
Trading Dynamics in the Market for Lemons ∗

Ayça Kaya† and Kyungmin Kim‡

May 2013

Abstract

We present a dynamic model of trading under adverse selection. A seller faces a sequence

of randomly arriving buyers, each of whom receives a noisy signal about the quality of the

asset and makes a price offer. We show that there is generically a unique equilibrium and

fully characterize the resulting trading dynamics. Buyers’ beliefs about the quality of the asset

gradually increase or decrease over time, depending on the initial level. By encompassing

various patterns of trading dynamics, our model broadens the applicability of dynamic adverse

selection theory. We also demonstrate that improving asset transparency may lead to gains or

losses in efficiency.
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1 Introduction

When an asset has been up for sale for a while, what would potential buyers infer about its quality?

The answer depends on the perceived source of the delay. First, it could simply be that no potential

buyer has shown up yet. This source is independent of the quality of the asset. Second, the seller

might have a high reservation value for the asset and, therefore, be unwilling to settle at a low

price. If this is the perceived source of the delay, a longer delay indicates a higher quality. Finally,

potential buyers may have observed an unfavorable attribute of the asset and, therefore, decided

not to purchase it. In this case, buyers get more pessimistic about the quality of the asset over time.

We develop a model that incorporates all of these three sources and study the resulting equi-

librium dynamics. Conceivably, depending on the conditions in a given market, any one of them
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can be the overriding factor dictating trading dynamics. It is for this reason that all have been

extensively studied in the literature: the first in the literature on sequential search, going back to

Stigler (1961); the second in the recent literature on dynamic adverse selection;1 and the last in the

literature on observational learning, pioneered by Banerjee (1992) and Bikhchandani et al. (1992).

However, the existing literature is largely silent on how these sources are linked to one another

and to other aspects of the market environment. Understanding these links is not only of theo-

retical interest but is also crucial in informing policies aimed at alleviating inefficiencies due to

adverse selection. The goal of this paper is to clarify the interplay among various sources of delay,

thereby providing a deeper understanding of dynamic adverse selection as well as a richer context

for policy evaluation.

We consider the problem of the seller who possesses an indivisible asset and faces a randomly

arriving sequence of buyers. The asset is either of low quality or of high quality. There are

always gains from trade, but the quality of the asset is known only to the seller. Each buyer, upon

arrival, receives a noisy signal about the quality of the asset, which we interpret as the outcome of

inspection, and makes a take-it-or-leave-it offer. Importantly, we assume that each buyer observes

how long the asset has been up for sale. This allows us to explicitly study trading dynamics that

arises under adverse selection.

We show that there is generically a unique equilibrium in this dynamic trading problem, and

equilibrium trading dynamics crucially depends on the asset’s initial reputation (i.e., buyers’ prior

beliefs about the quality of the asset). We find that for an asset enjoying a high reputation, delay

typically results from unfavorable inspection outcomes, and the asset’s reputation deteriorates over

time. In contrast, if the asset starts out with a low reputation, then delay stems mainly from the

seller’s rejecting low prices, and the asset’s reputation improves over time. To understand these

patterns, first note that the higher the asset’s reputation is, the more likely are buyers to offer a

high price. This implies that even a seller of a low-quality asset would be reluctant to accept a

low price while enjoying a high reputation. In this case, trade can be delayed only when, despite

the asset’s high reputation, buyers are unwilling to offer a high price, which is the case when they

receive unfavorable inspection outcomes. Since a low-quality asset is more likely to generate such

inspection outcomes, the asset is deemed less likely to be of high quality, the longer it stays on

the market. In the opposite case when the asset for sale suffers from a low reputation, a seller of

a low-quality asset would be willing to settle for a low price, while that of a high-quality asset

would still insist on a high price. Since a high-quality asset would stay on the market relatively

longer than a low-quality asset, the asset’s reputation improves over time. Interestingly, buyers’

beliefs converge to a certain level, regardless of whether the asset’s initial reputation is high or low.

1See Evans (1989), Vincent (1989, 1990), Janssen and Roy (2002), Deneckere and Liang (2006), Hörner and
Vieille (2009), and Moreno and Wooders (2010) for some seminal contributions
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This is the level at which the two effects, a low-quality asset’s generating unfavorable inspection

outcomes more often vs. a high-quality seller’s insisting on a high price, are exactly balanced.

The role of search frictions in determining equilibrium trading dynamics deserves elaboration.

First, since search frictions have the same impact on both types, they are neutral to the direction of

the evolution of beliefs. However, they affect the speed of the evolution. Buyers can never exclude

the possibility that the seller has been so unfortunate that no buyer has contacted the seller yet.

This forces buyers’ beliefs to change gradually. Second, search frictions are responsible only for a

portion of the delay: even if search frictions are arbitrarily small, the expected time to trade remains

bounded away from zero. This may be surprising in light of the fact that each buyer generates a

constant amount of information by inspecting the asset, and therefore in the frictionless limit an

arbitrarily large amount of exogenous information is instantaneously generated about the quality

of the asset. Yet, strategic interactions between the seller and the buyers preclude efficient use of

this information, causing delay to persist.

The richness of our equilibrium dynamics broadens the applicability of the theory of dynamic

adverse selection. The literature on dynamic adverse selection is growing fast,2 mainly because

it has the potential to provide a synthetic theory of several forms of market inefficiencies, such

as trading delay (liquidity), market freeze (breakdown), and inefficient assignments, and thus can

be used to address various policy issues, including the policies that have been implemented or

stipulated after the recent financial crisis. A common theoretical insight of this literature is that,

since a seller enjoys a higher payoff from holding on to a high-quality asset than a low-quality

asset, the latter trades faster than the former and thus an asset’s reputation improves over time.

This is precisely the main working mechanism in our model when the asset’s initial reputation is

low. Our contribution is to enrich the model of dynamic adverse selection by allowing for buyer

inspection, thereby accommodating the possibility that a high-quality asset trades faster than a low-

quality asset, and thus an asset’s reputation may deteriorate over time. Indeed, casual observation

suggests that in several markets, including housing and labor markets, the longer an asset stays

on the market, the lower is its perceived quality. Although it might be controversial whether

information asymmetries are indeed present in such markets, the ability of our model to generate

such dynamics enlarges the set of empirical patterns that can be accommodated within models of

dynamic adverse selection.

Our model, with its unique equilibrium and clean characterization, is particularly suited to eval-

uating government policies that influence the market structure.3 Within our framework, probably

2A non-exhaustive list includes Camargo and Lester (2011), Chang (2012), Chari et al. (2012), Chi and Koeppl
(2011), Choi (2013), Daley and Green (2012), Guerrieri and Shimer (2012), Fuchs and Skrzypacz (2013a,b), Fuchs et
al. (2012), Hörner and Vieille (2009), Kurlat (2010), Lauermann and Wolinsky (2013), Moreno and Wooders (2012),
Roy (2013), and Zhu (2012).

3For instance, the government may mitigate search frictions by centralizing matching and/or trading mechanisms.
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the most intriguing exercise is to explore the impact of the informativeness of buyers’ signals (i.e.,

the quality of buyers’ inspection technology) on equilibrium outcomes. It is widely accepted that

asset (corporate) transparency improves market efficiency by facilitating socially desirable trade.

Such beliefs have been reflected in recent government policies, such as the Sarbanes-Oxley Act

passed in the aftermath of the Enron scandal and the Dodd-Frank Act passed in the aftermath of

the recent financial crises, both of which include provisions for stricter disclosure requirements on

the part of sellers. Presumably, the main goal of such policies is to help buyers assess the merits

and risks of financial assets more accurately. In our model this corresponds to an increase in the

informativeness of buyers’ signals.

We demonstrate that enhancing asset transparency does not necessarily lead to efficiency gains.

In particular, we show that an increase in the precision of buyers’ signals can increase or decrease

the expected time to trade for each type, depending on the asset’s initial reputation. More pre-

cisely, if an asset has a low initial reputation, then more precise signals speed up trade for both

types, while they unambiguously slow down trade in the opposite case.4 This mixed result arises

because an increase in the informativeness influences buyers’ inferences from delay as well as

their own signal. In particular, when the initial reputation of the asset is high, delay results from

unfavorable inspection outcomes and, therefore, becomes an even stronger indication of low qual-

ity as the precision of buyers’ signals increases. This reduces buyers’ incentive to offer a high

price. Even though increased precision of own signals directly reduces buyers’ uncertainty about

the quality of the asset and thus speeds up trade, the aforementioned indirect effect works in the

opposite direction and may be significant. The interplay of these two forces makes the overall

effect ambiguous.

Related Literature

As already discussed, most existing studies on dynamic adverse selection focus on the the impli-

cations of the difference in different types’ reservation values, and, therefore, feature one form of

equilibrium dynamics in which low quality assets trade faster. One notable exception is Taylor

(1999). He studies a two-period model in which the seller faces a random number of buyers and

conducts a second-price auction in each period. He considers several settings that differ in the

observability of first-period trading outcomes (in particular, inspection outcome and price history)

by second-period buyers. In all settings, buyers assign a lower probability to a high quality asset

in the second period than in the first period (that is, buyers’ beliefs decrease over time). The logic

It may provide subsidies to trading parties, so as to alleviate their incentive problems. Our complete and neat charac-
terization makes it fairly straightforward to analyze the effects of those and related policies.

4There is an intermediate range in which trade of the high type speeds up, while that of the low type slows down.
For a more complete picture, see Figure 4.
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behind the evolution of beliefs is similar to ours: The high type generates good signals more often

than the low type. Therefore, a high-quality asset is more likely to be traded in the first period

than a low-quality asset. However, the opposite form of trading dynamics (i.e., one in which buy-

ers’ beliefs increase over time) is absent in his model.5 In addition, since his model has only two

periods, trading dynamics is not as rich and as complete as ours.

Two papers consider an environment similar to ours. Lauermann and Wolinsky (2013) inves-

tigate the ability of prices to aggregate dispersed information in a setting where, just like in our

model, an informed player (buyer in their model) faces an infinite sequence of uninformed players,

each of whom receives a noisy signal about the informed player’s type. Using a similar model

with the additional feature that the informed player can contact only a finite number of uninformed

players, Zhu (2012) makes a number of interesting observations regarding trading in opaque over-

the-counter markets.6 In contrast to our model, in both studies, uninformed players have no access

to the informed player’s trading history. In particular, uninformed players do not observe the in-

formed player’s time-on-the-market. This induces buyers’ beliefs and strategies to be necessarily

stationary.7 In other words, buyers’ beliefs do not evolve over time. To the contrary, the evolution

of uninformed players’ beliefs and the resulting trading dynamics are the main focus of this paper.

Daley and Green (2012) study the role of the arrival of exogenous information (“news”) about

the quality of the asset in a setting similar to ours. The most crucial difference from ours is that

news is public information to all buyers. Therefore, buyers do not face any inference problem

regarding other buyers’ signals. This makes their trading dynamics quite distinct from ours.8 Sim-

ilarly to us, they also explore the effects of increasing the quality of news and find that it is not

always efficiency-improving. However, the mechanism leading to the conclusion is quite different

from ours. In particular, the negative effect of increased informativeness stems from buyers’ infer-

ences about other buyers’ signals in our model, while in Daley and Green (2012), it is due to its

impact on the incentive of a high-quality seller to wait for good news.

The rest of the paper is organized as follows. We formally introduce the model in Section 2.

We present several useful properties of the players’ equilibrium strategies and beliefs in Section

5Taylor (1999) assumes that there are no gains from trade of a low-quality asset. Therefore, buyers never make an
offer that can be accepted only by the low type. This induces the high type to always trade faster than the low type.

6One novelty in Zhu’s model is that the seller can revisit buyers. Naturally, the seller revisits a buyer only after
she has contacted all other buyers: there is no search cost in Zhu’s model. Therefore, buyers make different inferences
about the seller’s outside options, depending on whether she has visited before or not, which affects their optimal offer
strategies. This new type of inference problem is another important ingredient of Zhu’s analysis.

7This creates a non-trivial inference problem on the part of uninformed players, as their actual beliefs do not have
to coincide with their prior beliefs: Uninformed players must take into account “contact-order uncertainty”, that they
do not know how many other uninformed players the informed player has met before, as well as the fact that different
types of the informed player trade at different rates.

8Daley and Green (2012) consider a model without search frictions: the seller continuously receives price quotes
from a pool of competitive buyers. Yet, the differences in equilibrium trading dynamics persist even in the limit as
search frictions disappear in our model. See Section 5 for our frictionless market outcome.
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3. The formal equilibrium characterization and the proof of uniqueness are in Section 4. We then

present the limit equilibrium outcome as search frictions vanish in Section 5 and investigate the

effects of improving the informativeness of buyers’ signals in Section 6. We discuss two technical

issues regarding equilibrium characterization in Section 7 and then conclude in Section 8. Omitted

proofs are collected in the Appendix.

2 The Model

A seller wishes to sell an indivisible asset. Time is continuous, and the time the seller comes to

the market is normalized to 0. Potential buyers arrive sequentially according to a Poisson process

of rate λ > 0. Once a buyer arrives, he receives a private signal about the quality of the asset and

offers a price. If the seller accepts the price, then they trade and the game ends. Otherwise, the

buyer leaves, while the seller waits for subsequent buyers. The seller discounts future payoffs at

rate r > 0.

The asset is either of low quality (L) or of high quality (H). If the asset is of low quality,

the seller derives a flow payoff of rcL from owning the asset, while a buyer, once he acquires

it, receives a flow payoff of rvL. The corresponding values for high quality are rcH and rvH ,

respectively. There are always gains from trade: cL < vL and cH < vH . However, the quality of

the asset is private information of the seller. It is commonly known that the asset is of high quality

with probability q̂ at time 0.

Upon arrival, each buyer receives a private signal about the quality of the asset. A signal s is

drawn from the set S = {s1, ..., sN}.9 The signal-generating process depends on the quality of the

asset. If the quality is low (respectively, high), then the probability that a buyer receives signal sn is

given by γL(sn) (respectively, γH(sn)). Without loss of generality, assume that the likelihood ratio

γH(sn)/γL(sn) is strictly increasing in n, so that the higher a signal is, the more likely it is that the

asset is of high quality. For later use, denote by Γa(sn) (respectively, Γ−
a (sn)) the probability that

a buyer receives a signal weakly (respectively, strictly) below sn from the type-a seller. Formally,

for each a = L,H , Γa(sn) ≡
∑

n′≤n γa(sn′), and Γ−
a (sn) ≡

∑
n′<n γa(sn′).

We assume that buyers observe (only) how long the asset has been up for sale (i.e. time t).10

This is consistent with the arrangement in the housing market and also seems to be plausible in

various other markets. In addition, it allows us to study trading dynamics under adverse selection,

which is the main focus of the paper, without raising additional complications. This information

9We discuss the case with a continuum of signals in Section 7.
10It is well-known that the information buyers have about past histories of the game plays a crucial role in this type

of game. See Nöldeke and van Damme (1990), Swinkels (1999), Hörner and Vieille (2009), Kim (2012), Kaya and
Liu (2013), and Fuchs et al. (2012). We note that in our model, buyers observe neither the number of buyers who have
arrived before nor the offers they have made to the seller.
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structure also has an important technical advantage. For any t, there is a positive probability (e−λt)

that no buyer has arrived and, therefore, trade has not occurred by time t. This implies that buyers’

beliefs at any point in the play of the game can be obtained through Bayesian updating.11

The offer strategies of buyers are represented by a function σB : R+ ×S ×R+ → [0, 1], where

σB(t, s, p) denotes the probability that the buyer who arrives at time t and receives a signal s offers

a price p to the seller. The offer acceptance strategy of the seller is represented by a function

σS : {L,H} × R+ × R+ → [0, 1] where σS(a, t, p) denotes the probability that the type-a seller

accepts price p at time t.12 An outcome of the game is a tuple (t, p) where t denotes the time of

trade and p is the accepted price. All agents are risk neutral. If the seller accepts price p at time t

and her type is a ∈ {L,H}, then her payoff is (1 − e−rt)ca + e−rtp, while the payoff of the buyer

who offered the price is va − p. All other buyers obtain zero payoff.13

We adopt the perfect Bayesian equilibrium concept. The concept requires the specification of

agents’ beliefs at each information set. Let q(t) represent buyers’ beliefs that the seller who has

not traded until t is the high type. In other words, q(t) is the belief held by the buyer who arrives

at time t prior to his inspection. Then, a tuple (σS , σB, q) is a perfect Bayesian equilibrium if (1)

given σS and q, for any t and s, σB(t, s, p) > 0 only when p maximizes the expected payoff of the

buyer with signal s at time t, (2) given σB , for any a and t, σS(a, t, p) > 0 only when p is weakly

greater than the type-a seller’s continuation payoff at time t, and (3) given σS and σB , for any t,

q(t) is obtained through Bayesian updating.

In order to avoid trivial cases, we focus on the environment that satisfies the following assump-

tion.

Assumption 1

vL − cL <
λ

r + λ
(cH − cL) ⇔ r(vL − cL) < λ(cH − vL).

The assumption states that the low-type seller has no incentive to accept buyers’ maximal willingness-

to-pay for the low-quality asset (vL), should she expect to receive at least the high-type seller’s

reservation value (cH ) from the next buyer. If this assumption is violated, then the seller types

can be easily separated and the resulting trading dynamics would be rather trivial. We note that

cH > vL is necessary for this assumption to hold, but a stronger assumption commonly adopted in

11This is certainly not the case, for example, if the number of previous buyers or past offers are observable.
12In principle, the seller’s strategy could depend on her private history, such as the number of previous buyers and

rejected offers. This would enlarge the set of equilibria by allowing the seller to use her private history as a random-
ization device. However, all such equilibria would be essentially equivalent to the one in which the seller’s strategy
is independent of her private history, because buyers’ strategies depend only on the seller’s observable characteristic
(time-on-the-market).

13This means that buyers have no outside options. The accommodation of positive outside options is fairly straight-
forward and does not alter any result in a significant way.
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the literature, q̂vH + (1− q̂)vL < cH , is not.

3 Preliminary Observations

In this section, we make some useful observations regarding the players’ equilibrium strategies and

beliefs.

3.1 Seller’s Optimal Acceptance Strategy

Since the seller’s trading history is not observable to future buyers, it is clear that each type of

the seller adopts a “reservation price” strategy, accepting all prices above her reservation price

and rejecting all prices below it. In addition, for the same reasoning as in the Diamond paradox,

buyers never offer a price strictly above cH . This implies that the high-type seller’s reservation

price is always equal to her reservation value of the asset cH , and in equilibrium, she accepts cH
with probability 1. In what follows, we denote by p(t) the low-type seller’s reservation price at

time t. Since r(p(t) − cL) ≤ λ(cH − p(t)), p(t) is always strictly smaller than cH . We also drop

the seller’s intrinsic type from the arguments of her acceptance strategy and use σS(t, p), instead

of σS(L, t, p), to denote the low-type seller’s acceptance strategy.

To fully characterize an equilibrium, it is necessary to determine the low-type seller’s accep-

tance strategy when a buyer’s offer is exactly equal to p(t). She is, by definition, indifferent

between accepting and rejecting p(t). However, in equilibrium, if p(t) < vL, then she necessarily

accepts p(t) with probability 1. This results from the optimality of buyers’ offer strategies. If the

low type does not accept p(t)(< vL) with probability 1, then the buyer can offer a price slightly

above p(t). Since the alternative offer would be accepted by the low type with probability 1, it

would strictly increase the buyer’s expected payoff. This holds for any price above p(t), and thus,

in equilibrium, the low type must accept p(t) with probability 1. In contrast, if p(t) > vL, and it is

offered in equilibrium, then the low-type seller must reject it with probability 1. This is because,

otherwise, the buyer who offers p(t) would receive a strictly negative payoff and, therefore, would

strictly prefer offering a price below p(t).

3.2 Buyers’ Optimal Offer Strategies

Without loss of generality, we assume that each buyer offers either the reservation price of the low

type (i.e., p(t)) or that of the high type (i.e., cH). This assumption incurs no loss of generality for

the following reasons. First, it is strictly suboptimal for a buyer to offer a price strictly above cH or

between p(t) and cH . Second, if in equilibrium a buyer makes a losing offer (a price strictly below
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p(t)), then it suffices to set his offer to be equal to p(t) and the low type’s acceptance strategy

σS(t, p(t)) to reflect her rejection of the buyer’s losing offer.

Given the low-type seller’s reservation price p(t), the buyer’s optimal strategy is a “cutoff

signal” strategy, offering cH if his signal is above the cutoff signal, while offering p(t) if his

signal is below it. This follows immediately from the fact that the information structure exhibits

the monotone likelihood ratio property, and thus the buyer’s interim belief—i.e., his belief upon

receiving a signal—is strictly increasing in the signal received.

3.3 Evolution of Beliefs

The previous results have an important implication for the way buyers’ beliefs evolve over time.

Suppose p(t) < vL. In this case, the low-type seller accepts both p(t) and cH with probability 1.

Therefore, her trading rate is equal to the arrival rate of buyers, λ. On the other hand, the high-type

seller accepts only cH . Therefore, her trading rate is equal to the arrival rate of buyers λ multiplied

by the probability that the buyer’s signal exceeds a certain cutoff. Since the latter is always smaller

than the former (i.e., the low type trades faster than the high type), buyers’ beliefs about the seller’s

type necessarily increase over time. If p(t) > vL, then both types accept only cH . But the high

type generates good signals (i.e., those above a cutoff signal) more frequently than the low type.

Therefore, the trading rate of the high type exceeds that of the low type. This induces buyers’

beliefs to decrease over time.

The following lemma summarizes the most useful observations of this section.

Lemma 1 If p(t) < vL (respectively, p(t) > vL), then the low-type seller accepts (respectively,

rejects) p(t) with probability 1, and thus buyers’ beliefs q(t) increase (respectively, decrease) over

time. The changes in buyers’ beliefs are strict unless buyers’ strategies are to offer cH regardless

of their signal.

4 Equilibrium Characterization

Equipped with the observations from the previous section, we now turn to the equilibrium charac-

terization. The unique equilibrium of our model exhibits the following intuitive, yet not obvious,

properties:

(i) The low-type seller’s reservation price p(t) depends only on buyers’ beliefs q(t) and is in-

creasing in q(t). In a slight abuse of notation, we denote by p(q) the low-type seller’s reser-

vation price when buyers’ beliefs are equal to q.
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q6 = 0 q5 q4 q3 = q∗ q2 q1 q0 = 1

offer cH : never {s5} {s4, s5} {s3, s4, s5} {s2, ..., s5} always

p(t) :
< vL > vL = rcL+λcH

r+λ

q(t) :
increase decrease constant

Figure 1: Equilibrium structure when there are 5 signals (N = 5) and q∗ = q3.

(ii) There is a finite partition of the belief space, {qN+1 = 0, qN , ..., q1, q0 = 1}, which informs

the cutoff signal above which each buyer offers cH . Specifically, if a buyer’s prior belief q(t)

belongs to the interval (qn+1, qn), then he offers cH if and only if his signal is strictly above

sn.14

(iii) There exists q∗ ∈ (0, 1) to which buyers’ beliefs conditional on no trade converge monoton-

ically and in finite time.

Figure 1 illustrates these properties in an example with 5 signals.

In this section, we first construct an equilibrium that satisfies (i) and (ii) and show that the

constructed equilibrium necessarily satisfies (iii). Our construction makes it clear that for a generic

set of parameter values, there is a unique equilibrium that satisfies these conditions. We then show

that any equilibrium must satisfy (i) and (ii), and thus the constructed equilibrium is the unique

equilibrium in this game.15

4.1 Equilibrium Construction and Trading Dynamics

In this section we construct an equilibrium that satisfies properties (i) and (ii) and illustrate the

resulting trading dynamics.

14If q(t) > q1, then he offers cH regardless of his signal, while if q(t) < qN , then he never offers cH .
15Although the properties are fairly intuitive, a priori, it is not clear why an equilibrium that violates these properties

cannot exist. In particular, if the low-type seller’s reservation price were to decline in buyers’ beliefs, buyers may be
more reluctant to offer cH at higher beliefs, simply because a lower reservation price makes the option of trading only
with the low type more attractive. This, in turn, could be consistent with the seller’s reservation price falling. The
main thrust of our uniqueness proof is to rule out this possibility.
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4.1.1 Unique Stationary Path

We first establish that there exists a unique non-trivial path along which buyers’ beliefs can remain

constant at some level q∗.16 We identify this critical level q∗ and characterize the unique strategy

profile that supports such a stationary path.

Notice that Lemma 1 implies that p(q∗) = vL: otherwise, q(t) either increases or decreases.

In order to utilize this fact, denote by ρL (ρH ) the rate at which the low-type (high-type) seller

receives offer cH when buyers’ beliefs remain constant at q∗. Then, ρL is uniquely pinned down by

r(vL − cL) = ρL(cH − vL),

to guarantee that indeed p(q∗) = vL.

Suppose all buyers employ an identical pure strategy of offering cH if and only if their signal

is strictly above sn. Then, the low-type seller receives offer cH at rate λ(1 − ΓL(sn)). Notice

that generically, there is no n such that ρL = λ(1 − ΓL(sn)). In other words, for a generic set

of parameter values, the low-type seller’s reservation price cannot be equal to vL if all buyers

adopt an identical pure offer strategy. In what follows, we focus on the generic case where ρL �=
λ(1−ΓL(sn)) for any n = 1, ..., N , relegating the discussion of the non-generic cases to Section 7.

To pin down buyers’ equilibrium offer strategies, let n∗ be the unique integer such that

λ(1− ΓL(sn∗)) < ρL < λ(1− ΓL(sn∗−1)). (1)

In other words, if buyers’ strategies are to offer cH if and only if their signal is weakly above sn∗ ,

then the low-type seller’s reservation price exceeds vL; while if buyers’ strategies are to offer cH
if and only if their signal is strictly above sn∗ , then the low-type seller’s reservation price falls

short of vL. Assumption 1 ensures that n∗ is well-defined. In order to make the low-type seller’s

reservation price exactly equal to vL, let σ∗
B be the value that satisfies

ρL = λ(γL(n
∗)σ∗

B + 1− ΓL(sn∗)). (2)

Then, by construction, p(q∗) is equal to vL if all subsequent buyers offer cH with probability 1

when their signals are strictly above sn∗ , with probability σ∗
B when their signals are sn∗ , and with

probability 0 when their signals are strictly below sn∗ . For the generic case we are considering, σ∗
B

always lies in (0, 1).

The identification of sn∗ allows us to uniquely pin down the value of q∗ using the optimality

of buyers’ strategies. Consider a buyer who has prior belief q∗ and receives signal sn∗ . By Bayes’

16A trivial case is when q̂ > q1. In this case, trade occurs with probability 1 upon arrival of a buyer, regardless of
the seller’s type, and thus buyers’ beliefs obviously do not change.
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rule, his belief updates to
q∗γH(sn∗)

q∗γH(sn∗) + (1− q∗)γL(sn∗)
.

At this belief, since σ∗
B ∈ (0, 1), the buyer must be indifferent between offering cH and p(q∗). But

p(q∗) = vL, and thus, he must receive zero expected payoff, regardless of the low-type seller’s

acceptance strategy. It follows that q∗ is uniquely determined by the following equation:

q∗γH(sn∗)(vH − cH) + (1− q∗)γL(sn∗)(vL − cH) = 0 ⇔ 1− q∗

q∗
=
γH(sn∗)

γL(sn∗)

vH − cH
cH − vL

. (3)

It remains to determine the probability that the low-type seller accepts p(q∗) = vL, which we

denote by σ∗
S for notational simplicity. To identify σ∗

S , notice that q(t) is time-invariant if and only

if the low type trades at the same rate as the high type. The high type accepts only cH . Therefore,

given buyers’ offer strategies characterized by (n∗, σ∗
B), her trading rate is equal to

ρH = λ(γH(sn∗) + 1− ΓH(sn∗)).

If the low type accepts p(q∗) with probability σ∗
S , then her trading rate is equal to

ρL + (1− ρL)σ
∗
S = λ(γL(sn∗)σ∗

B + 1− ΓL(sn∗)) + λ(Γ−
L(sn∗) + γL(sn∗)(1− σ∗

B))σ
∗
S.

Then, σ∗
S is the unique value that equates the above two rates, that is,

ρH = ρL + (1− ρL)σ
∗
S. (4)

It is well-defined in (0, 1) because ΓH(·) first-order stochastically dominates ΓL(·).
Proposition 1 summarizes the ongoing discussion.

Proposition 1 (Stationary path) Let q∗, n∗, σ∗
B , and σ∗

S be the values defined by (1), (2), (3),

and (4). Once buyers’ beliefs reach q∗, the following strategy profile constitutes a continuation

equilibrium: Each buyer offers cH with probability 1 if his signal is strictly above sn∗ and with

probability σ∗
B if his signal is sn∗ , and offers vL otherwise. The low-type seller accepts p(q∗) =

vL with probability σ∗
S . Along the path of this equilibrium, buyers’ beliefs stay constant at q ∗.

Moreover, this is the unique non-trivial stationary path: There is no other belief level below q 1 at

which buyers’ beliefs can stay constant. In addition, there is no other strategy profile under which

buyers’ beliefs remain constant at q∗.

12



4.1.2 Evolution of Beliefs

Given n∗ and the partition {qN+1, qN , ..., q1, q0} described in condition (ii), buyers’ beliefs evolve

deterministically, conditional on no trade. It is convenient to describe the belief evolution sepa-

rately for three distinct regions of beliefs.

If q(t) > q1, then the belief evolution is trivial: By (ii), each buyer offers cH regardless of his

signal. Therefore, trade takes place as soon as a buyer arrives. Since both types trade at the same

rate, buyers’ beliefs do not change over time.

Next, consider q(t) ∈ (qn+1, qn) with 0 < n < n∗, so that q(t) ∈ (q∗, q1). In this case, due to

(i), p(q(t)) > vL. This implies that the low-type seller, as well as the high-type seller, accepts only

cH (see Lemma 1). Since the buyer offers cH if and only if his signal is strictly above sn, the low

type trades at rate λ(1− ΓL(sn)), while the high type trades at rate λ(1− ΓH(sn)). It then follows

that q(·) evolves according to the following law of motion:17

q̇(t) = q(t)(1− q(t))λ(ΓH(sn)− ΓL(sn)). (5)

Since ΓH(·) first-order stochastically dominates ΓL(·), ΓH(sn) − ΓL(sn) is always negative, and

thus q(t) strictly decreases in t. In Figure 2, a typical path for buyers’ beliefs starting from q̂ > q∗

is illustrated by the solid line. The kink at q2 is due to the fact that the cutoff signal changes from

s1 to s2 at that point, and thus ΓH(·)− ΓL(·) changes as well.

Finally, consider q(t) ∈ (qn+1, qn) with n ≥ n∗, so that q(t) < q∗. Contrary to the previous

case, p(q(t)) < vL, and thus in equilibrium the low-type seller accepts p(q(t)) with probability 1

(see Lemma 1). Therefore, her rate of trade is equal to λ. The high type still accepts only cH , and

thus her rate of trade is equal to λ(1−ΓH(sn)). As above, it follows that the law of motion of q(t)

is given by

q̇(t) = q(t)(1− q(t))λΓH(sn). (6)

This expression is obviously positive, and thus q(t) strictly increases in t. The dashed line in Figure

2 exemplifies a typical path that buyers’ beliefs follow starting from below q∗.

Proposition 2 (Evolution of Beliefs) Consider an equilibrium that satisfies (i) and (ii), and sup-

pose q(t) ∈ (qn+1, qn). If n = 0, then q(t) stays constant. If 0 < n < n∗, then q(t) evolves

according to (5). If n ≥ n∗, then q(t) evolves according to (6).

17Heuristically, by Bayes’ rule,

q(t+ dt) =
q(t)e−λ(1−ΓH (sn))dt

q(t)e−λ(1−ΓH (sn))dt + (1− q(t))e−λ(1−ΓL(sn))dt
.

The equation can be derived by subtracting q(t) from both sides and dividing by dt.
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Figure 2: The evolution of buyers’ beliefs. The parameter values used for this figure and Figure 3
are as follows: N = 5, γL(sn) = (6− n)/15, γH(sn) = n/15, r = 0.1, and λ = 0.4.

Two remarks are in order. First, starting from q̂, regardless of whether q̂ ∈ (q∗, q1) or q̂ < q∗,

buyers’ beliefs q(·) converge to q∗ in finite time, because q̇(t) is bounded away from 0.18 Notice that

this implies that property (iii) follows from (i) and (ii). Second, the offer strategies of the buyers

with prior belief qn and signal sn for some n �= n∗ are indeterminate, since such buyers are exactly

indifferent between offering cH or p(qn). However, the offer strategies at such decision nodes do

not affect the equilibrium play, in particular, the evolution of buyers’ beliefs. This is because the

beliefs are strictly monotone, and the arrival rate of buyers is finite so that the probability that a

buyer arrives at a point in time when his belief is exactly equal to one of the cutoffs is 0. In fact,

this is the reason why the behavior at these nodes cannot be determined from other equilibrium

requirements, unlike in the case of qn∗ . In what follows, without loss of generality, we assume that

for each n �= n∗, the buyer with prior belief qn and signal sn offers cH with probability 1.

18Formally, if q̂ ∈ (q∗, q1), then q̇(t) is bounded above by(
min

q′∈[q∗,q̂]
q′(1− q′)

)
λ min
n<n∗(ΓH(sn)− ΓL(sn)) < 0.

If q̂ < q∗, then q̇(t) is bounded below by(
min

q′∈[q̂,q∗]
q′(1− q′)

)
λΓH(sn∗) > 0.
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4.1.3 Reservation Prices and Equilibrium Belief Cutoffs

We conclude the equilibrium construction by jointly identifying p(·) and {qN , ..., q1}. We also es-

tablish that given (i) and (ii), both the reservation price schedule p(q) and the partition {qN , ..., q1}
are uniquely determined.

First fix p(q). Given the previous characterization of the low-type seller’s equilibrium accep-

tance strategy, each buyer’s optimal offer strategy depends only on his belief q and the low-type

seller’s reservation price p(q). Consider a buyer who has prior belief qn and receives signal sn.

This buyer must be indifferent between offering cH and p(q). Using the fact that his interim belief

is equal to qnγH (sn)
qnγH (sn)+(1−q)γL(sn) , it is straightforward to show that qn is the unique value that satisfies

1− qn
qn

=
γH(sn)

γL(sn)

vH − cH
cH −min{vL, p(qn)}

. (7)

The use of min{vL, p(q)}, instead of p(q), reflects the fact that if p(q) ≥ vL, then the buyer’s

expected payoff from offering p(q) is equal to 0, either because the offer itself is vL, which is

accepted only by the low type, or because it is greater than vL, in which case in equilibrium it is

rejected with probability 1.

Now fix the partition {qN , ..., q1}. Notice that, p(q) is determined only by the rate at which

the low type receives offer cH : each buyer offers either cH or p(t), and the low type is indifferent

between accepting and rejecting p(t). Therefore, for the purpose of calculating the expected payoff,

it can be assumed that she accepts only cH . Then, the low-type seller’s reservation price can be

calculated recursively as follows: Suppose q ∈ (qn+1, qn]. While buyers’ beliefs are in this interval,

the low-type seller receives offer cH at rate λ(1− ΓL(sn)). If n < n∗, then q(t) decreases to qn+1,

while if n ≥ n∗, then it increases to qn. Define q̃ so that q̃ = qn+1 if n < n∗, while q̃ = qn if

n ≥ n∗. Then,

p(q) =

∫ T (q,q̃)

0

((1− e−rt)cL + e−rtcH)d
(
1− e−λ(1−ΓL(sn))t

)
+ e−(r+λ(1−ΓL(sn)))T (q,q̃)p(q̃), (8)

where T (q, q̃) is the length of time it takes for buyers’ beliefs to move from q to q̃.19 A closed-form

19 Formally, if n < n∗, then T (q, q′) is defined to be the value that satisfies

q′ =
qe−λ(1−ΓH(sn))T (q,q′)

qe−λ(1−ΓH(sn))T (q,q′) + (1− q)e−λ(1−ΓL(sn))T (q,q′) ⇔ 1− q′

q′
=

1− q

q
e−λ(ΓH(sn)−ΓL(sn))T (q,q′),

while if n ≥ n∗, then

q′ =
qe−λ(1−ΓH(sn))T (q,q′)

qe−λ(1−ΓH(sn))T (q,q′) + (1− q)e−λT (q,q′) ⇔ 1− q′

q′
=

1− q

q
e−λΓH(sn)T (q,q′).
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solution can be found by applying the definition of T (·, ·) and using the fact that p(qn∗) = vL.

Finally, we combine the findings so far and compute the cutoffs qN , ..., q1 as well as the reser-

vation price schedule p(·). Their uniqueness follows from the explicit computation.

Consider first qn for n < n∗. In this case, p(q) > vL, and thus (7) reduces to

1− qn
qn

=
γH(sn)

γL(sn)

vH − cH
cH − vL

. (9)

Therefore, the cutoffs qn are determined independently of the value of p(q). The uniqueness fol-

lows from the fact that the left-hand side is decreasing in qn, while the right-hand side is constant.

Given qn for each n < n∗, p(q) can be calculated using (8) for any q > q∗.

The determination of qn for n > n∗ is more involved, because these cutoffs cannot be identified

separately from p(·). Nonetheless, as shown in the previous section, q(t) evolves deterministically

from qn+1 to qn for any n ≥ n∗. Therefore, qn∗+k for each k = 0, 1, ..., N − n∗ − 1 can be found

recursively as follows:

• For each k = 0, ..., N − n∗ − 1,

p(qn∗+k+1) =

∫ T (qn∗+k+1,qn∗+k)

0

((1− e−rt)cL + e−rtcH)d
(
1− e−λ(1−ΓL(sn∗+k))

)
+e−(r+λ(1−ΓL(sn∗+k)))T (qn∗+k+1,qn∗+k)p(qn∗+k),

where T (·, ·) is defined in footnote 19.

• qn∗+k+1 is the value that satisfies

1− qn∗+k+1

qn∗+k+1

=
γH(sn∗+k+1)

γL(sn∗+k+1)

vH − cH
cH − p(qn∗+k+1)

.

Such qn∗+k+1 uniquely exists because p(·) is strictly increasing and it is known that p(qn∗) =

vL.

To understand what each step accomplishes, consider the case of k = 0. In this case, p(q∗) =

p(qn∗) = vL is already known. Then it is possible to compute the (hypothetical) reservation price

of the low-type seller starting from any belief q < q∗, under the supposition that (i) she receives

offer cH at rate λ(1 − ΓL(sn∗)); (ii) the low type trades at rate λ, while the high type trades at

rate λ(1− ΓH(sn∗)). This is what is done in the first step.20 Given p(·), the second step identifies

the value of qn∗+1, using the fact that the buyer with prior belief qn∗+1 and signal sn∗+1 must be

20Notice that the equation in the first step is simply a special case of (8).
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indifferent between offering cH and p(qn∗+1). Note that the fact that the low-type seller accepts

p(qn∗+1) < vL with probability 1 is also used to derive the equation in the second step.

The above two steps characterize the cutoff beliefs q̄n for each n ≥ n∗. Given these cutoffs, (8)

can be used to compute p(q) for each q < q∗, as in the previous case.

The following theorem summarizes the results so far.

Theorem 1 For generic values of the parameters, there exists an equilibrium in which buyers’

beliefs evolve as described in Proposition 2. Until buyers’ beliefs reach q ∗, buyers’ equilibrium

offer strategies are characterized by a partition {qN , ..., q1}: If q(t) ∈ (qn+1, qn], then the buyer

offers cH if his signal is strictly above sn and offers p(q(t)) otherwise. The low-type seller accepts

p(q(t)) with probability 1 if q(t) < q∗ and with probability 0 if q(t) > q∗. Once buyers’ beliefs

reach q∗, the game is played as described in Proposition 1. This is the unique equilibrium that

satisfies properties (i) and (ii).

Figure 3 illustrates the trading dynamics that emerges from our model. If buyers’ beliefs about

the asset’s quality are rather optimistic (e.g., q̂1 in the figure), then the low-type seller’s reservation

price p(q̂1) exceeds vL. In this case, trade takes place only at price cH . Since the high type

generates good signals more often than the low type, buyers’ beliefs q(·) decline over time (see

the solid line in Figure 2). As q(·) decreases, buyers offer cH less frequently, and thus the low-

type seller’s reservation price also declines (the solid line in the right panel). Once q(t) becomes

equal to q∗, buyers’ beliefs do not change thereafter, and the low-type seller’s reservation price

remains constant at vL. If buyers’ initial beliefs are pessimistic (e.g., q̂2 in the figure), then the

resulting dynamics is exactly the opposite: buyers’ beliefs and the low-type seller’s reservation

price increase over time and converge to q∗ and vL, respectively.

4.2 Uniqueness

We now prove that the equilibrium described in Theorem 1 is the unique equilibrium of our model.

Theorem 2 For a generic set of parameter values, there is a unique equilibrium.

In light of Theorem 1, it suffices to show that any equilibrium satisfies properties (i) and (ii).

We obtain this result in two steps. First, we show that in any equilibrium, even without reference to

properties (i) and (ii), buyers’ beliefs evolve monotonically, regardless of their starting point. This

implies, among other things, that the low-type seller’s reservation price can be regarded as a func-

tion of buyers’ beliefs q. Second, we show that the reservation price p(q) must be strictly increasing

in q whenever q < q1. From this, we deduce that buyers’ cutoff signals must be non-increasing in

q. The latter, in particular, implies that there exists a partition {qN , ..., q1} that describes buyers’

equilibrium offer strategies as in property (ii).
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Figure 3: The low-type seller’s reservation price as a function of buyers’ beliefs q (left) and that of
time t (right).

4.2.1 Monotonicity of Beliefs

By Lemma 1, if p(t) < vL, then q(t) is increasing, while if p(t) > vL, then it is decreasing.

The next lemma links the ranking of p(t) relative to vL to the ranking of q(t) relative to q∗. The

monotonicity of beliefs follows by combining Lemmas 1 and 2.

Lemma 2 In any equilibrium, q(t) ≤ q∗ if, and only if, p(t) ≤ vL.

Proof. See the Appendix.

This intuitive lemma would immediately follow if it were already established that the low-type

seller’s reservation price is increasing in buyers’ beliefs. In the absence of that result, establishing

Lemma 2 requires subtler arguments. The crucial step is to observe that if, for instance, it were the

case that for some t̄, q(t̄) > q∗ while p(t̄) < vL, then the reservation price must eventually converge

to vL from below. This observation can be used to reach a contradiction as follows: just before the

convergence occurs, the beliefs must be bounded away from q∗. This follows from Lemma 1: if

t is after t̄, but before the convergence occurs, then p(t) < vL, and thus q(t) must be increasing,

which implies q(t) > q(t̄) > q∗. In the meantime, the low-type seller’s reservation price is almost

vL. Consider a buyer arriving at such an instant. If he makes an offer of p(t), his payoff is almost

0, since p(t) is close to vL. On the other hand, upon receiving signal sn∗ , his payoff from offering

cH is bounded away from 0: the payoff would be exactly zero if his belief were exactly q∗, yet his
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belief is strictly above (and bounded away from) q∗. It follows that such a buyer would offer cH
at least as often as on the stationary path. Clearly, this provides the low-type seller with a higher

payoff than his stationary payoff vL, leading to a contradiction. We formalize this argument in the

Appendix.

4.2.2 Monotonicity of p(·) and Buyers’ Cutoff Signals

The monotonicity of beliefs discussed above implies that, in any equilibrium, there is a one-to-

one correspondence between the time-on-the-market, which is the only relevant history in this

game, and buyers’ beliefs q. Therefore, the low-type seller’s reservation price, which is formally a

function of his time-on-the-market, can be expressed as a function of buyers’ beliefs. For the same

reason, buyers’ offer strategies can also be expressed as a function of q. Let s̄(q) denote the cutoff

signal that a buyer with prior belief q uses. We now establish that p(q) is increasing, while s̄(q) is

non-increasing. We argue this separately for the two ranges of beliefs: q ∈ (q∗, q1) and q < q∗.

First consider q ∈ (q∗, q1). Then by Lemma 2, min{p(q), vL} = vL. Inspecting (7) imme-

diately reveals that for this range of beliefs, s̄(q) is non-increasing. This, in turn, implies the

monotonicity of p(q) via (8).

Next consider q < q∗. Now, it is not a priori clear that a higher prior belief would be associated

with a lower cutoff signal, because if p(·) is decreasing, then offering p(q) could be relatively more

attractive when q is higher, and thus the buyer could be more reluctant to offer cH . Yet, if p(q) is

monotone in q, then the monotonicity of the cutoff signals immediately follows. The next lemma

establishes that p(t) is increasing over time whenever q(t) < q∗.

Lemma 3 In any equilibrium, if q(t) < q∗, then p(·) is strictly increasing in t.

The argument for this result uses the idea that if p(·) is not increasing, then there exists an

interval, say (t, t′), such that p(·) is ∪-shaped over the interval and the values at the two end points

are identical. In the meantime, since p(t) < vL, buyers’ beliefs must increase over the interval.

But then, within the interval, the buyers cannot be offering cH more frequently than after time t′,

since both buyers’ beliefs and the low-type seller’s reservation price are higher after time t′ than

within the interval (t, t′). This leads to a contradiction.

4.2.3 Proof of Theorem 2

Let us summarize how all the components we have established so far prove the uniqueness of

equilibrium.

First, Proposition 1 establishes that if buyers’ beliefs are to remain constant at some level less

than q1, this level must be q∗ as defined in Section 4.1.1. Lemmas 1 and 2 establish that in any
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equilibrium buyers’ beliefs must be decreasing if q(t) > q∗, while increasing if q(t) < q∗. Since

q(t) is continuous in t, buyers’ beliefs cannot “jump over” q∗ and must remain constant once they

reach q∗.

If q̂ > q∗, then, by Lemma 1, the low-type seller, as well as the high-type seller, accepts only

cH , until buyers’ beliefs reach q∗. This uniquely pins down buyers’ behavior for q > q∗ via (9).

Then, the low-type seller’s reservation prices for this range of beliefs are determined by (8).

Finally, if q̂ < q∗, then the uniqueness argument requires an extra step, since in this case the

buyers’ equilibrium offer strategies cannot be pinned down independently of the low-type seller’s

reservation price. In this case, the crucial step is Lemma 3 which establishes that p(t) must be

increasing over time. Given this result, it is clear that any equilibrium must be constructed as in

Section 4.1.3. The uniqueness of equilibrium then follows from the fact that the construction yields

a unique strategy profile.

5 Equilibrium Outcomes in the Frictionless Limit

In this section we present the limit of equilibrium outcomes as the arrival rate of buyers λ tends to

infinity. This limit is of interest for at least three reasons. First, the market outcome characterized in

the previous section is influenced by the level of search frictions as well as information asymmetry.

The analysis of the limit case allows us to separate the effects due to the latter from those due to

the former. Second, while search frictions are physically inherent in various markets, such as

labor markets and over-the-counter markets, they can be mitigated by government policies. For

example, the government can increase λ by introducing a more efficient job-matching mechanism

or promoting electronic trading, as opposed to over-the-counter trading. The limit case informs us

of the extent to which trade can be facilitated through such policies.21 Finally, it permits a direct

comparison of our model to the existing ones that assume away search frictions, that is, the models

in which the seller has an opportunity to trade at each instant. In this section, we provide the result

and intuition while relegating the formal derivation to the Appendix.

We focus on the time to trade for each type, denoted by τa(q̂) for each a = L,H , and the

low-type seller’s expected payoff from the game p(q̂). Since there are positive gains from trade

regardless of the asset quality, the earlier trade takes place, the larger is the surplus generated

in the market. Therefore, the time to trade can be considered a measure of surplus generated.

Meanwhile, the low-type seller’s expected payoff can be interpreted as a measure of the division

of surplus: recall that the high-type seller’s expected payoff is always equal to 0.

We start with two convenient observations. First, if λ is sufficiently large, then the station-

21It is fairly straightforward to show that a marginal increase in λ always increases the low-type seller’s expected
payoff and speeds up trade of both types.
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ary cutoff signal s∗ is necessarily equal to the highest signal sN .22 Intuitively, if buyers arrive

frequently, then the low-type seller has a strong incentive to wait for cH . Expecting this, buyers

would be even more cautious and, therefore, would offer cH only when they receive the highest

signal sN (even then with small probability). This implies that the stationary belief q ∗ is equal to

qN , which in turn implies that for any n, qn can be uncovered from the following equation:

1− qn
qn

=
γH(sn)

γL(sn)

vH − cH
cH − vL

. (10)

It also implies that the rate at which each type trades along the stationary path is given by

ρH =
γH(sN )

γL(sN)

vL − cL
cH − vL

r, (11)

which is independent of λ.23

Second, buyers’ beliefs immediately jump to q∗ in the frictionless limit, as long as their initial

beliefs are smaller than q1. The length of time it takes for buyers’ beliefs to move from qn to qn+1

(in the case of n < n∗) or qn−1 (in the case of n ≥ n∗) shrinks to 0 as λ tends to infinity (see

footnote 19). Therefore, the length of time for buyers’ beliefs to move from q̂ to q∗ also shrinks

to 0. Intuitively, at each belief level, the expected arrival of each buyer moves buyers’ beliefs at a

constant rate. Therefore, buyers’ beliefs move arbitrarily fast as λ tends to infinity.

Let Fa(·|q̂), a = L,H , represent the limit distributions of random variables τa(q̂) as λ ap-

proaches infinity. The following proposition characterizes these distributions and, in particular, the

probability that each type trades immediately.

Proposition 3 For each q̂ ∈ (0, q1) and a ∈ {L,H}, as λ tends to infinity, the probability that the

type-a seller trades by time t converges to

Fa(t|q̂) = 1− (1− Fa(0|q̂))e−ρH t,

where ρH is given in (11) and

22The precise condition under which this is true is λ > r(vL−cL)
γL(sN )(cH−vL) . We consider only the case where γL(sN ) >

0. If γL(sN ) = 0, then the result is trivial: If the asset is of high quality, then each buyer receives the perfectly
informative signal sN with a positive probability. Therefore, in the limit as λ tends to infinity, the high type trades
immediately. Given this, the low type also trades immediately.

23If n∗ = N , then the rates at which the two types receive offer cH are given by ρL = λγL(sN )σ∗
B and ρH =

λγH(sN )σ∗
B , respectively. The expression in (11) is obtained by solving for σ ∗

B with the fact that ρL is necessarily
equal to vL−cL

cH−vL r.
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• if q̂ < q∗, then

FL(0|q̂) = 1− q̂

1− q̂

γH(sN)

γL(sN)

vH − cH
cH − vL

and FH(0|q̂) = 0; (12)

• if q∗ < q̂ < q1, then for each a = L,H ,

Fa(0|q̂) = 1−
(
1

ln

cH − vL
vH − cH

1− q̂

q̂

)ψa
n

×
N∏

i=n+1

(
li−1

li

)ψa
i

, (13)

with li =
γH (si)
γL(si)

and ψai =
1−Γa(si)

ΓH (si)−ΓL(si)
.

Proof. See the Appendix.

Intuitively, the atoms at time 0, Fa(0|q̂), reflect the probabilities with which each type trades

before q(t) reaches q∗. These probabilities, and thus their limits as well, are straightforward to

calculate from the characterization in the previous section. To understand how the expressions in

(12) correspond to these probabilities, first recall that if q̂ < q∗, then, since n∗ = N , the high-type

seller trades with zero probability until buyers’ beliefs reach q∗, which implies FH(0|q̂) = 0. For

this range of initial beliefs, the low type trades with probability 1 conditional on the arrival of a

buyer. Given this, 1 − FL(0|q̂) is precisely the probability with which the low type should not

trade so that buyers’ beliefs jump from q̂ to q∗.24 Similarly, in (13), the first multiplicative term is

the probability with which the type-a seller should not trade in order for buyers’ beliefs to move to

qn, and
(
li−1

li

)ψa
i

is the corresponding probability for buyers’ beliefs to jump from q i to qi−1.
25

We now turn to the expected payoff of the low-type seller, which is necessarily equal to her

reservation price with belief q̂.26 In the limit, since buyers’ beliefs immediately jump from q̂ to q∗,

the low-type seller either trades immediately at price cH (while buyers’ beliefs converge to q∗) or

receives expected payoff vL (once buyers’ beliefs become equal to q∗). Therefore, p(q̂) is simply

a weighted average of cH and vL, with the weight to cH given by the probability that she trades

immediately at price cH . Recall that if q̂ < q∗, then no buyer offers cH until buyers’ beliefs reach

24Precisely, due to (10),

q̂

q̂ + (1− q̂)(1− FL(0|q̂)) =
1

1 + γH(sN )
γL(sN )

vH−cH
cH−vL

= q∗.

25Notice that ψLi − ψHi = −1. Therefore,

1− qi+1

qi+1
= li

vH − cH
cH − vL

=
1− qi
qi

(
li
li+1

)ψL
i −ψH

i

= li
vH − cH
cH − vL

li+1

li
.

26Note that the seller derives flow payoff from owning the asset.
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q∗ (recall that n∗ = N), while if q̂ ∈ (q∗, q1), then the low type receives offer cH with probability

FL(0|q̂) before buyers’ beliefs reach q∗. The following result is then immediate from Proposition

3.

Proposition 4 In the limit as λ tends to infinity, the low-type seller’s expected payoff is equal to

p(q̂) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
vL, if q̂ ≤ q∗,

vL + FL(0|q̂)(cH − vL), if q̂ ∈ (q∗, q1),

cH , if q̂ ≥ q1.

(14)

It is well-recognized that in dynamic environments, real-time delay is unavoidable with severe

adverse selection: for immediate trade, it is necessary that all types of the seller trade at the same

price. However, if adverse selection is rather severe, in the sense that the probability that the seller

is the low type is sufficiently high, then the high-type seller’s reservation value exceeds buyers’

expected valuation of the asset, and thus there does not exist a price that yields non-negative payoffs

to all types of the seller as well as buyers.

The presence of real-time delay in our model, demonstrated in Proposition 3, does not imme-

diately follow from this well-known wisdom. In the presence of inspection which exogenously

reveals type-dependent information, even if the low-type seller exactly mimics the equilibrium

behavior of the high-type seller, she cannot generate (statistically) identical outcomes.27 Since

each arriving buyer generates a fixed amount of information about the seller’s type (by drawing

an inspection outcome), in the frictionless limit, potentially there is sufficient information in the

cumulative inspection outcomes to fully reveal the seller’s type. If this were the case, the need for

delay to distinguish between the two types of the seller would disappear. However, in the absence

of a fully informative signal, this mechanism fails.28 The reason why it fails is subtle and lies in the

strategic interaction between the buyers and the seller. As λ increases, each buyer becomes more

reluctant to offer cH , because the low-type seller’s incentive to wait for cH–i.e. mimic the high

type– increases. Then, buyers use the most informative signal (the highest signal) as their cutoff,

and even with that signal, offer cH only with a vanishing probability. This is why real time delay

persists in our model.

27This, in particular, eliminates the above-mentioned requirement that for immediate trade both types must trade at
the same price (with probability 1). Indeed, as shown in Section 4.1.1, on the stationary path from which real-time
delay results, different types of the seller trade at different prices: the high type trades only at cH , while the low type
trades not only at cH , but also at vL.

28If γL(sN ) = 0, then delay would disappear, since offering cH if and only if the signal is sN would provide a
trivial way of screening out the low type.
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6 Effects of Improving the Precision of Buyers’ Signals

In this section, we study the effects of improving the precision of buyers’ signals. Our main goal is

not to perform comprehensive comparative statics analysis, but to obtain some preliminary insights.

To this end, we focus on the simplest case where there are only two signals, that is, N = 2. In

order to highlight the purely informational effects, we further restrict attention to the limit case

where λ is arbitrarily large.29

Specifically, we examine how the market outcomes change as the likelihoods of the signals

vary. In particular, we focus on the effects of a marginal increase in l2 ≡ γL(s1)/γH(s1).30 Such

changes in the parameter values are consistent with various common notions of more precise sig-

nals.31 In the same spirit as in Section 5, we focus on the effects of these changes on the expected

time to trade (as a measure of market liquidity and efficiency) and the low-type seller’s expected

payoff (as a measure of surplus division). Since the result is obvious if q̂ > q1, we consider only

the case where q̂ < q1. In what follows, for notational parsimony, we simply say q̂ > q∗, in order

to refer to q̂ ∈ (q∗, q1).

Proposition 3 informs us of how to calculate the expected time to trade for each type. In

the limit as λ tends to infinity, each type trades either immediately or at a constant rate of ρH .

Therefore, the expected time to trade for the type-a seller is equal to the probability that the seller

does not trade immediately (1−Fa(0|q̂)) times the expected duration when the hazard rate is given

by ρH . Formally, E[τa(q̂)] = (1 − Fa(0|q̂))/ρH . The following proposition is then immediate by

basic calculus.32

Proposition 5 Suppose l2 increases marginally.

• If q̂ < q∗, then E[τL(q̂)] remains constant, while E[τH(q̂)] decreases.

29Although we present the results only for the limit case, all the qualitative results established in this section hold
as long as λ is sufficiently large.

30We explain the effects of a marginal decrease in l1 ≡ γL(s1)/γH(s1) at the end of this section.
31There are several ways to rank information structures. The most common criteria are Blackwell’s garbling (Black-

well, 1951), Lehmann’s accuracy (Lehmann, 1988), and Shannon’s entropy (Shannon, 1948). Even though it is not
clear which concept is appropriate in strategic environments in general and in our model in particular, the variations
we consider are consistent with all of them.

32For the case of N = 2,

ρH = l2
vL − cL
cH − vL

r.

In addition,

FL(0|q̂) =
⎧⎨
⎩
1− l2

vH−cH
cH−vL

q̂
1−q̂ , if q̂ ≤ q∗,

1−
(

1
l2
cH−vL
vH−cH

1−q̂
q̂

) 1
l2−1

, if q̂ > q∗
FH(0|q̂) =

⎧⎨
⎩
0 if q̂ ≤ q∗

1−
(

1
l2
cH−vL
vH−cH

1−q̂
q̂

) l2
l2−1

if q̂ ∈ q∗
.
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1 l2

q̂
1−q̂

cH−vL
vH−cH

q1
1−q1

immediate trade

exp
(

2l2−1
l2

(l2−1)
)

l2

E[τH ] ↑, E[τL] ↑ E[τH ] ↓, E[τL] ↑
exp(l2−1)

l2

q∗(l2)
1−q∗(l2)

E[τH ] ↓, E[τL] ↓

E[τH ] ↓, E[τL] →

Figure 4: The effects of an increase in l2 on the expected times to trade.

• If q̂ > q∗, then E[τL(q̂)] decreases if and only if l2 >
exp(l2−1)

l2

cH−vL
vH−cH , while E[τH(q̂)] de-

creases if and only if l2 >
exp

(
2l2−1

l2
(l2−1)

)
l2

cH−vL
vH−cH .

Figure 4 visualizes Proposition 1. It is clear that more transparency (increased precision of

signals) may or may not contribute to market liquidity and efficiency. Moreover, there are three

systematic patterns governing how this effect relates to market conditions. First, more precise

signals are less likely to be beneficial when q̂ is high; i.e., the range of l2 for which a further

increase in l2 speeds up trade becomes smaller as q̂ increases. Second, more precise signals are

more likely to be beneficial when l2 is already high; i.e., the range of q̂ for which an increase in l2
speeds up trade becomes larger as l2 increases. Finally, increased precision tends to speed up trade

for the high type more than for the low type.

To understand the first two patterns, notice that the increased precision of signals affects the

equilibrium dynamics through two channels. First, since each buyer’s own signal becomes more

informative, it directly reduces his risk of paying a high price for a low-quality asset, thereby en-

couraging him to offer cH more often. Ceteris paribus, this effect reduces the expected time to

trade.33 Second, since other buyers’ signals also become more informative, beliefs evolve faster

when delay indicates the inability to generate good signals, i.e., when delay carries negative infor-

mation about the signals of previous buyers. Recall that this is the case when q̂ > q∗. In this case,

for a given length of time-on-the-market, the higher l2 is, the more pessimistic are buyers about

the quality of the asset; i.e., for a fixed t, an increase in l2 decreases q(t). This indirectly reduces

33In the formal expression of E[τa(q̂)], this effect manifests itself as a decrease in q∗ = l2
vH−cH
cH−vL and an increase

in ρH = r(vL−cL)
cH−vL .

25



buyers’ incentive to offer a high price, thereby slowing down trade.34 The aforementioned patterns

emerge because the magnitude of the former effect is essentially constant in q̂ and l2, while that of

the latter increases in q̂ and decreases in l2. Buyers’ beliefs travel from q̂ to q∗. Therefore, the latter

effect amplifies as q̂ increases. On the other hand, when l2 is already high, an additional increase

in l2 has a small effect on the speed of the belief convergence, and thus the latter effect is relatively

small.

To understand why increased precision tends to speed up trade for the high type more than

for the low type, recall that, while the high type trades only at cH , the low type trades also at

her reservation price p(t). Therefore, the low-type seller’s expected time to trade also depends

on her incentive to accept p(t), which in turn depends on the rate at which buyers offer cH . This

countervails the effect due to an increase in buyers’ willingness to offer cH : increased precision

increases the low type’s chance to trade at cH . But this decreases the low type’s incentive to

accept p(t) and, therefore, slows down trade. Clearly, this countervailing effect operates only for

the low type. It follows that the low type’s expected time to trade decreases only when the high

type’s also decreases, while the high type’s can decrease even when the low type’s increases. The

countervailing effect is particularly strong when q̂ is smaller than q∗. In that case, it fully offsets

the direct effect, and thus the expected time to trade stays constant.35

Remark 1 (Distribution of time to trade) Although we have focused on how the expected times

to trade respond to a change in l2, the effects on the entire distributions of time to trade are straight-

forward to obtain. Recall that the distribution for each type consists of two components: the prob-

ability that trade takes place immediately (Fa(0|q̂)), and the stationary rate of trade conditional

on no trade at time 0 (ρH ). The latter always increases in l2, while the former may or may not

increase. Therefore, if the former also increases, then the distribution decreases in l2 in the first

order stochastic dominance sense, while if the former decreases, then the change in the distribu-

tion cannot be clearly ranked. Since first-order stochastic dominance implies an increase in the

expected value, it follows that the region at which an increase in l2 speeds up trade in the sense

of first-order stochastic dominance is smaller than the region at which the expected time to trade

decreases in l2.

Our next result concerns how the low-type seller’s expected payoff is affected by an increase in

l2. Proposition 4 implies that if q̂ < q∗, then it is constant in l2, while if q̂ > q∗, then it depends on

how FL(0|q̂) responds to an increase in l2.36 The following result is then straightforward to obtain

from Proposition 3.

34In the formal expression, this effect is present in the power terms, 1
l2−1 and l2

l2−1 .
35When q̂ < q∗, buyers’ beliefs increase over time. Therefore, the second effect in the previous paragraph is absent.
36Notice that the condition under which p(q̂) increases coincides with the condition for the distribution F L(·; q̂) to

decrease in the first-order stochastic dominance sense.
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Proposition 6 Suppose l2 increases marginally.

• If q̂ < q∗, then p(q̂) stays constant.

• If q̂ ≥ q∗, then p(q̂) increases if and only if q̂
1−q̂ <

exp
(

l2−1
l2

)
l2

cH−vL
vH−cH .

Remark 2 (Impact of a marginal decrease in l1) So far we have considered only an increase in

l2, since ρH and Fa(t; q̂) are independent of the other likelihood ratio l1. Yet, decreasing l1 (making

signal s1 more informative) is another way to improve the quality of buyers’ signals. The only role

that l1 plays is to change the lower bound q1 on q̂, above which trade is immediate. It is easy to see

that a decrease in l1 leads to an increase in q1. Intuitively, this is because a decrease in l1 means

that signal s1 becomes an even stronger indication of low quality, and thus for a buyer with signal

s1 to be willing to offer cH , his prior must be even higher. It is immediate that if q̂ = q1, then

a marginal decrease in l1 sharply slows down trade of both types: Before the change, both types

trade upon arrival of the first buyer, while after the change, there is substantial delay.

7 Discussion

In this section, we discuss two technical issues that are relevant to our equilibrium characterization.

7.1 Equilibria in Non-generic Cases

We have restricted attention to the (generic) case where there does not exist n∗ such that ρL =
r(vL−cL)
λ(cH−vL) = λ(1 − ΓL(sn∗)). In this section, we show that the equilibrium uniqueness fails in the

non-generic cases and illustrate its underlying cause. In addition, we show that, nevertheless, the

resulting trading dynamics exhibits the same patterns as in the generic cases.

To illustrate the basic problem of the non-generic cases, suppose ρL = λ(1− ΓL(sn∗)), and let

qn∗ and qn∗+1 be the values such that

1− qn∗

qn∗
=
γH(sn∗)

γL(sn∗)

vH − cL
cL − vL

,

and
1− qn∗+1

qn∗+1

=
γH(sn∗+1)

γL(sn∗+1)

vH − cL
cL − vL

.

Suppose q(t) ∈ [qn∗+1, qn∗ ] and all subsequent buyers offer cH if and only if their signal is strictly

above sn∗. Then, the low-type seller’s reservation price stays equal to vL, because she receives

offer cH at a constant rate of ρL = λ(1 − ΓL(sn∗)). Suppose she accepts vL with probability σ∗
S ,
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where σ∗
S is the value that satisfies

λ(1− ΓH(sn∗)) = λ(1− ΓL(sn∗) + ΓL(sn∗)σ∗
S).

Then, by construction, buyers’ beliefs do not change over time: the left-hand side represents the

trading rate of the high-type seller, while the right-hand side that of the low-type seller. Further-

more, given that vL is the low-type seller’s reservation price, buyers’ offer strategies described

above are also optimal. This implies that any belief level between [qn∗+1, qn∗ ] can serve as the

critical stationary belief in our model.

In fact, buyers’ beliefs do not even need to converge to a certain level. Once buyers’ beliefs

fall between qn∗+1 and qn∗ , any belief path that stays within the interval can be supported as an

equilibrium: Although buyers’ offer strategies are fixed, buyers’ beliefs can decrease or increase,

depending on the low-type seller’s acceptance strategy of offer vL. For instance, the low-type seller

may accept vL with probability 1, until buyers’ beliefs reach qn∗ and stay constant thereafter. Or,

she may reject vL with probability 1, until buyers’ beliefs hit qn∗+1. Buyers’ beliefs may even keep

oscillating between (or any two levels between) qn∗ and qn∗+1.

Nevertheless, all these equilibria have crucial properties in common. First, within the range of

beliefs [qn∗+1, qn∗ ], the buyers play the same offer strategy across all equilibria, offering cH if and

only if their signal is strictly above sn∗ . Therefore, in any equilibrium the low-type seller’s reser-

vation price is equal to vL, once buyers’ beliefs fall into this range. Second, outside [qn∗+1, qn∗ ],

buyers’ beliefs gradually converge to the interval [qn∗+1, qn∗ ], just as they converge to q∗ in the

generic case. Furthermore, the unique convergence path can be fully characterized as in the generic

case: If q(t) ∈ [qn+1, qn] for some n < n∗, then the low type trades at rate λ(1−ΓL(sn)), while the

high type at rate λ(1 − ΓH(sn)). If n ≥ n∗ + 1, then the low type trades at rate λ, while the high

type at rate λ(1 − ΓH(sn)). Finally, given the first two properties, it follows that all the equilibria

are payoff-equivalent, whether the initial belief q̂ belongs to the interval [qn∗+1, qn∗ ] or not. The

only difference among the equilibria is the low-type seller’s trading rate when buyers’ beliefs are

in the interval [qn∗+1, qn∗],37 as it varies depending on the low-type seller’s acceptance strategy of

offer vL.

7.2 A Continuum of Signals

Even though we have chosen to consider an environment with finite number of signals (possible in-

spection outcomes), it is easy to see that the qualitative properties of the equilibrium characterized

in Section 4 carries over to a model with a continuum of signals: There is a unique level of belief

q∗ which supports stationary equilibrium play. In addition, buyers’ beliefs, whether they are above

37The high-type seller’s trading rate is identical across all equilibria, because buyers’ offer strategies are identical.
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or below q∗, gradually converge to q∗. The low-type seller’s reservation also gradually converges

to vL.

One technical advantage of a model with a continuum of signals is that in such a model, no

randomization is necessary on the equilibrium path. In particular, the buyers’ randomization be-

tween cH and vL when they receive the cutoff signal on the stationary path would not be needed.

Formally, suppose the signal space S is given by an interval [s, s] and Γa(·) (respectively, γa(·))
now represents the distribution (respectively, density) function of signals conditional on type a.

Let s∗ be the unique value that satisfies

λ(1− ΓL(s
∗)) = ρL =

r(vL − cL)

cH − vL
. (15)

Then, for the stationary path to be sustained, it suffices that each buyer offers cH if and only if his

signal is above s∗.

One disadvantage of having a continuum of signals is that in such a model, the equilibrium

can be described only by a system of partial differential equations without closed-form solutions,

unlike in the finite-signal case. This is because with a continuum of signals, the cutoff signal,

as well as buyers’ beliefs and the low-type seller’s reservation price, varies continuously. This

particularly complicates the analysis of the cases where the initial belief is below q∗, because all

three equilibrium objects influence one another and, therefore, must be simultaneously determined

in those cases.38

It is also easy to see how the analysis of the frictionless limit case in Section 5 carries over with

a continuum of signals. As λ tends to infinity, the stationary cutoff signal approaches the highest

signal s (see (15)). This implies that the stationary belief level converges to q∗ that satisfies

1− q∗

q∗
=
γH(s)

γL(s)

vH − cH
cH − vL

.

This, in turn, implies that in the limit, buyers’ beliefs immediately jump to q ∗, whether the initial

belief is above or below q∗.

8 Conclusion

The main contribution of our paper is to provide a simple and intuitive framework, which, never-

theless, leads to a rich set of predictions for equilibrium trading dynamics. Within this framework

38If q̂ > q∗, then buyers’ optimal offer strategies (cutoff signals) and the evolution of buyers’ beliefs can be deter-
mined independently of the low-type seller’s reservation price p(t), because p(t) > vL, and thus p(t) is never accepted
in equilibrium.
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we are able to accommodate different sources of trading delay and provide an understanding of

how these sources interact with one another. The simple comparative statics exercise we present

in Section 6 demonstrates how this model can be used to identify the role of “asset transparency”,

which has recently been the target of market regulations. The simple, yet rich, structure of the

equilibrium of our model easily lends itself to such policy analysis. Moreover, we believe that its

further modifications may help shed light on other issues of interest such as increased transparency

of market transactions and various market regulations.

Appendix: Omitted Proofs

Proof of Lemma 2:. We establish the result in three steps.

(1) If q(t) < q∗, then p(t) < vL.

Suppose q(t) < q∗, but p(t) > vL. Then, there must exist t′ ∈ (t,∞) such that p(t′) = vL.

Suppose not, that is, p(t′) > vL for any t′ > t. Lemma 1 implies that q(·) then keeps decreasing.

This, in turn, implies that there must exist q∞ ∈ [0, q(t)) such that q(·) converges to q∞. Recall

that, since p(t′) > vL for any t, both types trade only when the buyer offers cH . Therefore, in the

long run, both types must trade at the same rate, which can be the case only when either every

buyer always offers cH or every buyer never offers cH . Since q(t) < q∗, the former obviously

cannot be true. The latter also cannot be the case, because if so, the low-type seller’s reservation

price would be close to cL, which is strictly smaller than vL.

Let t′ be the smallest value such that p(t′) = vL. Then, for any x ∈ (t, t′), p(x) > vL.

Therefore, by Lemma 1, q(x) ≤ q(t) < q∗, which implies that the probability that the buyer at

x ∈ (t, t′) offers cH is strictly less than γL(s∗)σ∗
B +1−ΓL(s

∗). Combining this with p(t′) = vL, it

follows that p(t) < vL, which is a contradiction (recall that if all the buyers between t and t′ offer

cH with probability γL(s∗)σ∗
B + 1− ΓL(s

∗) and p(t′) = vL, then p(t) = vL).

Now suppose q(t) < q∗, but p(t) = vL. Together, they imply that the buyer at t offers cH with

a strictly lower probability than γL(s∗)σ∗
B +1−ΓL(s

∗). If ṗ(t) ≤ 0, then clearly p(t) < vL, which

is a contradiction. If ṗ(t) > 0, there exists t′ such that q(t′) < q∗, but p(t′) > vL. We showed

above that this can never be the case.

(2) If q(t) > q∗, then p(t) > vL.

Suppose q(t) > q∗, but p(t) < vL. We first show that there exists t′ ∈ (t,∞) such that

p(t′) = vL. Suppose not, that is, p(t′) < vL for any t′ ≥ t. Lemma 1 implies that q(·) keeps

increasing. Since q(t) ∈ [0, 1] for any t, this means that there exists q∞ ∈ (q(t′), 1] such that

q(·) converges to q∞. Since the low type trades whenever a buyer arrives (see Lemma 1), the

convergence can occur only when the high type trades with almost probability 1. This, in turn,

implies that in the long run, each buyer offers cH with probability 1, regardless of his signal.
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But then the low-type seller’s reservation price becomes arbitrarily close to rcL+λcH
r+λ

. This is a

contradiction, because rcL+λcH
r+λ

is strictly larger than vL by Assumption 1.

Let t′ be the smallest value such that p(t′) = vL. Since p(x) < vL for any x ∈ (t, t′), q(·) cannot

decrease on (t, t′). Therefore, q(x) > q∗ for any x ∈ (t, t′). Let t′′ ≡ t′ − ε for ε positive, but

sufficiently small. Then, for any x ∈ (t′′, t′), the buyer must offer cH with probability 1 whenever

his signal is weakly above s∗: Since x is close to t′, p(x) is close to vL. Therefore, when the buyer’s

signal is s∗, his expected payoff by offering p(x) is also close to 0. To the contrary, his expected

payoff by offering cH is bounded away from 0, because q(x) ≥ q(t) > q∗ (recall that the payoff

is equal to 0 if q(x) = q∗). But then p(x) > vL, because the buyers on (x, t′) offer cH at least

with probability 1−Γ−
L(s

∗), while the low-type seller’s reservation price at t′ is equal to vL (recall

that the low-type seller’s reservation price is equal to 0 if every buyer offers cH with probability

γL(s
∗)σ∗

B + 1− ΓL(s
∗)). This is, of course, a contradiction.

Now suppose q(t) > q∗, but p(t) = vL. In this case, the low type does not necessarily accept

p(t) with probability 1. Therefore, q(·) is not necessarily increasing. However, we do know that the

buyer would offer cH with probability 1 whenever his signal is weakly above s∗: Since p(t) = vL,

the buyer with signal s∗ obtains zero expected payoff by offering p(t), while his expected payoff

by offering cH is strictly positive, because q(t) > q∗. If ṗ(t) ≥ 0, then it is clear that p(t) > vL. If

ṗ(t) < 0, then there exists t′ > t such that q(t′) > q∗, but p(t′) < vL. We showed above that this

can never be the case.

(3) If q(t) = q∗, then p(t) = vL.

Suppose q(t) = q∗ but p(t) < vL. Since buyers’ beliefs would be increasing, there would exist

t′ such that q(t′) > q∗, while p(t′) < vL, which is a contradiction. Symmetric arguments lead to a

contradiction for the case where p(t) > vL.

Proof of Lemma 3:. Suppose there exists t such that q(t) < q∗, but ṗ(t) ≤ 0. Since p(·)
is continuous and eventually converges to vL, there exists t′ such that t′ > t and p(t′) = p(t).

Without loss of generality, assume that p(x) ≤ p(t) for any x ∈ (t, t′) and ṗ(x) > 0 for any x > t′

such that q(x) < q∗ (if p(·) is not strictly increasing until it reaches vL, there always exist t and

t′ that satisfy these properties). For x ∈ (t, t′), p(x) ≤ p(t′), while q(x) < q(t′). This implies

that the probability that the buyer at x ∈ (t, t′) offers cH cannot be larger than the corresponding

probability for the buyer at t′. To the contrary, whenever x > t′, p(x) > p(t′) and q(x) > q(t′).

Therefore, the probability that the buyer at x > t′ offers cH is strictly larger than the corresponding

probability for the buyer at t′. Since the low-type seller’s reservation price p(·) is determined by

the rate at which buyers offer cH , it follows that p(t) < p(t′), which is a contradiction.

Proof of Proposition 3:. First consider the case where q̂ < q∗. In that case, for any fixed λ,

the high-type seller does not trade until buyers’ beliefs reach q∗. Therefore, FH(0|q̂) = 0. The low
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type, on the other hand, trades with probability 1 conditional on the arrival of a buyer during this

period. Therefore, the probability that she trades on the convergence path is equal to 1−e−λT (q̂,q∗),
where T (q̂, q∗) is the value that satisfies

q∗ =
q̂

q̂ + (1− q̂)e−λT (q̂,q∗)
.

Combining this with (10),

FL(0|q̂) = 1− q̂

1− q̂

γH(sN)

γL(sN )

vH − cH
cH − vL

.

Next, consider the case where q̂ ∈ (qn, qn−1) for some n ≤ n∗. In this case, conditional on

the arrival of a buyer, each type trades if and only if the buyer offers cH , which happens with

probability 1 − Γa(sn′) if q ∈ [qn′+1, qn′). Therefore, the probability that the type-a seller trades

before buyers’ beliefs reach q∗ is equal to

1− e−λ(1−Γa(sn−1))T (q̂,qn)

N−1∏
i=n

e−λ(1−Γa(si))T (qi,qi+1),

where

qn =
q̂e−λ(1−ΓH (sn−1))

q̂e−λ(1−ΓH (sn−1)) + (1− q̂)e−λ(1−ΓL(sn−1))
,

and

qi+1 =
qie

−λ(1−ΓH (sn))

qie
−λ(1−ΓH (sn)) + (1− qi)e

−λ(1−ΓL(sn))
,

The result follows by successively applying (10).
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