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Abstract

We investigate the estimation of models of dynamic discrete-choice games of incomplete
information, formulating the maximum-likelihood estimation exercise as a constrained opti-
mization problem which can be solved using state-of-the-art constrained optimization solvers.
Under the assumption that only one equilibrium is played in the data, our approach avoids
repeatedly solving the dynamic game or finding all equilibria for each candidate vector of the
structural parameters. We conduct Monte Carlo experiments to investigate the numerical per-
formance and finite-sample properties of the constrained optimization approach for computing
the maximum-likelihood estimator, the two-step pseudo maximum-likelihood estimator and the
nested pseudo-likelihood estimator, implemented by both the nested pseudo-likelihood algorithm
and a modified nested pseudo-likelihood algorithm.
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1 Introduction

Empirical models of dynamic games of incomplete information are an important framework within
which to study firms’ strategic behavior. In the past decade, developing econometric methods to
estimate these models has become an active research topic in the empirical industrial organization
and applied econometrics literatures. As models of dynamic games become increasingly sophisti-
cated, estimating the underlying structural parameters and decision policies adopted by firms be-
comes increasingly challenging computationally. The high computational costs of solving dynamic
games during the estimation stage has motivated researchers to propose econometric methods that
provide consistent estimates in large-sample theory, and that are computationally light and easy
to implement in practice. Most of these computationally simple methods belong to the class of
two-step estimators. For example, see Bajari, Benkard, and Levin (2007); Pakes, Ostrovsky, and
Berry (2007); Pesendorfer and Schmidt-Dengler (2008) as well as Arcidiacono and Miller (2011).
The potential drawbacks of two-step estimators are that their estimates can have large biases in
finite samples because insufficient data exist to obtain precise estimates in the first step, and that
researchers might not use an appropriate criterion function in the second step; see the discussion in
Pakes, Ostrovsky, and Berry (2007). To address these issues, Aguirregabiria and Mira (2007) have
proposed the nested pseudo-likelihood (NPL) estimator and the NPL algorithm to compute the
NPL estimator. Using Monte Carlo experiments, Aguirregabiria and Mira demonstrated that the
NPL estimator is less biased than the two-step pseudo maximum-likelihood (2S-PML) estimator.

Pakes, Ostrovsky, and Berry (2007); Pesendorfer and Schmidt-Dengler (2008); Pesendorfer and
Schmidt-Dengler (2010); and Su (2012) have shown that the NPL algorithm can frequently fail
to converge. Even worse, the NPL algorithm may not provide consistent estimates. Kasahara
and Shimotsu (2012) analyzed the convergence properties of the NPL algorithm and suggested
modifications in implementing the NPL algorithm to improve its convergence. Using a simplified
version of a dynamic game model derived from Aguirregabiria and Mira (2007), they illustrated
that their modified NPL (NPL-Λ) algorithm indeed converged and performed well in a Monte Carlo
experiment, while the original NPL algorithm failed.

Su and Judd (2012) have proposed a constrained optimization approach to estimating struc-
tural models, while Dubé, Fox, and Su (2012) applied the constrained optimization approach to
the estimation of random-coefficients logit demand models, successfully solving examples having
tens of thousands of variables and constraints. Su (2012) illustrated that the constrained optimiza-
tion approach can be applied to estimating static games of incomplete information with multiple
equilibria (under the assumption that only one equilibrium is played in each market in the data)
and that it performed better than the NPL estimator in Monte Carlo experiments. Even so, some
researchers remain unsure whether the constrained optimization approach is practical to estimate
dynamic games because it requires solving high-dimensional optimization problems, which can be
computationally demanding.

Following Su and Judd (2012) as well as Su (2012), we have formulated the maximum-likelihood
(ML) estimation problem of dynamic discrete-choice games of incomplete information as a con-
strained optimization problem. Using the dynamic game model of Aguirregabiria and Mira (2007),
we have conducted Monte Carlo experiments to investigate the finite-sample properties and the
numerical performance of the 2S-PML estimator, the NPL estimator implemented by the NPL and
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NPL-Λ algorithms, and the ML estimator implemented by the constrained optimization approach.
Our Monte Carlo results suggest that the constrained optimization approach is more robust and re-
liable than both the NPL and the NPL-Λ algorithms. Indeed, the constrained approach converged
for all data sets in all experiments, while the performance of the NPL and NPL-Λ algorithms varied.
In some cases, the NPL and NPL-Λ algorithms failed to converge. The constrained approach is also
faster than either the NPL or the NPL-Λ algorithm when the size of the state space in the model
increases, but the state transition matrix remains sparse. Although the 2S-PML estimator always
converged in our experiments, this estimator is much less accurate than the ML estimator under the
constrained optimization approach. Overall, when compared to alternative estimators, using the
constrained optimization approach to ML estimation offers valuable returns: reliable convergence,
computational speed, and accurate estimates.

We have organized the remainder of the paper as follows: In Section 2, we describe a model
of dynamic games proposed by Aguirregabiria and Mira (2007), while in Section 3, we present the
constrained optimization formulation for the ML estimation of these games and discuss alternative
likelihood-based estimators and their associated estimation algorithms. In Section 4, we describe
the design of our Monte Carlo experiments and present numerical results. We conclude in Section
5 with a summary as well as a brief description of potential future work.

2 Model

We consider a model of discrete-time, infinite-horizon dynamic games based on the research of
Aguirregabiria and Mira (2007). In each period t = 1, 2, ...,∞, N players exist, each indexed by
i ∈ I = {1, ..., N}; the players operate in a market characterized by size st ∈ S = {s1, . . . , sL}.
We assume that market size is observed by all players and evolves according to the exogenous
stationary transition probability fS(st+1|st), where st, st+1 ∈ S.

At the beginning of each period t, player i observes a vector of common-knowledge state
variables xt and private shocks εti. Players then simultaneously choose whether to be active in the
market. Let ati ∈ A = {0, 1} denote player i’s action in period t and at = (at1, . . . , a

t
N ) denote the

collection of all players’ actions. The common-knowledge state variables, xt consist of market size
and all players’ actions in the previous period, namely, xt =

(
st,at−1

)
∈ X = {S,×i∈IA}. Each

player i also privately observes εti =
{
εti
(
ati
)}

ati∈A
, a vector of choice-contingent shocks to per-

period payoffs. We assume that εti
(
ati
)

has a type-I extreme value distribution that is independent
as well as identically distributed across actions and players as well as over time, and that opposing
players do not observe the realization of εti, but know only its probability density function g(εti).

The state variables (xt, εti) evolve after the decisions at have been made, so their evolution
is described by the exogenous probability distribution function p(xt+1, εt+1

i |xt, εti,at). We further
impose the conditional independence assumption.1 That is,

p
[
xt+1 = (s′,a′), εt+1

i |x
t = (s, ã), εti,a

t
]

= fS(s′|s)1{a′ = at}g(εt+1
i ), (1)

where 1 is the indicator function.

1This is Assumption 2 in Aguirregabiria and Mira (2007).
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Denote by θ the vector of structural parameters and by at−i = (at1, . . . , a
t
i−1, a

t
i+1, . . . , a

t
N ) the

current actions of all players other than i in period t. We specify player i’s per-period payoff
function as Π̃i

(
ati,a

t
−i,x

t, εti;θ
)

= Πi

(
ati,a

t
−i,x

t;θ
)

+ εti
(
ati
)
, which is additively separable in a

common-knowledge component and a private shock. Here, the common-knowledge component
Πi

(
ati,a

t
−i,x

t;θ
)

depends on the current actions of all players at, publicly-observed state variables
xt, and θ. Let β ∈ (0, 1) denote the discount factor. Given the current state (xt, εti), player i
chooses a sequence of decisions to maximize the following total expected discounted payoff:

max
{ati,a

t+1
i ,at+2

i ,...}
IE

[ ∞∑
τ=t

βτ−tΠ̃i

(
aτi ,a

τ
−i,x

τ , ετi ;θ
) ∣∣∣(xt, εti)

]

where the expectation is taken over the state evolution p(xt+1, εt+1
i |xt, εti,at) given in equation (1)

and beliefs about how other players choose their actions.

Since state transition is stationary, we adopt Markov perfect equilibrium as the equilibrium
concept. Thus, we can drop the time index t. It is also convenient to characterize the equilibrium in
terms of the observed state x. Let Pi(ai|x) be the conditional choice probability of player i choosing
action ai ∈ A at state x. Given Pj(aj |x), ∀j 6= i, the expected payoff of the common-knowledge
component Πi (ai,a−i,x;θ) for player i from choosing action ai at state x is

πi (ai|x,θ) =
∑

a−i∈AN−1


 ∏
aj∈a−i

Pj (aj |x)

Πi (ai,a−i,x;θ)

 . (2)

We denote by Vi(x) the expected value function for player i at state x and define P =
{Pi(ai|x)}ai∈A,i∈I,x∈X and V = {Vi(x)}i∈I,x∈X . A Markov perfect equilibrium for this game
is a tuple (V ,P ) that satisfies the following two systems of nonlinear equations.

I. Bellman Optimality. ∀i ∈ I,x ∈ X

Vi (x) =
∑
ai∈A

Pi (ai|x)
[
πi (ai|x,θ) + ePi (ai,x)

]
+ β

∑
x′∈X

Vi
(
x′
)
fPX
(
x′|x

)
= ΨVi (x;V ,P ,θ).

(3)

The first system of nonlinear equations specifies that for each i and x, given conditional choice
probabilities of all players P , the expected value function Vi(x) satisfies the Bellman equation.
Here, fPX (x′|x) denotes the state transition probability of x, given P . Specifically,

fPX
[
x′ = (s′,a′)|x = (s, ã)

]
=

 N∏
j=1

Pj
(
a′j |x

) fS(s′|s). (4)

Given the assumption that εi (ai) follows a type-I extreme value distribution with the scale param-
eter σ, we have2

ePi (ai,x) = Euler’s constant− σ log [Pi (ai|x)] . (5)

2For additional details, see the discussion on page 10 of Aguirregabiria and Mira (2007).
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II. Bayes–Nash Equilibrium.

The second system of equations characterizes a Bayes–Nash equilibrium in conditional choice
probabilities P . First, we define player i’s conditional choice-specific expected value function as

vi (ai|x) = πi (ai|x,θ) + β
∑
x′∈X

Vi
(
x′
)
fPi
(
x′|x, ai

)
, (6)

where fPi (x′|x, ai) denotes the state transition probability conditional on the current state x,
player i’s action ai, and his beliefs P over the conditional choice probabilities of all other players.
Specifically,

fPi
[
x′ = (s′,a′)|x = (s, ã), ai

]
= fS

(
s′|s
)
1
{
a′i = ai

} ∏
j∈I\i

Pj
(
a′j |x

)
. (7)

After the private shocks εi = [εi(0), εi(1)] are observed, player i chooses action ai = j if and
only if

j ∈ arg max
k∈A
{vi (ai = k|x) + εi (ai = k)} .

The conditional choice probability is then defined as

Pi (ai = j|x) = Pr

[
εi

∣∣∣∣vi (ai = j|x) + εi (ai = j) > max
k∈A\j

{vi (ai = k|x) + εi (ai = k)}
]
.

The assumption of a type-I extreme value distribution for εi yields the following closed-form ex-
pression to characterize a Bayes–Nash equilibrium in conditional choice probabilities P :

Pi (ai = j|x) =
exp [vi (ai = j|x)]∑

k∈A
exp [vi (ai = k|x)]

= ΨPi (ai = j|x;V ,P ,θ), ∀i ∈ I, j ∈ A,x ∈ X ,

(8)

where vi (ai = j|x) is defined in equation (6).

This second system of nonlinear equations specifies that across all states, players’ conditional
choice probabilities are in mutual best response, given that each player’s beliefs are consistent with
the choice-specific expected value functions of all players.

To simplify the notation, we define ΨV (V ,P ,θ) = {ΨVi (x;V ,P ,θ)}i∈I,x∈X , and ΨP (V ,P ,θ) =
{ΨPi (ai = j|x;V ,P ,θ)}ai∈A,i∈I,x∈X . We denote the two systems of equations (3) and (8) that
characterize a Markov perfect equilibrium by

V = ΨV (V ,P ,θ) , (9)

P = ΨP (V ,P ,θ) . (10)

3 Estimation

In this section, we first describe the data generating process and then present a constrained opti-
mization approach for ML estimation of this dynamic game. Finally, we discuss other likelihood-
based estimators proposed in the literature.
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3.1 Data Generating Process

The data consist of observations from M independent markets over T periods. We assume these M
markets follow the same exogenous process fS(s′|s) for the market-size transitions and that players’
decisions are independent across these markets. In each market m and time period t, researchers
observe the common-knowledge state variables x̄mt and players’ actions āmt = (āmt1 , . . . , āmtN ). Let
Z =

{
āmt, x̄mt

}
m∈M,t∈T denote the collection of data observed across markets and time.

Denote by θ0 the true value of structural parameters in the population. The vector (V 0,P 0)
contains the corresponding expected value functions and conditional choice probabilities that simul-
taneously solve equations (9) and (10) at θ0. In a dynamic game, multiple Markov perfect equilibria
can exist. Hence, multiple pairs of (V 0,P 0) that satisfy equations (9) and (10) can exist. If mul-
tiple equilibria exist at the true parameter vector θ0, then we assume that only one equilibrium is
played across all markets in the data, a common assumption in the literature; see Aguirregabiria
and Mira (2007); Bajari, Benkard, and Levin (2007); Pakes, Ostrovsky, and Berry (2007); as well as
Pesendorfer and Schmidt-Dengler (2008).3 Thus, the data Z =

{
āmt, x̄mt

}
m∈M,t∈T are generated

from only one Markov perfect equilibrium (V 0,P 0) at the true parameter values θ0.

3.2 ML Estimation

If the observed actions āmt at observed state x̄mt are generated by P for all m and t, then the
logarithm of the likelihood function, given data Z =

{
āmt, x̄mt

}
m∈M,t∈T , is

L (Z;V ,P ,θ) =
N∑
i=1

M∑
m=1

T∑
t=1

log ΨPi (āmti |x̄mt;V ,P ,θ). (11)

To ensure that the conditional choice probabilities P and expected value functions V are consistent
with Bayes–Nash equilibrium at the given structural parameters θ, we impose equations (9) and
(10) as constraints. Thus, a constrained optimization formulation of the ML estimation problem
of this dynamic game is

max
(θ,P ,V )

1

M
L (Z;V ,P ,θ)

subject to V = ΨV (V ,P ,θ) (12)

P = ΨP (V ,P ,θ) .

Let the vector (θMLE ,PMLE ,V MLE) be a solution of the constrained optimization problem defined
above. Then θMLE denotes the ML estimator.

Aitchison and Silvey (1958) have demonstrated that the ML estimator formulated in (12) is
consistent as well as asymptotically normal; see also Section 10.3 in Gourieroux and Monfort (1995).
We state this result and the proof in Appendix A.

3Moment inequality estimators, such as those investigated in Ciliberto and Tamer (2009) or Pakes, Porter, Ho,
and Ishii (2011) or Tamer (2003), do not require this assumption.
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While it has been stated in the literature that when computing a ML estimator researchers
must solve for all the Markov perfect equilibria at each candidate of the structural parameter vector
(see for example, Aguirregabiria and Mira (2007, p. 16) as well as Kasahara and Shimotsu (2012)),
this statement is true only when researchers use the nested fixed-point algorithm. When the con-
strained optimization approach is used, one does not need to solve for all Markov perfect equilibria
at every guess of the structural parameters. Two reasons exist: first, modern constrained optimiza-
tion solvers do not force the constraints to be satisfied during the iteration process; constraints
are satisfied (and an equilibrium solved) only when the iterates converge to a (local) solution;
second, the constrained optimization approach only needs to find those equilibria together with
structural parameters that are local solutions and satisfy the corresponding first-order conditions
of the constrained optimization problem (12). Any pair of a vector of structural parameters and a
corresponding equilibrium that does not satisfy the first-order conditions of (12) is not a solution to
the ML estimation problem. This characterization permits one to eliminate a large set of equilibria
together with structural parameters that do not need to be solved by the constrained optimization
approach.

3.3 Alternative Dynamic Games Estimators

Hotz and Miller (1993) proposed a two-step estimation strategy within the context of single-agent
dynamic models. The main insight of Hotz and Miller was to estimate the expected value function
directly from the data without solving the Bellman equation, hence reducing the computational
burden of estimating dynamic models. Subsequently, researchers have generalized this idea to
estimate dynamic games and have developed various two-step estimators that are computationally
light and easy to implement. For example, see Bajari, Benkard, and Levin (2007); Pakes, Ostrovsky,
and Berry (2007); as well as Pesendorfer and Schmidt-Dengler (2008). A potential drawback of
two-step estimators is that they can be more biased than the ML estimator in finite samples,
particularly when the first-step estimates are imprecise, or if a suitable criterion function is not
used in the second step; see the discussion in Pakes, Ostrovsky, and Berry (2007).

In an effort to reduce finite-sample bias associated with two-step estimators, Aguirregabiria
and Mira (2007) proposed the NPL estimator and the NPL algorithm, a recursive computational
procedure over the 2S-PML estimator to compute the NPL estimator. While the NPL estimator
performed well in their Monte Carlo experiments, convergence of the NPL algorithm can be a
problem. Furthermore, the NPL algorithm may converge to the wrong estimates if the data are
generated by an equilibrium that is unstable under best response iterations; see Pesendorfer and
Schmidt-Dengler (2010) for such an example and Su (2012) on the performance of the NPL algo-
rithm in a static discrete-choice game. Kasahara and Shimotsu (2012) provided theoretical analysis
of the convergence of the NPL algorithm and proposed modified NPL algorithms to alleviate the
convergence issue of the NPL algorithm.

We describe three approaches to estimating dynamic games: the 2S-PML estimator, the NPL
algorithm of Aguirregabiria and Mira (2007), and the NPL-Λ algorithm of Kasahara and Shimotsu
(2012) for computing the NPL estimator.4 We do not discuss other two-step estimators such as those

4Kasahara and Shimotsu (2012) also proposed a recursive projection method and a q-NPL algorithm. We do not
consider these two methods here because they are more computationally demanding.
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of Bajari, Benkard, and Levin (2007); Pakes, Ostrovsky, and Berry (2007) as well as Pesendorfer
and Schmidt-Dengler (2008). Instead, we focus on comparing the performance of the ML estimator
with that of alternative likelihood-based estimators in our Monte Carlo experiments.

3.3.1 Two-Step Pseudo-Maximum Likelihood

In the first step of a two-step estimator, one can nonparametrically estimate the conditional choice
probabilities from the observed data Z using, for example, the frequency estimator. Denote by P̂
a consistent estimator of the true conditional choice probabilities P 0. This nonparametric estimate
P̂ is then fixed and used to evaluate the right-hand side of equation (9):5

V = ΨV
(
V , P̂ ,θ

)
.

The second step of the 2S-PML estimator involves solving the following optimization problem:

max
(θ,V )

1
ML

(
Z;V , P̂ ,θ

)
subject to V = ΨV

(
V , P̂ ,θ

)
.

(13)

From equation (3), we can see that once P is fixed at P̂ , the variables V and θ are addi-

tively separable. Define V i = [Vi(x)]x∈X ∈ IR|X |, F P̂X =
[
f P̂X (x′|x)

]
x,x′∈X

∈ IR|X |×|X |, P̂ i(ai) =

[P̂i(ai|x)]x∈X ∈ IR|X |, eP̂i (ai) = [eP̂i (ai,x)]x∈X ∈ IR|X |, and πi(ai,θ) = [πi(ai|x,θ)]x∈X ∈ IR|X |.
Equation (3) can then be rewritten in matrix notation as[

I− βF P̂X
]
V i =

∑
ai∈A

[
P̂ i(ai) ◦ πi(ai,θ)

]
+
∑
ai∈A

[
P̂ i(ai) ◦ eP̂i (ai)

]
where I is an identity matrix in IR|X |×|X | and the notation A ◦B denotes the Hadamard product
of two matrices A and B. Thus, one can explicitly express V i in terms of structural parameters θ:

V i =
[
I− βF P̂X

]−1

∑
ai∈A

[
P̂ i(ai) ◦ πi(ai,θ)

]
+
∑
ai∈A

[
P̂ i(ai) ◦ eP̂i (ai)

] , for all i ∈ I, (14)

or in a compact notation
V = Γ(θ, P̂ ). (15)

By replacing the constraint in problem (13) with equation (15), through a simple elimination of
variables V , the optimization problem (13) is equivalent to the unconstrained optimization problem

max
θ

1

M
L
(
Z; Γ(θ, P̂ ), P̂ ,θ

)
.

The 2S-PML estimator is then defined as

θ2S−PML = argmax
θ

1

M
L
(
Z; Γ(θ, P̂ ), P̂ ,θ

)
. (16)

5This requires researchers to evaluate fP
X (x′|x), ePi (ai,x), and fP

i (x′|x, ai) using P̂ in equations (4), (5), and
(7), respectively.
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The 2S-PML estimator is considered computationally light because it avoids solving Bayes–
Nash equilibrium equation (10); also researchers estimate P̂ directly from the data. Nevertheless,
solving the optimization problem (16) or, equivalently, solving problem (13) in the second step,
although easier than problem (12) for the ML estimator, may not be trivial. Researchers still need

to solve the Bellman equation for each player as constraints in (13) or invert the matrix
[
I− βF P̂X

]
in (14) for every guess of structural parameters θ in solving the unconstrained optimization problem
(16), a task that can be computationally expensive when the state space |X | is large.

Note, too, that at the solution θ2S−PML, the first-step estimate P̂ may not satisfy Bayes–Nash
equation (10) and is not a Bayes–Nash equilibrium. In finite samples, the bias in the first-step
estimate P̂ can potentially lead to large biases in parameter estimates θ2S−PML in the second step,
particularly when the pseudo-likelihood function is used as the criterion function; see the discussion
in Pakes, Ostrovsky, and Berry (2007).

3.3.2 NPL Estimator

Aguirregabiria and Mira (2007) proposed an NPL estimator for estimating dynamic discrete-choice
games. Any point (θ̃, P̃ ) that satisfies the conditions below is called an NPL fixed point:

θ̃ = argmax
θ

1

M
L
(
Z; Γ(θ, P̃ ), P̃ ,θ

)
.

P̃ = ΨP
(
Γ(θ̃, P̃ ), P̃ , θ̃

)
.

(17)

In principle, more than one NPL fixed point can exist. An NPL estimator (θNPL,PNPL) is the
NPL fixed point that yields the highest objective value in (17). Note that the NPL estimator
satisfies Bayes–Nash equilibrium equation (10). Thus, one would expect it to perform better than
the 2S-PML estimator in finite samples.

Aguirregabiria and Mira (2007) also proposed a computational procedure referred to as the NPL
algorithm to find an NPL fixed point. The NPL algorithm recursively iterates over the 2S-PML
estimator and is described as follows. First, choose an initial guess of equilibrium probabilities P̃ 0.
For K ≥ 1, the NPL algorithm iterates the following steps until convergence or until the maximum
number of iterations K̄ is reached:

Step 1. Given P̃K−1, solve θ̃K = argmax
θ

1

M
L
(
Z; Γ(θ, P̃K−1), P̃K−1,θ

)
.

Step 2. Given θ̃K , update P̃K by P̃K = ΨP
(
Γ(θ̃K , P̃K−1), P̃K−1, θ̃K

)
; increase K by 1.

If the maximum number of iterations K̄ is reached before the NPL algorithm converges, then we
declare a failed run and restart with a new initial guess P̃ 0. If the NPL algorithm converges after
K iterations (K ≤ K̄), then (θ̃K , P̃K) satisfies the NPL fixed-point conditions (17).

Researchers have expressed concerns involving the convergence properties of the NPL algorithm.
For example, see Pakes, Ostrovsky, and Berry (2007); Pesendorfer and Schmidt-Dengler (2010); and
Su (2012). While Aguirregabiria and Mira (2007) reported that they always obtained convergence of
the NPL algorithm in their Monte Carlo experiments, examples in Su (2012) indicate that the NPL
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algorithm often fails to converge, even in static discrete-choice games. Even worse, Pesendorfer and
Schmidt-Dengler (2010) demonstrated in a stylized example and Su (2012) demonstrated in Monte
Carlo experiments of static discrete-choice games that NPL can converge to the wrong estimates.
In a recent paper, Kasahara and Shimotsu (2012) demonstrated that the NPL algorithm will
converge, provided that a local stability condition is satisfied at the solution. Without knowing
the true parameter values, however, this local stability condition cannot be verified. Therefore, in
practice, the theoretical analysis provided by Kasahara and Shimotsu does not inform researchers
a priori whether the NPL algorithm will converge or whether it converges to the correct estimates.
In summary, while the NPL estimator is well defined, the NPL algorithm may fail to converge; even
if the NPL algorithm converges, it may fail to recover the true values of the underlying primitives.

3.3.3 A Modified NPL Algorithm

To improve the convergence properties of the NPL algorithm, Kasahara and Shimotsu (2012)
introduced the NPL-Λ algorithm to compute an NPL estimator. The NPL-Λ algorithm alters the
updating of P̂K in Step 2 of the NPL algorithm to

P̃K =
(

ΨP
(
Γ(θ̃K , P̃K−1), P̃K−1, θ̃K

))λ (
P̃K−1

)1−λ
(18)

where λ is chosen to be between 0 and 1. Note that the NPL-Λ algorithm when λ = 1 is identical
to the NPL algorithm.

The idea behind modifying the second step of the NPL algorithm is similar to that of the
successive over- and under-relaxation methods in numerical analysis. Such methods are used to
improve the contraction rate of diverging iterative processes; see Ortega and Rheinboldt (1970).
The scalar λ represents a partial step length used in the dampening procedure. Ideally, the choice
of λ depends on the spectral radius of a Jacobian matrix at the solution θNPL. In practice, since
θNPL is unknown prior to estimation, Kasahara and Shimotsu proposed computing the spectral
radius of the Jacobian matrix evaluated at the two-step estimator or use a small value of λ if it is
demanding to compute the Jacobian matrix.

3.4 Scalability of the Constrained Optimization Approach

Since the constrained optimization approach requires optimizing over a much larger number of
dimensions, one potential concern is its capability to estimate empirically relevant dynamic games;
see Aguirregabiria and Nevo (2010) as well as Kasahara and Shimotsu (2012). To address this
concern, we demonstrate below that the constraint Jacobian as well as the Hessian of the Lagrangian
of the constrained optimization problem (12) are sparse under certain modeling specifications.
State-of-the-art constrained optimization solvers use sparse matrix routines to exploit this sparsity.
Consequently, the solvers can accelerate the computations, economize on memory usage, and permit
users to solve high-dimensional optimization problems, those on the order of 100,000 variables and
constraints.6

6All researchers need to do is provide sparsity information to optimization solvers.
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As discussed in Section 3.3, the size of the optimization problem (13) in the second step of the
2S-PML estimator as well as the NPL and NPL-Λ algorithms is half the size of the constrained
optimization problem (12) for ML estimation. For large-scale dynamic games, the problem (13)
will be high dimensional as well. Without utilizing sparse matrix techniques, researchers will not be

able to solve a high-dimensional problem like (13) or invert the high-dimensional matrix
[
I− βF P̂X

]
in IR|X |×|X | in equation (14).

We derive an upper bound on the density of the constraint Jacobian and Hessian of the Lagra-
gian, denoted by DJ and DH respectively, of the constrained optimization problem (12).7 Recall
that |S| is the number of grid points in the market size state space and |θ| is the number of struc-
tural parameters. Let δs denote the maximum incremental change in market size in one period; for
example, given st, the market size in the next period st+1 ∈ {st − δs, st − δs + 1, . . . , st, . . . , st +
δs − 1, st + δs}.

Proposition 1 (Density Bounds).

(a) Given binary action space A = {0, 1}, we have

DJ ≤
2

9

(
2δs + 1

N · |S|
+

|θ|+ 1

N · |S| · 2N
+

1

|S| · 2N−1

)
,

DH ≤
1

9

(
2δs + 1

N · |S|
+

4

|S| · 2N
+

4 · (2δs + 1)

|S|
+

6 · |θ|
N · |S| · 2N

+

(
|θ|

N · |S| · 2N

)2
)
.

(b) The upper bounds on DJ and DH are decreasing in |S| and N .

(c) For fixed |S| and N , the upper bounds on DJ and DH decrease when δs decreases.

The proof is provided in Appendix B. As the size of the state space grows large, the constraint
Jacobian and Hessian matrices become more sparse, which helps to alleviate the increase in com-
putational burden arising from having more variables and constraints. We calculate the density of
the constraint Jacobian and Hessian matrices for different values of |S|, N , and |θ| in Table 7 in
Appendix C. Figure 1 illustrates the sparsity pattern of the constraint Jacobian and the Hessian for
an example with N = 5, |S| = 5, and δs = 1, which results in a constrained optimization problem
with 2400 constraints and 2408 variables. The densities of the corresponding constraint Jacobian
and Hessian matrices for this example are around 2.7 percent and 23 percent, respectively.

7The density of a matrix is the ratio between the number of nonzero elements and the total number of elements
in the matrix.
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(a) Constraint Jacobian. (b) Hessian of the Lagrangian function.

Figure 1: Sparsity Pattern of Constraint Matrices with |S| = 5 and N = 5

4 Monte Carlo Experiments

We conducted Monte Carlo experiments to investigate the performance of the ML estimator, the
2S-PML estimator, and the NPL estimator implemented by both the NPL algorithm and the NPL-
Λ algorithm. We describe the experimental design in Section 4.1 and report the Monte Carlo results
in Section 4.2.

4.1 Experimental Design

We considered three experiment specifications, with two cases in each experiment. In the first
experiment, we used the example of Kasahara and Shimotsu (2012), which is a simplified version of
the example of Aguirregabiria and Mira (2007). In the second experiment, we used the example of
Aguirregabiria and Mira (2007). In the third experiment, we increased the set of possible market
size values used in the second experiment. We describe the details of our experimental design
below.

Experiment 1: Kasahara and Shimotsu (2012) example
This example has N = 3 players. The set of possible values for market size is S = {2, 6, 10},
and the total number of grid points in the state space is |X | = |S| × |A|N = 3 × 23 = 24. The
common-knowledge component of the per-period payoff Πi is given as

Πi

(
ati,a

t
−i,x

t;θ
)

=


θRS log

(
st
)
− θRN log

1 +
∑
j 6=i

atj

− θFCi − θEC
(
1− at−1

i

)
, if ati = 1,

0 if ati = 0,

where θ =
(
θRS , θRN ,θFC , θEC

)
is the vector of structural parameters with θFC = {θFCi }Ni=1.

For this experiment, the ML estimator solves the constrained optimization problem (12) with 216
constraints and 218 variables.
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Following Kasahara and Shimotsu (2012), we chose the discount factor β = 0.96 and the
scale parameter of the type-I extreme value distribution σ = 1. We fixed the values of structural
parameters θFC = (1.0, 0.9, 0.8) and θEC = 1, and estimated only θRS and θRN .

We considered two sets of parameter values for θRS and θRN in this experiment:

Case 1: (θRN , θRS) = (2, 1);

Case 2: (θRN , θRS) = (4, 1).

Experiment 2: Aguirregabiria and Mira (2007) example
This example has N = 5 players and five possible values for market size, S = {1, 2, . . . , 5}. The
number of points in the state space is |X | = |S| × |A|N = 5 × 25 = 160. The function Πi is given
as8

Πi

(
ati,a

t
−i,x

t;θ
)

=


θRSst − θRN log

1 +
∑
j 6=i

atj

− θFCi − θEC
(
1− at−1

i

)
, if ati = 1,

0 if ati = 0.

Following Aguirregabiria and Mira (2007), we fixed β = 0.95 and σ = 1. In this experiment,
we estimated all the structural parameters θ. For this experiment, the ML estimator solves the
constrained optimization problem (12) with 2,400 constraints and 2,408 variables.

We chose θFC = (1.9, 1.8, 1.7, 1.6, 1.5) and θEC = 1 as true parameter values. For θRN and
θRS , we considered the following two cases:

Case 3: (θRN , θRS) = (2, 1);

Case 4: (θRN , θRS) = (4, 2).

Note that the choices of parameter values in Case 3 are the same as those in Experiment 3 in
Aguirregabiria and Mira (2007).

Experiment 3: Examples with increasing |S|, the number of market size values
In this experiment, we considered two sets of market size values:

Case 5: |S| = 10 with S = {1, 2, . . . , 10};
Case 6: |S| = 15 with S = {1, 2, . . . , 15}.

All other specifications remain the same as those in Case 3 in Experiment 2. Our purpose is to
investigate the performance of these estimators when estimating games with a larger number of
states. For this experiment, the ML estimator solves the constrained optimization problem (12)
with 4,800 constraints and 4,808 variables for |S| = 10, and 7,200 constraints and 7,208 variables
for |S| = 15.

8The first term in Πi is given as θRS log
(
st
)

in equation (48) of Aguirregabiria and Mira (2007); however, their

Gauss code am econometrica 2007 montecarlo.prg used the term θRSst. Thus, we decided to follow the specification
in their code.

13



In all three experiments, the market size transition probabilities are given by the following
|S| × |S| matrix:

fS(st+1|st) =


0.8 0.2 0 · · · 0 0
0.2 0.6 0.2 · · · 0 0
...

...
. . .

. . .
...

...
0 0 · · · 0.2 0.6 0.2
0 0 · · · 0 0.2 0.8

 .

Data Simulation
Given the model primitives, we solved equations (9) and (10) for (V ,P ) at the given structural
parameter values specified in each of the six cases above. For each case, we used 100 starting values
to find multiple equilibria, but found only a single equilibrium. In their Monte Carlo experiments,
Aguirregabiria and Mira (2007) and Kasahara and Shimotsu (2012) also found a unique equilibrium
at the true parameter values for these examples. Hence, we do not need to consider equilibrium
selection issues in the data generating process.

For each case in Experiments 1 and 2, we constructed data sets of three sizes with M = 400
markets and T = 1, 10 and 20 periods. For each T , we simulated 100 data sets. For Cases 5 and 6
in Experiment 3, we constructed 50 data sets with M = 400 markets and T = 10 periods.

Algorithm Implementation
We used AMPL as the programming language and KNITRO, a nonlinear optimization solver, to
solve the optimization problem for each estimator with the default optimality and feasibility toler-
ance 1.0e-6. For Experiment 1, we set the maximum number of NPL and NPL-Λ iterations to be
K̄ = 250. For Experiments 2 and 3, we set K̄ to 100. We chose 1.0e-6 as the convergence toler-
ance for the NPL and the NPL-Λ algorithm. If the difference of parameter values and equilibrium
probabilities in successive iterates is less than the chosen tolerance before the maximum number
of iterations K̄ is reached, then we declare the NPL or the NPL-Λ algorithm converges; otherwise,
we declared that they failed to converge in that run. For the NPL-Λ algorithm, we chose λ = 0.5
for the updating in equation (18). For Experiments 1 and 2, we used 10 starting values for each of
the 100 data sets when implementing each estimator. For Experiment 3, we used 5 starting values
for each of the 50 data sets.

4.2 Numerical Results

In this subsection, we discuss the results of our Monte Carlo experiments.

Experiment 1. In Table 1, we have collected the results for Case 1, with (θRN , θRS) = (2, 1).
In this case, all estimation algorithms converged for all data sets. All estimators produced fairly
precise estimates, except for the 2S-PML estimator with T = 1. As expected, these estimates
become more precise as T increases. Recall that for each data set, we used 10 starting values.
The constrained optimization approach converged for around 920 runs for T = 1 and 980 runs for
T = 20; all the other algorithms converged in all 1,000 runs. Note that the constrained approach
is faster than either NPL or NPL-Λ; with T = 1, the constrained approach took only 0.27 seconds
per run compared to 0.45 seconds per run for NPL, a factor of about 1.6. The speed advantage
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increases as T increases. With T = 20, the constrained approach took only 0.15 seconds per run
compared to 1.01 seconds per run for NPL, a factor of more than 6.

In Table 2, we have collected the results for Case 2, with (θRN , θRS) = (4, 1). In this case, both
NPL and NPL-Λ failed to converge before reaching the maximum number of iterations K̄ = 250 for
all data sets. In contrast, both the constrained approach and 2S-PML converged for all 100 data
sets, although the constrained optimization approach converged for only 735 out of 1,000 runs for
T = 1, and 820 runs for T = 20. The constrained approach also yielded more precise estimates than
the 2S-PML estimator. With T = 1, the constrained approach yielded mean estimates of 4.055 for
θRN (standard deviation 0.613) and 1.003 for θRS (standard deviation 0.158), while 2S-PML gave
imprecise mean estimates of 3.107 for θRN (standard deviation 0.442) and 0.839 for θRS (standard
deviation 0.099).

Experiment 2. In Table 3, we have collected the results of the experiment for Case 3. In this case,
NPL converged for only 53 data sets for T = 1 to 67 data sets for T = 20. The NPL-Λ algorithm
worked quite well in this experiment. It significantly improved the convergence properties of the
NPL algorithm, converging in all 100 data sets for different T and obtaining more accurate estimates
than those of the NPL algorithm for T = 20. The mean estimates of the 2S-PML estimator
for parameters θRN and θRS are quite biased for T = 1 and T = 10, and are more than two
standard deviations away from the true parameter values. The constrained optimization approach
converged for all 100 data sets for each T . Its runtime and accuracy of estimates are comparable
to those of the NPL-Λ algorithm for T = 10, and T = 20. For T = 1, however, the constrained
optimization approach was slow, needing 216 seconds per run, on average; its mean estimates are
more biased than those of the NPL-Λ algorithm. Further inspection of the converged likelihood
values revealed that the constrained optimization approach yielded higher likelihood values than
the NPL-Λ algorithm for all 100 data sets for T = 1.

In Table 4, we have collected the results for Case 4. NPL converged for only 2 out of 100 data
sets for T = 1 and failed to converge for all 100 data sets for T = 10 and T = 20. NPL-Λ performed
better than the NPL algorithm, but failed more frequently than it did in Case 3, converging in 84
out of 100 data sets for T = 1 and only 53 data sets for T = 20. Similar to the findings in Case
3, the 2S-PML estimator produced inaccurate estimates of parameters θRN and θRS , particularly
for T = 1 and T = 10; for instance, with T = 1 the mean 2S-PML estimates of θRN and θRS are
0.624 (standard deviation 0.393) and 0.759 (standard deviation 0.150), respectively, while the true
values are θRN = 4 and θRS = 2. For T = 20, the mean estimates of θRN and θRS of 2S-PML are 4
standard deviations away from the true values. The constrained optimization approach converged
for all 100 data sets for different T , although it converged for only 582 runs (out of 1,000) for T = 1;
it also produced fairly accurate estimates of all structural parameters.

Note that in Experiments 1 and 2, the constrained optimization approach failed more frequently
for T = 1 than for T = 20; its computing time was also longer for T = 1 than for T = 20. One
possible explanation is that with fewer observations in the data (T = 1), the likelihood function is
flatter than that with more observations (T = 20), which makes the optimization problems in the
former case more challenging to solve.

Experiment 3. In Table 5, we have collected the results of Case 5. With |S| = 10, the NPL
algorithm often failed to converge, finding a solution for only 23 of 50 data sets (or 76 out of 250
runs), and produced highly biased estimates of the parameter θRS for the converged data sets,
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with a mean estimate of 1.966 (standard deviation 0.036) versus the true value θRS = 1. The
constrained optimization approach and the NPL-Λ algorithm converged for all 50 data sets and
produced similar estimates for all structural parameters. However, with |S| = 15 as shown in Table
6, the NPL algorithm failed to converge for all 50 data sets, and the NPL-Λ algorithm converged
for only 1 of 50 data sets. The constrained optimization approach converged for all 50 data sets (or
222 out of 250 runs), and produced accurate estimates of all parameters. In both Cases 5 and 6, the
2S-PML estimator produced highly biased estimates of θRN and θRS . In terms of computational
speed, the 2S-PML estimator was around 25 to 30 times faster than the constrained optimization
approach in this experiment.

Recall that the specifications in Experiment 3 are identical to those in Case 2 in Experiment
2 except that we increased the number of grid points in the market size state space from 5 to 10
and 15 in Case 5 and 6, respectively. It is surprising to see that the NPL and NPL-Λ algorithms
failed to converge for all data sets when we simply increased the size of the state space, but fixed
the true parameter values in the data generating process. Our findings suggest that, for dynamic
games with a higher dimensional state space, NPL and NPL-Λ algorithms may not perform as well
as researchers have believed. While the NPL-Λ algorithm does improve the convergence of the
NPL algorithm, the NPL-Λ algorithm still fails to converge in several cases, as demonstrated in
our Monte Carlo experiments.

Aguirregabiria and Nevo (2012) have argued that with multiple equilibria, it is reasonable to
assume that only Lyapunov-stable (or best-response stable) equilibria will be played in the data, in
which case the NPL algorithm should converge. As we stated earlier, however, a unique equilibrium
exists at the true parameter values in the examples used in our Monte Carlo experiments. The fact
that the NPL and NPL-Λ algorithms can fail to converge in all data sets, even when the model
has a unique equilibrium at the true parameter values, suggests that in practice these recursive
methods are not reliable computational algorithms and should be used with caution.

5 Conclusion

In this paper, we have formulated the ML estimation of dynamic discrete-choice games of incomplete
information as a constrained optimization problem. We have compared the numerical performance
of our constrained approach to the 2S-PML estimator, which suffers from large finite-sample biases
in many cases, and to the NPL and NPL-Λ algorithms, which suffer from convergence issues. The
constrained optimization approach for ML estimation produces accurate parameter estimates and
has superior convergence properties when compared to the NPL and NPL-Λ algorithms.

Our Monte Carlo experiments have demonstrated that the lack of convergence of NPL and NPL-
Λ is not a trivial issue in practice. In contrast, the performance of the constrained optimization
approach is robust to changes in both the size of the model and to the true values of the structural
parameters. Furthermore, the constrained optimization approach has a speed advantage over NPL
and NPL-Λ that is increasing with the number of variables and states, so long as the constraint
Jacobian and the Hessian of the constrained optimization problem are relatively sparse. Our
results suggest that the constrained optimization approach for ML estimation is, indeed, practical
and computationally feasible for estimating dynamic games with a moderate number of grid points
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in the state space.

For future research, we plan to explore using the constrained approach in games with unob-
served heterogeneity, such as the model in Arcidiacono and Miller (2011). We also plan to improve
the numerical implementation of the constrained optimization approach to estimate dynamic games
with higher dimensional state spaces.
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Table 1: Monte Carlo Results for Case 1.

M T Estimator Estimates CPU Time Data Sets Runs Avg. NPL(-Λ)
θRN θRS (in sec.) Converged Converged Iter.

Truth 2 1 – – – –
400 1 MLE 1.895 0.961 0.27 100 917 –

(0.580) (0.156)
400 1 2S-PML 1.134 0.753 0.02 100 1000 –

(0.616) (0.171)
400 1 NPL 1.909 0.964 0.45 100 1000 30

(0.628) (0.168)
400 1 NPL-Λ 1.909 0.964 0.42 100 1000 28

(0.628) (0.168)

400 10 MLE 1.970 0.992 0.16 100 964 –
(0.158) (0.042)

400 10 2S-PML 1.819 0.951 0.03 100 1000 –
(0.236) (0.062)

400 10 NPL 1.963 0.991 0.61 100 1000 22
(0.191) (0.050)

400 10 NPL-Λ 1.963 0.991 0.56 100 1000 20
(0.191) (0.050)

400 20 MLE 2.001 1.000 0.15 100 979 –
(0.118) (0.033)

400 20 2S-PML 1.923 0.979 0.06 100 1000 –
(0.158) (0.042)

400 20 NPL 1.999 0.999 1.01 100 1000 22
(0.129) (0.036)

400 20 NPL-Λ 1.999 0.999 0.91 100 1000 20
(0.129) (0.036)

Table 2: Monte Carlo Results for Case 2.

M T Estimator Estimates CPU Time Data Sets Runs Avg. NPL(-Λ)
θRN θRS (in sec.) Converged Converged Iter.

Truth 4 1 – – – –
400 1 MLE 4.055 1.003 0.61 100 735 –

(0.613) (0.158)
400 1 2S-PML 3.107 0.839 0.02 100 1000 –

(0.442) (0.099)
400 1 NPL N/A N/A 1.68 0 0 250

(N/A) (N/A)
400 1 NPL-Λ N/A N/A 1.68 0 0 250

(N/A) (N/A)

400 10 MLE 4.003 1.000 0.50 100 767 –
(0.039) (0.016)

400 10 2S-PML 3.902 0.983 0.04 100 1000 –
(0.099) (0.025)

400 10 NPL N/A N/A 7.61 0 0 250
(N/A) (N/A)

400 10 NPL-Λ N/A N/A 7.54 0 0 250
(N/A) (N/A)

400 20 MLE 4.003 1.001 0.47 100 820 –
(0.032) (0.011)

400 20 2S-PML 3.954 0.992 0.06 100 1000 –
(0.084) (0.019)

400 20 NPL N/A N/A 12.38 0 0 250
(N/A) (N/A)

400 20 NPL-Λ N/A N/A 12.41 0 0 250
(N/A) (N/A)
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A Large Sample Properties of ML Estimator

In this appendix, we establish the large sample properties of the ML estimator solved by a con-
strained optimization approach. We formulate the ML estimation problem (12) in the framework of
Aitchison and Silvey (1958). In Section A.1, we state the theorem and proves existence, consistency
and asymptotic normality of the ML estimator under a set of conditions analogous to those pro-
vided in Aitchison and Silvey (1958). Similar results are also stated in Section 10.3 in Gourieroux
and Monfort (1995).

Let γ = (V ,P ,θ) ∈ Rr represent the vector containing the choice probabilities, expected value
functions and structural parameters of the dynamic game. A solution of the dynamic game satisfies
the system of equations

V − ΨV (V ,P ,θ) = 0 (19)

P − ΨP (V ,P ,θ) = 0.

Let h, a function from Rr to Rs with h(γ) = 0, represent the system of constraint equations (19)
above. The ML estimator solves the constrained optimization problem

max
γ

1

M
L (Z;γ) (20)

subject to h(γ) = 0,

where Z denotes observed data, and L (Z;γ) is the logarithm of the likelihood function

L (Z;γ) = log

(
M∏
m=1

T∏
t=1

N∏
i=1

ΨPi (āmti |x̄mt;V ,P ,θ)

)
=

M∑
m=1

log

(
T∏
t=1

N∏
i=1

ΨPi (āmti |x̄mt;V ,P ,θ)

)
.

For markets m = 1, 2, ...,M , let zm be the vector of observations with probability density
function f(zm,γ0), where γ0 is the true parameter vector of the data generating process. Here,
f(zm,γ) is given by

∏T
t=1

∏N
i=1 Pi

(
āmti |x̄mt

)
, and the random vectors zm are independently and

identically distributed across markets. We re-write the objective function as

L (Z;γ) =
M∑
m=1

log f(zm,γ)

Let L (Z,γ,λ) = 1
ML (Z;γ) + h(γ)′λ be the Lagrangian function, where the vector of Lagrange

multipliers is λ ∈ Rs. The ML estimator γ̂, along with Lagrange multipliers λ̂, are a solution to
the system of equations

1

M
∇γL (Z;γ) +∇γh(γ)Tλ = 0 (21)

h(γ) = 0

A.1 Existence, Consistency and Asymptotic Normality

Theorem A1 establishes the large sample properties of the ML estimator. The proof and its
required assumptions are adapted from Aitchison and Silvey (1958). We use F and H to label the
assumptions required on the likelihood and constraint functions respectively. The assumptions are:
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(F1) There is a true γ0 ∈ Rr, and for all γ within an α-neighborhood Nα
γ0

= {γ : ||γ − γ0|| ≤ α},

(a) There exist probability density functions f(z,γ) with z ∈ Rq.

(b) The derivatives ∂ log f(z,γ)
∂γi

, ∂
2 log f(z,γ)
∂γi∂γj

and ∂3 log f(z,γ)
∂γi∂γj∂γk

exist, for i, j = 1, . . . , s; k = 1, . . . , q.

(c) The first and second derivatives ∂ log f(z,γ)
∂γi

and ∂2 log f(z,γ)
∂γi∂γj

are continuous and bounded

by finitely integrable functions F1(z) and F2(z), and the third derivatives ∂3 log f(z,γ)
∂γi∂γj∂γk

are

bounded by a function F3(z) with a finite expectation for i, j = 1, . . . , s, and k = 1, . . . , q.

(F2) The information matrix I(γ0) = −E
[
∂2 log f(z,γ0)

∂γ∂γ′

]
exists, and is positive definite with mini-

mum latent root µ0.

(H1) There is a continuous function h(γ) : Rr 7→ Rs such that h(γ0) = 0, s < r and for all
γ ∈ Nα

γ0
,

(a) The partial derivatives ∂hk(γ)
∂γi

exist and are continuous for i = 1, . . . , r, and k = 1, . . . , s.

(b) The partial derivatives ∂2hk(γ)
∂γi∂γj

exist and are bounded for i, j = 1, . . . , r, and k = 1, . . . , s.

(c) The matrix ∇γh(γ0) is of rank s.

Theorem A1. Suppose assumptions F1, F2 and H1 hold. Then

(a) (Existence) For an arbitrarily small δ > 0, and any 0 < ε < 1, there exists Mε,δ such that if

M > Mε,δ, there exists with probability greater than 1− ε a solution (γ̂, λ̂) to the constrained
maximum likelihood problem defined by (21) with ||γ̂ − γ0|| < δ.

(b) (Consistency Under Uniqueness) If there exists M0 such that a solution to (21) is unique for

all M > M0, then γ̂
p−→ γ0.

(c) (Asymptotic Normality)
√
M(γ̂ − γ0, λ̂)

d−→ N (0,Σ), where Σ =

(
Σγ 0
0 Σλ

)
. Let I0 =

I(γ0), Ir be the r×r identity matrix, and H0 = ∇γh(γ0) ∈ Rs×r. Then Σγ is the r×r matrix
I−1

0 (Ir −HT
0 (H0I−1

0 HT
0 )−1H0I−1

0 ) and Σλ is the s× s matrix (H0I−1
0 HT

0 )−1. The rank of
Σγ is r − s.

Following the steps in Aitchison and Silvey (1958), we prove existence and consistency under
uniqueness in Section A.1.1, and asymptotic normality in Section A.1.2.

A.1.1 Proof of Existence and Consistency

Let || · || denote the norm operator in Euclidean space. Denote an α-neighborhood of γ0 using
Nα
γ0

= {γ : ||γ − γ0|| ≤ α}. Let δ < min {α, 1}, and consider γ ∈ N δ
γ0

. First, expand (21) about
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γ0 and obtain

1

M
∇γL (Z,γ0) +

1

M

∂2L(Z,γ0)

∂γ2
(γ − γ0) +

1

M
r̃1(Z,γ) +∇γh(γ)Tλ = 0 (22)

h(γ0) +∇γh(γ0)(γ − γ0) + r̃2(γ) = 0

where r̃1 and r̃2 denote remainder terms involving higher order derivatives. From F1 and H1, the
following statements hold:

(i)
1

M
∇γL (Z,γ0) +

1

M
r̃1(Z,γ) = op(1) + op(||γ − γ0||);

(ii) − 1

M

∂2L(Z,γ0)

∂γ∂γ ′
− I(γ0) = op(1);

(iii) r̃2(γ) = O(||γ − γ0||2);

(iv) h(γ0) = 0.

Substituting (i)-(iv) into system (22) leads to

−I(γ0)(γ − γ0) +∇γh(γ)Tλ+ op(1)− op(1)(γ − γ0) + op(||γ − γ0||) = 0 (23)

∇γh(γ0)(γ − γ0) +O(||γ − γ0||2) = 0.

Since δ < 1, We can rewrite equation (23) as

−I(γ0)(γ − γ0) +∇γh(γ)Tλ+ op(1) = 0 (24)

∇γh(γ0)(γ − γ0) +O(||γ − γ0||2) = 0. (25)

Assumptions F2 and H1(c) allow us to pre-multiply (24) by ∇γh(γ0)I(γ0)−1 and obtain the
following equation

−∇γh(γ0)(γ − γ0) +∇γh(γ0)I(γ0)−1∇γh(γ)Tλ+ op(1) = 0. (26)

Assumptions F2 and H1(c) imply that ∇γh(γ0)I(γ0)−1∇γh(γ0)T is invertible. When δ is suffi-
ciently small, ∇γh(γ0)I(γ0)−1∇γh(γ)T will also be invertible. Inverting (26) and substituting in
equation (25) yields

λ = [∇γh(γ0)I(γ0)−1∇γh(γ)T]−1(∇γh(γ0)(γ − γ0)) + op(1)

= [∇γh(γ0)I(γ0)−1∇γh(γ)T]−1(O(||γ − γ0||2)) + op(1)

= O(||γ − γ0||2) + op(1) (27)

Substitute (27) back into (24). Consolidating the op(1) terms, we have

−I(γ0)(γ − γ0) +∇γh(γ)TO(||γ − γ0||2) + op(1) = 0. (28)

Assumption H1(b) allows us to re-write (28) as

−I(γ0)(γ − γ0) + δ2v(γ) + op(1) = 0, (29)
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where v(γ) is a bounded continuous function of γ, so that ||v(γ)|| < K.

We will now make use of a result which is equivalent to Brouwer’s fixed point theorem. Inter-
ested readers may find a proof of the following lemma in Aitchison and Silvey (1958).

Lemma. If g is a continuous function mapping Rr into itself with the property that, for every γ
such that ||γ|| = 1, γ′g(γ) < 0, then there exists a point γ̂ such that ||γ̂|| < 1 and g(γ̂) = 0.

From (29), we define a function g on the unit sphere in Rr as follows

g

(
γ − γ0

δ

)
= −I(γ0)(γ − γ0) + δ2v(γ) + op(1) (30)

Fix ε such that 0 < ε < 1. Pick δ small and let Mε,δ be such that for any M > Mε,δ, we have
Pr(||op(1)|| < δ2) > 1 − ε. When M is sufficiently large, we then have with probability greater
than 1− ε that

1

δ
(γ − γ0)Tg

(
γ − γ0

δ

)
= −1

δ
(γ − γ0)TI(γ0)(γ − γ0) + δ(γ − γ0)Tv(γ) +

1

δ
(γ − γ0)Top(1)

≤ −1

δ
µ0||γ − γ0||2 + δK||γ − γ0||+

δ2

δ
||γ − γ0||,

(31)

where the inequality follows from assumptions F2 and H1(b). Choosing γ such that δ = ||γ−γ0||,
we have with probability greater than 1− ε that

1

δ
(γ − γ0)Tg

(
γ − γ0

δ

)
≤ −δµ0 + δ2K + δ2 < 0 (32)

if δ is sufficiently small and M is sufficiently large.

Applying the lemma, we have that for an arbitrarily small δ > 0, and any 0 < ε < 1, there
exists Mε,δ such that if M > Mε,δ there is, with probability greater than 1 − ε, a solution to our
problem with ||γ̂ − γ0|| < δ. Then, as long as the solution to problem (21) is unique when M is
sufficiently large, the solution γ̂ is consistent.

A.1.2 Proof of Asymptotic Normality

Suppose that (γ̂, λ̂) is a solution to the system of equations (21). Further suppose that the solution
to problem (21) is unique when M is sufficiently large, so that the solution is consistent. At (γ̂, λ̂),
the system of equations is

1

M

∂2L(Z,γ0)

∂γ2
(γ̂ − γ0) +

1

M
r̃1(Z, γ̂) +∇γh(γ̂)Tλ̂ = − 1

M
∇γL (Z,γ0) (33)

∇γh(γ0)(γ̂ − γ0) + r̃2(γ̂) = 0

We can rewrite (33) by grouping the remainder terms with the expected value of the derivatives at
the true value of γ0.

−(I(γ0) + Î)(γ̂ − γ0) + (∇γh(γ0)T + Ĥ)λ̂ = − 1

M
∇γL (Z,γ0) (34)

(∇γh(γ0) + H̃)(γ̂ − γ0) = 0
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Because γ̂ is consistent, we have Î = O(||γ̂−γ0||) + op(1) = op(1), Ĥ = O(||γ̂−γ0||) = op(1), and
H̃ = O(||γ̂ − γ0||) = op(1).

Let I0 = I(γ0) and H0 = ∇γh(γ0). The linear system (34) in matrix form is[
−(I0 + Î) (HT

0 + Ĥ)

(H0 + H̃) 0

]
·
[
γ̂ − γ0

λ̂

]
=

[
− 1
M∇γL (Z,γ0)

0

]
(35)

Assumptions F2 and H1 imply that the matrix
[−I0 H

T
0

H0 0

]
is non-singular. If M is sufficiently

large, the matrix
[−(I0+Î) (HT

0 +Ĥ)

(H0+H̃) 0

]
will also be non-singular with arbitrarily high probability.

Since − 1√
M
∇γL (Z,γ0)

d−→ N (0,I0), we can invert system (35) and apply Slutsky’s theorem to

get a sandwich variance,
√
M

[
γ̂ − γ0

λ̂

]
d−→ N

(
0,

[
Σγ 0
0 Σλ

])
where Σγ is the r × r matrix I−1

0 (Ir −HT
0 (H0I−1

0 HT
0 )−1H0I−1

0 ) and Σλ is the s × s matrix
(H0I−1

0 HT
0 )−1. The rank of Σγ is r− s, which represents the number of structural parameters in

the model. This completes the proof of asymptotic normality.
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B Proof of Proposition 1

We first consider the constraint Jacobian matrix. For any Bellman Optimality constraint gradient
row, there are at most 2N (2δs + 1) + |θ| + 2N non-zero elements. The first term comes from the
derivative with respect to Vi(x

′) for the same player i, the second term comes from the derivative
with respect to the structural parameters, and the third term comes from the derivative with
respect to choice probabilities of all players across the binary action space at the current state x.
This applies to N · |S| · 2N Bellman Optimality constraints. Similarly, inspecting the Bayes–Nash
Equilibrium constraints leads, by the same derivation, to at most |2|N (2δs + 1)+ |θ|+2N non-zero
elements for each constraint gradient row. This refers nontrivially to each of N · |S| · 2N rows.
Finally, we add at most 2 non-zero elements per row for each of the remaining N · |S| · 2N Bayes–
Nash Equilibrium constraints, forcing the choice probabilities to sum to 1. This corresponds to the
probabilities of each player’s actions at the current state x.

Summing up these terms yields the numerator as the number of non-zero elements in the
constraint Jacobian matrix. The denominator comes from there being (2 + 1)·N ·|S|·2N constraints
and (2 + 1) ·N · |S| · 2N + |θ| variables. This leads to the following upper bound:

DJ ≤
N ·|S|·2N ·(2·(2N (2δs+1)+|θ|+2N)+2)
((2+1)·N ·|S|·2N )·((2+1)·N ·|S|·2N+|θ|) (36)

= 2
3

(
2N (2δs+1)+|θ|+2N+1

3N ·|S|·2N+|θ|

)
≤ 2

9

(
2δs+1
N ·|S| + |θ|+1

N ·|S|·2N + 1
|S|·2N−1

)
The derivation for DH is similar. We can sum over five terms to construct the numerator of

the upper bound. The first corresponds to the ∂2V derivative terms, the second corresponds to the
∂2P derivative terms, the third corresponds to the ∂V ∂P derivative terms, the fourth corresponds
to both the ∂V ∂θ and ∂P ∂θ derivative terms, and the fifth corresponds to the ∂2θ derivative
terms. The denominator corresponds to the square of the number of variables. Combining these
numerator and denominator terms leads to the following expression:

DH ≤
N ·|S|·2N ·(2N ·(2δs+1))+|S|·2N ·(2N)2+4N2·|S|·2N ·(2N ·(2δs+1))+2·((2+1)·N ·|S|·2N)·|θ|+|θ|2

((2+1)·N ·|S|·2N+|θ|)2
(37)

≤ 1
9

(
2δs+1
N ·|S| + 4

|S|·2N + 4·(2δs+1)
|S| + 6·|θ|

N ·|S|·2N +
(

|θ|
N ·|S|·2N

)2
)

Proposition 1b and 1c follow immediately.
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C Sparsity Information for the Constraint Jacobian and Hessian
Matrices

Table 7: Upper Bounds on the Density of Constraint Matrices Varying |S| and N , with δs = 1.

|S| N θ Constrained Jacobian Hessian
Non-zero elements Density DJ Non-zero elements Density DH

5 5 8 187200 3.24% 1676900 28.9%

6 5 8 224640 2.70% 2012260 24.1%

7 5 8 262080 2.31% 2347620 20.7%

8 5 8 299520 2.03% 2682980 18.2%

9 5 8 336960 1.80% 3018340 16.1%

10 5 8 374400 1.62% 3353700 14.5%

11 5 8 411840 1.47% 3689060 13.2%

12 5 8 449280 1.35% 4024420 12.1%

13 5 8 486720 1.25% 4359780 11.2%

14 5 8 524160 1.16% 4695140 10.4%

15 5 8 561600 1.08% 5030500 9.68%

16 5 8 599040 1.01% 5365860 9.08%

17 5 8 636480 0.95% 5701220 8.55%

18 5 8 673920 0.90% 6036580 8.07%

19 5 8 711360 0.85% 6371940 7.65%

20 5 8 748800 0.81% 6707300 7.27%

5 3 6 9360 7.07% 44704 33.4%

5 4 7 42240 4.54% 283601 30.3%

5 5 8 187200 3.24% 1676900 28.9%

5 6 9 829440 2.50% 9388921 28.2%

5 7 10 3682560 2.04% 50337424 27.8%
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[7] Dubé, J.-P., J. T. Fox, and C.-L. Su (2012): “Improving the Numerical Performance of Static
and Dynamic Aggregate Discrete Choice Random Coefficients Demand Estimation,” Econo-
metrica, 80, 2231-2267.

[8] Gourieroux, C. and A. Monfort (1995): Statistics and Econometric Models, Vol. 1, Cambridge
University Press, Cambridge, UK.

[9] Hotz, J. and R. A. Miller (1993): “Conditional Choice Probabilities and the Estimation of
Dynamic Models,” Review of Economic Studies, 60, 497–529.

[10] Kasahara, H. and K. Shimotsu (2012): “Sequential Estimation of Structural Models with a
Fixed Point Constraint,” Econometrica, 80, 2303-2319.

[11] Ortega, J. M. and W. C. Rheinboldt (1970): Iterative Solution of Nonlinear Equations in
Several Variables, Academic Press, New York and London.

[12] Pakes, A., M. Ostrovsky, and S. Berry (2007): “Simple Estimators for the Parameters of
Discrete Dynamic Games, with Entry/Exit Examples,” RAND Journal of Economics, 38,
373–399.

[13] Pakes, A., J. Porter, K. Ho, and J. Ishii (2011): “Moment Inequalities and Their Applications,”
Working paper, Harvard University.

[14] Pesendorfer, M. and P. Schmidt-Dengler (2008): “Asymptotic Least Squares Estimators for
Dynamic Games,” Review of Economic Studies, 75, 901–928.

[15] Pesendorfer, M. and P. Schmidt-Dengler (2010): “Sequential Estimation of Dynamic Discrete
Games: A Comment,” Econometrica, 78, 833–842.

[16] Su, C.-L. (2012): “Estimating Discrete-Choice Games of Incomplete Information: A Simple
Static Example,” Working paper, University of Chicago.

29



[17] Su, C.-L. and K. L. Judd (2012): “Constrained Optimization Approaches to Estimation of
Structural Models,” Econometrica, 80, 2213–2230.

[18] Tamer, E. (2003): “Incomplete Simultaneous Discrete Response with Multiple Equilibria,”
Review of Economic Studies, 70, 147–165.

30


