
A Discontinuity Test for Identification in

Nonlinear Models with Endogeneity

Carolina Caetano, Christoph Rothe, and Nese Yildiz∗

PRELIMINARY AND INCOMPLETE

Abstract

In this paper, we consider a triangular system of equations with a potentially endogenous

variable whose distribution has a mass point at the lower boundary of its support, but is oth-

erwise continuous. We show that, together with a weak continuity condition on the structural

function, this setup yields a testable implication of the set of assumptions that is commonly

used in this class of models to achieve identification of various structural quantities through a

control variable approach.

JEL Classification: C12, C14, C31, C36, C52

Keywords: Nonseparable models, triangular systems, control variables, specification testing,

identification.

∗This Version: November 23, 2013. Caetano: Department of Economics, University of Rochester, 238 Hark-

ness Hall, P.O. Box: 270156, Rochester, NY 14627, Email: carol.caetano@rochester.edu. Rothe: Department of

Economics, Columbia University, 420 W 118th St., New York, NY 10027, Email: cr2690@columbia.edu. Yildiz: De-

partment of Economics, University of Rochester, 238 Harkness Hall, P.O. Box: 270156, Rochester, NY 14627, Email:

nese.yildiz@rochester.edu.

1



1. Introduction

Econometric models with nonseparable unobservables have recently received considerable atten-

tion in econometrics (e.g. Matzkin, 2003; Chesher, 2003; Imbens and Newey, 2009; Blundell and

Matzkin, 2010). These models are important because they can accommodate general forms of

unobserved heterogeneity, including heterogeneous responses to policy interventions among obser-

vationally identical individuals. Both economic theory and empirical evidence strongly suggest that

such general forms of unobserved heterogeneity are a common feature of economic data (Heckman,

2001). When explanatory variables are endogenous, however, the nonseparability of unobserved

heterogeneity complicates identification of structural quantities relative to standard models with

additively separable disturbances.

There exist various ways to achieve identification in nonseparable models with endogeneity. If

the model has a triangular structure, one possibility is to use a control variable approach. This

requires certain conditions on the primitives of the model to ensure that there exists a so-called

control variable that can be identified from observable quantities, and that, when conditioned

on, makes covariates and disturbances independent. Control variables can be used to identify a

wide range of structural parameters, and have been studied extensively in the literature. One

common concern about this method is that the conditions necessary for its validity could be overly

restrictive. For example, Imbens and Newey (2009) prove the existence of a control variable in a

general triangular model under the assumptions that instruments and disturbances are independent,

and that a reduced form for the endogenous variable is strictly monotonic in a scalar disturbance.

These conditions are not innocuous, and imply substantial restrictions on the underlying economic

model. It would thus be important to test their validity in specific empirical applications.

In general, the conditions that are necessary to justify a control variable approach have no

testable implications beyond continuity of the conditional distribution of the endogenous variable

given the instruments. The validity of the control variable approach can thus not be rejected using

data alone without imposing additional restrictions on the model. One such restriction is assuming

that the outcome equation is additively separable in the unobservables as in (Newey, Powell, and

Vella, 1999). Under this assumption conditional expectation of the outcome given the endogenous

covariate and the control variable will be additively separable in the control variable, which is a

testable implication. In this paper, we argue that the conditions that are necessary to justify a
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control variable approach are also testable if the setup exhibits a different structure. Specifically,

we study a nonseparable model where the distribution of the endogenous covariate has a mass point

at the lower (or upper) boundary of its support, is otherwise continuously distributed, and exerts

a continuous effect on the outcome variable of interest. Our main contribution is to show that in

such a setting it is possible to test the validity of the control variable approach to identification by

checking whether a certain identified function is continuous at one particular point. To the best of

our knowledge, our paper is the first to propose a test for this type of hypothesis.

Our test is related to the one presented in Caetano (2012), which exploits the idea that endo-

geneity of a covariate with the above-mentioned properties can be detected through a discontinuity

in the conditional expectation of the outcome variable given the covariate at the boundary. The

main motivation for the approach in the present paper is that if the true causal effect of the covariate

is continuous, then additional conditioning on a control variable should remove this discontinuity.

If the discontinuity remains, however, one has to conclude that the control variable approach is

invalid, and that thus some of the assumptions that were made to justify it have to be violated.

This basic idea is not directly feasible, because in our model the control variable is only identified

in the subpopulation whose realization of the endogenous variable differs from the mass point. While

this is suffices to identify the conditional expectation of the outcome variable given the endogenous

variable and the control variable in any neighborhood of the mass point, it is not enough to learn

the value of that function at the mass point. Therefore it is not directly possible to check for the

presence of a discontinuity. We address this issue by deriving a necessary condition for our main

testable implication, which is feasible to verify in applications.

While the main contribution of this paper is to point out the existence of testable implications

of assumptions commonly made to justify a control variable approach, the question how these

implications can be tested in applications is of course also of interest. Our paper therefore proposes

a test statistic based on the strategy we just laid out. The computation of our test statistic

is straightforward, as it involves only bivariate nonparametric regression and a simple numerical

integration step. The test statistic is asymptotically normal and converges at the one-dimensional

nonparametric rate under standard conditions. We give an explicit formula for its asymptotic

variance, which can be estimated to obtain critical values. Deriving the theoretical properties of

our test statistic is a non-standard problem as it involves running nonparametric regressions on
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estimated data points (the control variable is unobserved, and has to be estimated from the data).

To account for this two-stage structure, we use recent results in Mammen, Rothe, and Schienle

(2012, 2013) on generated covariates in nonparametric models.

Requiring the endogenous variable to be bounded from below (or above) and to have a mass

point at the lower (or upper) boundary of its support obviously restricts the number of empirical

applications in which our testing procedure can be applied. Yet there are many variables with such

a property that appear frequently as potentially endogenous covariates in empirical applications:

weekly hours of work have to be non-negative, and a sizable fraction of the population does not to

work; hourly wages cannot be lower than the local minimum wage, and a sizable fraction of the

population earns exactly the legal minimum; the amount of consumption of some product also has

to be non-negative, and a sizable fraction of the population might not consume this product at all.

Many other examples could easily be given. Our test should therefore be useful for a wide range of

empirical settings.

Our paper contributes to an extensive literature on identification in nonlinear models with

endogeneity. Control variable methods for non- and semi-parametric triangular models are studied

by Newey, Powell, and Vella (1999), Blundell and Powell (2003, 2004), Imbens (2007), Imbens and

Newey (2009), Rothe (2009) and Kasy (2011), among others. Kasy (2013) considers identification

in triangular systems under monotonicity restrictions on the instrument. Instrumental variable

(IV) approaches to identification in nonparametric models with additive disturbances are studied

in Newey and Powell (2003), Hall and Horowitz (2005), Blundell, Chen, and Kristensen (2007), or

Darolles, Fan, Florens, and Renault (2011). Chernozhukov and Hansen (2005) and Chernozhukov,

Imbens, and Newey (2007) consider IV methods in nonseparable models, but with restrictions on

the dimension of the disturbances. Canay, Santos, and Shaikh (2012) show that the completeness

condition, which is necessary for nonparametric IV approaches, is generally not testable.

The remainder of the paper is structured as follows. In Section 2, we formally introduce our

model and review the control variable approach to identification. In Section 3, we explain the

testing problem and describe our testing approach. In Section 4, we derive the test statistic and

study its asymptotic properties. Numerical properties are studied in Section 5, and Section 6

concludes. All proofs are collected in the appendix.
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2. Model and Identification

2.1. Model. In this paper, we consider a triangular system of simultaneous equations as the

data generating process. For simplicity, the system only contains a single potentially endogenous

covariate, but it is allowed to contain an arbitrary number of additional exogenous ones. The main

difference between our setup relative to standard existing frameworks is that we consider the case of

an endogenous variable whose distribution has a mass point at the lower bound of its support. Such

a model could be adequate in settings where natural or legal restrictions lead to corner solutions

in the individuals’ optimization problem that determines the value of the endogenous variable.

Examples for such variables include weekly hours of work (which have to be non-negative), hourly

wages (which have to exceed the minimum wage), or the amount of consumption of a particular

good (which has to be non-negative). Specifically, our model is given by

Y = m1(X,W,U), (2.1)

X = max{c,m2(Z,W, V )}, (2.2)

where Y is the outcome of interest, X is a scalar and potentially endogenous covariate, W is a dW -

dimensional vector of additional exogenous covariates, U and V denote unobserved heterogeneity,

and c is a known constant.

Our model reduces to the one studied in Imbens and Newey (2009) for c ≤ inf{x : x ∈ supp(X)},

since then the maximum operator in (2.2) would obviously become redundant. In this paper,

however, we assume that c is such that

0 < Pr(m2(Z,W, V ) ≤ c|Z,W ) < 1 with probability 1, (2.3)

so that the conditional distribution of X given (Z,W ) has an actual mass point at c, but is not

degenerate. We also assume that the structural function m1 satisfies a weak continuity property in

its first argument:

lim
x↓c

E(m1(x,w,U)|V = v) = E(m1(c, w, U)|V = v) for all (w, v) ∈ supp(W,V ) (2.4)

A sufficient condition for m1 having this property is that the mapping x 7→ m1(x,W,U) is right-

continuous at x = c with probability 1. This seems to be a reasonable assumption for many,

although certainly not all, empirical settings. For the remainder of this paper, we take the threshold
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c to be zero. This can be done without loss of generality by subtracting c from both X and

m2(Z,W, V ).

2.2. Identification. Imbens and Newey (2009) have shown that in the model (2.1)–(2.2) with

c ≤ inf{x : x ∈ supp(X)} a large class of interesting structural parameters can be identified

through control variable arguments. The idea behind this type of identification approach is to

impose additional conditions on the primitives of the model that ensure that there exists a so-called

control variable that can be identified from observable quantities, and that, when conditioned on,

makes covariates and disturbances independent. The purpose of this subsection is simply to show

that an analogous result applies to our model (2.1)–(2.4) under the same conditions.

Assumption 1. The model in (2.1)–(2.4) satisfies the following restrictions:

(i) (W,Z) and (U, V ) are stochastically independent.

(ii) V is scalar and continuously distributed, and without loss of generality its distribution is

normalized such that V ∼ U [0, 1].

(iii) The function v 7→ m2(Z,W, v) is strictly monotone, normalized increasing, with probability 1.

Part (i) of Assumption 1 requires full independence between the instruments and the unobserved

heterogeneity, whereas parts (ii)–(iii) imply that individuals with the same realization of the vector

(X,Z,W ) are also identical in terms of the unobserved heterogeneity V (as long as X > 0), and

would thus respond identically to exogenous variation in the instruments. The following proposition

shows that Assumption 1, which is arguably strong, implies that

V ∗ = FX|ZW (X;Z,W )

is a valid control variable in the subpopulation with X > 0.

Proposition 1. Under Assumption 1 it holds that U ⊥ (X,W )|V ∗ in the subpopulation with X > 0.

Proof. It follows from routine calculations as in Imbens and Newey (2009) that under Assumption 1

we have that U ⊥ (X,W )|V , and that V = V ∗ in the subpopulation with X > 0 (whereas we can

only conclude that 0 ≤ V ≤ V ∗ in the subpopulation with X = 0). Taken together, this implies

the statement of the proposition.
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Identification of various structural parameters of interest requires an additional support condi-

tion of the control variable V ∗.

Assumption 2. The support supp(V ∗|X = x,W = w) of V ∗ conditional on X = x and W = w is

equal to [0, 1] for all (x,w) ∈ supp(X,W |X > 0).

Assumption 2 is a generalization of the usual rank condition in traditional IV models. This

condition would be satisfied if the function z 7→ m2(z, w, V ) exhibits a sufficient amount of variation

over the support of (Z,W ). It thus requires the instruments to be strong enough to induce a large

amount of variation in the endogenous variable. While Assumption 2 is thus restrictive, it is also

directly testable as it only involves observable quantities.

To illustrate how Assumptions 1 and 2 can be used to identify structural objects of interest

in our model (2.1)–(2.4), consider the case of the Average Structural Function (ASF), defined by

Blundell and Powell (2003) as

a(x,w) = E(m1(x,w,U)),

which describes the average outcome of an individual whose covariates (X,W ) are exogenously fixed

at (x,w). The following proposition shows that the ASF can be identified for x > 0 by traditional

arguments, and for x = 0 through the continuity property (2.4). Similar arguments apply to other

structural parameters that are commonly studied in the literature.

Proposition 2. Suppose that Assumptions 1 and 2 hold. Then

a(x,w) =


∫ 1

0 E(Y |X = x,W = w, V ∗ = v)dv if x > 0,

limx↓0
∫ 1

0 E(Y |X = x,W = w, V ∗ = v)dv if x = 0,

and thus the ASF a(x,w) is identified for all (x,w) ∈ supp(X,W ).

Proof. This result is a minor extension of Theorem 1 in Imbens and Newey (2009). From Propo-

sition 1, it follows that E(Y |X = x,W = w, V ∗ = v) = E(m1(x,w,U)|V = v) for all x >

0 and all v. Identification of the average structural function for x > 0 then follows because

a(x,w) :=
∫ 1

0 E(m1(x,w,U)|V = v)dv, which is well defined because of Assumption 2. The conti-

nuity condition (2.4) then implies identification of the average structural function at x = 0, because

a(0, w) =
∫ 1

0 limx↓0 E(m1(x,w,U)|V = v)dv = limx↓0 a(x,w).
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3. Testing the Validity of a Control Variable Approach

As argued above, the assumptions that are necessary to justify a control variable approach are not

innocuous, and can be restrictive in a wide range of settings. When identification arguments rely

on a control variable approach, it is thus important to have a procedure that allows researchers to

investigate empirically whether these conditions holds or not in their particular application. This

section describes such a procedure. We first carefully formulate our testing problem, and show that

without the mass point in the distribution of the endogenous variable there would be no test with

non-trivial power for this problem. We then describe our approach and how it exploits the mass

point, and discuss the types of alternatives it is potentially able to detect.

3.1. Testing Problem. Our aim in this paper is to test the assumptions that justify the validity

of the control variable approach to identification of structural parameters. In that context, it is

important to carefully state the main hypothesis being tested and the set of maintained assumptions.

In this paper, we maintain the assumption that the data generating process is of the form given

in (2.1)–(2.4). We also maintain a weakened version of Assumption 2, namely that

supp(V ∗|X = x,W = w) = (0, 1) for all (x,w) ∈ supp(X,W |δ > X > 0) and some δ > 0. (3.1)

Our justification for maintaining this condition is that, similarly to Assumption 2, it only involves

observable quantities, and can thus be directly verified by practitioners in the context of an empirical

application. Given our maintained assumptions, the central condition for the validity of the control

variable approach is Assumption 1. Our main testing problem is thus given by the following pair

of hypotheses:

H0: Assumption 1 holds vs. H1: Assumption 1 is violated. (3.2)

While the testing problem in (3.2) is important in empirical applications, it is not obvious a

priori that this pair of hypotheses is actually testable. Indeed, the following proposition formally

shows that Assumption 1 would have no testable implications in the model considered by Imbens

and Newey (2009) beyond continuity of the conditional distribution of X given (Z,W ).

Proposition 3. Suppose that the data are generated according to the model (2.1)–(2.2) with c ≤

inf{x : x ∈ supp(X)}, and that X is continuously distributed given (Z,W ). Then Assumption 1

has no further testable implications.
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Proof. Put m̃1(x,w, u) = QY |XW (u|x,w) and m̃2(x,w, v) = QX|ZW (v|x,w), where QA|B(τ |b) de-

notes the conditional τ -quantile of A given B = b. Also let (Ũ , Ṽ ) be a bivariate random vec-

tor drawn independently of the data from the distribution of (FY |XW (Y |X,W ), FX|ZW (Y |X,W )).

Then the distribution of the random vector (Ỹ , X̃,W,Z) generated by the triangular system

Ỹ = m̃1(X̃,W, Ũ) and X̃ = m̃2(Z,W, Ṽ )

is identical to the distribution of (Y,X,W,Z). The above system is thus observationally equivalent

to (2.1)–(2.2) with c ≤ inf{x : x ∈ supp(X)}, but its components clearly satisfy Assumption 1 up

to differences in notation.

3.2. Testing Approach. The result in Proposition 3 shows that our conditions (2.3)–(2.4)

are of central importance for deriving a testable implication of Assumption 1 beyond continuity

properties of the distribution of X. Indeed, we now show that due to the specific structure of our

model Assumption 1 implies a continuity condition on an identified function that can be exploited

for testing purposes. To motivate our approach, define the function

∆̄(w, v) = lim
x↓0

µ(x,w, v)− µ(0, w, v),

where

µ(x,w, v) = E(Y |X = x,W = w, V = v)

is the conditional expectation function of Y given (X,W, V ). Using the structure of the model, the

latter function can clearly be written as

µ(x,w, v) =


E(m1(x,w,U)|m2(Z,w, v) = x,W = w, V = v) if x > 0,

E(m1(x,w,U)|m2(Z,w, v) ≤ x,W = w, V = v) if x = 0.

Since the conditioning sets in the two conditional expectations on the right-hand side of the previous

equation differ, we would generally expect the function µ(x,w, v) to be discontinuous at x = 0 for

at least some (and potentially all) values (w, v) ∈ supp(W )× (0, 1), and thus that ∆̄(w, v) is non-

zero over some set with positive probability. Under the null hypothesis, however, this discontinuity

vanishes. To see this, note that if Assumption 1 holds we have that U⊥(Z,W )|V , and thus the

function µ(x,w, v) simplifies to

µ(x,w, v) = E(m1(x,w,U)|V = v).
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It then follows from condition (2.4) that µ(x,w, v) is right-continuous at x = 0, and thus that

Pr(∆̄(W,V ) = 0) = 1 (3.3)

under the null hypothesis.

The result in (3.3) does not immediately yield a testable implication because the function ∆̄ is

not identified even under the null hypothesis. Recall from the proof of Proposition 1 that under H0

the relationship V ∗ = V holds in the subpopulation with X > 0 only, whereas in the subpopulation

with X = 0 realizations of V ∗ are only an upper bound on realizations of V . This means that

while we are able to learn the function limx↓0 µ(x,w, v) under the null hypothesis, the data is not

informative about µ(0, w, v), and thus does not identify ∆̄.

To address this problem, we derive a necessary condition for the null hypothesis in (3.2) which

only involves quantities that are identified from the data. This condition can then be used as the

basis for a feasible testing procedure. We define the function

∆(w) =

∫
lim
x↓0

µ∗(x,w, v)Γ(dv, w)− E(Y |X = 0,W = w), (3.4)

where

µ∗(x,w, v) = E(Y |X = x,W = w, V ∗ = v), (3.5)

Γ(v, w) =
FU [0,1](v)− Pr(V ∗ ≤ v|X > 0,W = w) Pr(X > 0|W = w)

Pr(X = 0|W = w)
, (3.6)

and FU [0,1] is the CDF of the uniform distribution on the unit interval. The definition of ∆(w) only

involves observed or identified quantities, which together with the maintained assumption (3.1)

implies that the function itself is well-defined and identified from the data under both the null

hypothesis and the alternative. The following theorem shows that it is necessary for the null

hypothesis to be true that ∆(w) is equal to zero over the support of W (up to a set of measure

zero).

Theorem 1 (Main Testable Implication). Under the null hypothesis, Pr(∆(W ) = 0) = 1.

Proof. The main insight is that under H0 we can identify the conditional CDF FV |XW (v, 0, w) of

V given W in the subpopulation with X = 0, even though we cannot identify V itself in this
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subpopulation. To the see this, recall that under the null the unconditional CDF of V is known to

be FU [0,1]. It thus follows from the law of total probability and exogeneity of W that

FU [0,1](v) = Pr(V ≤ v|X > 0,W = w) Pr(X > 0|W = w)

+ Pr(V ≤ v|X = 0,W = w) Pr(X = 0|W = w).

The terms Pr(X > 0|W = w) and Pr(X = 0|W = w) are clearly identified from the data, and

under the null hypothesis we also have that Pr(V ≤ v|X > 0,W = w) = Pr(V ∗ ≤ v|X > 0,W = w)

is identified, because V = V ∗ in the subpopulation with X > 0. Rearranging terms, this shows

that FV |XW (v, 0, w) := Pr(V ≤ v|X = 0,W = w) is equal to Γ(v, w) under the null hypothesis.

By the Law of Iterated Expectations, and using that µ∗(x,w, v) = µ(x,w, v) if x > 0, we then also

find that under the null

∆(w) =

∫ (
lim
x↓0

µ(x,w, v)− µ(x,w, v)

)
FV |XW (dv, 0, w)

=

∫
∆̄(w, v)FV |XW (dv, 0, w).

The statement of the theorem then follows from (3.3).

A natural way to exploit the result in Theorem 1 for creating a feasible testing procedure is to

construct a sample analogue ∆̂(w) of ∆(w), and to reject the null hypothesis when the realization

of ∆̂(·) is “too large” in some suitable norm. We formally describe such an approach in Section 4.

3.3. Detectable Alternatives. The discussion preceding Theorem 1 suggests that the condition

that Pr(∆(W ) = 0) = 1 is generally only necessary but not sufficient for the null hypothesis to

hold. It is therefore possible that there exists a class of fixed data generating processes that belong

to the alternative, in the sense that Assumption 1 is violated, but for which nevertheless the

conclusion of Theorem 1 holds. Naturally, our test would not be able to detect such an alternative.

Instead, it can only be expected to have power against the class of global alternatives that imply

that Pr(∆(W ) 6= 0) > 0. It is thus instructive to gain some understanding about which kind of

deviations from the null hypothesis cannot be detected by our methodology before describing the

specific form of the test statistic and the decision rule.

One group of alternatives that a test based on Theorem 1 is unable to detect are those where

Assumption 1 is violated, but the the joint distribution of (Y,X,W, V ∗) is such that the integral on
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the right-hand-side of equation (3.4) is incidentally equal to E(Y |W = w,X = 0). We are not aware

of any interpretable restrictions on the primitives of the model under which this would be the case,

but it is clear that a joint distribution with this property can be constructed in principle. While we

therefore cannot rule out the existence of such alternatives, we consider this case as pathological,

and would argue that it is unlikely to be encountered in empirical applications.

A second, economically more meaningful group of alternatives that a test based on Theorem 1

cannot detect are those where the control variable is only locally valid for a subgroup of the

population with X close to the threshold. To see this, suppose that Assumption 1 is violated such

that we no longer have that U ⊥ (X,W )|V ∗ in the subpopulation with X > 0, but only in the

subpopulation with 0 < X < δ for some small δ > 0. Then the control variable approach would

be invalid, and e.g. no longer identify the ASF a(x,w) for values x > δ. However, it is easy to see

that the conclusion of Theorem 1 would continue to hold in this case, which means that our test

would have no power. This general behavior is to be expected, as our test explicitly only exploits

potential discontinuities at the threshold. We do not consider this as a weakness of approach, but as

an indication of the difficulty to derive any testable implication from a condition like Assumption 1.

4. Implementing the Testing Approach in Practice

In this section, we describe a feasible approach to testing our null hypothesis in an empirical

application. For simplicity, we focus on the case that the distribution of the exogenous covariates

W is discrete with support {w1, . . . , wK}, but extensions to settings with continuous covariates are

conceptually straightforward. The main idea behind the construction of our test statistic is to take

a sample analogue ∆̂(w) of ∆(w), and to reject the null hypothesis if the vector

∆̂ := (∆̂(w1), . . . , ∆̂(wK))

is “too large” in some suitable norm. We construct such a sample analogue as

∆̂(w) =

∫
µ̂+(w, v)Γ̂(dv, w)− µ̂(w), (4.1)

where µ̂+(w, v) and µ̂(w) are nonparametric estimates of limx↓0 E(Y |X = x,W = w, V ∗ = v) and

E(Y |X = 0,W = w), respectively, and Γ̂ is a nonparametric estimate of the function Γ. The

construction of these estimates is described below. In Theorem 2, we then show that the vector
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∆̂ is asymptotically normal under standard regularity conditions, and characterize the asymptotic

variance. Since the latter can be difficult to estimate, we then consider a simple nonparametric

bootstrap procedure to obtain asymptotically valid p-values for our test.

4.1. Estimation of ∆. We start by describing the construction of the various components that

make up the estimate ∆̂ of ∆ := (∆(w1), . . . ,∆(wK)). The data are given by an i.i.d. sample

{(Yi, Xi, Zi,Wi)}ni=1 of size n from the distribution of (Y,X,Z,W ). First, we estimate the con-

ditional distribution function of FX|Z,W of X given (Z,W ) by local linear estimation (Fan and

Gijbels, 1996):

F̂X|Z,W (x, z, w) = e>1,dz argmin
(a1,a>2 )

n∑
i=1

(
I{Xi ≤ x} − a1 − a>2 (Zi − z)

)2
Kh(Zi − z)I{Wi = w}.

Here Kg(z) =
∏dz
j=1K(zj/g)/g is a dz-dimensional product kernel built from the univariate kernel

function K, g is a one-dimensional bandwidth that tends to zero as the sample size n tends to

infinity, and e1,dz = (1, 0, . . . , 0)> denotes the first unit (dz + 1)-vector. In a second step, we

then use this estimated CDF to define estimates {V̂ ∗i }ni=1 of the realizations of the unobserved but

identified random variable V ∗ = FX|Z,W (X;Z,W ) as

V̂ ∗i = F̂X|Z,W (Xi, Zi,Wi) for i = 1, . . . n. (4.2)

Third, we estimate function Γ(v, w) defined in (3.6) by

Γ̂(v, w) =
FU [0,1](v)−

∑n
i=1 I{V̂ ∗i ≤ v,Xi > 0,Wi = w}/

∑n
i=1 I{Wi = w}

π̂(w)
,

where

π̂(w) =

∑n
i=1 I{Xi = 0,Wi = w}∑n

i=1 I{Wi = w}

is the natural estimate of the conditional probability P (X = 0|W = w). Fourth, we define the

estimate µ̂+(v, w) of the function limx↓0 E(Y |X = x,W = w, V ∗ = v) as

µ̂+(v, w) = e>1,2 argmin
(a1,a>2 )

n∑
i=1

(
Yi − a1 − a>2 (Xi, V̂

∗
i − v)

)2
Kh(Xi, V̂

∗
i − v)I{Xi > 0,Wi = w},

where Kh(x, v) = K(x/h)K(v/h)/h2 is a bivariate product kernel built from the univariate kernel

function K, h is a one-dimensional bandwidth that tends to zero as the sample size n tends to

13



infinity, and e1,2 = (1, 0, 0)>. Finally, we define the estimate µ̂(w) of E(Y |X = 0,W = w) as a

sample average of the observed outcomes Yi among those observations with (Xi,Wi) = (0, w):

µ̂(w) =

∑n
i=1 YiI{Xi = 0,Wi = w}∑n
i=1 I{Xi = 0,Wi = w}

.

For every w ∈ {w1, . . . , wK}, the statistic ∆̂(w) is then constructed as described in (4.1). Note that

because of the particular structure of the estimate Γ̂, the expression given there simplifies to

∆̂(w) =
1

π̂(w)

(∫ 1

0
µ̂+(v, w)dv − 1

n

n∑
i=1

µ̂+(V̂ ∗i , w)I{Xi > 0,Wi = w}

)
− µ̂(w).

The computation of ∆̂(w) is thus straightforward, as it only involves calculating sample averages

and a one-dimensional numerical integration problem.

4.2. Asymptotic Theory. Deriving the theoretical properties of ∆̂, and thus of Tn, is a non-

standard problem because its construction involves a nonparametric regression on the estimated

data points {V̂ ∗i }ni=1. We address this issue by using recent results in Mammen, Rothe, and Schienle

(2012, 2013) on nonparametric regression with generated covariates. Making use of these results

requires the following assumption, which is largely similar to conditions that are commonly imposed

in the context of local linear estimation.

Assumption 3. We assume the following properties for the data distribution, the bandwidths, and

kernel function K.

(i) For every w ∈ supp(W ), the random vector Z is continuously distributed conditional on

W = w with support SZ|w = supp(Z|W = w) ⊂ RdZ . The corresponding conditional density

function fZ|w(·) is continuously differentiable, bounded, and bounded away from zero on SZ|w

for every w ∈ supp(W ).

(ii) The conditional CDF FX|Z,W (x, z, w) of X given (Z,W ) is twice continuously differentiable

with respect to its second argument on SZ|w for every w ∈ supp(W ).

(iii) For every w ∈ supp(W ), the random vector (X,V ∗) is continuously distributed conditional on

X > 0 and W = w with support SXV ∗|X>0,w = supp(X,V ∗|X > 0,W = w). The correspond-

ing conditional density function fXV ∗|X>0,w(·) is continuously differentiable, bounded, and

bounded away from zero on the compact set Sδ,w = {(x, v) : (x, v) ∈ SXV ∗|X>0,w and x ≤ δ}

with δ > 0 as in (3.1) and every w ∈ supp(W ).

14



(iv) The conditional expectation function E(Y |X = x,W = w, V ∗ = v) is twice continuously

differentiable in (x,v) on Sδ,w for every w ∈ supp(W ).

(v) There exist a constant λ > 0 and some constant l > 0 small enough such that the residuals

ε = Y − E(Y |X,W, V ∗) satisfy the inequality E(exp(l|ε|I{X > 0})|X,W, V ∗) ≤ λ.

(vi) The kernel function K is twice continuously differentiable and satisfies the following condi-

tions:
∫
K(u)du = 1,

∫
uK(u)du = 0, and K(u) = 0 for values of u not contained in some

compact interval, say [−1, 1].

(vii) The bandwidths g and h satisfy the following conditions as n → ∞: (a) nh5 → 0, (b)

nh3/ log(n)→∞ , (c) nhg4 → 0 and (d) h2(ngdz/ log(n) + g−4)→∞.

As stated above, Assumption 3 collects conditions that are very common in the literature

on nonparametric regression. Parts (i) and (iii) ensures that the estimates F̂X|ZW (x, z,W ) and

µ̂ + (v, w) are stable over their respective range of evaluation. Parts (ii) and (iv) are smoothness

conditions used to control the magnitude of certain bias terms. Assuming subexponential tails of

ε conditional on (X,W, V ∗) in the subpopulation with X > 0 in part (v) is necessary to apply

certain results from Mammen, Rothe, and Schienle (2012, 2013) in our proofs. Part (vi) describes

a standard kernel function with compact support. At the expense of technically more involved

arguments, this part could be relaxed to also allow for certain kernels with unbounded support. In

particular, the Gaussian kernel would be allowed. Finally, part (vii) collects a number of restrictions

on the bandwidths that are partly standard, and partly sufficient for certain “high-level” conditions

in Mammen, Rothe, and Schienle (2012, 2013).

Assumption 3 allows us to derive the limiting distribution of the random vector ∆̂. To state

the result, we define f+
V ∗|XW (v, 0, w) = limx↓0 fV ∗|XW (v, x, w) and f+

XW (0, w) = limx↓0 fXW (x,w),

let γ(v, w) = ∂Γ(v, w)/∂v, and put

σ2
+(w) = lim

x↓0
Var

(
ε · γ(V ∗,W )

f+
V ∗|X,W (V ∗, 0,W )

∣∣∣∣∣X = x,W = w

)
.

where ε = Y − E(Y |X,W, V ∗) as in Assumption 3(v). Note that under the null hypothesis the

function σ2
+(w) can be expressed in the following, somewhat more intuitive form:

σ2
+(w) = lim

x↓0
Var

(
ε ·

fV |XW (V, 0,W )

f+
V |X,W (V, 0,W )

∣∣∣∣∣X = x,W = w

)
.
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Also, for j ∈ {0, 1, 2} we define the constants

κj =

∫ ∞
0

xjK(x)dx and λj =

∫ ∞
0

xjK(x)2dx,

which depend on the kernel function K only, put

C =
κ2

2λ0 − 2κ1κ2λ1 + κ2
1λ2

(κ2κ0 − κ2
1)2

,

and finally let

ρ2(w) = C ·
σ2

+(w)

f+
XW (0, w)

.

With this notation, we obtain the following result.

Theorem 2. Suppose that Assumption 3 holds. Then

√
nh
(

∆̂−∆
)

d−→ N(0, diag(ρ2(w1), . . . , ρ2(wK))).

Proof. See the appendix.

The theorem shows that in large samples the distribution of the vector ∆̂ approaches a multivari-

ate normal distribution with mean ∆ and diagonal variance matrix diag(ρ2(w1), . . . , ρ2(wK))/(nh).

Note that the rate of convergence is the same as that of a standard one-dimensional kernel smoother.

4.3. Test Statistic and Critical Values. Given the result in Theorem 2, a natural test statistic

for the testing problem in (3.2) is given by

Tn = nh
K∑
k=1

(
∆̂(wk)

ρ̂(wk)

)2

, (4.3)

where ρ̂2(w) is some consistent estimate of ρ2(w) for all w ∈ {w1, . . . , wK}. Such a statistic

asymptotically follows a χ2-distribution with K degrees of freedom under the null hypothesis and

the conditions of Theorem 2. The testing decision is thus to reject H0 at the nominal level α ∈ (0, 1)

if

Tn > χ2
K(1− α),

where χ2
K(τ) denotes the τ -quantile of the χ2-distribution with K degrees of freedom. The following

result formally shows the validity of such an approach.
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Theorem 3. Suppose that Assumption 3 holds, and that ρ̂2(w)
p−→ ρ2(w) for all w ∈ supp(W ).

Then the following statements hold.

(i) Under the null hypothesis, i.e. if ∆(w) ≡ 0,

lim
n→∞

Pr(Tn > χ2
K(1− α)) = α.

(ii) Under any fixed alternative that implies ∆(w) 6= 0 for some w ∈ supp(W ),

lim
n→∞

Pr(Tn > χ2
K(1− α)) = 1.

(iii) Under any local alternative that implies ∆(w) = δ(w)/
√
nh for all w ∈ supp(W ),

lim
n→∞

Pr(Tn > χ2
K(1− α)) = 1− ΞΓ,K(χ2

K(1− α))

where Ξθ,K is the CDF of the noncentral χ2 distribution with K degrees of freedom and

noncentrality parameter θ =
∑K

k=1(δ(wk)/ρ(wk))
2.

Proof. Follows from Theorem 2 using straightforward arguments.

Since Theorem 3 holds for any consistent estimator ρ̂2(w) of ρ2(w), the only remaining issue

for applying our test is to find such an estimator that is feasible to compute in the context of

an empirical application. One possible approach would be to develop a direct sample-analogue

estimator using boundary-corrected nonparametric estimates of the various components of ρ2(w).

Such an estimator is explicitly described in the appendix. However, the approach is unattractive in

practice because it requires additional smoothing parameters and turned out to be very sensitive

to their choice in our simulation experiments. We therefore recommend the use of a nonparametric

bootstrap variance estimator. Such a procedure is computationally expensive, but straightforward

from a practical point of view. The estimator is obtained as follows. Let {(Y ∗i , X∗i , Z∗i ,W ∗i )}ni=1 be

a bootstrap sample drawn with replacement from the observed data {(Yi, Xi, Zi,Wi)}ni=1, and let

∆̂∗(w) be an estimate of ∆(w) computed exactly as described in Section 4.1 but using the bootstrap

sample. Then

ρ̂2(w) = E∗((∆̂∗(w)− ∆̂(w))2),

where E∗ denotes the expectation with respect to bootstrap sampling.
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5. Numerical Evidence

[TO BE COMPLETED]

6. Concluding Remarks

In this paper, we have proposed a test for the validity of a control variable approach to identification

in triangular nonseparable models with endogeneity. To the best of our knowledge, this is the first

test of this type of hypothesis. Our test requires a particular data structure, namely that the

endogenous covariate has a mass point at the lower (or upper) boundary of its support, and is

otherwise continuously distributed. While this is certainly restrictive, we argue that our test is

still useful for a wide range of empirical applications. We propose a test statistic that is simple to

compute, and derive its asymptotic properties.

A. Mathematical Appendix

A.1. Proof of Theorem 2. The result in Theorem 2 follows directly from the three axillary results

in Lemma 1–3 below. To simplify the notation, we assume that the additional exogenous covariates W

are absent from the model, and can thus be dropped from the notation in the following. That is, we have

∆̂(w) ≡ ∆̂, ∆(w) ≡ ∆, etc. The first of these three findings gives a bound on the uniform rate of consistency

of the estimated function Γ̂(·).

Lemma 1. Suppose that the conditions of Theorem 1 hold. Then

sup
v∈supp(V |X=0)

|Γ̂(v)− Γ(v)| = OP (n−1/2) +O(g2).

Proof. Up to terms that are clearly OP (n−1/2), the estimate Γ̂(·) is equal to a continuous and deterministic

transformation of empirical distribution function of the estimates {V̂ ∗i }ni=1 in the subset of the sample with

Xi > 0. The result then follows from arguments analogous to those in Akritas and Van Keilegom (2001).

To state our next result, we introduce an infeasible estimator of the function µ+(v) = limx↓0 E(Y |X =

x, V ∗ = v) that uses the actual realizations of V ∗i = FX|Z(Xi, Zi) instead of the corresponding estimated

values V̂ ∗i . The corresponding estimator is denoted by µ̃+
Y |X,V (0, v). We also define an infeasible version

of our test statistic which uses the population values Γ(·) and E(Y |X = 0) instead of their estimates, and

replaces µ̂+(v) with its infeasible version µ̃+(v):

∆̃ =

∫
µ̃+(v)dΓ(v)− E(Y |X = 0).
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The following lemma derives the asymptotic properties of the infeasible test statistic ∆̃.

Lemma 2. Suppose that the conditions of Theorem 2 hold. Then

√
nh(∆̃−∆)

d→ N

(
0, C ·

σ2
+(0)

f+X(0)

)
.

as n→∞.

Proof. To show this result, we first introduce the additional notation that:

Li(v) = (1, Xj/h, (V
∗
i − v)/h)> · I{Xi > 0},

Mn(v) =
1

n

n∑
i=1

Li(v)Li(v)>Kh(Xi, V
∗
i − v),

Nn(v) = E(Li(v)Li(v)>Kh(Xi, V
∗
i − v)).

With this notation, the local linear estimator µ̃+(v) can be written as

µ̃+(v) =
1

n

n∑
i=1

e>1 Mn(v)−1Li(v)Kh(Xi, V
∗
i − v)Yi.

It also follows from straightforward calculations that the term Nn(v) satisfies

Nn(v) = A lim
x↓0

fV ∗X(v, x) + o(1)

= Af+V ∗|X(v, 0)f+X(0) + o(1)

uniformly in v, where the matrix A is given by

A =


κ0 κ1 0

κ1 κ2 0

0 0 κ∗2

 and κ∗2 =

∫ ∞
−∞

x2K(x)dx.

Note that the structure of A follows from the assumption that the kernel function K is a symmetric density

function. We now introduce a particular stochastic expansion for this estimator, which follows from standard

results in e.g. Masry (1996). Writing

Sn(v) =
1

n

n∑
i=1

e>1 Nn(v)−1Li(v)Kh(Xi, V
∗
i − v)εi

with εi = Yi − E(Yi|Xi, V
∗
i ), we have that

µ̃+(v) = µ+(v) + Sn(v) +O(h2) +OP

(
log(n)

nh2

)
uniformly over v ∈ supp(V |X = 0). Using standard change-of-variables arguments, we find that∫

Sn(v)dΓ(v) =
1

n

n∑
i=1

e>1 Nn(V ∗i )−1L∗iKh(Xi)Γ(V ∗i )εi +O(h2)
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with L∗i = (1, Xi/h, 0)> · I{Xi > 0}. The first term on the right-hand-side of the last equation is a sample

average of n independent random variables, and clearly has mean zero. On the other hand, its variance is

equal to

n−1E((e>1 Nn(V ∗i )−1L∗i )2Kh(Xi)
2Γ(V ∗i )2ε2i )

=
1

nhf+X(0)2

∫ ∞
0

(e>1 A
−1(1, x, 0)>)2K(x)2E

(
Γ(V ∗)2

f+V |X(V ∗, 0)2
· ε2
∣∣∣∣∣X = xh

)
fX(xh)dx+ o

(
1

nh

)

=
1

nhf+X(0)2

∫ ∞
0

(e>1 A
−1(1, x, 0)>)2K(x)2dx · lim

x↓0
E

(
Γ(V ∗)2

f+V |X(V ∗, 0)2
· ε2
∣∣∣∣∣X = xh

)
· lim
x↓0

fX(x) + o

(
1

nh

)
=

1

nhf+X(0)
· C · σ2

+(0) + o

(
1

nh

)
.

The statement of the lemma then follows from an application of Ljapunov’s Central Limit Theorem.

As the final step of our proof of Theorem 2, the following lemma shows that ∆̃ and ∆̂ have the same

first order asymptotic properties.

Lemma 3. Suppose that the conditions of Theorem 1 hold. Then

∆̃− ∆̂ = oP ((nh)−1/2)

as n→∞.

Proof. First, using that µ̂(0) = E(Y |X = 0) +OP (n−1/2) and Lemma 1, we find that

∆̂ =

∫
µ̂+(v)dΓ(v)− E(Y |X = 0) +OP (n−1/2),

since µ̂+
Y |X,V (0, v) is easily seen to be a consistent estimate of a bounded function under the conditions of

the lemma. Similarly, we have that

∆̃ =

∫
µ̃+(v)dΓ(v)− E(Y |X = 0) +OP (n−1/2),

It thus only remains to be shown that∫
µ̂+(v)dΓ(v) =

∫
µ̃+(v)dΓ(v) + oP ((nh)−1/2).

We use recent results on nonparametric regression with generated covariates obtained by Mammen, Rothe,

and Schienle (2012, 2013) to show this statement. For convenience, we repeat the following notation, which

was already introduced in the proof of Lemma 2:

Li(v) = (1, Xi/h, (V
∗
i − v)/h)> · I{Xi > 0},

Mn(v) =
1

n

n∑
i=1

Li(v)Li(v)>Kh(Xi, V
∗
i − v),

Nn(v) = E(Li(v)Li(v)>Kh(Xi, V
∗
i − v)).
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It then follows from an application of Theorem 1 in Mammen, Rothe, and Schienle (2013) that∫
µ̂+(v)− µ̃+(v)− ϕn(v; F̂X|Z)dΓ(v) = oP ((nh)−1/2)

under the conditions of the lemma, where for any conformable function Λ

ϕn(v; Λ) = −(∂m+(v)/∂v)e>1 Nn(v)−1E(Li(v)Kh(Xi, V
∗
i − v)(Λ(Xi, Zi)− FX|Z(Xi, Zi)))

+ e>1 Nn(v)−1E(Li(v)K ′h(Xi, V
∗
i − v)(Λ(Xi, Zi)− FX|Z(Xi, Zi))Ψ(Xi, Zi))

with Ψ(Xi, Zi) = E(Yi|Xi, Zi) − E(Yi|Xi, V
∗
i ), and K ′h(x, v) = ∂Kh(x, v)/∂v. We remark that the two

expectations in the previous equation are both taken with respect to the distribution of (Xi, Zi), so that

the term ϕn(v; F̂X|Z) remains a random variable due to its dependence on the estimate F̂X|Z . Also note

that under the null hypothesis the second summand in the formula for ϕn vanishes, because under correct

specification our model implies that Ψ(Xi, Zi) = 0, and thus the “index bias” term in Mammen, Rothe, and

Schienle (2013) is equal to zero. Next, it follows from the same arguments as in the proof of Theorem 4 in

Mammen, Rothe, and Schienle (2013) that∫
ϕn(v; F̂X|Z)dΓ(v) = OP (n−1/2) +O(h2) +O(g2) +OP

(
log n

ng

)
.

This completes our proof.

B. An Alternative Estimate of the Asymptotic Variance

In this section, we describe a plug-in estimator of ρ2(w) that uses kernel-based nonparametric smoothers to

estimate the various density and conditional expectation functions involved in the definition of the asymptotic

variance of ∆̂. Some technical complications arise from the fact that many of these functions need to be

evaluated at or close to the limits of their support. This is a problem for standard kernel estimators, which

are well-known to be inconsistent at the boundary, and highly biased in its vicinity. Since we only require a

consistent estimate of ρ2(w), and not one that converges with a particular rate, we adopt a simple solution

to this problem and introduce a multiplicative correction term into all estimators of density functions. More

elaborate procedures could to used to achieve better rates of convergence, but those are not necessary for

our main results. The boundary correction terms are of the form

sb(v) = K̄(min{v, 1− v}/b)−1 with K̄(t) =

∫ t

−∞
K(u)du (B.1)

for any b ∈ R and v ∈ (0, 1). We then estimate the function γ(v, w) = ∂Γ(v, w)/∂v by the sample analogue

γ̂(v, w) = (1− ĝ(v, w))/p̂(w),
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where

ĝ(v, w) = sb1(v) ·
∑n

i=1Kb1(V̂ ∗i − v)I{Xi > 0,Wi = w}∑n
i=1 I{Wi = w}

.

Here b1 is a one-dimensional bandwidth that tends to zero as n tends to infinity. By including the boundary

correction term sb1(v) into the definition of ĝ(v, w), we achieve that the estimator γ̂ is uniformly consistent

under weak regularity conditions. We also define

f̂+V ∗|X,W (v;x,w) = sb2(v) ·
∑n

i=1Kb2(V̂ ∗i − v,Xi − x)I{Xi > 0,Wi = w}∑n
i=1Kb2(Xi − x)I{Xi > 0,Wi = w}

and

f̂+XW (0, w) =
2

n

n∑
i=1

Kb1(Xi)I{Xi > 0,Wi = w},

where b2 is another one-dimensional bandwidth that tends to zero as n tends to infinity. Again, consistency

of these two estimates for the corresponding population counterparts is achieved by including a boundary

correction term for the first estimator, and multiplication by two for the second estimator. The estimate the

term σ2
+(w) is given by

σ̂2
+(w) = e>1,1 argmin

(a1,a2)

n∑
i=1

(η̂i − a1 − a2(Xi − x))
2
Kb1(Xi − x)I{Xi > 0,Wi = w}.

where

η̂i = (Yi − µ̂(Xi,Wi, V̂
∗
i )) · γ̂(V̂ ∗i ,Wi)

f̂V ∗|XW (V̂ ∗i , 0,Wi)
,

and

µ̂(x,w, v) = e>1,2 argmin
(a1,a>2 )

n∑
i=1

(
Yi − a1 − a>2 (Xi − x, V̂ ∗i − v)

)2
Kh(Xi − x, V̂ ∗i − v)I{Xi > 0,Wi = w},

which is similar in structure to the estimate µ̂+(w, v) defined above. Our final estimator of ρ2(w) then given

by

ρ̂2(w) = C ·
σ̂2
+(w)

f̂+XW (0, w)
.

The constant C depends on the kernel function and can be computed numerically. For example, C ≈ 1.78581

for the the Gaussian kernel that we use in our simulations below.

Theorem 4. Suppose that Assumption 3 holds, and that bj → 0, nbj →∞ and (ngdz/ log(n) +g−4)/b2j → 0

as n→∞ for j = 1, 2. Then ρ̂2(w)
p−→ ρ2(w) for all w ∈ supp(W ).

Proof. This result follows from straightforward arguments. Let

g(v, w) = ∂ Pr(V ∗ ≤ v,X > 0|W = w)/∂v
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be the population counterpart of ĝ(v, w), and

g̃(v, w) = sb1(v) ·
∑n

i=1Kb1(V ∗i − v)I{Xi > 0,Wi = w}∑n
i=1 I{Wi = w}

.

be an infeasible estimator of g(v, w) that uses the the true V ∗i = FX|ZW (X,Z,W ) instead of the estimates

V̂ ∗i = F̂X|ZW (X,Z,W ). From a simple Taylor expansion, it follows that

sup
v,w
|ĝ(v, w)− g̃(v, w)| = OP

(
max

i=1,...,n
|V̂ ∗i − V ∗i |/b1

)
= op(1)

since maxi=1,...,n |V̂ ∗i −V ∗i | = OP ((ngdz/ log(n))1/2)+O(g−2). Moreover, standard results from kernel density

estimation imply that

sup
v,w
|g̃(v, w)− g(v, w)| = op(1).

Similar arguments can be used to show that f̂+V ∗|XW (v; 0, w) and f̂+XW (0, w) are uniformly consistent esti-

mates of limx↓0 fV ∗|XW (v;x,w) and limx↓0 fXW (x,w), respectively. Consistency of σ̂2
+(0) for σ2

+(0) then

follows from the linearity of the local linear smoothing operator. This completes our proof.
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