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Abstract
We examine the efficiency, distributional, and environmental consequences of as-
signing spatial property rights to part of a spatially-connected natural resource,
a situation which we refer to as partial enclosure of the commons. Our theoreti-
cal approach addresses an empirically extensive class of institutions and natural
resources for which complete enclosure by a sole owner may be desirable, but is
institutionally impractical. When a sole owner is granted ownership of only a frac-
tion of the spatial domain of the resource, so the remainder is competed for by an
open access fringe, interesting spatial externalities arise. We obtain sharp analyti-
cal results regarding partial enclosure of the commons including: (1) While second
best, it always improves welfare relative to no property rights, (2) all resource users
are made better off, (3) positive rents arise in the open access area, and (4) the
resource maintains higher stocks. Under spatial heterogeneity, we also characterize
spatial regions that are ideal candidates for partial enclosure - typically, society
should seek to enclose those patches with high environmental productivity and
high self-retention, but whether high economic productivity promotes or relegates
a patch may depend on one’s objective. These results help inform a burgeoning
trend around the world to partially enclose the commons.
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1. Introduction & Background

The economics profession has established incontrovertibly that open access or
common pool management of natural resources leads to economic inefficiencies,
and possibly environmental disaster (Hardin, 1968; Ciriacy-Wantrup and Bishop,
1975; Ostrom, 1990; Maler, 1990). A large body of evidence highlights mismanage-
ment of fisheries, pastures, forests, groundwater, pollution sinks (Stavins, 2011),
antibiotic resistance (Laxminarayan and Brown, 2001), among other tragedies of
the commons. A massive literature has emerged that proposes economic instru-
ments as solutions, including taxes (Rubio and Escriche, 2001; Rosenman, 1984;
Weitzman, 2002), effort restrictions (Benchekroun, 2003; Quérou and Tomini,
2013), fully-delineated property rights (Costello and Deacon, 2007), tradeable per-
mits (Montgomery, 1972; Stranlund and Dhanda, 1999; Raffensperger, 2011), and
spatial zoning with taxation (Sanchirico and Wilen, 2005) or with unitization (Kim
and Mahoney, 2002; Kaffine and Costello, 2011). Under certain conditions, each of
these instruments has benefits and may even ‘solve’ the tragedy of the commons,
and provide first-best outcomes.1 Yet issues of wealth redistribution (Brito et al.,
1997), heterogeneity (Karpoff, 1987), high political and economic costs (Johnson
and Libecap, 1982), and other practical issues (Besley, 1995) may impede the
performance of such instruments and may explain why we rarely observe these
instruments being implemented in their pure form as economic models would sug-
gest. Instead, we tend to observe hybrids where only part of the resource is sub-
sumed within a market structure. Indeed the failure of many natural resource
management institutions has been explained by the potential mismatch between
the spatial scale of management and that at which environmental processes oper-
ate. For instance, Scott (1955) states that “the property must be allocated on a
scale sufficient to insure that one management has complete control of the asset.”
Yet this is rarely the case for resources such as water, hunting game, fisheries,
oil, and forests. A much more common institutional regime in both developing
and developed countries is to assign property rights to a fraction of the natural
resource, often leaving the remainder of the resource to be competed for by an
open access fringe. In practice, decision makers are often able to partially enclose
the commons, even when political, legal, or other constraints render it impossible
to assign complete ownership of the entire resource to a sole owner.

We refer to this situation as ‘partial enclosure of the commons,’ and note as a
starting point that this institution will not internalize all externalities, and will thus
be a second best alternative to sole ownership of the entire resource domain.2 While

1The OECD report (Le Gallic, 2006) provides a survey of many market-like instruments used
to solve these problems.

2Taxes are a possible alternative, but a tax in only one region (analogous to partial enclosure)
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the owner of the enclosed area may behave somewhat like a sole owner, resource
mobility induces a spatial externality, so the open access fringe influences the
enclosed area and may affect the enclosed owner’s behavior and vice versa. Despite
notable advances on the use of economic policies to internalize various externalities,
the literature on partial property rights is sparse, and the use of partial enclosure
remains an unresolved issue. We aim at filling this gap by analyzing the efficiency,
distributional and environmental consequences of its application. Under what
conditions will assigning rights in this way achieve economic, distributional, or
environmental improvements over the pure open access case? And if we are to
proceed with partial enclosure of the commons, what guiding principles can be
generated to design these institutions? The remainder of this paper is devoted to
addressing these, and related questions.

We illustrate the ubiquity of partial enclosure by providing some examples.
The world’s oceans are perhaps the most compelling illustration: 58% of the ocean
constitutes the high seas, which are effectively open access. The remainder is de-
lineated to individual states in exclusive economic zones; this is a classic partial
enclosure of the commons. Even though rights are fully delineated within the
exclusive economic zones, migrating fish such as tuna and billfish traverse these
jurisdictions and are subject to harvest on the high seas by the open access fringe.
But even species that are reasonably immobile (such as reef fish) are often ex-
ploited by different fleets (e.g. commercial vs. recreational), typically where one
fleet has well-defined property rights and the other acts in an open access fashion.
Partial enclosure of the commons is even more commonplace for groundwater and
oil reserves facing uncoordinated exploitation levels in each area. Like fish, those
resources are mobile (extraction in one location induces a flux). Rights to ground-
water and oil stocks are often related to spatial property rights at the surface,3
the spatial delineation of which almost never accords with the spatial domain of
the underlying resource. Game, such as deer and waterfowl, have characteristics
similar to fish - they migrate and are only partially enclosed on private lands. In
Africa, great migrations of wildebeest, zebra, and other hunted species traverse
private lands, public lands, and even natural reserves. Even some forest resources
share these characteristics. Communities are often granted exclusive ownership

would be second best. Indeed, it is proven in Sanchirico and Wilen (2005) that a first best
outcome would require the use of spatially differentiated taxes (one for each region).

3The “rule of capture” of groundwater and mineral resources in the United States is historically
based on the concept that each landowner has complete ownership of resources under his land,
and has an unlimited right to use them. This Absolute Ownership Doctrine has led to over-
exploitation issues in areas where the number of users has grown so that the use of the resource,
even if it is limited by land ownership, gets close to that of an open access outcome. It is now
commonly rejected because of the existing diffusion/dispersal process of the resource.
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over a tract of forest land, where the remainder of the forest is open to others. To
the extent that actions outside the tract influence it (e.g. excessive harvest out-
side may reduce seed dispersal or increase erosion inside), or actions inside affect
the open access area, the ‘partial enclosure’ prerequisites hold. This institutional
arrangement is thus characterized by spatial externalities (external effects on ad-
jacent areas) diffusing the institutional effect of partial enclosure by a single owner
due to the mobility of the resource. The literature has not assessed the effect of
such asymmetric property rights regimes on a spatially connected resource. Yet it
seems that this arrangement addresses an empirically extensive array of cases. We
focus on the effects of spatial externalities and heterogeneity on welfare, and in the
characterization of the optimal siting of partial enclosure for renewable resources.

To address these questions we develop and analyze a model of partial enclosure
of the commons. The model is simple enough to maintain analytical tractability,
but contains all of the components essential to describe this ubiquitous institutional
arrangement. It is meant to be generically applicable to a wide range of natural
resources with certain characteristics. The dynamics of a natural resource are
both temporal and spatial. Across time, the natural resource can grow (or shrink)
depending on the level of extraction and the degree of regeneration which may,
itself, depend on the level of resource stock. The resource also moves across space.
We model space as a set of mutually-exclusive and exhaustive patches and keep
track of natural resource stock in each patch.4 Any given patch may be unregulated
(i.e. open access - a situation in which current economic returns govern entry,
exit, and extraction) or may be managed by an owner who maximizes her private
benefits. Owing to spatial movement, behavior in the open access region has
important consequences for the sole owner, and vice versa. The ensuing spatial
and temporal externalities represent a potentially damaging market failure that
induce a dynamic spatial game across patches with different characteristics. We
solve this problem and explore its consequences.

The existing literature tends to consider natural resources as perfectly enclosed
by one or more owners; thus property right definition is not an issue. Indeed, an
extensive differential game literature analyzes non-cooperation between owners of
common pool natural resources (a seminal paper is Levhari and Mirman (1980);
a recent advance is Pintassilgo et al. (2010)). In that literature, a small number
of fishermen compete against one another in a closed game (there is no open
access fringe) with only implicit spatial dynamics, and fishermen behave non-
cooperatively. In our model, we explicitly treat spatial externalities and resource
dynamics, we implicitly assume perfect cooperation within the partial enclosure,
but we allow for non-cooperation between the partial enclosure and a (spatially

4In the biological sciences, this is referred to as a “metapopulation.”
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connected) open access fringe of arbitrarily large size.
To the best of our knowledge, only a single existing paper addresses the issue of

partial enclosure of natural resources (Fisher and Laxminarayan, 2010).5 It focuses
on uncertainty, instrument choice, and the congestion problem resulting from the
enclosure of some resource pools on other open-access resource pools. By contrast,
we investigate whether partial enclosure may increase (aggregate or patch-specific)
resource stock levels and/or aggregate economic value (or individual profits). We
highlight the influence of spatial externalities and environmental heterogeneity on
the optimal assignment of partial property rights. The importance of spatial effects
has been documented in the literature on learning externalities and agglomeration
economies: it is emphasized how investment decisions made by one agent may
influence others who learn from his experience (Lucas, 1988; Porter, 1998). In our
setting, it is the physical diffusion or dispersal of the resource across space that
gives rise to interesting spatial externalities. Given environmental heterogeneity,
this diffusion effect may have different impacts from one region to another, em-
phasizing the importance of careful selection of the region in which property rights
will be assigned; this is a central focus of our analysis.

The remainder of the paper is organized as follows. The model and results
are provided in Section 2. Results are illustrated in an example in Section 3, and
Section 4 concludes.

2. Model & Results

A natural resource stock (denoted by x) is distributed heterogeneously across a
discrete spatial domain consisting of N patches. Patches may be heterogeneous in
size, shape, economic, and environmental characteristics, and resource extraction
can potentially occur in each patch. The only requirement for spatial delineation
is that patches must be homogeneous intra-patch; all environmental and economic
variables are constant within each patch. The resource is mobile and can migrate
from patch to patch. In particular, denote by Dij ≥ 0 the (constant) fraction of
the resource stock in patch i that migrates to patch j in a single time period. Time
is treated in discrete steps. The resource may grow, and the growth conditions
may be patch-specific denoted by the parameter αj. This patch-specific parameter

5Colombo and Labrecciosa (2013) analyze the oligopolistic exploitation of a productive asset
under private and common property. They assume that, under private exploitation, the resource
is parceled out. Each firm owns and manages the assigned parcel over the entire planning horizon.
Thus, fully delineated property rights exist over the entire domain of the resource. As such, they
abstract from situations where the resource is fully mobile, and do not analyze (as we do) the
impact of spatial externalities and environmental heterogeneity on the assignment of partial
property rights.

5



reflects resource growth and has many possible interpretations including intrinsic
rate of growth, carrying capacity, and the sheer size of the patch. Assimilating all
of this information, the equation of motion, in the absence of extraction, is given
as follows:

xit+1 =
N∑
j=1

Djig(xjt, αj). (1)

Here resource production in patch i is given by the general production function
g(xi, αi); we follow the literature and require that ∂g(x,α)

∂x
> 0, ∂g(x,α)

∂α
> 0, ∂

2g(x,α)
∂x2 <

0, and ∂2g(x,α)
∂x∂α

> 0. We also assume that extinction is absorbing (g(0;α) = 0) and
that the growth rate is finite (∂g(x,α)

∂x
|x=0 <∞). All standard biological production

functions are special cases of g(x, α).6 The resource stock that is produced in
patch i then disperses across the spatial domain: some fraction stays within patch
i (Dii) and some flows to other patches (Dij). Indeed, some may flow out of the
system entirely, so the dispersal fractions need not sum to one: ∑j Dij ≤ 1.

Because this is a discrete-time model, we must specify the timing of events.
For patch-i harvest hit, the residual stock7 left for reproduction is given by eit ≡
xit − hit. Including harvest, the patch-i equation of motion becomes:

xit+1 =
N∑
j=1

Djig(ejt, αj). (2)

The timing is thus: the present period stock (xit) is observed and then harvested
(hit) giving residual stock (eit), which then grows (g(eit, αi)), and disperses across
the system (Dij). This timing is consistent with the literature on discrete-time
renewable resources (e.g. see Reed (1979) and Weitzman (2002)).8 By the identity
eit ≡ xit − hit, there is a duality between choosing harvest and choosing resid-
ual stock as the decision variable. We use residual stock because it turns out to
overcome many technical issues that arise when one uses harvest as the decision
variable.9 By adopting residual stock as the control, we are able to fully character-
ize the optimal policy; one can then back out the optimal harvest. This in turn will
enable us to provide a precise assessment of partial enclosure as an institutional
arrangement.

6The example in Section 3 provides a concrete illustration.
7In the fisheries literature, residual stock has been coined escapement.
8Specifying different timing may affect analytical tractability. For example, if dispersal oc-

curred before growth, the problem would be much more difficult to solve analytically, but it
would still be the case (as it is in our analysis) that optimal escapement in the enclosed patch
will depend on escapement in other patches.

9This mathematical convenience was pointed out in Reed (1979) and has been adopted by
several subsequent contributions (Costello and Polasky (2008), Kapaun and Quaas (2013) among
others).
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Patch-i harvesters earn constant price pi per unit harvest and marginal harvest
cost is a non-increasing function of resource stock in patch i. Harvesting patch i
to residual stock level eit results in profit given by:

Πit = pi(xit − eit)−
∫ xit

eit

ci(s)ds (3)

where c′i(s) ≤ 0. Total cost is given by the integral on the right hand side of
Equation 3. It implies that the first units harvested in a period are the cheapest
to access because the resource is at its densest prior to harvesting. It also implies
(if c′(s) < 0) that marginal harvest costs increase in harvest, though this occurs not
because units of harvest are increasingly costly per se, but because the resource
becomes less dense and takes more effort to locate and extract (see Weitzman
(2002) and Reed (1979)). We examine both the linear cost (c′(s) = 0) and the
non-linear cost (c′(s) < 0) cases.

2.1. Open Access Benchmark
In the absence of property rights, resource users are able to costlessly access

all patches to seek short-run profit, Πit, given by Equation 3. As such, extraction
effort will gravitate in any period to the patches with the highest marginal profit.
If cost is linear, so c′(s) = 0, we will assume that ci(s) < pi (otherwise, the problem
is uninteresting because no harvest would ever occur, even under open access). In
that case, it is profitable to extract the entire resource, so effort will enter until
the stock is extinguished in a patch, so êit = 0. If this is the case for all patches,
the entire resource will be mined to extinction. Instead, if marginal extraction
cost depends on resource density, so c′(s) < 0, then we assume interior solutions,
so effort will enter patch i until marginal profit is zero, i.e. until pi = ci(êit) were
êit denotes the residual stock in patch i when all patches are under open access.
In this case the stock will never be completely exhausted, even under open access.
Rather, in each patch the stock will be extracted down to a level where it becomes
unprofitable to extract further. In patches for which this level is positive, stock
will grow and redistribute spatially according to Equation 2. Thus, under pure
open access of this spatial resource, we have the following benchmark results:

Proposition 1. Open access residual stock level in patch i satisfies pi = ci(êit)
when c′(s) < 0 and êit = 0 otherwise.

Proof. All proofs are provided in the appendix

In the next section we analyze the case in which exclusive property rights are
assigned over part of the spatial domain of the resource.
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2.2. Partial Assignment of Spatial Property Rights
We implement partial enclosure by assigning exclusive property rights over a

single patch to a single owner while the other N − 1 patches remain open access.
Because the carrying capacity, or size, of the patch is arbitrary, this procedure al-
lows us to examine enclosing an arbitrarily large fraction of the resource domain,
leaving the remainder to the open access fringe. Partial enclosure induces a poten-
tially complicated dynamic spatial game between the owner of the enclosed patch
and the adjacent open access fringe areas, which are connected to the enclosed
patch through the system dynamics. More specifically, assuming that patch i is
the enclosed patch, the optimal policy function eit = φi(t, x1t, x2t, ...) is potentially
time and state dependent. The enclosed patch owner’s economic objective is to
maximize the expected net present value of harvest, expressed in terms of residual
stock level, from patch i over an infinite horizon:

max
{eit}

∞∑
t=1

δt
[
pi(xit − eit)−

∫ xit

eit

ci(s)ds
]
. (4)

Henceforth, all of the analysis will rely on solving the discrete-time difference
game that is induced by the patchiness of spatial ownership. Because we focus on
the residual stock as the control variable in each spatial patch, and owing to some
useful characteristics of the economic environment, this problem can be solved
analytically. We can immediately write down an implicit expression defining the
residual stock level in every patch. These levels are summarized as follows:

Lemma 1. When patch k is enclosed, and the other N − 1 patches remain open
access, the equilibrium residual stock levels are:

eit given by Proposition 1 for i 6= k

pk − ck (ēkt) = δDkk [pk − ck (x̄kt+1)] ge (ēkt, αk) .

We will adopt a notation convention that a bar over a variable (e.g. ēkt)
represents an enclosed patch while a variable without a bar represents an open
access patch. Lemma 1 shows that the residual stock level takes just two possible
forms. In the open access patches, harvest will respond to behavior in the other
patches, but residual stock will not. Each open access patch is harvested, in each
period, down to the open access residual stock level - i.e. where harvesting the next
unit of resource stock would entail an economic loss. In the enclosed patch, the
owner takes as given the behavior of the open access fringe and realizes that she
will not be the residual claimant of any conservative harvesting behavior. Thus,
she behaves as if any additional resource that disperses out of her patch will be
lost. This is why the only dispersal term to enter the optimal residual stock term
is Dkk: the fraction of the resource that remains in the enclosed patch.
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As an extreme point of comparison, we can also consider the problem in which
sole ownership is assigned over the entire spatial domain so there is no open access
fringe. While this problem has been studied elsewhere, we provide the sole owner’s
first order conditions as a point of comparison for Lemma 1. Following Costello
and Polasky (2008) the complete sole owner chooses residual stock in patch j as
follows:

pj − cj
(
e∗jt
)

= δ
N∑
l=1

Djl [pl − cl (xlt+1)] ge
(
e∗jt, αj

)
. (5)

Equation 5 leads to a very different residual stock than is implied by Lemma 1.
Indeed, the right hand side of the Equation 5 highlights that the sole owner would
account for the spatial connection to all patches (Djl ∀l) not just the fraction of
the resource that stays in patch j (Djj).

Now, relying on Lemma 1 and following Costello and Polasky (2008), it turns
out that the residual stock level in every patch is constant; this is summarized by
the following:

Lemma 2. The equilibrium harvest strategy for all patches under partial enclosure
is for all patches to harvest down to a pre-determined residual stock level that is
time and state independent.

Lemma 2 is extraordinarily useful. Normally, we would expect the optimal
residual stock level to be a (possibly time varying) feedback control rule that
mapped the state (all possible combinations of resource stock levels in all N
patches) into the residual stock. Then finding the equilibrium across all patches
would require solving a complicated N -dimensional system. Indeed, if we had
specified harvest as the control variable, this would be the case. But since the
marginal profit and marginal growth conditions depend only on the residual stock
level, and not on resource stock, then Lemma 2 obtains, which dramatically sim-
plifies the dynamic game. However, since growth, dispersal, and economic returns
can vary across patches, the optimal choice will, in general, vary across space too.

2.3. Welfare & Distribution
Accounting for the behavior characterized in Section 2.2, we are initially inter-

ested in the consequences of partial enclosure on resource stocks. Because partial
enclosure is second best, it is possible that perverse outcomes arise. Is it possible,
for example, for partial enclosure, combined with spatial connectivity, to lead to
lower natural resource stocks than under pure open access? We can unambiguously
answer this question: it turns out that enclosing any patch will always increase
resource stock. This is formalized below:
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Proposition 2. Partial enclosure of any patch (weakly) increases resource stock
in all patches and strictly increases stock in at least one patch.

Proposition 2 accords with economic intuition. When moving from a system
of pure open access to a system in which some fraction of the resource is enclosed
by a single owner, that owner will find it optimal to maintain a larger resource
stock in her own patch. The adjacent open access patches clearly benefit from
this behavior - to the extent that some of this increased resource spills over into
adjacent patches, they are residual claimants of this behavior. Thus, the stock
rises (weakly) everywhere.

Partial enclosure also has important consequences for profit as is formalized
below:

Proposition 3. Partial enclosure of any patch provides a strict Pareto-Improvement
(i.e. increases profit in at least one patch without decreasing profit in any patch).

Proposition 3 is a political economy result. It suggests that all resource users
are made (weakly) better off from partial enclosure, even when their patch is not
the one that is enclosed. It is instructive to consider three kinds of resource users.
First, those users in the open access fringe whose stock is not spatially connected
to the enclosed patch stock will be unaffected by the partial enclosure. Second,
those users in the open access fringe whose patches are connected to the enclosed
patch will see their stocks rise as a consequence of partial enclosure (Proposition
2). Finally, profit in the enclosed patch itself will increase. While we do not model
the intra patch process of distributing this wealth among the (previously open
access) users in the (now enclosed) patch, we note that each user can, in principle,
be made strictly better off.10

An important corollary to Proposition 3 immediately emerges. Because the
enclosed patch owner has the incentive to raise resource stock in every period, and
because some of that resource spills over to the open access sector every period,
the presence of partial enclosure guarantees positive profits in equilibrium for the
open access sector, as is formalized below:

Corollary 1. Profit to the open access fringe increases as a consequence of partial
enclosure, even when extinction is optimal by the open access fringe.

While Corollary 1 holds for any cost function, it is most striking when c′(·) = 0
in which case all open access patches drive the stock extinct (see Proposition 1).

10On the other hand, it is also possible that the previous open access users will be left out
without compensation, in which case they would suffer a loss from the partial enclosure.
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Enclosure of any single patch k induces that patch owner to increase residual stock
which bestows a positive externality on all patches j for which Dkj 6= 0. The result
focuses on the positive rents accruing to open access patches when moving from
a fully open access to a partial sole ownership management structure. This result
is not surprising given our setup: Here, positive inframarginal rents can persist in
open access. These accrue to resource extractors who intercept the stock while it
is most dense.11

We have shown that even if exclusive ownership can be implemented only over
a small part of the spatial domain, some positive effect is expected on resource
stocks and all agents’ profits. These results arise from behavioral adaptations:
when part of the spatial domain is enclosed, behavioral changes (by the enclosed
patch owner and the open access sector) ensue.

Before concluding this section, we examine the role of key spatial, environ-
mental, and economic parameters on these behavioral changes. When patch i is
enclosed, increasing self-retention (Dii) or growth (αi) causes the enclosed patch
owner to increase her optimal residual stock. In contrast, increasing price (pi)
causes her to decrease residual stock. Increasing Dii or αi increases the rate of
return to owner i from a larger residual stock, thus she favors a larger stock. The
effect of price is more subtle: as it increases, the benefit of increased harvest (and
thus lower residual stock) turns out to outweigh the future benefit of higher resid-
ual stock. These results are summarized below and we will make extensive use of
them in the remainder of the analysis12:

Lemma 3. When patch i is enclosed:

dēi
dDii

≥ 0, dēi
dαi
≥ 0, dēi

dpi
≤ 0.

These results will prove useful in the optimal siting of partial enclosure of the
commons.

2.4. Siting Partial Enclosure
Thus far we have focused on the welfare and environmental effects of partial

enclosure of the commons. In many real-world contexts a government, NGO, or
private agent has the opportunity to enclose part of the commons but for legal,
institutional, or other practical reasons, cannot enclose the entire resource and
grant it to a sole owner. For example, current initiatives by development banks

11We abstract away from the additional possibility of a race to intercept the stock early in the
season; that possibility is addressed by Deacon et al. (2013).

12Due to Lemma 2, we have omitted the subscript t in the expressions of residual stocks and
stock levels.
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(such as the World Bank), NGOs (such as The Nature Conservancy or Rare), and
countless local communities, often in developing countries with little or no existing
formal governance, involve siting decisions where decision-makers must determine
which areas to enclose. We have shown that even haphazard siting decisions will
improve welfare and conservation. But there may be considerable differences across
sites: enclosing the “right” patch may lead to substantially larger welfare gains, or
may give rise to important distributional or conservation effects, than enclosing the
“wrong” patch. This section is devoted to analyzing the characteristics of patches
that are good candidates for enclosure.

Which patch to enclose may depend on one’s objective. For example, many
resource conservation groups may advocate partial enclosure, say of a fishery or
a forest area, to protect the natural resource itself, often arguing that protecting
the resource stock is a first step toward enhancing local, or aggregate, returns.
If the objective is to site the enclosure to maximize equilibrium resource stock,
we can use the model to derive conditions that define the optimal candidate for
enclosure. Indeed, inspecting the expression characterizing the evolution of stock
levels, it turns out that the difference g(ēi, αi)− g(ei, αi) determines which patch
will maximize aggregate resource stock. The decision-maker should enclose the
patch with highest such difference (see Appendix for proof). Of course, calculating
this difference requires calculating ēi and ei which, in turn, are implicitly defined by
economic returns and environmental parameters. Thus, even though this condition
has a straightforward interpretation, it is difficult to use it in order to assess the
effect of key model parameters on optimal enclosure siting. Furthermore, there is
no guarantee that maximizing resource stock will coincide with maximizing profits.

Thus, we will seek to determine the role of key model parameters on the op-
timal siting of partial enclosure by adopting the following strategy: We define a
benchmark situation in which all parameters are held equal across patches, thus
enclosure does not favor any particular patch. Moving from this situation, we
then increase the value of a single parameter in a particular patch, and assess the
impact of the change on economic and environmental objectives across the entire
spatial domain. Enclosing any given patch will give rise to dynamics throughout
the system, which, in principle, affect all patches (including the enclosed patch),
so the entire system’s response to enclosure must be accounted for. This approach
allows us to derive concrete conclusions about optimal enclosure siting while iso-
lating the effects of any given parameter. We derive guiding principles for optimal
enclosure under each possible objective.

In the benchmark case, Dii = D, Djk = Q, αi = α, pi = p, and ci(·) = c(·) ∀ i
and for j 6= k. Starting from this situation, patches are indistinguishable so there
is no preference for enclosing any particular patch. Without loss of generality, we
assume that a single parameter (either D11, α1, or p1) increases in patch 1 and
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we calculate the comparative static effects given all possible enclosures. Because
parameters are identical across all other patches j (j 6= 1), we need only calculate
the effects of changing parameters in patch 1 when patch 1 is enclosed and when
some other patch (we choose patch 2) is enclosed. Thus, under an increase in a
single parameter in patch 1, we examine the following cases: (1) Patch 1 is enclosed
and all N − 1 other patches remain open access, and (2) Patch 2 is enclosed and
all N − 1 other patches remain open access.

This procedure allows us to determine, ceteris paribus, whether an increase in
self retention (D), growth (α), or price (p) will favor, or relegate, a given patch
for enclosure. We analyze optimal enclosure under four possible objectives: (1)
maximize resource stock in the enclosed patch, (2) maximize aggregate stock, (3)
maximize profit in the enclosed patch, and (4) maximize aggregate profit. For each
objective, we compute the difference between the payoff when enclosing patch 1 and
the payoff when enclosing patch 2. If that difference is positive, then a higher value
of the parameter in patch 1 promotes the patch for enclosure (because enclosing
patch 1 is preferred to enclosing patch 2). If the difference is negative, then a
higher value of the parameter relegates the patch for enclosure (because enclosing
patch 2 is preferred to enclosing patch 1).

Aside from the determination of optimal siting of an enclosure, we are interested
in the conditions under which these four objectives are consistent or contradictory:
If enclosure is sited to maximize local benefits, will this also maximize benefits
system-wide? And if enclosure is sited to maximize resource stock, will this also
maximize profit?

While our model permits any non-increasing c(·), we begin with the case of
linear harvest cost, so c′(·) = 0.13 In that case, the open access patches always
harvest the entire local resource stock in each period. Though by Proposition 2 the
resource stock is positive in equilibrium - this is because the enclosed patch acts
as a donor for all connected patches; provided that Q > 0, it supplies all patches
with a surplus stock from which to harvest each period. While this case is not
trivial to examine, the dynamics are somewhat muted because changes in system
parameters do not change the optimal residual stock in the open access patches.
Furthermore, the first order condition for the enclosed patch no longer relies on
price or cost, which simplifies the comparative statics of behavioral changes.

2.4.1. Self-retention, D11
We begin by assessing the effects of increasing the self-retention parameter D11

in patch 1 on the optimal siting of partial enclosure. Higher self-retention allows

13The linear cost case is extensively used in resource economics literature. While we find that
most of the economic insight can be derived in a more straightforward manner by adopting this
assumption, in Section 2.5 we re-derive all of our results when c′(·) < 0.
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patch 1 to retain a greater fraction of its growth. If patch 1 is open access (so
patch 2 is enclosed), then there is no behavioral shift in patch 1 from the increase
in D11 - all residual stocks are unchanged. But if patch 1 is enclosed, owner 1 will
increase her residual stock to take advantage of higher retention (see Lemma 3).
Proving that profits are larger when patch 1 is enclosed (compared to enclosing
some other patch) relies on an envelope theorem: to analyze the total derivative
of profit in patch 1 we can ignore the behavioral shift, and can instead focus only
on the direct influence of D11 on profit. This effect is clearly positive since all
non-enclosed patches have zero residual stock. Taking all of the dynamics into
account, we find that if costs are linear, then across all four objectives, a higher
value of D promotes a patch for enclosure. This result is formalized below:

Proposition 4. Provided c′(·) = 0, a higher value of self-retention (D11) in patch
1 has the following effects:

1. (Enclosed Patch Stock): Patch 1 is the best candidate for enclosure.
2. (Aggregate Stock): Patch 1 is the best candidate for enclosure.
3. (Enclosed Patch Profit): Patch 1 is the best candidate for enclosure.
4. (Aggregate Profit): Patch 1 is the best candidate for enclosure.

Proposition 4 shows that ceteris paribus, across all four objectives, the optimal
patch to enclose is the patch with higher self-retention. Thus there is strong
consistency between optimal enclosure siting for individual benefit and optimal
enclosure siting for aggregate benefit. There is also strong consistency between
conservation objectives (i.e. maximizing resource stock) and economic objectives
(maximizing profit).

2.4.2. Growth, α1
Our resource growth model from Section 2 is quite general and permits a wide

range of interpretations for the parameter αi. Regardless of the interpretation,
we can think of higher α1 as representing improved growth conditions in patch 1.
Here we examine the role of α1 on optimal enclosure siting: will improved growth
conditions in a patch promote it as a candidate for enclosure? If patch 1 is open
access (so patch 2 is enclosed), there will be no adjustment in residual stock in
patch 1 because p1 = c1(e1). On the other hand, if patch 1 is enclosed, then the
increase in α1 leads to an unambiguous increase in residual stock in 1 (see Lemma
3). This also has positive externalities on adjacent patches. Again, in the case
of linear cost we will prove that across all four objectives, a higher value of α1
promotes patch 1 for enclosure. The result is formalized as follows:

Proposition 5. Provided c′(·) = 0, a higher value of growth (α1) in patch 1 has
the following effects:
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1. (Enclosed Patch Stock): Patch 1 is the best candidate for enclosure.
2. (Aggregate Stock): Patch 1 is the best candidate for enclosure.
3. (Enclosed Patch Profit): Patch 1 is the best candidate for enclosure.
4. (Aggregate Profit): Patch 1 is the best candidate for enclosure.

Proposition 5 reveals that α has the same effects as D on optimal siting of the
enclosure: Higher growth always promotes a patch as an ideal candidate for partial
enclosure regardless of one’s objective.

We noted above that one convenient interpretatioin of αi is patch size. Under
that interpretation, the requirements stated below Equation 1 still hold and we can
think of α as the carrying capacity of the underlying resource. When combined
with Proposition 5, this observation yields a very useful insight: Regardless of
one’s objective, larger patches are always better candidates for partial enclosure
(provided costs are linear). This makes intuitive sense because in the extreme, one
would like to enclose the entire resource domain.

2.4.3. Market price, p1
Finally we consider the effect of an increase in the price in patch 1, p1, on

optimal enclosure siting. A price increase in a single patch can have complex and
far-reaching effects on stock and profit because both the enclosed patch owner and
the open access patches may adjust residual stock. However, when c′(·) = 0 (linear
cost), neither the open access patch nor the enclosed patch will change residual
stock following a price rise. Thus, residual stock is unaffected by the decision about
which patch to enclose. However, profit is affected by the price rise, and thus the
effects of higher price will depend on which patch is enclosed. Because resource
stocks are unaffected, it is clear that to maximize enclosed patch profit, one should
enclose the patch with the elevated price. But to maximize system-wide profit, it
will depend on the spatial externality. When the patches are weakly connected
(so Q is small), then the patch with high price should be enclosed. But when
the patches are tightly connected, the patch with the elevated price should be left
open access. These results are summarized as below.

Proposition 6. Provided c′(·) = 0, a higher price (p1) in patch 1 has the following
effects:

1. (Enclosed Patch Stock): All patches are equally desirable for enclosure.
2. (Aggregate Stock): All patches are equally desirable for enclosure.
3. (Enclosed Patch Profit): Patch 1 is the best candidate for enclosure.
4. (Aggregate Profit): Patch 1 is the worst candidate for enclosure if D ≤ Q or
δ is small. Patch 1 is the best candidate for enclosure if Q is small and δ is
large.
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Proposition 6 reveals an interesting tension between the environmental parame-
ters and the economic parameters. While we found that higher growth parameters
always promoted a patch for enclosure when the objective was to maximize aggre-
gate profit, we find nearly the opposite for the key economic parameter.

Taken together, these results suggest that if the objective is to maximize local
(i.e. enclosed patch) benefits from enclosure, it is typically optimal to enclose the
patch with a high level of self-retention, a high growth parameter, or a high price.
But if the goal is to site the enclosure to improve the system overall (whether
system-wide profit or system-wide stock), the best candidate for enclosure may
be a patch with high self-retention, high growth, or low price. This reveals an
interesting tension between local and system-wide benefits. If the enclosure is
to be sited by an agent who derives only local benefits, the enclosure may in
fact minimize system-wide benefit, though this result can only occur if there is
heterogeneity in economic returns across space. Conversely, if the enclosure is
sited by a social planner who seeks to maximize aggregate benefits, payoffs in
the local enclosure may suffer. Table 1 summarizes the results of Propositions 4-6,
where a “+” indicates that the patch with elevated parameter is the best candidate
for enclosure and a “-” indicates that the patch with the elevated parameter is the
worst candidate for enclosure.

Table 1: Summary of results for linear cost (c′(·) = 0)

Objective D α p

Enclosed Stock + + 0
Aggregate Stock + + 0
Enclosed Profit + + +
Aggregate Profit + + +/−

2.5. Extension to non-linear cost
The siting results above assume harvest cost is linear (c′(·) = 0). While this is

a common assumption in natural resource models, it fails to capture the possibility
of a stock effect, where harvest costs rise as resource scarcity sets in. In that case
c′(·) < 0 which has important economic and behavioral implications. First, this
assumption implies that even in the open access patches, stocks will not be fully
exhausted. As the resource becomes scarce, the costs rise to such a degree that,
even under open access, the marginal profit eventually hits zero and harvesting
ceases. Second, in the enclosed patch the optimal residual stock level will depend
on both price and residual stock from the open access fringe. These facts link
the system together in a more nuanced way than when costs are linear, rendering
the spatial externalities more complex. Thus, one might expect there to be an
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enhanced role for connectivity (both self-retention, D and migration Q) driving
results. Indeed, when c′(·) < 0 we find that the result often hinges on connectivity.
Table 2 summarizes our results for the case of c′(·) < 0.

Table 2: Summary of results for nonlinear cost c′(·) < 0

Objective D α p

Enclosed Stock + + if D ≥ Q + if D small
− if D small − if Q small

Aggregate Stock + + if D ≥ Q + if D small
or D small

Enclosed Profit + + if D ≥ Q +
− if D small

Aggregate Profit + if D ≥ Q + if D ≥ Q ?
or D small

While these results are more nuanced than those derived when c′(·) = 0, they
are largely consistent. Three exceptions are worth pointing out. First, if the
objective is to maximize enclosed patch stock or profit, then the effect of higher
growth on the optimal patch to enclose can flip depending on the value of self-
retention. When self retention is large (in particular, when D ≥ Q) it is always
optimal to enclose the patch with high growth (intuitively, because the high value
of D allows the enclosed patch to capture most of the benefits of its larger α).
But if self retention is sufficiently small, it is optimal to enclose a patch with
lower self-retention: When self retention is small, the stock in a patch derives
primarily from large values of residual stock in other patches. Thus, the enclosure
owner would like his benefactor to have a high value of α (because he claims
the spill-over). The other exceptions involve the parameter p. When c′(·) = 0,
resource stock is unaffected by price, so no preference is given for enclosure. But
when c′(·) < 0 the optimal enclosure again depends on the extent of the spatial
externality. To maximize enclosed patch stock, when self retention is small, one
would like to enclose the patch with high price. This is because a higher price
causes the enclosed patch owner to decrease his residual stock (see Lemma 3), but
since D is small, this has little effect on his own stock. Instead, if the high price
patch is open access, it will cause the open access patch to reduce its residual
stock and when D is small, this has a greater (negative) impact on the enclosed
patch stock. Similar reasoning explains why enclosing a low price patch is optimal
when out-of-patch migration (Q) is small. The third exception concerns the effects
of price on aggregate resource stock which are explained by a similar argument.
Finally, we note that the general case of price and its effect on aggregate profit
cannot be signed, except in special cases.

17



3. Illustrative Example

To illustrate our analytical findings, we now present two versions of a simple
example. We loosely base these examples on spatial analysis of fisheries near the
Channel Islands, California (e.g. see White and Casselle (2008)); we focus on the
13 patches of roughly 210 km2 each surrounding the Northern Channel Islands
(see Figure 1). The equation of motion in patch i is given by a spatial version of
the discrete-time logistic model:

xit+1 =
13∑
j=1

Dji

[
ejt + rjejt

(
1− ejt

Kj

)]
︸ ︷︷ ︸

g(ej ,αj)

. (6)

Under this functional specification, both the intrinsic growth rate rj and the car-
rying capacity Kj conform to the requirements of the general parameter αj from
Section 2.14

3.1. Heterogeneous patches
In the first example, we allow the patches to be heterogeneous and calculate

the benefits and optimal siting of enclosure. Dispersal (Dij), growth (rj), and
carrying capacity (Kj) parameters are drawn loosely from real data in the region,
though the example is meant to be illustrative only. Dispersal from patch j to i is
given by the dispersal kernel (provided in the Appendix). We assume that both
growth and carrying capacity are positively related to the fraction of the patch
that is covered by kelp (Kj ≤ 1), according to these relationships:

rj = 0.4 +K1/2
j (7)

Kj = 100 + 1000Kj (8)

This produces intrinsic growth rates rj ∈ [0.40, 0.68] and carrying capacities Kj ∈
[100, 177].15 We assume marginal harvest cost is given by the function c(s) = θ/s,
and we use θ = 15 (see White and Costello (2011)). Price is set to unity, and we
use δ = .9.

Under this model, the open access equilibrium residual stock is given by: ê = 15
in all patches (see Proposition 1), which is confirmed by this numerical application.
Thus, under this parameterization, the open access residual stock is 8%-15% of

14Under this logistic growth model, g(e) = e + re(1 − e/K). Both r and K adhere to
requirements for α (within the relevant range of the variable, e): ∂g

∂r = e(1 − e/K) > 0,
∂g
∂K = re2/K2 > 0, ∂2g

∂r∂e = 1− 2e
K > 0 and ∂2g

∂K∂e = 2re
K2 > 0, for e < K/2.

15We provide in the Appendix all input parameters necessary to replicate all of these results.
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carrying capacity (depending on the patch). Enclosing patches one-by-one, while
the other 12 patches remain open access, generates optimal residual stock level in
the enclosed patch of between 18.7 (patch 1) and 47.1 (patch 7) with an average of
26.3 (see Lemma 1). It is not immediately obvious which patch to enclose to achieve
different objectives. Using the guidance from Propositions 4-6, patch 12 has the
highest self-retention and patch 6 has the most habitat (Kj) and thus the largest
values of r and K. However, while patch 7 does not have the largest value of any
single parameter, it does have relatively large values of all parameters. Stock in all
non-enclosed patches increases as a consequence of enclosure (see Proposition 2).
In our numerical example, the increase in system-wide stock arising from partial
enclosure depends on which patch is enclosed. It ranges from 4.1 (when enclosing
patch 1, representing just a 2% increase in stock) to 38 (when enclosing patch 7,
representing a 16% increase). Consistent with Proposition 3, equilibrium profit in
all non-enclosed patches increases as a consequence of enclosure. As was the case
with stock, the increase in system-wide profit arising from partial enclosure ranges
from .2% (when enclosing patch 1) to 5% (when enclosing patch 6).

In this example, it turns out that for three of the four objectives (enclosed
patch stock, aggregate stock, and enclosed patch profit), patch 7 is the optimal
enclosure. The optimal enclosure to maximize aggregate profit is patch 6. Figure
1 shows the study area and displays the values of D in circles and K (which is
correlated with r in this example) with shading. From this figure, it is clear why
patches 6 and 7 are good candidates for enclosure.

3.2. Homogeneous patches
Our second example illustrates the comparative statics of optimal enclosure

derived in Section 2.5. It builds on the first example, but adopts the starting point
from Section 2.4 that all patches are symmetric. For ri and Ki we assume that
each patch has the average value of those parameters from the previous example
(so r = .49, K = 114.2). For Dij we assume that all off-diagonal terms are
Q = .06 and that the diagonal terms are D = .20 (though we also explore values
of D ∈ [0, .30]). We continue to assume δ = 0.9, p = 1, and θ = 15. Together,
these assumptions yield a completely symmetric set of patches. From this starting
point, it is equally desirable to enclose any one of the 13 patches; doing so increases
both stock and profit.

Following the theoretical treatment, we numerically calculate the comparative
statics associated with a 10% increase in each parameter in a single patch. We do
so by incrementing a single parameter in patch 1 only, holding all other parameters
at their initial values, and calculating the subsequent effects on the entire system.
Our main focus is on how this change in a parameter will affect the optimal patch
to enclose under the various objectives spelled out above.
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Figure 1: Study region, patch delineation, and patch characteristics.

3.2.1. Comparative statics: D11
When the self-retention parameter in patch 1 is increased, it implies that patch

1 is a stronger residual claimant of conservative harvesting behavior than are the
other patches. Thus, consistent with Proposition 4 and with the extended results
in Table 2, we find that patch 1 is the optimal enclosure. This result holds across
all four objectives.

3.2.2. Comparative statics: r1 and K1
The parameters ri and Ki are both special cases of the more general growth

parameter αi considered in the analytical model. Thus, the comparative statics
in Section 2.5 apply to both r and K. To maximize enclosed patch stock, we find
that a larger value of r or a larger value of K promotes a patch for enclosure,
provided D > .06, and it relegates a patch for enclosure if D < .06. We obtain a
very similar result for the objective of maximizing enclosed patch profit, though
the cutoff values of D are slightly larger. To maximize aggregate stock we found a
similar result for r (though the cutoff is D = .01), and we found that higher value
of K always promotes a patch for enclosure. Finally, when the goal is to maximize
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aggregate profit, we found that higher values of r or K always promote a patch
for enclosure. This result holds for all values of D.

3.2.3. Comparative statics: p1
Finally we consider numerically the effects of an increase in price. When p1

is increased, the optimal patch to enclose depends on the objective being pursued
and on the extent of the spatial externality, via D and Q (see Table 2). If the
objective is to maximize profit in the enclosed patch or aggregate stock, we find
an unambiguous result that higher p promotes a patch for enclosure. If the goal
is to maximize enclosed patch stock, we find a mixed result: when D < .06, we
find that higher p promotes a patch for enclosure. But when D > .06, higher price
relegates a patch. This is consistent with the theoretical finding reported in Table
2 that small D promotes a patch for enclosure and small Q relegates a patch for
enclosure. Finally, if the objective is to maximize aggregate profit (a case we were
unable to sign in the general model), we find the unambiguous result that higher
p always relegates a patch for enclosure, regardless of the value of D.

These results are consistent with the theoretical results reported in Table 2.
While the example is meant to be illustrative only, and not to provide specific
policy guidance for the Channel Islands, it does demonstrate the ease and utility
with which the model developed here can be applied in a real world context.

4. Conclusion

Partial enclosure of the commons is perhaps the most common institutional
arrangement for governing renewable natural resources, yet it has received almost
no attention in the literature. We define it as a circumstance in which part of
a spatially-connected resource is assigned to a sole owner, and the remainder is
competed for by an open access fringe. Because the resource is mobile, each group
imposes an externality on others. We develop a spatial bioeconomic model to
address questions such as: Under what conditions will partial enclosure lead to
aggregate (or individual) welfare gains? What will be the consequences of partial
enclosure on the open access fringe? What are the environmental effects of partial
enclosure? And, for different objectives, in which patches should partial enclosure
be undertaken? The framework allows us to make sharp analytical predictions,
which are then illustrated with a numerical example of a spatially-connected fishery
surrounding the Northern Channel Islands.

Perhaps the most salient welfare implication of partial enclosure is that it al-
ways leads to a strict Pareto Improvement over open access. This conclusion holds
whether the agents’ objectives are based solely on profit or are motivated by con-
servation, and it holds even when one assigns partial enclosure haphazardly. We
also explored the spatial (via Dij), environmental (via αi), and economic (via pi)
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characteristics that make a patch a particularly good candidate for enclosure. We
found that, ceteris paribus, if a patch has higher self-retention, it is a good candi-
date for enclosure regardless of one’s objective. Here, there is strong consistency
between individual and aggregate welfare and between stock and profit as objec-
tives. But we found that patches with higher growth parameters or larger patch
size may promote or relegate a patch for enclosure, depending on one’s objective.
In that case, the optimal enclosure location can be reversed depending on whether
one is interested in enclosed patch outcomes or aggregate outcomes (though this
result arises only under a stock effect). Finally, economic returns and resource
growth have potentially opposite comparative effects.

Overall, these findings suggest that partial enclosure of the commons is a po-
tentially valuable (though second best) institutional arrangement with positive
economic and environmental consequences. Our comparative results emphasize
that optimal siting of enclosures are often consistent between individual and so-
cietal objectives and between conservation and profit motives. But the analysis
also illuminates interesting tensions where the optimal siting of partial enclosure
can impact negatively on some agents. This latter class of problems may suggest
interesting political economy extensions of our analysis.
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5. Appendix

Proof of Proposition 1
Under open access, the patch i, period t objective is to maximize Πit given in Equation 3.

Taking the derivative and setting equal to zero provides first order condition: pi = ci(êit), which
applies for c′i(s) < 0. If c′i(s) = 0, and adopting ci(s) < pi, the objective is downward-sloping
in residual stock, so it is maximized by fulling extinguishing the patch i stock, in which case
êit = 0.

Proof of Lemma 1
The first line (for i 6= k) follows directly from Proposition 1. The second line (for patch k)

is the first order condition for the enclosed patch, found by taking the derivative of Equation 4
and setting equal to zero.

Proof of Lemma 2
By the first order condition in any period t, open access optimal residual stock levels are

independent of all stock levels (the state vector) in that same period. The same result holds
for the optimal residual stock level of the enclosed patch. Let patch j be enclosed. When the
optimal residual stock level is positive, the optimality condition is necessary and sufficient. The
term on the left hand side of this condition reflects the marginal contribution of residual stock
to current period payoff, and is independent of xt by inspection. The derivative of the payoff
function in period t + 1 depends on the period t + 1 state, but is independent of the period t
state. Since we know that an interior solution satisfies ējt < x̄jt and using Expression 2, x̄jt+1
is a function of ējt but not of x̄jt. Therefore, the term on the right hand side in the first order
condition is independent of x̄jt, and the period t problem of the sole owner has state independent
control.

Second, we must prove that optimal residual stock levels are time independent. Again, since
economic returns are independent of time, open access optimal residual stock levels are time
independent. Now, regarding patch j, we just proved that ējt is independent of x̄jt. This implies
that a change in stock in the next period affects the payoff function in t + 1 only through the
term relating to x̄jt+1. Since growth, dispersal, and economic returns are time-independent, the
optimal choice, ējt, is also time-independent.

Proof of Proposition 2
Let êi denote residual stock in patch i when all patches are open access and let ei denote

residual stock in patch i when patch j is enclosed, but all other patches i are open access. First,
note that êi = ei for i 6= j (because pi = ci(êi) = ci(ei)). For patch j, the residual stock under
open access is pj − cj(êj) = 0. But under enclosure, residual stock in j is given by the FOC:
pj − cj(ēj) = δDjj [pj − cj(x̄j)] gē(ēj , αj). The right hand side of this expression is > 0, thus
pj − cj(ēj) > 0, so ēj > êj . The difference in patch i stock in the enclosed case minus the open
access case is simply Djigj(ēj)−Djigj(êj). Because ge > 0, stock is higher in all patches i such
that Dji > 0 and is unchanged in all patches i such that Dji = 0.
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Proof of Proposition 3
Without loss of generality, let patch j be enclosed. If patch j chooses the open access residual

stock level, then all patches are indifferent to the enclosure. But if patch j chooses a different
residual stock level, then patch j must do so to increase her profit. The proof to Proposition 2
shows that patch j chooses a residual stock larger than the open access level, so patch j must be
better off under the enclosure. Again the proof to Proposition 2 shows that if Dji > 0, then patch
i receives a higher stock, and is thus better off under the enclosure. Instead, if Dji = 0, then
patch i stock is unchanged under the enclosure, and thus patch i is indifferent to the enclosure.

Proof of Corollary 1
Follows immediately from the evolution rule of the stock levels.

Proof of Lemma 3
Applying the implicit function theorem to the first order condition gives the relevant total

derivatives:

dēj
dDj

= −
δgē(ej , αj)

[
pj − cj(x̄j)−Djjc

′
j(x̄j) · g(ēj , αj)

]
SOC

dēj
dpj

= 1− δDjjgē(ēj , αj)
SOC

dēj
dαj

= −
δDjj

[
−gē(ēj , αj) · gα(ēj , αj)c′j(x̄j)Djj + (pj − cj(x̄j)) gēα(ēj , αj)

]
SOC

with SOC = c′j(ēj) + δDjj

[
−Djjc

′
j(x̄j)

(
gēj (ēj , αj)

)2 + (pj − cj(x̄j)) gēj ēj (ēj , αj)
]
< 0, which is

the second order condition. The numerators of the fraction in the expressions of dēj
dDjj

and dēj
dαj

are unambiguously non-negative. Therefore, dēj
dDjj

≥ 0 and dēj
dαj
≥ 0. Finally, by the first order

condition for ēj , the numerator of dējdpj
is non-negative, thus dēj

dpj
≤ 0.

Proof of the claim in Section 2.4
First, let us assume that patch j is enclosed while all other patches are under open access.

Now, for i 6= j, we have :

x̄j = Djjg (ēj , αj) +
N∑
k 6=j

Dkjg (ek, αk) ; xi = Djig (ēj , αj) +
N∑
k 6=j

Dkig (ek, αk)

If enclosing patch j yields the highest value of the aggregate stock level, the following inequality
is satisfied :

x̄j +
N∑
l 6=j

xl ≥ max

x̄1 +
N∑
k=2

xk; . . . ; x̄N +
N∑
l 6=N

xl


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Let us assume that this inequality holds. We are going to compare the expression of aggregate
stock levels when patch j is enclosed and when another patch (say i) is enclosed (assuming in both
cases that all other patches remain under open access). We obtain the equivalent inequalities :

Djjg (ēj , αj) +
N∑
k 6=j

Dkjg (ek, αk) +
N∑
l 6=j

Djlg (ēj , αj) +
N∑
k 6=j

Dklg (ek, αk)


> Diig (ēi, αi) +

N∑
k 6=i

Dkig (ek, αk) +
N∑
l 6=i

Dilg (ēi, αi) +
N∑
k 6=i

Dklg (ek, αk)


⇔ g (ēj , αj) +

N∑
l 6=j

g (el, αl) > g (ēi, αi) +
N∑
l 6=i

g (el, αl)

⇔ g (ēj , αj) + g (ei, αi) > g (ēi, αi) + g (ej , αj)
⇔ g (ēj , αj)− g (ej , αj) > g (ēi, αi)− g (ei, αi)

Setup of proofs to Propositions 4-6
Without loss of generality, we will assume that a single parameter is elevated in patch 1 and

we explore the consequences of enclosing patch 1 or patch 2. We indicate the enclosed patch by
placing a bar over its relevant variables (x̄, ê, ᾱ, D̂ and p̂). We indicate an open access patch
(which may have an elevated parameter) without a bar, e.g. x. Finally, we must also account
for the other N − 2 patches 3, 4, ..., N which neither have elevated parameters nor are enclosed.
We denote the representative patch with a tilde, e.g. x̃. Prior to any change in parameters, the
three equations of motion are given by:

x̄ = Dg(ē, ᾱ) + (N − 1)Qg(e, α) (9)
x = [D + (N − 2)Q] g(e, α) +Qg(ē, ᾱ) (10)
x̃ = [D + (N − 2)Q] g(e, α) +Qg(ē, ᾱ) (11)

By Lemma 3, the optimal residual stock is time-independent, which implies that the profit
expressions are given by :

Π̄ = p̄(x0 − ē)−
∫ x0

ē

c(s)ds+ δ

1− δ

[
p̄(x̄− ē)−

∫ x̄

ē

c(s)ds
]

(12)

Π = p(x0 − e)−
∫ x0

e

c(s)ds+ δ

1− δ

[
p(x− e)−

∫ x

e

c(s)ds
]

(13)

Π̃ = p̃(x0 − ẽ)−
∫ x0

ẽ

c(s)ds+ δ

1− δ

[
p̃(x̃− ẽ)−

∫ x̃

ẽ

c(s)ds
]

(14)

where x0 is the initial stock level. We examine comparative statics for three parameters (D, α,
and p). For any parameter θ ∈ {D,α, p}, total differentiation gives the expressions in Table 3.

To determine whether it is advantageous to enclose patch 1 (the patch with the elevated
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Table 3: Comparative statics

Enclosed Profit Stock # patches

1 1: dΠ̄
dθ̄

= ∂Π̄
∂θ̄

1: dx̄
dθ̄

= ∂x̄
∂ē

∂ē
∂θ̄

+ ∂x̄
∂θ̄

1

2: dΠ
dθ̄

= ∂Π
∂ē

∂ē
∂θ̄

+ ∂Π
∂θ̄

2: dx
dθ̄

= ∂x
∂ē

∂ē
∂θ̄

+ ∂x
∂θ̄

N − 1

2 1: dΠ
dθ = ∂Π

∂e
∂e
∂θ + ∂Π

∂ē
∂ē
∂θ + ∂Π

∂θ 1: dx
dθ = ∂x

∂e
∂e
∂θ + ∂x

∂ē
∂ē
∂θ + ∂x

∂θ 1

2: dΠ̄
dθ = ∂Π̄

∂e
∂e
∂θ + ∂Π̄

∂θ 2: dx̄
dθ = ∂x̄

∂e
∂e
∂θ + ∂x̄

∂ē
∂ē
∂θ + ∂x̄

∂θ 1

k: dΠ̃
dθ = ∂Π̃

∂e
∂e
∂θ + ∂Π̃

∂ē
∂ē
∂θ + ∂Π̃

∂θ k: dx̃
dθ = ∂x̃

∂e
∂e
∂θ + ∂x̃

∂ē
∂ē
∂θ + ∂x̃

∂θ N − 2

parameter) or patch 2 (a patch without the elevated parameter), we compute the differences:

Enclosed Stock: ∆1(θ) ≡ dx̄

dθ̄
− dx̄

dθ
(15)

Aggregate Stock: ∆2(θ) ≡ dx̄

dθ̄
+ (N − 1)dx

dθ̄
−
(
dx̄

dθ
+ dx

dθ
+ (N − 2)dx̃

dθ

)
(16)

Enclosed Profit: ∆3(θ) ≡ dΠ̄
dθ̄
− dΠ̄
dθ

(17)

Aggregate Profit: ∆4(θ) ≡ dΠ̄
dθ̄

+ (N − 1)dΠ
dθ̄
−
(
dΠ̄
dθ

+ dΠ
dθ

+ (N − 2)dΠ̃
dθ

)
(18)

And we can use the total derivative calculations in the table 3 to re-write Equations 15-18 as
partial derivatives. For example, ∆3(θ) = ∂Π̄

∂θ̄
− ∂Π̄

∂e
∂e
∂θ + ∂Π̄

∂θ .
Depending on the parameter being examined, many of these partial derivative terms are

zero. For example, price in an open access patch has no direct influence on an enclosed patch
stock, so ∂x̄

∂p = 0. All of the terms in the following table equal zero:

Table 4: Conditions
D α p

Enclosed Stock ∂e
∂D ,

∂ē
∂D ,

∂x̄
∂D

∂e
∂α

∂x̄
∂p̄ ,

∂x̄
∂p ,

∂ē
∂p ,
(
∂e
∂p

)
Aggregate Stock ∂e

∂D ,
∂ē
∂D ,

∂x̄
∂D ,

∂x
∂D̄
, ∂x̃∂D

∂e
∂α ,
(
∂ē
∂α

)
,
(
∂x̄
∂α

)
∂x̄
∂p̄ ,

∂x̄
∂p ,

∂ē
∂p ,
(
∂e
∂p

)
, ∂x∂p̄ ,

∂x
∂p ,

∂x̃
∂p

Enclosed Profit ∂e
∂D ,

∂Π̄
∂D

∂e
∂α

∂Π̄
∂p

Aggregate Profit ∂e
∂D ,

∂Π̄
∂D ,

∂ē
∂D ,

∂Π
∂D̄

∂e
∂α ,
(
∂ē
∂α

)
,
(
∂x̄
∂α

)
∂Π̄
∂p ,

∂Π
∂p̄ ,

∂Π̃
∂p ,

∂ē
∂p
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The parenthetical terms (e.g. ∂e
∂p ) equal zero only if = 0. We will make extensive use of

Table 4 in the proofs that follow. For each of the four objectives (enclosed stock, aggregate
stock, enclosed profit, aggregate profit) and for each of the three parameters (D, α, and p) we
analyze the effects of enclosing patch 1 minus patch 2. This difference is given in Equations
15-18.

Proof of Proposition 4 (self-retention, D)
1. Enclosed patch stock

Adopting the conditions in Table 4, the difference 15 is ∆1(D) = dx̄
dD̄

> 0.
2. Aggregate stock

Adopting the conditions in Table 4, the difference 16 is:

∆2(D) = ∂ē

∂D̄

(
∂x̄

∂ē
+ (N − 1)∂x

∂ē

)
+ ∂x̄

∂D̄
− ∂x

∂D
= ∂ē

∂D̄

(
∂x̄

∂ē
+ (N − 1)∂x

∂ē

)
+ g(ē, ᾱ)− g(e, α)

Each of these terms is positive since the growth rate function is increasing and ē > e and
ᾱ = α (because in this case the variable of interest is D), so ∆2(D) > 0.

3. Enclosed patch profit
Adopting the conditions in Table 4, the difference 17 is ∆3(D) = dΠ̄

dD̄
> 0.

4. Aggregate profit
Adopting the conditions in Table 4, the difference 18 is:

∆4(D) = ∂Π̄
∂D̄
− ∂Π
∂D

+ (N − 1)∂Π
∂ē

∂ē

∂D̄
.

First, note that the last term is always positive. Now, regarding the first term, we have :

∂Π̄
∂D̄
− ∂Π
∂D

= [p− c(x̄)]g(ē, ᾱ)− [p− c(x)]g(e, α)

Note that if c′ = 0, this term is (p − c)[g(ē, ᾱ) − g(e, α)] > 0 since g is increasing and
ē > e. This implies that ∆4(D) > 0. If c′ < 0, because ge > 0, a sufficient condition for
this term being positive is x̄ > x. The difference between Equations 9 and 10 is:

x̄− x = (D −Q) [g(ē, ᾱ)− g(e, α)]

If D ≥ Q then the term is positive and ∆4(D) > 0.

Proof of Proposition 5 (growth, α)
We will use the following notations for the derivatives in the remainder of this appendix:

ge = ge(e, α), gē = ge(ē, ᾱ), gα = gα(e, α), gᾱ = gα(ē, ᾱ), and gē,ᾱ = geα(ē, ᾱ).

1. Enclosed patch stock
Adopting the conditions in Table 4 the difference 15 is:

∆1(α) = ∂x̄

∂ē

(
∂ē

∂ᾱ
− ∂ē

∂α

)
︸ ︷︷ ︸

≡A

+
(
∂x̄

∂ᾱ
− ∂x̄

∂α

)
. (19)
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First note that if c′ = 0, ∂x̄
∂α = ∂ē

∂α = 0 and ∆1(α) > 0. If c′ < 0, then using Equation 9,
we have ∂x̄

∂ᾱ −
∂x̄
∂α = Dgᾱ − Qgα. This term is positive provided D ≥ Q, and is negative

for sufficiently small D. The other parenthetical term involves analyzing

∂ē

∂ᾱ
=

δD
(
gêc
′(x̄) ∂x̄∂ᾱ − [p− c(x̄)]gēᾱ

)
SOC

> 0 (20)

∂ē

∂α
=

δD
(
gêc
′(x̄) ∂x̄∂α

)
SOC

> 0 (21)

The denominator of both terms is the second order condition, which is negative. Sub-
tracting the expressions gives:

∂ē

∂ᾱ
− ∂ē

∂α
=
δD
(
gēc
′(x̄)( ∂x̄∂ᾱ −

∂x̄
∂α )− [p− c(x̄)]gēᾱ

)
SOC

(22)

Because gēᾱ > 0, a sufficient condition for this term being positive is D ≥ Q. Instead,
suppose D = 0. In that case, term A = 0 and ∂x̄

∂ᾱ = 0. The entire expression is negative.
By a continuity argument, this implies that ∆1(α) < 0 for sufficiently small values of D.
To summarize, if = 0, we have ∆1(α) > 0; if < 0 then if D ≥ Q, we have ∆1(α) > 0, and
if D sufficiently small, we have ∆1(α) < 0.

2. Aggregate stock
Adopting the conditions in Table 4, the difference 16 is:

∆2(α) = ∂x̄

∂ē

∂ē

∂ᾱ
+ ∂x̄

∂ᾱ
+ (N − 1)

(
∂x

∂ē

∂ē

∂ᾱ
+ ∂x

∂ᾱ

)
−

[
∂x

∂ē

∂ē

∂ᾱ
+ ∂x

∂α
+ ∂x̄

∂ē

∂ē

∂α
+ ∂x̄

∂α
+ (N − 2)

(
∂x̃

∂ē

∂ē

∂α
+ ∂x̃

∂α

)]
We use the fact that ∂x

∂ē = ∂x̃
∂ē to rewrite ∆2(α):

∆2(α) =
(
∂x̄

∂ē
+ (N − 1)∂x

∂ē

)
︸ ︷︷ ︸

>0

(
∂ē

∂ᾱ
− ∂ē

∂α

)
︸ ︷︷ ︸

A

+(N −2)
(
∂x

∂ᾱ
− ∂x̃

∂α

)
+ ∂x̄

∂ᾱ
− ∂x̄

∂α
+ ∂x

∂ᾱ
− ∂x

∂α

First note that the last term composed by the derivatives of stocks (w.r.t α) are unam-
biguously positive since it involves analyzing Equations 9 and 10 as follows:

∂x̄

∂ᾱ
− ∂x̄

∂α
+ ∂x

∂ᾱ
− ∂x

∂α
= (D +Q) (gᾱ − gα) > 0.

Then the other parenthetical term involves analyzing Equations 9 and 11 such that: ∂x
∂ᾱ −

∂x̃
∂α = Q (gᾱ − gα). We now provide sufficient conditions that ensure that term A is
positive, which would enable us to conclude that ∆2(α) is positive. First, note that if
c′ = 0, ∂x̄

∂α = ∂ē
∂α = 0, then the difference ∆2(α) is unambiguously positive. If c′ < 0,

then the difference ∆2(α) is positive provided D ≥ Q or D = 0 which, by a continuity
argument, enables to conclude that ∆2(α) > 0 for sufficiently small value of D.

3. Enclosed patch profit
Adopting the conditions in Table 4, the difference 17 is:

∆3(α) = dΠ̄
dᾱ
− ∂Π̄
∂α

= δ

1− δ (p− c(x̄))
(
∂x̄

∂ᾱ
− ∂x̄

∂α

)
= δ

1− δ (p− c(x̄)) (Dgᾱ −Qgα)

First note that if c′ = 0 then ∂x̄
∂α = 0 and ∆3(α) is unambiguously positive. If c′ < 0, then

this term is positive provided D ≥ Q, and is negative for sufficiently small D.
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4. Aggregate profit
Adopting the conditions in Table 4, the difference 18 is:

∆4(α) = ∂Π̄
∂ᾱ

+ (N − 1)
(
∂Π
∂ē

+ ∂ē

∂α
+ ∂Π
∂ᾱ

)
−

[
∂Π
∂ē

∂ē

∂α
+ ∂Π
∂α

+ ∂Π̄
∂α

+ (N − 2)
(
∂Π̃
∂e

∂e

∂α
+ ∂Π̃
∂ē

∂ē

∂α
+ ∂Π̃
∂α

)]
We use the fact that ∂Π

∂ē = ∂Π̃
∂ē to rewrite ∆4(α):

∆4(α) = (N − 1)∂Π
∂ē

(
∂ē

∂ᾱ
− ∂ē

∂α

)
︸ ︷︷ ︸

A

+(N − 2)
(
∂Π
∂ᾱ
− ∂Π̃
∂α

)
︸ ︷︷ ︸

=(p−c(x))Q(gᾱ−gα)>0

+∂Π̄
∂ᾱ
− ∂Π̄
∂α

+ ∂Π
∂ᾱ
− ∂Π
∂α

The last term composed by the derivatives of profits (with respect to α) is unambiguously
positive since it involves analyzing Equations 12 and 13 as follows:

∂Π̄
∂ᾱ
− ∂Π̄
∂α

+ ∂Π
∂ᾱ
− ∂Π
∂α

= (gᾱ − gα) [D (p− c(x̄)) +Q (p− c(x))] > 0.

As previously, a sufficient condition to sign this difference depends on the term A. First,
note that if c′(·) = 0, the difference ∆4(α) is unambiguously positive. If c′(·) < 0, if
D ≥ Q then ∆4(α) > 0. Instead, suppose D = 0. In that case, the term A is equal to
zero and ∆4(α) > 0 which, by a continuity argument, enables to conclude that ∆4(α) > 0
for sufficiently small value of D.

Proof of Proposition 6 (price, p)
1. Enclosed patch stock

Adopting the conditions in Table 4 the difference 15 is:

∆1(p) = ∂x̄

∂ē

∂ē

∂p̄
− ∂x̄

∂e

∂e

∂p
(23)

First note that if c′ = 0, ∂e∂p = ∂ē
∂p̄ = 0 so ∆1(p) = 0. If c′(·) < 0, then the difference can

be written:
∆1(p) = Dgē

∂ē

∂p̄
−Qge

∂e

∂p
(24)

This term is positive for sufficiently small D and negative for sufficiently small Q.
2. Aggregate stock

Adopting the conditions in Table 4, the difference 16 is:

∆2(p) = ∂x̄

∂ē

∂ē

∂p̄
+ ∂x̄

∂p̄
+ (N − 1)

(
∂x

∂ē

∂ē

∂p̄
+ ∂x

∂p̄

)
−

[
∂x

∂e

∂e

∂p
+ ∂x

∂ē

∂ē

∂p
+ ∂x

∂p
+ ∂x̄

∂ē

∂ē

∂p
+ ∂x̄

∂e

∂e

∂p
+ ∂x̄

∂p
+ (N − 2)

(
∂x̃

∂ē

∂ē

∂p
+ ∂x̃

∂e

∂e

∂p
+ ∂x̃

∂p

)]
We use the facts that ∂x̄

∂e = ∂x̃
∂e and ∂x̃

∂ē = ∂x
∂ē to rewrite ∆2(p):
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∆2(p) = [D + (N − 1)Q]
[
gē

(
∂ē

∂p̄
− ∂ē

∂p

)
− ge

∂e

∂p

]
.

If c′(·) = 0 then the first order condition for the enclosed patch is 1 = δDgē, which is
independent of the market price in patch 1 in any case. This implies that ∂ē

∂p̄ = ∂ē
∂p = 0.

Thus, if c′(·) = 0, ∆2(p) = 0.
Instead if c′(·) < 0 we have

∂ē

∂p̄
= 1− δDgē

SOC
< 0 ; ∂ē

∂p
=
δDQgēgec

′(x̄) ∂e∂p
SOC

< 0

Because gē < ge (as ᾱ = α and gee < 0), we have: gē
(
∂ē
∂p̄ −

∂ē
∂p

)
− ge ∂e∂p > gē

(
∂ē
∂p̄ −

∂e
∂p

)
.

When D gets close to zero, ∂ē
∂p̄ −

∂e
∂p gets close to zero, which by a continuity argument,

implies that gē
(
∂ē
∂p̄ −

∂ē
∂p

)
− ge ∂e∂p ≥ 0 (and ∆2(p) > 0) for sufficiently small values of D.

3. Enclosed patch profit
Adopting the conditions in Table 4 the difference 17 is:

∆3(p) = ∂Π̄
∂p̄
− ∂Π̄
∂e

∂e

∂p
(25)

The first term is positive. If c′(·) = 0, ∂e∂p = 0, so ∆3(p) > 0. If c′(·) < 0, then the second
term, equal to (p−c(x̄))Qge

c′(e) , is negative. Thus the difference ∆3(p) > 0.
4. Aggregate profit

Adopting the conditions in Table 4, the difference 18 is:

∆4(p) = ∂Π̄
∂p̄

+ (N − 1)∂Π
∂ē

∂ē

∂p̄

−
[
∂Π
∂e

∂e

∂p
+ ∂Π
∂ē

∂ē

∂p
+ ∂Π
∂p

+ ∂Π̄
∂e

∂e

∂p
+ ∂Π̄
∂ē

∂ē

∂p
+ (N − 2)

(
∂Π̃
∂e

∂e

∂p
+ ∂Π̃
∂ē

∂ē

∂p

)]
Which can be rewritten:

∆4(p) = x0 − ē+ δ

1− δ (x̄− ē) + (N − 1) δ

1− δ (p− c(x))Qgē
∂ē

∂p̄

−
[
x0 − e+ δ

1− δ (x− e) + δ

1− δ (p− c(x))Dge
∂e

∂p

]
−

[
δ

1− δ (p− c(x))Qgē
∂ē

∂p
+ δ

1− δ (p− c(x̄))Qge
∂e

∂p

]
− (N − 2)

(
δ

1− δ (p− c(x̃))Qge
∂e

∂p
+ δ

1− δ (p− c(x̃))Qgē
∂ē

∂p

)
If c′(·) = 0, then we use the facts that ∂ē

∂p̄ = ∂ē
∂p = ∂e

∂p = 0, which imply that

∆4(p) = e− ē+ δ (x̄− ē− x+ e)
1− δ = (e− ē)

1− δ + δ (x̄− x)
1− δ

= (e− ē)
1− δ + δ (D −Q) [g(ē, ᾱ)− g(e, α)]

1− δ .
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The first conclusion is that ∆4(p) < 0 as long as Q ≥ D or δ is small. Indeed, when
Q ≥ D, the second term in the expression of ∆4(p) is negative, and the first term is
obviously negative as ē > e. Now, when δ is small, the sign of ∆4(p) is given by that of
the following expression:
e − ē + δ(D − Q) [g(ē, ᾱ)− g(e, α)] = (ē − e)

(
−1 + δ(D−Q)[g(ē,ᾱ)−g(e,α)]

ē−e

)
. When δ → 0,

we have ē → e: in this case, this implies that g(ē,ᾱ)−g(e,α)
ē−e → ge > 0 (and finite). All

together, when δ converges to zero, we have: −1 + δ(D−Q)[g(ē,ᾱ)−g(e,α)]
ē−e → −1 < 0. Thus,

a continuity argument enables us to conclude that ∆4(p) ≤ 0 for sufficiently small values
of δ.
Moreover, we know that e = 0, which implies that g(e, α) = g(0, α) = 0 and x̄ = Dg(ē, ᾱ).
Plugging these expressions into the above equality and simplifying, we obtain:

∆4(p) = − ē

1− δ + δ (D −Q) g(ē, ᾱ)
1− δ = 1

1− δ

[
−ē+ δ

(
1− Q

D

)
x̄

]
.

If Q gets close to zero and δ gets close to one, then the sign of ∆4(p) is that of −ē + x̄,
which is positive. By a continuity argument, we conclude that ∆4(p) ≥ 0 for sufficiently
small values of Q and large values of δ.

Input parameters for numerical example from Section 3.1
D =

.728 .013 .039 .008 .002 .005 .016 .018 .011 .005 .002 .003 .002

.008 .697 0.056 .007 .002 .005 .025 .026 .013 .004 .002 .004 .002

.010 .025 .722 .007 .002 .005 .028 .026 .013 .005 .002 .004 .002

.004 .015 .039 .717 .002 .006 .020 .018 .014 .007 .001 .004 .002

.002 .010 .022 .003 .765 .004 .013 .015 .006 .005 .001 .003 .001

.002 .009 .013 .002 .001 .777 .015 .015 .006 .003 .002 .004 .001

.003 .004 .008 .003 .001 .003 .803 .010 .005 .004 .002 .004 .001

.009 .016 .046 .008 .002 .005 .015 .717 .015 .007 .003 .003 .003

.005 .015 .044 .005 .002 .004 .013 .019 .731 .006 .003 .002 .002

.008 .014 .032 .011 .002 .005 .014 .020 .021 .711 .007 .002 .002

.005 .007 .013 .004 .001 .003 .010 .012 .013 .009 .772 .002 .001

.003 .002 .001 .001 .000 .000 .003 .004 .007 .002 .001 .825 .001

.004 .003 .003 .001 .000 .001 .003 .005 .004 .001 .001 .001 .824



r = [.4297; .4254; .4329; .4980; .5034; .6769; .6460; .4000; .4353; .5070; .4758; .4787; .4000]

K = [100.88; 100.65; 101.08; 109.60; 110.68; 176.67; 160.53; 100.00; 101.25; 111.46; 105.75; 106.19; 100.00]

δ = 0.90, p = 1.0, θ = 15.

Input parameters for numerical example from Section 3.2
Q = .06, D = .20 though we also examine values of D ∈ [0, .3], r = .485, K = 114.21,

δ = 0.90, p = 1.0, θ = 15.
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