynamics:

dXt = µatdt+ σ
(
dBh

t + htdt
)
. (27)

For the continuous-time version of the type 0 robust contracting problem, we follow Chen

12See Hansen et al (2006) for construction.
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and Epstein (2002) and define a set of priors as{
Qh ∈ Pa : |ht| ≤ κ

}
. (28)

For the continuous-time version of type I problem, we follow Anderson, Hansen and Sargent

(2002) and Hansen and Sargent (2012) and define the continuous-time discounted relative

entropy as

rEPa

[∫ ∞

0
e−rszt ln ztdt

]
=

1

2
EPa

[∫ ∞

0
e−rszth

2
tdt

]
,

where the equality follows from (25) and integration by parts. Note that we use the principal’s

subjective discount rate to compute discounted entropy. Finally, we follow Hansen and Sargent

(2012) to describe a continuous-time analogue of Woodford’s (2010) discrepancy measure in

Section 2.2.1. Define this measure in discrete time t = 0, dt, 2dt, 3dt....as

∞∑
j=0

e−r(j+1)dtEPa

[
z(j+1)dt

zjdt
ln

(
z(j+1)dt

zjdt

)]
.

As dt → 0, the above expression approaches13

1

2
EPa

[∫ ∞

0
e−rsh2tdt

]
,

where we have applied Ito’s Lemma to show that

lim
dt↓0

1

dt
EPa

[
zt+dt

zt
ln

(
zt+dt

zt

)]
=

1

2
h2t .

In the next section, we turn to the study of how the principal and the agent design

robust contracts. We shall focus on formulating and solving types I and II robust contracting

problems in continuous time. We find that type 0 robust contracting problem in continuous

time is technically challenging because the incentive constraint (17) and the constraint on

belief distortions (28) may occasionally bind, which complicate the analysis and potentially

introduce kinks in the value function.

4 Type I Robust Contracts

We formulate type I robust contracting problem under moral hazard as follows:

13Hansen and Sargent (2012) point out that the limit is relative entropy with a reversal of probability models.
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Problem 4.1 (type I robust contract in continuous time)

sup
(C,τ,a)

inf
h

EQh

[∫ τ

0
e−rt(dXt − dCt) + e−rτL

]
+

θ

2
EPa

[∫ τ

0
e−rszth

2
tdt

]
, (29)

subject to (17), (18), and (25).

The parameter θ > 0 describes the degree of concern for robustness. As in Section 2,

we may also interpret 1/θ as an ambiguity aversion parameter. A small value of θ implies

a large degree of ambiguity aversion or a large degree of concern for robustness. When θ

approaches infinity, this problem reduces to the standard contracting problem 3.1 analyzed

by DeMarzo and Sannikov (2006). Mathematically, Problem 4.1 is a combined singular control

and stopping problem. As Hansen et al. (2006) point out, it is also related to the zero-sum

stochastic differential game problem (e.g., Fleming and Souganidis (1989)). We shall proceed

heuristically to derive the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation for optimality and

then provide a formal verification theorem.14 We finally analyze several numerical examples

to illustrate economic intuition. It is technically challenging and quite involved to provide a

rigorous proof of the HJBI equation. Such a proof is beyond the scope of this paper.

4.1 First-Best Robust Contract

Before analyzing the optimal contract with agency, we start with the first-best case in which

the principal observes the agent’s effort choice and hence the incentive constraint (17) in

problem 4.1 is not valid.

The derivations of the HJBI equation consist of several steps. First, we ignore the incentive

constraint (17) or (20) and keep the participation constraint as in the benchmark model. We

shall rewrite the dynamics of (Wt) in terms of the distorted belief Qh. Using Girsanov’s

Theorem, we rewrite (19) as

dWt = γWtdt− dCt − λµ (1− at) dt+ htϕtdt+ ϕtdB
h
t , (30)

where Bh
t is a standard Brownian motion under the measure Qh.

14See Fleming and Soner (1993) for stochastic optimal control theory. One can verify that the Bellman-
Isaacs condition may not be satisfied in our models (see Hansen et al. (2006) for a discussion of this condition).
Thus, in general one cannot exchange the order of max and min operators without affecting the solution. This
condition is also violated in Szydlowski (2012).
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Second, we write the objective function in (16) under the measure Qh as

EQh

[∫ τ

0
e−rt(dXt − dCt) + e−rτL

]
+

θ

2
EPa

[∫ ∞

0
e−rszth

2
tdt

]
= EQh

[∫ τ

0
e−rt(µatdt+ σhtdt− dCt) + e−rτL

]
+

θ

2
EQh

[∫ ∞

0
e−rsh2tdt

]
,

where have used the fact that dXt = (µat + σht) dt+ σdBh
t .

Third, define F (W0) as the value function for Problem 4.1 without the incentive constraint

(17) when we vary the promised value W0 to the agent. We use the dynamic programming

principle to write an approximate Bellman equation:

rF (Wt) dt = sup
dCt,ϕt,at∈{0,1}

inf
ht

µatdt+ σhtdt− dCt +
θ

2
h2tdt+ EQh

t [dF (Wt)] , (31)

subject to (30). This equation has an intuitive economic interpretation. The left-hand side

represents the mean return required by the principal. The right-hand side represents the total

return expected by the principal. It consists of the cash flow plus the expected capital gain

or loss EQh

t [dF (Wt)] . The optimality requires the expected return equals the required mean

return. Note that all expected values are computed using the measure Qh.

Now we use Ito’s Lemma and (30) to derive

EQh

t [dF (Wt)] = F ′(Wt)(γWtdt− dCt − λµ (1− at) dt+ htϕtdt) +
F ′′(Wt)

2
ϕ2
tdt.

Plugging this equation into (31) yields:

rF (Wt) dt = sup
at∈{0,1},dCt,ϕt

inf
ht

µatdt+ σhtdt− dCt +
θ

2
h2tdt

+F ′(Wt)(γWtdt− dCt − λµ (1− at) dt+ htϕtdt) +
F ′′(Wt)

2
ϕ2
tdt.

Suppose that dCt = ctdt, where ct ≥ 0. Removing the time subscripts and cancelling dt, we

obtain the HJBI equation:

rF (W ) = sup
a∈{0,1},c≥0,ϕ

inf
h

µa+ σh−
(
1 + F ′ (W )

)
c (32)

+F ′(W )(γW + hϕ− λµ (1− a)) +
F ′′(W )

2
ϕ2 +

θh2

2
.

Clearly, for this problem to have a finite solution, we must have F ′ (W ) ≥ −1. We then get

c > 0 if and only if F ′ (W ) = −1. This equation defines a boundary point W̄ . This illustrates
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the feature of the singular control problem: the principal makes payments to the agent if only

if Wt reaches the point W̄ . The payments make the process (Wt) reflects at this point.

The objective function in (32) is convex in h. Solving for the worst-case density generator

yields:

h∗ = −ϕF ′ (W ) + σ

θ
. (33)

Substituting it back into (32) yields:15

rF (W ) = sup
a∈{0,1},ϕ

µa+ F ′(W ) (γW − λµ (1− a)) +
ϕ2

2
F ′′(W )− [ϕF ′ (W ) + σ]2

2θ
. (34)

Assuming that16

θF ′′ (W )− F ′ (W )2 < 0, (35)

so that the expression on the right-hand side of equation (34) is concave in ϕ, we can derive

the optimal sensitivity:

ϕ∗ (W ) =
F ′ (W )σ

θF ′′ (W )− F ′ (W )2
. (36)

Note that the concavity of F is sufficient for (35) to hold. Since λ ∈ (0, 1] and F ′ (W ) ≥ −1,

it follows that λF ′ (W ) + 1 ≥ 0 and hence implementing high effort at = 1 is optimal.

The following result characterizes the first-best robust contract for type I problem.

Proposition 1 Consider the first-best type I robust contracting problem. Suppose that

L <
µ

r
− σ2

2rθ
, (37)

and that there is a unique twice continuously differentiable solution F to the ODE on [0, W̄ ] :

rF (W ) = µ+ F ′(W )γW − [F ′ (W )σ]2

2θ
[
θF ′′ (W )− F ′ (W )2

] − σ2

2θ
,

with the boundary conditions,

F (0) =
µ

r
− σ2

2rθ
, (38)

F ′ (W̄ )
= −1, F ′′ (W̄ )

= 0,

15Notice that this equation is not equivalent to that from a risk-sensitive control problem in Anderson,
Hansen, and Sargent (2003) due to the presence of σ in the last quadratic term. The reason is that in our
model the instantaneous utility is dXt which contains Brownian uncertainty and is affected by distorted beliefs,
but in the standard robust control model the instantaneous utility is locally riskless (i.e., of order dt), which
is unaffected by distorted beliefs.

16If F is concave, one can check that the Bellman-Isaacs condition is satisfied and hence the max and min
operators in (32) can be exchanged. A similar remark applies to the problems analyzed later.
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such that condition (35) holds. Then:

(i) When W ∈
[
0, W̄

]
, the principal’s value function is given by F (W ), the first-best

sensitivity ϕ∗ (W ) is given by (36), the worst-case density generator is given by

h∗ (W ) = −ϕ∗ (W )F ′ (W ) + σ

θ
. (39)

and the agent always exerts high effort a∗ (W ) = 1 at all times. The contract initially delivers

W ∈
[
0, W̄

]
≥ 0 to the agent whose continuation value (Wt) follows the dynamics

dWt = γWtdt− dC∗
t + ϕ∗ (Wt) dB

1
t , W0 = W, (40)

for t ≥ 0, where the optimal payments are given by

C∗
t =

∫ t

0
1{Ws=W̄}dC

∗
s , (41)

and the project is never liquidated.

(ii) When W > W̄, the principal’s value function is F (W ) = F
(
W̄

)
−

(
W − W̄

)
. The

principal pays W − W̄ immediately to the agent and the contract continues with the agent’s

new initial value W̄ .

This proposition shows that we cannot achieve the first-best solution in the benchmark

model. The intuition is as follows. The principal is ambiguity averse and would like to

transfer uncertainty to the agent when designing a contract. Ideally, the risk-neutral agent

should insure the principal by making the principal’s payoff flows constant. This means that

the agent should absorb all risk from the project cash flows. However, this contract is not

feasible due to limited liability. The project cash flows can be negative and the agent can

incur losses. Without limited liability we can achieve the first-best solution in the benchmark

model.17 With limited liability, uncertainty sharing is limited. The marginal cost |F ′ (W )| to
the principal from delivering an additional unit of value to the agent must be greater than or

equal to 1. The principal makes payments to the agent when and only when the marginal cost

is equal to 1 at some point W̄ . The tradeoff is the following: On the one hand, the principal

wants to make payments to the agent earlier because the agent is more impatient. On the

other hand, the principal wants to delay payments, allowing the agent’s continuation value

Wt to get larger. This benefits the principal because if Wt is closer to zero, the principal has

to bear more the project cash flows uncertainty. On the boundary Wt = 0, the principal bears

full uncertainty and his value is given by (38). The term σ2/ (2rθ) represents the discount due

17The principal pays the agent W0 immediately and then dXt − µdt thereafter.
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to model uncertainty. It increases with volatility σ and ambiguity aversion parameter 1/θ.

Proposition 1 formalizes the above intuition. It shows that the worst-case density generator

and the sensitivity of the agent’s continuation value to the cash flow are state dependent. The

agent bears large cash flow uncertainty, but he does not absorb all uncertainty due to limited

liability. Because the principal also bears uncertainty, his value function F is nonlinear and

the last two nonlinear terms in the ODE reflect the value discount due to model ambiguity.

We emphasize that in two-party contracting problems, model ambiguity generates endoge-

nous belief heterogeneity. Specifically, in type I robust contracting problem, the agent trusts

the approximating model P a and his value follows the dynamics (40) under P a. However, the

principal has doubt about the approximating model P a and the agent’s continuation value

under the principal’s worst-case model Qh∗
follows the dynamics:

dWt = γWtdt− dC∗
t + ϕ∗ (Wt)h

∗ (Wt) dt+ ϕ∗ (Wt) dB
h∗
t . (42)

This point has important pricing implications when we implement the optimal contract with

agency in later analysis.

Note that the concavity of the value function F (W ) is not needed in Proposition 1. For

a wide range of parameter values in our numerical examples, we find that F is concave.

However, unlike in the benchmark model, we are unable to prove it formally.

4.2 Robust Contract with Agency

Turn to the case with moral hazard in which the principal does not observe the agent’s effort

choice and hence the incentive constraint (17) must be imposed in Problem 4.1. Without

risk of confusion, we still use F (W0) to denote the value function for Problem 4.1 when we

vary the promised value W0 to the agent. Suppose that implementing high effort is optimal.

In this case, the incentive constraint is equivalent to (20). Using a similar argument to that

in the previous subsection, we can proceed heuristically to derive the HJBI equation for

optimality. Imposing constraint (20) and setting at = 1 in the associated equations in the
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previous subsection, we can show that the HJBI equation is given by18

rF (W ) = sup
c≥0,ϕ≥σλ

inf
h

µ+ σh−
(
1 + F ′ (W )

)
c

+F ′(W )(γW + hϕ) +
F ′′(W )

2
ϕ2 +

θh2

2
.

Thus, the worst-case density generator is still given by (33) and there is a boundary point W̄

satisfying F ′ (W̄ )
= −1 such that c > 0 if F ′ (W̄ )

= −1 and c = 0 if F ′ (W ) > −1. We can

then rewrite the HJBI equation as

rF (W ) = sup
ϕ≥σλ

µ+ F ′(W )γW +
ϕ2

2
F ′′(W )− [ϕF ′ (W ) + σ]2

2θ
. (43)

Under condition (35), the optimal sensitivity is given by

ϕ∗ (W ) = max

{
F ′ (W )σ

θF ′′ (W )− F ′ (W )2
, σλ

}
. (44)

Note that (43) is identical to (21) in the benchmark model, when the last nonlinear term in

(43) is removed (e.g., θ → ∞). This term reflects the cost of model uncertainty.

The following result characterizes the second-best robust contract for type I problem.

Proposition 2 Consider the second-best type I robust contracting problem. Suppose that

implementing high effort is optimal and that condition (37) holds. Suppose that there exists a

unique twice continuously differentiable solution F to the ODE (43) on
[
0, W̄

]
with boundary

conditions

F ′ (W̄ )
= −1, F ′′ (W̄ )

= 0, F (0) = L,

such that condition (35) is satisfied. Then:

(i) When W ∈
[
0, W̄

]
, F (W ) is the value function for Problem 4.1, the optimal sensitivity

ϕ∗ (W ) is given by (44), and the worst-case density generator is given by

h∗ (W ) = −ϕ∗ (W )F ′ (W ) + σ

θ
. (45)

18For type 0 robust contracting problem with Chen and Epstein (2002) recurisve multiple-priors utility, the
HJBI equation is given by

rF (W ) = max
c≥0,ϕ≥σλ

min
|h|≤κ

µ+ σh− (1 + F ′ (W ))c

+F ′(W )(γW + hϕ) +
F ′′(W )

2
ϕ2.

This problem is hard to analyze due to the two constrained optimization problems.
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The contract delivers the value W ∈
[
0, W̄

]
to the agent whose continuation value (Wt) follows

the dynamics:

dWt = γWtdt− dC∗
t + ϕ∗ (Wt) dB

1
t , W0 = W, (46)

for t ∈ [0, τ ] , where the optimal payments are given by

C∗
t =

∫ t

0
1{Ws=W̄}dC

∗
s .

The contract terminates at time τ = inf {t ≥ 0 : Wt = 0} .
(ii) When W > W̄, the principal’s value function is F (W ) = F

(
W̄

)
−

(
W − W̄

)
. The

principal pays W − W̄ immediately to the agent and the contract continues with the agent’s

new initial value W̄ .

Unlike the first-best case, the incentive constraint requires that the sensitivity ϕt be at

least as large as a lower bound σλ as in the benchmark model. In the benchmark model, the

choice of ϕt reflects the following tradeoff: a large ϕt is needed to provide incentives to the

agent. But a large ϕt also raises the volatility of the agent’s continuation value and hence

raises the chance of liquidation. The optimal sensitivity just achieves the lower bound σλ.

However, unlike the benchmark model, this lower bound does not always bind in the presence

of model ambiguity. The reason is that there is an uncertainty and incentive tradeoff. The

robust contract should transfer uncertainty from the ambiguity averse principal to the risk

neutral agent as much as possible. Thus, the agent should expose more to the uncertainty so

that the optimal sensitivity may exceed the lower bound.

Under what situation does this happen? For a low value of W, the principal is more

concerned about inefficient liquidation. Thus, the optimal contract will set ϕt at the lower

bound. WhenW is large and close to the payout boundary W̄ , the principal is more concerned

about model uncertainty and hence he would like the agent to be exposed more to the cash

flow uncertainty by providing him more incentives so that

ϕ∗ (W ) =
F ′ (W )σ

θF ′′ (W )− F ′ (W )2
> σλ. (47)

From the above analysis, the agent is more likely to be overincentivized when his continuation

value is high.

Figure 2 plots the value functions for type I robust contracting problem with and without

agency. The payout boundary is given by W̄FB for the first-best case. It is lower than that

for the contract with agency, implying that moral hazard generates inefficient delay in payout.

Both value functions are concave and become linear after the payout boundaries with a slope
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Figure 2: Value functions for type I robust contracting problem. The upper curve is
the first-best value function and the payout boundary is W̄FB. The lower curve is the value
function with agency and the payout boundary is W̄ . The optimal sensitivity changes value
at Ŵ . Parameter values are µ = 10, r = 0.10, γ = 0.15, λ = 0.20, σ = 5, L = 90, and θ = 20.

−1. Figure 3 plots the worst-case density generator h∗ and the optimal sensitivity ϕ∗ for the

contract with agency. Consistent with the previous intuition, the figure shows that there is a

cutoff value Ŵ , such that the sensitivity ϕ∗ (W ) reaches the lower bound σλ for all W ∈ [0, Ŵ ]

and it is given by (47) for all W ∈ [Ŵ , W̄ ].19 Figure 3 also shows that h∗ (W ) increases with W

and h∗ (W ) < 0 for all W ∈
[
0, W̄

]
. Intuitively, the principal’s aversion to model uncertainty

leads to his pessimistic behavior. The local mean of the Brownian motion is shifted downward

under the principal’s worst-case belief.

Figure 4 illustrates that the value function may not be globally concave. In particular, it

is convex when the agent’s continuation value is close to the liquidation boundary. To see the

intuition, we rewrite (43) as

ϕ∗ (W )2

2
F ′′(W ) =

[
rF (W )− µ− F ′(W )γW

]
+

[ϕ∗ (W )F ′ (W ) + σ]2

2θ
.

When θ → ∞, the second expression on the right-hand side of the above equation vanishes

and the model reduces to the benchmark one analyzed in Section 3.1 so that the first square

19We are unable to prove this result formally. But it is quite robust for a wide range of parameter values in
the numerical solutions.
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Figure 3: Optimal sensitivity and the worst-case density generator for type I robust
contracting problem. Parameter values are µ = 10, r = 0.10, γ = 0.15, λ = 0.20, σ = 5,
L = 90, and θ = 20.

bracket expression is negative and F ′′ (W ) < 0. However, when the principal is sufficiently

ambiguity averse (i.e., 1/θ is sufficiently large), the second expression may dominate so that

F ′′ (W ) > 0. This case can happen when W is sufficiently small for the first square bracket

expression to be small. In this case, public randomization in the sense of stochastic termination

of the project is optimal to the principal, as illustrated by the dashed line from the origin in

Figure 4.20 By contrast, when W is sufficiently large, F ′ (W ) is close to −1 and ϕ∗ (W ) is

close to σ so that the second square bracket expression is close to zero. Thus, F ′′ (W ) < 0

when W is sufficiently large.

The following proposition gives a necessary and sufficient condition for implementing high

effort.

Proposition 3 Implementing high effort is optimal at all times for Problem 4.1 if and only

if

rF (W ) ≥ max
ϕ≤σλ

F ′(W ) (γW − λµ) +
ϕ2

2
F ′′(W )− [ϕF ′ (W ) + σ]2

2θ
, (48)

20Stochastic liquidation is common in the discrete-time models, e.g., Clementi and Hopenhayn (2006), Biais
et al. (2007), and DeMarzo and Fishman (2007a,b). Since such an analysis is standard, we omit it here.
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Figure 4: Value function, optimal sensitivity, and the worst-case density generator
for type I robust contracting problem. Parameter values are µ = 5, r = 0.10, γ = 0.15,
λ = 0.20, σ = 5, L = 0, and θ = 6.

for W ∈
[
0, W̄

]
, where F is given in Proposition 2 and satisfies condition (35).

When θ → ∞, the condition in (48) reduces to the one in Proposition 8 in DeMarzo and

Sannikov (2006) because F is concave and ϕ = 0 in the limit. In all our numerical examples,

condition (48) is satisfied.

The following proposition shows that the value function F decreases if the degree of concern

for robustness or the degree of ambiguity aversion increases, i.e., 1/θ increases. The intuition

is that model uncertainty is costly to the principal and hence reduces his value. The last term

in (43) gives this cost, which is the local entropy θh∗ (W )2 /2.

Proposition 4 The value function F (W ) on
[
0, W̄

]
in Problem 4.1 increases with the pa-

rameter θ.

5 Type II Robust Contracts

We formulate type II robust contracting problem under moral hazard as follows:
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Problem 5.1 (type II robust contract in continuous time)

sup
(C,τ,a)

inf
h

EPa

[∫ τ

0
e−rt(dXt − dCt) + e−rτL

]
+

θ

2
EPa

[∫ τ

0
e−rsh2tdt

]
, (49)

subject to

EQh

[∫ τ

0
e−γs(dCs + λµ(1− as)ds)

]
≥ EQh

[∫ τ

0
e−γs(dCs + λµ(1− âs)ds)

]
, ∀âs ∈ {0, 1} ,

(50)

EQh

[∫ τ

0
e−γs(dCs + λµ(1− as)ds)

]
= W0, (51)

where W0 ≥ 0 is given and Qh is the measured defined in (26).

The interpretation of the parameter θ is identical to that in the discrete-time counterpart.

Unlike the standard contracting problem or the type I robust contracting problem, here the

agent’s continuation value is computed using the distorted belief Qh. Define this value as

Wt = EQh

t

[∫ τ

t
e−γ(s−t)(dCs + λµ(1− as)ds)

]
. (52)

Following DeMarzo and Sannikov (2006), we can use the Martingale Representation Theorem

to show that (Wt) follows the dynamics:

dWt = γWtdt− dCt − λµ(1− at)dt+ ϕtdB
h
t , (53)

where
(
Bh

t

)
is the standard Brownian motion under the measure Qh. Let F (W ) be the value

function for Problem 5.1 when we vary W0 = W.

As in the previous section, we first analyze the first-best case by removing the incentive

constraint in Problem 5.1.

5.1 First-Best Robust Contract

We proceed heuristically to derive the HJBI equation for optimality in several steps. First,

we rewrite the dynamics of (Wt) in terms of the principal’s probability model P a. Using

Girsanov’s Theorem, we rewrite (53) as

dWt = γWtdt− dCt − λµ(1− at)dt− htϕtdt+ ϕtdB
a
t , (54)

where dBa
t = dBh

t + htdt is a standard Brownian motion under P a.

Second, without risk of confusion, we define F (W0) as the value function for Problem 5.1
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without the incentive constraint (50) when we vary the promised value W0 to the agent. we

use the dynamic programming principle to write an approximate Bellman equation:

rF (Wt) dt = sup
dCt,ϕt,at∈{0,1}

inf
ht

µatdt− dCt +
θ

2
h2tdt+ EPa

t [dF (Wt)] , (55)

subject to (54). Unlike type I contracting problem, here we use the principal’s trusted prob-

ability model P a to derive the Bellman equation.

Now we use Ito’s Lemma and (54) to derive

EPa

t [dF (Wt)] = F ′(Wt)(γWtdt− dCt − λµ (1− at) dt− htϕtdt) +
F ′′(Wt)

2
ϕ2
tdt.

Plugging this equation into (55) yields:

rF (Wt) dt = sup
dCt,ϕt,at∈{0,1}

inf
ht

µatdt− dCt +
θ

2
h2tdt

+F ′(Wt)(γWtdt− dCt − λµ (1− at) dt− htϕtdt) +
F ′′(Wt)

2
ϕ2
tdt.

Suppose that dCt = ctdt, where ct ≥ 0. Removing the time subscripts and cancelling dt, we

obtain the equation:

rF (W ) = sup
c≥0,ϕ,a∈{0,1}

inf
h

µa−
(
1 + F ′ (W )

)
c (56)

+F ′(W )(γW − hϕ− λµ (1− a)) +
F ′′(W )

2
ϕ2 +

θh2

2
.

Clearly, for this problem to have a finite solution, we must have F ′ (W ) ≥ −1. We then get

c > 0 if and only if F ′ (W ) = −1. This equation defines a boundary point W̄ . The principal

makes payments to the agent if only if Wt reaches the point W̄ . The payments make the

process (Wt) reflect at this point.

The objective function in (56) is convex in h. Solving for the worst-case density generator

yields:

h∗ =
F ′ (W )ϕ

θ
. (57)

Substituting it back into (56) yields:

rF (W ) = sup
ϕ,a∈{0,1}

µa+ F ′(W ) (γW − λµ (1− a)) +
ϕ2

2
F ′′(W )− ϕ2F ′ (W )2

2θ
. (58)

Assuming condition (35) holds, we obtain the optimal sensitivity ϕ∗ (W ) = 0. In this case,
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the agent is not exposed to any risk. Thus, the agent’s belief distortion does not matter so

that h∗ = 0. If λ ∈ [0, 1] , implementing high effort is optimal since F ′ (W ) ≥ −1.

The following result characterizes the solution for the first-best type II robust contracting

problem.

Proposition 5 Consider the first-best type II robust contracting problem. Suppose that L <

µ/r. For any W0 = W ≥ 0, the principal initially gives a lump-sum payment W to the agent

and does not pay him in the future. The agent always exerts high effort at = 1. The principal’s

value function is given by F (W ) = µ/r −W.

Unlike type I first-best robust contract, type II first-best robust contract is the same as

the first-best contract in the benchmark model without ambiguity. The intuition is that the

principal can design a contract such that the agent does not get exposed to uncertainty so

that the principal does not need to worry about ambiguity about the agent’s expectations.

5.2 Robust Contract with Agency

Turn to the case with moral hazard. Using a proof similar to that for Lemma 3 in DeMarzo

and Sannikov (2006), we can establish the following result:

Lemma 1 Consider type II robust contracting problem with agency. For any belief Qh ∈ Pa,

implementing high effort is optimal to the agent if and only if condition (20) holds.

The key to the proof is to apply the Martingale Representation Theorem under the measure

Qh. We omit the details here.

Without risk of confusion, we use F (W0) to denote the value function for Problem 5.1

when we vary the promised valueW0 to the agent. We proceed heuristically to derive the HJBI

equation for optimality. Suppose that implementing high effort is optimal. We then impose

condition (20) and set at = 1 when performing derivations as in the previous subsection. We

then obtain the HJBI equation:

rF (W ) = sup
c≥0,ϕ≥σλ

inf
h

µ−
(
1 + F ′ (W )

)
c+ F ′(W )(γW − hϕ) +

F ′′(W )

2
ϕ2 +

θh2

2
. (59)

Thus, we must have F ′ (W ) ≥ −1, c = 0 if F ′ (W ) > −1 and c ≥ 0 if F ′ (W ) = 1. This defines

a payout boundary W̄ satisfying F ′ (W̄ )
= 1. The worst-case density generator is given by

(57). Substituting this solution into the above equation yields:

rF (W ) = sup
ϕ≥σλ

µ+ F ′(W )γW +
F ′′(W )

2
ϕ2 − F ′ (W )2

2θ
ϕ2. (60)
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We then obtain the following result:

Proposition 6 Consider type II robust contracting problem. Suppose that implementing high

effort is optimal and that condition (37) holds. Suppose that there exists a unique twice

continuously differentiable solution F to the ODE on [0, W̄ ]:

rF (W ) = µ+ F ′(W )γW +
F ′′(W )

2
(σλ)2 − F ′ (W )2

2θ
(σλ)2 , (61)

with boundary conditions

F ′ (W̄ )
= −1, F ′′ (W̄ )

= 0, F (0) = L,

such that condition (35) is satisfied. Then:

(i) When W ∈
[
0, W̄

]
, F (W ) is the value function for Problem 5.1, the optimal sensitivity

ϕ∗ (W ) = σλ, and the worst-case density generator is given by

h∗ (W ) =
F ′ (W )σλ

θ
.

The contract delivers the value W ≥ 0 to the agent whose continuation value (Wt) follows the

dynamics:

dWt = γWtdt− dC∗
t − h∗ (Wt)σλdt+ λσdB1

t , W0 = W, (62)

for t ∈ [0, τ ] , where the optimal payments are given by

C∗
t =

∫ t

0
1{Ws=W̄}dC

∗
s .

The contract terminates at time τ = inf {t ≥ 0 : Wt = 0} .

(ii) When W > W̄, the principal’s value function is F (W ) = F
(
W̄

)
−

(
W − W̄

)
. The

principal pays W − W̄ immediately to the agent and the contract continues with the agent’s

new initial value W̄ .

Unlike in type I robust contracting problem, here the agent faces model ambiguity. The

agent does not trust the principal’s approximating model for the project cash flows and uses

distorted beliefs to evaluate expected payoffs. The optimal contract tries to remove the

agent’s model ambiguity and thus specifies the minimal sensitivity (i.e., ϕ∗ (W ) = σλ) to

provide incentives to the agent. The principal is concerned about robustness of the agent’s

beliefs and hence chooses the contract that is optimal given the worst-case belief of the agent.
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Unlike in type I robust contracting problem, under the approximating model P , the agent’s

continuation value (Wt) follows the dynamics in (62). But the agent has doubt about this

model and his continuation value under the principal’s worst-case belief Qh∗
follows the dy-

namics:

dWt = γWtdt− dC∗
t + σλdBh∗

t , W0 = W. (63)

The following proposition gives a necessary and sufficient condition for the optimality of

implementing high effort. We choose parameter values such that this condition is always

satisfied in all our numerical examples.

Proposition 7 Implementing high effort is optimal in Problem 5.1 if and only if

rF (W ) ≥ F ′(W ) (γW − λµ) (64)

for all W ∈
[
0, W̄

]
, where F is given in Proposition 6 and satisfies condition (35).

As in type I robust contracting problem, model ambiguity is costly to the principal and

lowers his value. The last term in (61) reflects this cost, which is equal to the local entropy

θh∗ (W )2 /2.

Proposition 8 The value function F (W ) on
[
0, W̄

]
in Problem 5.1 increases with the pa-

rameter θ.

Figure 5 plots the value function F (W ) and the worst case density generator h∗. This figure

shows that F may not be globally concave, unlike in the benchmark model. In particular,

it may be convex for low values of W. The intuition is the following. For low values of W,

inefficient liquidation is more likely. The principal is more concerned about model uncertainty

faced by the agent. He would like to share uncertainty with the agent in the optimal contract.

Thus, he is willing to absorb uncertainty and hence his value function is convex. We also

find that convexity is more likely to happen when the principal is more averse to uncertainty

faced by the agent (i.e., θ is smaller). In this case, the principal is more willing to share this

uncertainty.

The right two panels show the worst-case density generators. Unlike in type I robust

contracting problems, here the worst-case density generators are positive for small values of

W and negative for large values of W. The intuition is that the agent’s worst-case belief

is chosen by the principal to minimize his utility. When W is small, a positive h∗ (W ) is

chosen because it lowers the agent’s continuation value (see (62)), making the project more

likely to be liquidated. When W is large, a negative h∗ (W ) is chosen because it raises the
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Figure 5: Value functions and worst-case density generators for type II robust
contracting problem. The parameter values for the top two panels are µ = 10, r = 0.10,
γ = 0.15, λ = 0.20, σ = 5, L = 0, and θ = 10. The parameter values for the lower two panels
are the same as the preceding values, except for θ = 50.

agent’s continuation value to the payout boundary, which also lowers’ principal value. There

is no distortion h∗ (W ) = 0 when F (W ) reaches the maximum. Intuitively, any pessimistic

distortion of the agent’s beliefs due to ambiguity aversion lowers the principal’s value.

6 Asset Pricing Implications

We use the same approach as in the benchmark model to implement the optimal contracts

for Problems 4.1 and 5.1. We shall show that ambiguity aversion generates some new insights

in asset pricing.

6.1 Implementing Type I Robust Contract

As in the benchmark model, we still use the cash reserves, debt and equity to implement the

optimal contract characterized in Proposition 2. The cash reserves follow dynamics:

dMt = rMtdt+ dXt − dC∗
t︸︷︷︸

inside dividends

− dΨt, M0 = W0/λ,
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for 0 ≤ t ≤ τ = inf
{
t ≥ 0 : Mt = W̄/λ

}
, where

dΨt = [µ− (γ − r)Mt] dt︸ ︷︷ ︸
coupon

+
1− λ

λ
dC∗

t︸ ︷︷ ︸
outside dividends

+

[
σ − ϕ∗ (Wt)

λ

]
dB1

t︸ ︷︷ ︸
special dividends

,

and W̄ , C∗ and ϕ∗ are given in Proposition 2. Unlike the benchmark model, there is a new

term in the cash reserve dynamics:

[σ − ϕ∗ (Wt) /λ] dB
1
t = [σ − ϕ∗ (Wt) /λ] (dXt − µdt) /σ.

The interpretation of the other terms are the same as in the benchmark model. We interpret

the new term as special dividends paid only to the outside equity holders. Note that this

term can be negative and we interpret this case as new equity injection as in Leland (1994)

style models.21 The expected value of special dividends is equal to zero under the measure

P 1. One reason that we assign the new term to the outside equity holders is to keep limited

liability of the agent and the bond holders.

By Proposition 2, ϕ∗ (Wt) ≥ σλ. In addition, when the agent’s continuation value Wt is

small, ϕ∗ (Wt) = σλ. But when Wt is large, ϕ∗ (Wt) > σλ. Thus, special dividends occur

only when the continuation value is sufficiently large. In this case, when the project performs

well (i.e., dB1
t > 0), outside equity holders inject cash in the firm in order to raise the cash

reserves.22 But when the project performs bad (i.e., dB1
t < 0), outside equity holders receive

positive special dividends, which lower the cash reserves. This payout policy is used to as

a hedge against model uncertainty so that the cash reserves track the agent’s continuation

value, i.e., Mt = Wt/λ. This ensures that the liquidation time and the payout time coincide

with those in the optimal contract.

We can rewrite the cash reserves dynamics as

dMt = γMtdt+
ϕ∗ (λMt)

λ
dB1

t −
1

λ
dC∗

t ,

and use (46) to show that Mt = Wt/λ. We can also show that Wt = EP
t

[∫ τ
t e−γ(s−t)dC∗

s

]
.

Thus, as in the benchmark model, the above capital structure is incentive compatible and

implements the optimal contract.

Unlike in the benchmark model, we price assets using the principal’s pricing kernel which

21See DeMarzo et al (2012) for a similar similar implementation and interpretation.
22In the Leland (1994) model, equity holders inject new equity for the purpose of avoiding costly bankruptcy.
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is based on his worst-case belief Qh∗
. Specifically, outside equity value per share is given by

St = EQh∗

t

[∫ τ

t
e−r(s−t) 1

λ
dC∗

s +
1

1− λ

∫ τ

t
e−r(s−t)

(
σ − ϕ∗ (λMs)

λ

)
dB1

s

]
,

where τ = inf {t ≥ 0 : Mt = 0} is the liquidation time. By a similar analysis in Anderson,

Hansen and Sargent (2003), we can show that the principal’s fear of model misspecification

generates a market price of model uncertainty. This market price of model uncertainty is given

by the absolute value |h∗ (W )| of the worst-case density generator in (45), which contributes

to the equity premium.

Proposition 9 The local expected equity premium under the measure P is given by

−1

1− λ

[
σ − ϕ∗ (λM)

λ

]
h∗ (λM)

S (M)
− ϕ∗ (λM)

λ

S′ (M)

S (M)
h∗ (λM) ,

where h∗ and ϕ∗ are given in Proposition 2 and St = S (Mt) for a function S given in Appendix

B1.

The equity premium contains two components. The first component is due to the exposure

of special dividends to the Brownian motion uncertainty. This component is negative because

the factor loading [σ − ϕ∗ (λMs) /λ] / (1− λ) < 0 and special dividends are intertemporal

hedges. The second component is due to the exposure of the stock price to the Brownian mo-

tion uncertainty. This component is positive whenever S′ (M) > 0. Since the first component

is zero for sufficiently small values of M, the equity premium is positive for these values. But

we are unable to derive the sign of the sum of the two components analytically for high values

of M .

Debt value satisfies

Dt = EQh∗

t

[∫ τ

t
e−r(s−t) [µ− (γ − r)Mt] ds+ e−r(τ−t)L

]
.

The credit yield spread ∆t is defined as follows:∫ ∞

t
e−(r+∆t)(s−t)ds = EQh∗

t

[∫ τ

t
e−r(s−t)ds

]
.

Solving yields:

∆t =
rTt

1− Tt
,

where Tt = EQh∗

t

[
e−r(τ−t)

]
for all t ∈ [0, τ ] represents the Arrow-Debreu price at time t of

one unit claim paid at the time of default.
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Figure 6: Stock prices, equity premiums, debt value, and credit yield spreads for
type I robust contracting problem. The parameter values are µ = 10, r = 0.10, γ = 0.15,
λ = 0.20, σ = 5, and L = 0.

In Appendix B1, we show that the stock price, equity premium, debt value, and credit

yield spreads are functions of the state variable, the level of cash reserves M. Figure 6 plots

these functions for three values of θ. The benchmark model corresponds to θ = ∞. The

figure shows that the stock price is an increasing function of M, while the equity premium

and the credit yield spread are decreasing functions of M. The principal’s aversion to model

uncertainty generates a positive equity premium, which approaches infinity as M goes to

zero and decreases to zero as M rises to the payout boundary. This implies that the equity

premium is high for financially distressed or recently established firms with low cash reserves.

This also implies that the equity premium is high in recessions since cash reserves are low

in bad times. Intuitively, when M is low, the incentive constraint binds and the ambiguity

averse principal bears more uncertainty and hence demanding a higher equity premium. But

when M is large, the agent can share the principal’s uncertainty since the optimal sensitivity

ϕ∗
t is state dependent. This leads the principal to bear less uncertainty, thereby reducing the

equity premium.

Figure 6 also shows that debt value decreases with the ambiguity aversion parameter 1/θ,

while the equity premium and the credit yield spread increase with 1/θ. Interestingly, unlike

in the benchmark model, here the equity price is not a concave function of the cash reserves.

Under model uncertainty, the stock price is convex for low levels of cash reserves and concave
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for high levels of cash reserves. Intuitively, after a sequence of low cash-flow realizations, cash

reserves are low. The robust contract has already taken into account the worst-case scenario.

The equity price does not have to respond strongly to a decrease in the cash reserves when

they are low in the sense that the marginal change in the stock price decreases when the cash

reserves fall. But for high levels of cash reserves, the principal pessimistically believes that

the firm does not perform that well. Thus, the stock price reacts strongly to a decrease in

the cash reserves when they are large in the sense that the marginal change in the stock price

increases when the cash reserves fall. This result implies that asset substitution problem is

more likely to occur for financially distressed firms or newly established firms with low cash

reserves.

The following proposition is similar to Proposition 6 in Biais et al. (2007).

Proposition 10 At any time t ≥ 0, the following holds:

Dt + (1− λ)St = F (Wt) +Mt −
θ

2
EP 1

[∫ τ

0
e−rszth

∗ (Wt)
2 dt

]
. (65)

In addition, Dt + (1− λ)St increases with θ for any fixed cash reserves Mt = Wt/λ.

The left-hand side of (65) is the market value of outside securities, i.e., the present value

of the cash flows these securities will distribute. The right-hand side of (65) represents the

assets generating these cash flows. The last term is the entropy cost, which is subtracted to

obtain the operating cash flows allocated to the principal (outside investors),

EQh∗

t

[∫ τ

t
e−r(s−t)(dXs − dC∗

s ) + e−r(τ−t)L

]
.

Proposition 10 also shows that the market value of outside securities decreases with the

ambiguity aversion parameter 1/θ. The intuition is that the principal’s aversion to model

uncertainty generates an ambiguity premium, which lowers the market value of outside secu-

rities. An immediate implication of this result is that aversion to model uncertainty can make

some profitable projects unfunded.

6.2 Implementing Type II Robust Contract

As before, we still use cash reserves, debt and equity to implement the optimal contract. By

a similar argument to that in the previous subsection, the cash reserves follow the dynamics:

dMt = rMtdt+ dXt − dC∗
t︸︷︷︸

inside dividends

− dΨt, M0 = W0/λ,
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for 0 ≤ t ≤ τ ≡ inf
{
t ≥ 0 : Mt = W̄/λ

}
, where

dΨt = [µ− (γ − r)Mt] dt︸ ︷︷ ︸
coupon

+
1− λ

λ
dC∗

t︸ ︷︷ ︸
outside dividends

+ σh∗ (λMt) dt︸ ︷︷ ︸
special dividends

,

and W̄ , C∗ and h∗ are given in Proposition 6. By (62), we can show that Mt = Wt/λ and

Wt = EQh∗

t

[∫ τ
t e−γ(s−t)dC∗

s

]
. Thus, the above capital structure is incentive compatible and

implements the optimal contract.

Unlike in type I robust contract, the firm pays locally riskless special dividends σh∗ (Wt) dt

to the outside equity holders only. When this term is negative, it is interpreted as new equity

injection. As Figure 5 shows, when W is small, h∗ (W ) > 0, the outside equity holders obtain

special dividends to lower the cash reserves. But when W is large, h∗ (W ) < 0, the outside

equity holders inject cash in the firm to raise the cash reserves. In this way, the cash reserves

track the agent’s continuation value under the principal’s belief P 1.

Since the principal (outside investors) trusts the model, he uses the belief P 1 to price

assets. We can then compute debt value and the credit yield spread as in (23) and (24),

respectively, with C = C∗. However, outside equity value per share is given by

St = EP 1

t

[∫ τ

t
e−r(s−t) 1

λ
dC∗

s +

∫ τ

t
e−r(s−t)σh

∗ (Ws)

1− λ
ds

]
.

Unlike in type I robust contracting problem, there is no equity premium here. The reason is

that outside investors (the principal) are risk neutral and they have no belief distortion. Even

though there is no equity premium, investors’ concerns about the robustness of the agent’s

beliefs still have pricing implications. Specifically, the agent’s belief distortions represented

by the worst-case density generator h∗ affect the dynamics of the state variable, i.e., the cash

reserves:

dMt = (γMt − σh∗ (W )) dt+ σdB1
t −

1

λ
dC∗

t . (66)

Because this state variable determines asset prices, the agent’s belief distortions influence

asset prices.

Figure 7 plots the stock price, debt value and the credit yield spread as functions of the

cash reserves for three values of θ. The benchmark model corresponds to θ = ∞. This figure

shows similar patterns to those in Figure 6 for type I contracting problem. However, these

patterns are generated by the distorted cash reserve dynamics perturbed by the worst-case

density generator. Even though there is no equity premium, there is countercyclical credit

yield spread. The reason is that for low continuation values, the firm pays out special dividends

to hedge against model uncertainty and hence the cash reserves are low. Thus, the firm is
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Figure 7: Stock prices, debt values, and credit yield spreads for type II robust
contracting models. The parameter values for the top two panels are µ = 10, r = 0.10,
γ = 0.15, λ = 0.20, σ = 5, and L = 0.

more likely to be liquidated and the credit yield spread is high.

The following result is similar to Proposition 10. The intuition and implications are also

similar.

Proposition 11 At any time t ≥ 0, the following holds:

Dt + (1− λ)St = F (Wt) +Mt −
θ

2
EP 1

[∫ τ

0
e−rsh∗ (Wt)

2 dt

]
.

In addition, Dt + (1− λ)St increases with θ for any fixed cash reserves Mt = Wt/λ.

7 Concluding Remarks

Contracting problems involve at least two parties. Introducing ambiguity and robustness into

such problems must consider which party faces ambiguity and what it is ambiguous about. In

this paper, we have focused on two types of ambiguity. In type I problem, the principal does

not trust the distribution of the project cash flow chosen by the agent. But the agent trusts

it. The principal is averse to model ambiguity. In type II problem, the principal trusts the

cash-flow distribution chosen by the agent, but he has ambiguity about what beliefs the agent

might have. The agent does not face ambiguity and is an expected utility maximizer. We
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find type I contracting problem particularly interesting because it generates countercyclical

firm-level equity premium and has interesting asset pricing implications. In particular, the

equity premium and the credit yield spread are high for firms with severe incentive problems

and low cash reserves.

In future research, it would be interesting to consider other types of ambiguity. For

example, the agent may face ambiguity about the project cash flows or both the principal and

the agent may face ambiguity. Our paper focuses on contracting problems under moral hazard

with binary actions. It would be interesting to generalize our analysis to a more general

principal-agent problem such as that in Sannikov (2008). Finally, it would be interesting

to extend our approach to dynamic contracts with hidden information and study robust

mechanism design problems in continuous time.
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Appendices

A Proofs

Proof of Proposition 1: Define Ha as the set of density generators associated with the

effort level a. Let Qh ∈ Pa be the measure induced by h ∈ Ha. Define Γ (w) as the set of

progressively measurable processes (ϕ,C, a) such that (i) ϕ satisfies

EQh

[∫ t

0

(
e−γsϕs

)2
dt

]
< ∞ for all t > 0,

(ii) C is increasing, right continuous with left limits and satisfies

EQh

[(∫ t

0
e−rsdCs

)2
]
< ∞, for all t > 0,

(iii) at ∈ {0, 1} , and (iv) Wt satisfies (30), with boundary conditions W0 = w and Wt = 0

for t ≥ τ ≡ inf {t ≥ 0 : Wt = 0} . For any (ϕ,C, a) ∈ Γ (w) and h ∈ Ha, define the principal’s

objective function as:

J (C, a, h)

= EQh

[∫ τ

0
e−rt(dXt − dCt) + e−rτL

]
+

θ

2
EPa

[∫ τ

0
e−rszth

2
tdt

]
= EQh

[∫ τ

0
e−rt(µatdt+ htσdt− dCt) + e−rτL

]
+

θ

2
EQh

[∫ τ

0
e−rsh2tdt

]
, (A.1)

where we have used the fact that dXt = µatdt + htσdt + σdBh
t where Bh

t is a standard

Brownian motion under the measure Qh. We can then write the first-best type I robust

contracting problem as follows:

F (w) = sup
(ϕ,C,a)∈Γ(w)

inf
h∈Ha

J (C, a, h) , w ≥ 0. (A.2)

Define an operator as

D(ϕ,a,h)F (W ) = µa+ σh+ F ′(W )(γW + hϕ− λµ (1− a)) +
F ′′(W )

2
ϕ2 +

θh2

2
. (A.3)
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We can describe the optimality conditions stated in the proposition as variational inequalities:

0 = min

{
rF (W )− sup

a∈{0,1},ϕ∈R
inf
h∈R

D(ϕ,a,h)F (W ) , F ′ (W ) + 1

}
, (A.4)

for all W > 0 and the boundary conditions are given in the proposition. One can check that

under condition (35), the policies (ϕ∗, a∗, h∗) stated in the proposition satisfy

rF (W ) = sup
a∈{0,1},ϕ∈R

inf
h∈R

D(ϕ,a,h)F (W ) = D(ϕ∗,a∗,h∗)F (W ) .

We now show that F is the value function in 4 steps. Step 1. Define the following process:

G
(ϕ,C,a,h)
t =

∫ t

0
e−rs (dXs − dCs) + θ

∫ t

0
e−rsh

2
s

2
ds+ e−rtF (Wt) , (A.5)

where (Wt) satisfies (30).

Step 2. Fix a process h∗ such that h∗t = h∗ (Wt) . Consider any candidate choice (ϕ,C, a) ∈
Γ (w). By Ito’s Lemma under Qh∗

,

ertdG
(ϕ,C,a,h∗)
t = µatdt+ σh∗tdt+ σdBh∗

t − dCc
t +

θh∗2t
2

dt

+F ′ (Wt)
[
γWtdt− dCc

t − λµ (1− at) dt+ h∗tϕtdt+ ϕtdB
h∗
t

]
+
1

2
F ′′ (Wt)ϕ

2
tdt− rF (Wt) dt+∆F (Wt)−∆Ct

=
[
D(ϕt,at,h

∗
t )F (Wt)− rF (Wt)

]
dt−

(
1 + F ′ (Wt)

)
dCc

t

+
(
σ + ϕtF

′ (Wt)
)
dBh∗

t +∆F (Wt)−∆Ct,

where Cc is the continuous part of C, ∆Ct = Ct −Ct− is the jump, and ∆F (Wt) = F (Wt)−
F (Wt−) . By the variational inequalities (A.4) and dCc

t ≥ 0,

D(ϕt,at,h
∗
t )F (Wt)− rF (Wt) ≤ 0,

(
1 + F ′ (Wt)

)
dCt ≥ 0.

Since F ′ (Wt) is bounded on
[
0, W̄

]
,

EQh∗
[∫ t

0
e−rs

(
1 + ϕsF

′ (Ws)
)
σdBh∗

s

]
= 0.

43



Since F ′ (W ) ≥ −1,

∆F (Wt)−∆Ct = F (Wt)− F (Wt +∆Ct)−∆Ct

= −
∫ Wt+∆Ct

Wt

[
F ′ (c) + 1

]
dc ≤ 0.

It follows that G
(ϕ,C,a,h∗)
t is a

(
Qh∗

,Ft

)
-supermartingale. This implies that G

(ϕ,C,a,h∗)
0 ≥

EQh∗
[
G

(ϕ,C,a,h∗)
t∧τ

]
for any finite time t ≥ 0. Taking limit as t → ∞, we have

G
(ϕ,C,a,h∗)
0 ≥ EQh∗

[
G(ϕ,C,a,h∗)

τ

]
≥ inf

h∈Ha
EQh

[
G(ϕ,C,a,h)

τ

]
.

Taking supremum for (ϕ,C, a) ∈ Γ (w) and using (A.5), we obtain

F (w) = F (W0) = G
(ϕ,C,a,h∗)
0 ≥ sup

(ϕ,C,a)∈Γ(w)
inf

h∈Ha
EQh

[
G(ϕ,C,a,h)

τ

]
.

Step 3. Fix (ϕ∗, C∗, a∗) and consider any process (ht) ∈ Ha∗ . Use Ito’s Lemma to derive

ertdG
(ϕ∗,C∗,a∗,h)
t = µa∗tdt+ σhtdt+ σdBh

t − dCc∗
t +

θh2t
2

dt

+F ′ (Wt)
[
γWtdt− dCc∗

t − λµ (1− a∗t ) dt+ htϕ
∗
tdt+ ϕ∗

tdB
h
t

]
+
1

2
F ′′ (Wt)ϕ

∗2
t dt− rF (Wt) dt+∆F (Wt)−∆Ct

=
[
D(ϕ∗

t ,a
∗
t ,ht)F (Wt)− rF (Wt)

]
dt−

(
1 + F ′ (Wt)

)
dCc∗

t

+
(
1 + ϕtF

′ (Wt)
)
σdBh

t +∆F (Wt)−∆Ct

≥
[
D(ϕ∗

t ,a
∗
t ,h

∗
t )F (Wt)− rF (Wt)

]
dt−

(
1 + F ′ (Wt)

)
dCc∗

t

+
(
σ + ϕtF

′ (Wt)
)
dBh

t +∆F (Wt)−∆Ct.

Note that D(ϕ∗
t ,a

∗
t ,h

∗
t )F (Wt)− rF (Wt) = 0. In addition, by (41),∫ t

0
e−rt

(
1 + F ′ (Ws)

)
dCc∗

s =

∫ t

0
e−rt

(
1 + F ′ (Ws)

)
1{Ws=W̄}dC

c∗
s = 0.

Thus, G
(ϕ∗,C∗,a∗,h)
t is a

(
Qh,Ft

)
-submartingale. This implies thatG

(ϕ∗,C∗,a∗,h)
0 ≤ EQh

[
G

(ϕ∗,C∗,a∗,h)
t∧τ

]
for any finite time t. Taking limit as t → ∞ yields

F (w) = G
(ϕ∗,C∗,a∗,h)
0 ≤ EQh

[
G(ϕ∗,C∗,a∗,h)

τ

]
.
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Taking infimum for h ∈ Ha yields:

F (w) ≤ inf
h∈Ha

EQh
[
G(ϕ∗,C∗,a∗,h)

τ

]
≤ sup

(ϕ,C,a)∈Γ(w)
inf

h∈Ha
EQh

[
G(ϕ,C,a,h)

τ

]
Step 4. By Steps 2 and 3, we know that

F (w) = sup
(ϕ,C,a)∈Γ(w)

inf
h∈Ha

EQh
[
G(ϕ,C,a,h)

τ

]
.

Since F (Wτ ) = F (0) = L, it follows from (A.5) and (A.1) that EQh
[
G

(ϕ,C,a,h)
τ

]
= J (C, a, h) .

We then obtain (A.2).

Evaluating at the solution (ϕ∗, C∗, a∗, h∗) in Proposition 1, we can easily check that

G
(ϕ∗,C∗,a∗,h∗)
t is a

(
Qh∗

,Ft

)
-martingale. Condition (35) ensures that ϕ∗ achieves the max-

imum in (43). Thus, we obtain

F (w) = max
(ϕ,C,a)∈Γ(w)

min
h∈Ha

EQh
[
G(ϕ,C,a,h)

τ

]
,

and (ϕ∗, C∗, a∗, h∗) is optimal for the first-best type I robust contracting problem. Note that

if condition (37) holds, the project is never liquidated. To deliver W0 = 0 to the agent, he

always exerts high effort and never gets paid. Q.E.D.

Proof of Propositions 2 and 3: Define J as in (A.1). We modify condition (iii) in the

definition of the feasible set Γ (w) to incorporate the incentive constraint as follows: if at = 0,

then ϕt ≤ σλ and if at = 1, then ϕt ≥ σλ. The optimality condition described in Propositions

2 and 3 can be summarized by the following variational inequalities:

0 = min

{
rF (W )− sup

(a,ϕ)∈Λ
inf
h∈R

D(ϕ,a,h)F (W ) , F ′ (W ) + 1

}
, (A.6)

for all W > 0, where

Λ = {(0, φ) : φ ≤ σλ} ∪ {(1, φ) : φ ≥ σλ} .

The boundary conditions are given in Proposition 2. It is easy to verify that under conditions

(35) and (48), a∗ (W ) = 1, ϕ∗ (W ) , and h∗ (W ) described in Proposition 2 achieves the above

maxmin. In particular, condition (48) ensures that, for W ∈
[
0, W̄

]
,

rF (W ) ≥ sup
(0,ϕ)∈Λ

inf
h∈R

D(ϕ,0,h)F (W ) .
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We want to show that F is the value function for Problem 4.1.

We follow similar steps to those in the proof of Proposition 1. We only need to modify Step

2. Fix a process h∗ such that h∗t = h∗ (Wt) . Consider any candidate choice (ϕ,C, a) ∈ Γ (w).

By Ito’s Lemma under Qh∗
,

ertdG
(ϕ,C,a,h∗)
t = µatdt+ σh∗tdt+ σdBh∗

t − dCc
t +

θh∗2t
2

dt

+F ′ (Wt)
[
γWtdt− dCt − λµ (1− at) dt+ h∗tϕtdt+ ϕtdB

h∗
t

]
+
1

2
F ′′ (Wt)ϕ

2
tdt− rF (Wt) dt+∆F (Wt)−∆Ct

=
[
D(ϕt,at,h

∗
t )F (Wt)− rF (Wt)

]
dt−

(
1 + F ′ (Wt)

)
dCc

t

+
(
σ + ϕtF

′ (Wt)
)
dBh∗

t +∆F (Wt)−∆Ct.

By by the variational inequalities (A.6),

rF (Wt) ≥ D(ϕt,at,h
∗
t )F (Wt) ,

In addition, (1 + F ′ (Wt)) dC
c
t ≥ 0. Thus, G

(ϕ,C,a,h∗)
t is a

(
Qh∗

,Ft

)
-supermartingale. The rest

of the proof is the same as that for Proposition 1. Q.E.D.

Proof of Proposition 4: We adapt Lemma 6 in DeMarzo and Sannikov (2006). We use

the Envelope Theorem to differentiate ODE (43) with respect to θ to obtain:

r
∂F (W )

∂θ
=

∂F ′(W )

∂θ
γW +

ϕ∗ (W )2

2

∂F ′′(W )

∂θ
+

[ϕ∗ (W )F ′ (W ) + σ]2

2θ2

− [ϕ∗ (W )F ′ (W ) + σ]ϕ∗ (W )

θ

∂F ′(W )

∂θ
.

Under measure Qh∗
, it follows from (45) and (46) that (Wt) satisfies

dWt = γWtdt− dC∗
t − [ϕ∗ (W )F ′ (W ) + σ]ϕ∗ (W )

θ
dt+ ϕ∗ (Wt) dB

h∗
t ,

where
(
Bh∗

t

)
is a standard Brownian motion under Qh∗

. Using the Feynman-Kac formula, we

obtain that the solution to the above ODE for ∂F (W )/∂θ is

∂F (W )

∂θ
= EQh∗

[∫ τ

t
e−r(s−t) [ϕ

∗ (W )F ′ (W ) + σ]2

2θ2
ds|Wt = W

]
≥ 0,

as desired. Q.E.D.
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Proof of Proposition 5: Define Γ (w) as the set of progressively measurable processes

(ϕ,C, a) such that (i) ϕ satisfies

EPa

[∫ t

0

(
e−γϕs

)2
dt

]
< ∞ for all t,

(ii) C is increasing, continuous and satisfies

EPa

[(∫ t

0
e−rsdCs

)2
]
< ∞, for all t,

(iii) at ∈ {0, 1} , and (iv) Wt satisfies (54), with boundary conditions W0 = w and Wt = 0 for

t ≥ τ ≡ inf {t ≥ 0 : Wt = 0} . Define the principal’s objective function as:

J (C, a, h) = EPa

[∫ τ

0
e−rt(dXt − dCt) + e−rτL

]
+

θ

2
EPa

[∫ τ

0
e−rsh2tdt

]
. (A.7)

We can then write down the first-best type I robust contracting problem as follows:

F (w) = sup
(ϕ,C,a)∈Γ(w)

inf
h∈Ha

J (C, a, h) , w ≥ 0. (A.8)

Define an operator as

D(ϕ,a,h)F (W ) ≡ µa+ F ′(W )(γW + hϕ− λµ (1− a)) +
F ′′(W )

2
ϕ2 +

θh2

2
. (A.9)

We can describe the optimality conditions derived in Section 5.1 as variational inequalities:

0 = min

{
rF (W )− sup

a∈{0,1},ϕ∈R
inf
h∈R

D(ϕ,a,h)F (W ) , F ′ (W ) + 1

}
,

for all W > 0.

As in the proof of Proposition 1, the solution to the above variational inequalities gives the

value function for the first best type II robust contracting problem. As described in Section

5.1, we need to solve ODE (58). Assuming condition (35) holds, we then obtain the optimal

ϕ∗ = 0. Since F ′ (W ) ≥ −1, optimal a∗ = 1. ODE (58) becomes

rF (W ) = µ+ F ′ (W ) γW,

for W ∈
[
0, W̄

]
, with boundary conditions F ′ (W̄ )

= −1, and F ′′ (W̄ )
= 0. The general
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solution to this ODE is

F (W ) = AW
r
γ +

µ

r
,

for some constant A. For the boundary condition to hold, W̄ = 0. Since F (0) = µ/r > L, the

project is never liquidated. Since F ′ (W ) = −1 for W > W̄, we obtain F (W ) = µ/r − W .

Q.E.D.

Proof of Propositions 6 and 7: Define J as in (A.7). We modify condition (iii) in the

definition of the feasible set Γ (w) in the proof of Proposition 5 to incorporate the incentive

constraint as follows: if at = 0, then ϕt ≤ σλ and if at = 1, then ϕt ≥ σλ. The optimality

condition described in Propositions 6 and 7 can be summarized by the following variational

inequalities:

0 = min

{
rF (W )− sup

(a,ϕ)∈Λ
inf
h∈R

D(ϕ,a,h)F (W ) , F ′ (W ) + 1

}
. (A.10)

for all W > 0, where D(ϕ,a,h)F (W ) is defined in (A.9) and

Λ = {(0, φ) : φ ≤ σλ} ∪ {(1, φ) : φ ≥ σλ} .

The boundary conditions are given in the proposition. When a = a∗ = 1, given condition

(35) and ODE (61), we can check that

sup
(1,ϕ)∈Λ

inf
h∈R

D(ϕ,1,h)F (W ) = D(ϕ∗,a∗,h∗)F (W ) = rF (W ) , W ∈
(
0, W̄

)
,

where ϕ∗ and h∗ are given in Proposition 6. By condition (64), we can easily check that

D(ϕ∗,a∗,h∗)F (W ) = rF (W ) ≥ F ′ (W ) (γW − λµ)

= sup
(0,ϕ)∈Λ

inf
h∈R

D(ϕ,0,h)F (W ) = D(0,0,0)F (W ) ,

where we have used condition (35) to derive that the above extremization problem. The above

two equations imply that

rF (W ) = sup
(a,ϕ)∈Λ

inf
h∈R

D(ϕ,a,h)F (W ) = D(ϕ∗,a∗,h∗)F (W ) . (A.11)

Now, as in the proof for Propositions 1-3, we proceed in 4 steps. Step 1. Define the
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following process:

G
(ϕ,C,a,h)
t =

∫ t

0
e−rs (dXs − dCs) + θ

∫ t

0
e−rsh

2
s

2
ds+ e−rtF (Wt) , (A.12)

where (Wt) satisfies (54).

Step 2. Fix a process h∗ such that h∗t = h∗ (Wt) . Consider any candidate choice (ϕ,C, a) ∈
Γ (w). By Ito’s Lemma under measure P,

ertdG
(ϕ,C,a,h∗)
t = µatdt+ σdBa

t − dCc
t +

θh∗2t
2

dt

+F ′ (Wt) [γWtdt− dCc
t − λµ (1− at) dt− htϕtdt+ ϕtdBt]

+
1

2
F ′′ (Wt)ϕ

2
tdt− rF (Wt) dt+∆F (Wt)−∆Ct

=
[
D(ϕt,at,h

∗
t )F (Wt)− rF (Wt)

]
dt−

(
1 + F ′ (Wt)

)
dCc

t

+
(
σ + ϕtF

′ (Wt)
)
dBa

t +∆F (Wt)−∆Ct.

By (A.10), rF (Wt) ≥ D(ϕt,at,h
∗
t )F (Wt) . In addition, (1 + F ′ (Wt)) dC

c
t ≥ 0. Thus, G

(ϕ,C,a,h∗)
t

is a (P a,Ft)-supermartingale. This implies that

F (w) = G
(ϕ,C,a,h∗)
0 ≥ EPa

[
G(ϕ,C,a,h∗)

τ

]
≥ inf

h∈Ha
EPa

[
G(ϕ,C,a,h)

τ

]
.

Taking supremum for (ϕ, c, a) ∈ Γ (w) yields:

F (w) ≥ sup
(ϕ,C,a)∈Γ(w)

inf
h∈Ha

EPa
[
G(ϕ,C,a,h)

τ

]
.

Step 3. Fix (ϕ∗, C∗, a∗) and consider any process (ht) ∈ Ha. Use Ito’s Lemma to derive

ertdG
(ϕ∗,C∗,a∗,h)
t = µa∗tdt+ σdBa∗

t − dCc∗
t +

θh2t
2

dt

+F ′ (Wt)
[
γWtdt− dCc∗

t − λµ (1− a∗t ) dt− htϕ
∗
tdt+ ϕ∗

tdB
a∗
t

]
+
1

2
F ′′ (Wt)ϕ

∗2
t dt− rF (Wt) dt+∆F (Wt)−∆C∗

t

=
[
D(ϕ∗

t ,a
∗
t ,ht)F (Wt)− rF (Wt)

]
dt−

(
1 + F ′ (Wt)

)
dCc∗

t

+
(
1 + ϕtF

′ (Wt)
)
σdBa∗

t +∆F (Wt)−∆C∗
t ,

≥
[
D(ϕ∗

t ,a
∗
t ,h

∗
t )F (Wt)− rF (Wt)

]
dt−

(
1 + F ′ (Wt)

)
dC∗

t

+
(
σ + ϕtF

′ (Wt)
)
dBa∗

t +∆F (Wt)−∆C∗
t .
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Thus, G
(ϕ∗,C∗,a∗,h)
t is a

(
P a∗ ,Ft

)
-submartingale. This implies that

F (w) = G
(ϕ∗,C∗,a∗,h)
0 ≤ EPa∗

[
G(ϕ∗,C∗,a∗,h)

τ

]
.

Taking infimum for h yields:

F (w) ≤ inf
h∈Ha∗

EPa∗
[
G(ϕ∗,C∗,a∗,h)

τ

]
≤ sup

(ϕ,C,a)∈Γ(w)
inf

h∈Ha
EPa

[
G(ϕ,C,a,h)

τ

]
.

Step 4. By Steps 2 and 3, we know that

F (w) = sup
(ϕ,C,a)∈Γ(w)

inf
h∈Ha

EPa
[
G(ϕ,C,a,h)

τ

]
.

Since F (Wτ ) = F (0) = L, it follows from (A.12) and (A.7) that EPa
[
G

(ϕ,C,a,h)
τ

]
= J (C, a, h) .

We then obtain (A.8).

Evaluating at the solution (ϕ∗, C∗, a∗, h∗) in Proposition 5, we can easily check that

G
(ϕ∗,C∗,a∗,h∗)
t is a (P,Ft)-martingale. Condition (35) ensures that ϕ∗ achieves the maximum

in (43). Thus, we obtain

F (w) = sup
(ϕ,C,a)∈Γ(w)

inf
h∈Ha

EPa
[
G(ϕ,C,a,h)

τ

]
,

and (ϕ∗, C∗, a∗, h∗) is optimal for type II robust contracting problem with agency. Q.E.D.

Proof of Proposition 8: We adapt Lemma 6 in DeMarzo and Sannikov (2006). We

differentiate ODE (61) with respect to θ to obtain:

r
∂F (W )

∂θ
= γW

∂F ′(W )

∂θ
+

(σλ)2

2

[
∂F ′′(W )

∂θ
− 2

F ′(W )

θ

∂F ′(W )

∂θ
+

F ′(W )2

θ2

]
.

Using the Feynman-Kac formula, we obtain that the solution to the above ODE for ∂F (W )/∂θ

is

∂F (W )

∂θ
= EP

[∫ τ

t
e−r(s−t) (σλ)

2 F ′(Ws)
2

2θ2
ds|Wt = W

]
≥ 0,

where (Wt) follows (62) on the interval [0, W̄ ]. Q.E.D.
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Proof of Proposition 9: The equity premium is defined as

1

St

dCt

λ
+

1

1− λ

[
σ − ϕ∗ (Wt)

λ

]
dB1

t︸ ︷︷ ︸
dividends

+ dSt︸︷︷︸
capital gains

− rStdt

 . (A.13)

By Ito’s Lemma,

dSt = dS (Mt) = S′ (Mt) γMtdt+ S′ (Mt)
ϕ∗ (Wt)

λ
dB1

t (A.14)

−S′ (Mt)

λ
dCt +

[ϕ∗ (λMt)]
2

2λ2 S′′ (Mt) dt.

Plugging (A.14) and (B.1) into (A.13) and noting the fact that Ct increases only when

S′ (Mt) = 1, we can compute the local expected equity premium under measure P given

in the proposition. Q.E.D.

Proof of Proposition 10: It follows from (46) and Girsanov’s Theorem that

dWt = γWtdt− dC∗
t + ϕ∗ (Wt)h

∗ (Wt) dt+ ϕ∗ (Wt) dB
h∗
t .

By Ito’s Lemma,

e−rT∧τWT∧τ = e−rtWt +

∫ T∧τ

t
e−rs (γ − r)Wsds+

∫ T∧τ

t
e−rsϕ∗ (Ws) dB

h∗
s

−
∫ T∧τ

t
e−rsdC∗

s +

∫ T∧τ

t
e−rsϕ∗ (Ws)h

∗ (Ws) ds,

for any T > t, where τ = inf {t ≥ 0 : Wt = 0} . Taking expectations with respect to Qh∗
and

letting T → ∞, we use Mt = Wt/λ and Wτ = 0 to derive

Mt = EP 1

t

[∫ τ

t
e−r(s−t)

[
1

λ
dC∗

s − (γ − r)Msds−
ϕ∗ (Ws)h

∗ (Ws)

λ
ds

]]
.
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It follows that

Dt + (1− λ)St

= EQh∗

t

[∫ τ

t
e−r(s−t) (µ− (γ − r)Ms) ds+ e−r(τ−t)L

]
+EQh∗

t

[∫ τ

t
e−r(s−t) 1− λ

λ
dC∗

s

]
+EQh∗

t

[∫ τ

t
e−r(s−t)

(
σ − ϕ∗ (Ws)

λ

)
dB1

s

]
= EQh∗

t

[∫ τ

t
e−r(s−t) (dXt − dC∗

s ) + e−r(τ−t)L

]
+EQh∗

t

[∫ τ

t
e−r(s−t)

(
1

λ
dC∗

s − (γ − r)Msds−
ϕ∗ (Ws)h

∗ (Ws)

λ
ds

)]
,

as desired.

To show that Dt + (1− λ)St increases with θ, we only need to show that

G (Wt) ≡ EQh∗

t

[∫ τ

t
e−r(s−t) (dXt − dC∗

s ) + e−r(τ−t)L

]
increases with θ for any fixed Wt. By Section 4.2, G (W ) satisfies ODE (43) after subtracting

the local entropy term θh∗ (W )2 /2 :

rG(W ) = µ+G′(W )γW +
ϕ∗ (W )2

2
G′′(W )− [ϕ∗ (W )G′ (W ) + σ]2

θ
. (A.15)

We then adapt Lemma 6 in DeMarzo and Sannikov (2006) or Proposition 4 to show that

G (W ) increases with θ. Q.E.D.

Proof of Proposition 11: It follows from (62) and Ito’s Lemma that

e−rT∧τWT∧τ = e−rtWt +

∫ T∧τ

t
e−rs (γ − r)Wsds+

∫ T∧τ

t
e−rsσλdBs −

∫ T∧τ

t
e−rsdC∗

s

−
∫ T∧τ

t
e−rsh∗ (Ws)σλds,

for any T > t, where τ = inf {t ≥ 0 : Wt = 0} . Taking expectations with respect to P and

letting T → ∞, we use Mt = Wt/λ to obtain

Mt = EP 1

t

[∫ τ

t
e−r(s−t)

[
1

λ
dC∗

s − (γ − r)Msds+ σh∗ (Ws) ds

]]
.
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We can then derive that

Dt + (1− λ)St

= EP 1

t

[∫ τ

t
e−r(s−t) (µ− (γ − r)Ms) ds+ e−r(τ−t)L

]
+EP 1

t

[∫ τ

t
e−r(s−t) 1− λ

λ
dC∗

s

]
+ EP

t

[∫ τ

t
e−r(s−t)σh∗ (Ws) ds

]
= EP 1

t

[∫ τ

t
e−r(s−t) (dXt − dC∗

s ) + e−r(τ−t)L

]
+EP

t

[∫ τ

t
e−r(s−t)

(
1

λ
dC∗

s − (γ − r)Msds+ σh∗ (Ws) ds

)]
,

as desired.

To show that Dt + (1− λ)St increases with θ, we only need to show that

G (Wt) ≡ EP 1

t

[∫ τ

t
e−r(s−t) (dXt − dC∗

s ) + e−r(τ−t)L

]
increases with θ for any fixed Wt. By Section 5.2, G (W ) satisfies ODE (61) after subtracting

the local entropy term θh∗ (W )2 /2 :

rG(W ) = µ+G′(W )γW +
G′′(W )

2
(σλ)2 − G′ (W )2

θ
(σλ)2 , (A.16)

We then adapt Lemma 6 in DeMarzo and Sannikov (2006) or Proposition 8 to show that

G (W ) increases with θ. Q.E.D.

B Asset Pricing Formulas

In this appendix, we follow DeMarzo and Sannikov (2006) and Biais et al. (2007) to represent

asset prices as ODEs. We use the cash reserves M as a state variable and write debt value,

equity price and credit yield spreads as functions of M .

B. 1 Type I Robust Contract

Under the worst-case beliefQh∗
, we use Girsanov’s Theorem to write the cash reserve dynamics

as

dMt = γMtdt+
ϕ∗ (λMt)h

∗ (λMt)

λ
dt+

ϕ∗ (λMt)

λ
dBh∗

t − 1

λ
dC∗

t .
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Thus, the equity price St = S (Mt) satisfies the ODE:

rS (M) =
1

1− λ

[
σ − ϕ∗ (λMs)

λ

]
h∗ (λM) (B.1)

+

(
γM +

ϕ∗ (λM)h∗ (λM)

λ

)
S′ (M) +

[ϕ∗ (λM)]2

2λ2 S′′ (M) ,

with the boundary conditions:

S (0) = 0, S′
(
W̄

λ

)
= 1.

The bond price Dt = D (Mt) satisfies the ODE:

rD (M) = µ− (γ − r)M +

(
γM +

ϕ∗ (λM)h∗ (λM)

λ

)
D′ (M) +

[ϕ∗ (λM)]2

2λ2 D′′ (M) ,

with boundary conditions:

D (0) = L, D′
(
W̄

λ

)
= 0.

The Arrow-Debreu price of one unit claim paid at the time of default, Tt = T (Mt) , satisfies

the ODE:

rT (M) =

(
γM +

ϕ∗ (λM)h∗ (λM)

λ

)
T ′ (M) +

[ϕ∗ (λM)]2

2λ2 T ′′ (M) ,

subject to the boundary conditions:

T (0) = 1, T ′
(
W̄

λ

)
= 0.

B. 2 Type II Robust Contract

For type II robust contracting problem, the cash reserves follow the dynamics:

dMt = (γMt − σh∗ (W )) dt+ σdB1
t −

1

λ
dCt.

Thus, the equity price St = S (Mt) satisfies the ODE:

rS (M) =
σh∗ (λM)

1− λ
+ (γM − σh∗ (λM))S′ (M) +

σ2

2
S′′ (M) ,
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with the boundary conditions:

S (0) = 0, S′
(
W̄

λ

)
= 1.

The bond price Dt = D (Mt) satisfies the ODE:

rD (M) = µ− (γ − r)M + (γM − σh∗ (λM))D′ (M) +
σ2

2
D′′ (M) ,

with boundary conditions:

D (0) = L, D′
(
W̄

λ

)
= 0.

The Arrow-Debreu price of one unit claim paid at the time of default, Tt = T (Mt) , satisfies

the ODE:

rT (M) = (γM − σh∗ (λM))T ′ (M) +
σ2

2
T ′′ (M) ,

subject to the boundary conditions:

T (0) = 1, T ′
(
W̄

λ

)
= 0.
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