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Anthropogenic emissions of greenhouse gases activate a number of feedback processes
in the climate system. Scientists warn that some feedbacks can lead to abrupt and
irreversible changes in climate dynamics, so-called tipping points. The threat of tip-
ping points plays a major role in demands for aggressive emission reductions and for
limiting warming to 2◦C, as agreed upon in the Copenhagen Accord. We extend a
benchmark integrated assessment model of climate change to account for three inter-
acting, irreversible tipping points: (i) a feedback increasing climate sensitivity, (ii) a
feedback reducing carbon sink uptake, and (iii) a tipping point directly affecting eco-
nomic damages. Each tipping point is triggered by an imperfectly known temperature
threshold. Optimal mitigation policy has to account for the impact of today’s emissions
on future carbon stock, temperatures, and damages in different possible futures where
tipping points may have been triggered at different temperature thresholds. Optimal
mitigation today also has to incorporate how future decision makers will respond to
current actions, observations, and possible tipping. We show that the presence of the
three tipping points approximately doubles the currently optimal carbon tax and that
the presence of multiple tipping points cuts the optimal peak temperature by approx-
imately 1◦C. The effects of the individual tipping points are approximately additive,
suggesting that interactions among tipping points are not crucial for policy.

1 Introduction

The threat of climate tipping points plays a major role in calling for aggressive emission reductions
that might limit warming to 2 degrees Celsius (Hansen et al., 2008; Ramanathan and Feng, 2008;
Rockström et al., 2009). Yet integrated assessments of climate change commonly only model
slow and reversible climate impacts and quantitative, economic policy analysis of tipping points is
sparse. Previous integrated assessments analyzed a single type of tipping point that directly affects
economic output (Keller et al., 2004; Lontzek et al., 2012) or a single tipping point that alternatively
modifies the carbon cycle or the sensitivity of the climate to emissions (Lemoine and Traeger, 2014).
However, scientists are particularly concerned about potential interactions among tipping points
(Lenton et al., 2008; Kriegler et al., 2009; Levermann et al., 2012; Kopits et al., 2013; Lenton and
Ciscar, 2013). Reducing the effectiveness of carbon sinks or increasing climate sensitivity would
amplify future warming, which would in turn make further tipping points more likely. Here, we
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simultaneously interact tipping points that alter the carbon cycle, strengthen warming feedbacks,
and reduce economic output. We solve for the optimal policy in a stochastic integrated assessment
model with anticipated Bayesian learning, which recognizes that future policymakers have new
information about the location of temperature thresholds and can react to any tipping points that
may have already occurred.

2 Model

The first tipping point makes temperature more sensitive to CO2 emissions. It reflects the possibility
that warming mobilizes large methane stores locked in permafrost and in shallow ocean clathrates
(Hall and Behl, 2006; Archer, 2007; Schaefer et al., 2011). It also reflects the possibility that
land ice sheets begin to retreat on decadal timescales: the resulting loss of reflective ice could
double the long-term warming predicted by models that hold land ice sheets fixed (Hansen et al.,
2008). Temperature dynamics in DICE depend on the climate sensitivity parameter, which is the
equilibrium warming from doubling CO2. The value of 3◦C used in DICE is inferred from climate
models that hold land ice sheets and most methane stocks constant. We represent a climate
feedback tipping point as increasing climate sensitivity to 5◦C (see Supplementary Material for a
formal description).

The second tipping point increases the time during which emissions affect the climate. It reflects
the possibility that carbon sinks weaken beyond the predictions of coupled climate-carbon cycle
models. Warming-induced changes in oceans (Le Quéré et al., 2007), soil carbon dynamics (Eglin
et al., 2010), and standing biomass (Huntingford et al., 2008) could affect the uptake of CO2 from
the atmosphere. We represent these weakened sinks by decreasing the decay rate of atmospheric
CO2 by 50%.

The third tipping point directly affects the economic damage function. This damage function
encapsulates all impacts from warming, including damages from sea level rise, from habitat loss,
and from a weakening thermohaline circulation (Gulf Stream). An unexpected, abrupt change in
any of these channels would change this damage function. For example, if the West Antarctic or
Greenland ice sheets collapse, sea levels could rise quickly and dramatically (Oppenheimer, 1998;
Oppenheimer and Alley, 2004; Vaughan, 2008; Notz, 2009). These higher sea levels would interact
with the existing pathways by which warming causes damages. By stressing adaptive capacity,
higher sea levels or other loss of productive habitat make damages increase faster with warming.
We model such a tipping point as changing the DICE damage function from the conventional
assumption of a quadratic in temperature to a cubic in temperature. Whereas others have applied
a cubic damage function directly (Stern, 2007; Ackerman et al., 2010), we instead allow the damage
function to become cubic only upon triggering this tipping point.

We integrate these three tipping points into the widespread DICE integrated assessment model
that is also used by the U.S. government when determining the social cost of carbon for its reg-
ulatory analyses (Nordhaus, 1992, 2008; Interagency Working Group on Social Cost of Carbon,
2010; Greenstone et al., 2013). The left schematic in Figure 1 gives a graphical representation
of DICE and marks with arrows a, b, and c our tipping point modifications. DICE combines an
economic growth model with a simplified climate module. The policymaker decides how to allocate
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Figure 1: The schematic on the left presents the basic structure of our DICE-based integrated assessment
models. Unabated emissions from economic productions accumulate in the atmosphere. Together with other
greenhouse gases, the emission stock changes the energy balance of the planet, induces various feedback
processes, and increases global surface temperature. The first tipping point (a) increases the feedbacks so
that equilibrium warming from a doubling of the CO2 stock increases from 3◦C to 5◦C. The second tipping
point (b) affects the carbon sinks and reduces the rate of atmospheric carbon removal by 50%. Global surface
temperature increase negatively impacts economic production, which is distributed between consumption,
investment, and greenhouse gas mitigation expenditure. The third tipping point (c) represents events like
sea level rise and habitat loss that further increases temperature stress and changes quadratic in temperature
damages to cubic in temperature damages.
The schematic on the right illustrates the decision problem underlying the optimal policy choice. The policy
maker anticipates that (i) climate can tip, (ii) future decision makers will adjust policy to the new climate
dynamics (iii) the policy maker will learn about the tipping probabilities through observation, including
finding that some temperature regions turn out threshold save.

output between consumption, investment in capital, and emission reductions. Unabated emissions
accumulate in the atmosphere where they change the radiative balance, induce further warming
feedbacks, lead to global (average surface temperature) warming, and economic damages.

An optimal policy balances mitigation, consumption, and capital investment to maximize the
welfare of current and future generations.1 In contrast to the deterministic DICE model, the
possibility of tipping makes the policymaker uncertain about the climate dynamics governing the
future accumulation of greenhouse gases, temperature, and economic output. We therefore use a
recursive, stochastic, dynamic programming implementation of DICE (Kelly and Kolstad, 1999;
Leach, 2007; Traeger, 2013), extending Lemoine and Traeger (2014) who introduce a single tipping
point into this stochastic dynamic programming assessment model. Solving the model with all
three of these tipping points requires solving eight nested dynamic programming problems: when
a tipping point affects the earth system, the value of avoiding it depends on the future welfare loss
from the altered system, which in turn depends on how future policy optimally responds to these

1The DICE model discounts the welfare of future generations at a rate of 1.5% (Nordhaus, 2008). Many have
explored the sensitivity of this model’s results to alternate discounting assumptions (CITES). We take the DICE
model’s assumptions as given in order to understand the implications of introducing multiple, interacting climate
tipping points into an existing, well-understood benchmark for economic evaluation.
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alteration (schematic 1, right). We calibrate identical, uniform Bayesian priors for each tipping
point so that a policymaker with year 2005 information expects a first tipping point to occur once
the world has warmed by 2.5◦C relative to 1900 (see methods section for details).

3 Results

Figure 2 presents the optimal tax on a ton of CO2 in 2015 and 2050 without tipping points, with
individual tipping points, with two simultaneous tipping points, and with all three tipping points
interacting. In the absence of tipping point concerns, the optimal tax in 2015 is $5.7 per ton of CO2;
in the presence of three potential tipping points, the optimal tax in 2015 approximately doubles to
$11. The damage tipping point has the strongest individual effect, increasing the optimal emission
tax by $2.4. The feedback tipping point increases the optimal emission tax by $1.5, and the carbon
sink tipping point increases it by $1.1. Similar findings hold for 2050: the possibility of three
interacting tipping points approximately doubles the optimal carbon tax from $15.3 to $29.7 per
ton of CO2, and the damage tipping point remains the single most important.

Figure 2: Optimal carbon tax in the years 2015 and 2050, assuming no tipping point has yet occurred. The
columns plot scenarios without any possible tipping points; scenarios with a single possible tipping point;
scenarios with two possible tipping points; and scenarios with three possible tipping points. The upper end
of each bar corresponds to the optimal carbon tax, and the lower end of the bar indicates the average optimal
tax when eliminating one of the corresponding tipping points. The horizontal lines show the average carbon
tax among the scenarios with only one or two tipping points. The numbers assume that the given year has
been reached without having passed a tipping threshold.

We find that interactions between tipping points do raise the optimal tax. Introducing three
possible tipping points raises the optimal tax by 5% more in 2015 (and by 30% more in 2050) than
would be suggested by adding the effects of each individual tipping point. The primary interaction
is between the feedback and damage tipping points: introducing only these two tipping points
raises the optimal tax by 6% more in 2015 (and by 19% more in 2050) than would be suggested
by summing the effects of these two individual tipping points. If interactions were unimportant,
then the optimal tax in a model with three possible tipping points should be less than suggested
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by summing the optimal tax in each of the three models with a single tipping point because
tipping point considerations primarily raise the tax in order to make future tipping points less
likely (Lemoine and Traeger, 2014), and a tax increase to avoid one tipping point already helps
avoid another.

Figure 3 presents the optimal emission and temperature trajectories, conditional on not having
crossed a threshold by the corresponding date. In line with the emission tax results in Figure
2, we see that the potential for a carbon sink tipping point only slightly reduces emissions and
temperature. Recognizing the potential for a feedback tipping point reduces peak emissions by 1
Gt and peak temperature by approximately 0.3◦C. The potential for a damage tipping point reduces
optimal peak emissions by over 2Gt and suppresses peak temperature by 0.65◦C. Anticipating all
three potential tipping points implies a reductions of peak emissions by almost 3Gt reduces the
optimal peak temperature from close to 4◦C to just below 3◦C. The anticipation of the tipping
points induces an optimal tranjectory along which both emissions and temperatures start to fall
more than half a century earlier than in an optimal policy scenario without tipping points. On the
climate side, the sum of the individual tipping point adjustments in separate scenarios is slightly
larger then the joint contribution under full interaction of all tipping points. We emphasize that
each reduction in emissions and temperature is beneficial to reducing the probability of all tipping
points. Moreover, it is significantly more costly to bring temperatures further down if they are
already at a lower level. Thus, the fact that the individual tipping point contributions are almost
additive shows the relevance of the tipping points’ interaction.

Figure 3: shows how emissions and temperature react optimally to the presence of three different tipping
points (blue lines) and their interaction (red lines).

Figure 4 shows the optimal carbon tax in year t if the policy maker delays optimal action until
year t and follows the IPCC’s RCP 6 scenario of moderate policy in the meanwhile. The RCP
number specifies the radiative forcing by the end of the century and the scenarios of the latest
Assessment Report IPCC (2013) are 2.8 (or 3), 4.5, 6, and 8.5, where 8.5 is a scenario absent of
any climate policy, RCP 6 has a rather moderate climate policy during the current century then
catching up strongly to stabilize radiative forcing, RCP 4.5 corresponds to a climate policy close to
our optimal policy, and RCP 2.8 is a scenario of extreme mitigation effort turning industrial CO2
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Figure 4: shows the impact of delaying optimal policy for t years. In the meanwhile, CO2 emissions follow
the IPCC’s RCP 6 scenario, which assumes moderate climate policy during the current century. The values
present the optimal initial carbon tax in the year policy switches to optimal policy – and stays optimal
including optimal reactions to possible threshold crossings. The graph assumes that year t has been reached
without crossing any tipping threshold – otherwise stronger post threshold policies would be applied.

emissions into net carbon capture before the end of the century Moss et al. (2007).
We observe that a delay up to 50 years does not change the optimal carbon tax (in the policy

start year) by much. However, the fact that the optimal carbon tax does not react strongly during
the early years does not imply that policy delay is cheap. Assume a policy maker decides to delay
enacting the optimal carbon policy until 2050 (and following RCP 6 until then). Moreover, he
switches to optimal (post-tipping) policy in case the climate system crosses a threshold already
earlier. The cost in our DICE based integrated assessment model of such a delay is $ 1.9 trillion.
In case the policy maker follows RCP 6’s moderate first century policy and its strong stabilization
policy thereafter unless experiencing a tipping point increases the cost of delay to $ 2.7 trillion.
When delaying optimal policy into the second part of the current century, also the optimal carbon
tax increases significantly at the point of switching from RCP 6 to optimal. Finally, note that
the optimal policy presented in Figure 4 is conditional on not having crossed any of the climate
thresholds in the meanwhile. The welfare costs take the cost of tipping followed by optimal tipping
response policy into account. If policy does not react optimally to crossing the first threshold, but
only to crossing the second threshold, the welfare costs increases further to $ 3.9 trillion.

Our findings show that tipping points are of major quantitative importance for climate change
policy. The presence of the three potential tipping points in our Bayesian learning model doubles
the optimal carbon tax and cuts the optimal peak temperatures by approximately 1◦C as compared
to the situation without anticipating tipping points. Our direct comparison of individual tipping
points in the same model summarizes the differences in policy suggestions of earlier studies. Tipping
point studies directly modifying the economic damage function in Keller et al. (2004) and Lontzek
et al. (2012) observe a much stronger impact on optimal policy than tipping points that modify
the climate dynamics and only endogenously and with delay translate into economic damages as
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modeled in (Lemoine and Traeger, 2014). We found the strongest interaction between the tipping
point triggering feedbacks that increase the climate’s sensitivity to greenhouse gas concentrations
and the tipping point directly affecting the steepness of the damage function in temperature in-
crease. The potential domino interaction of tipping points manifests itself in the optimal carbon
tax: the tipping increment when simultaneously anticipating all three possible tipping points is
slightly larger than the sum of the increments when separately analyzing each tipping point. This
finding holds despite the fact that any mitigation action to avoid one of the tipping points also
reduces the probabilities of the others to happen. Optimizing policy in the face of multiple tipping
points with uncertain thresholds is numerically challenging. We find that the optimal carbon tax
in the joint tipping scenario is only slightly larger than the sum of the tax increments calculated
in separate models with individual tipping points. Thus, our finding also encourages the further,
more detailed analysis of individual tipping points and suggests that we obtain a first order approx-
imation to optimal policy by adding the optimal tax adjustments resulting from different tipping
point studies.

4 Methods

We reformulate the DICE-2007 model by Nordhaus (2008) into a recursive dynamic programming
problem following Kelly and Kolstad (1999) and Traeger (2013). In response to the curse of dimen-
sionality of dynamic programming, we reduce the state space of the climate system’s representation.
Traeger (2013) shows that this simplification does not impair the model’s ability to reproduce cli-
mate response as compared with the DICE-2007 or DICE-2013 models, comparing each model to
the average of the Atmosphere-Ocean General Circulation Models used in IPCC (2007) and emu-
lated by MAGICC 6.0. We eliminate a damage coefficient increment in DICE that Nordhaus (2008)
inserts to compensate for not modeling climate catastrophes and tipping points. This somewhat
ad-hoc, smooth, and reversible damage adjustment contributes about half of DICE’s damages at a
1◦C warming. We introduce tipping points as regime shifts following Lemoine and Traeger (2014).

In each period, the climate system crosses with a Bayesian prior’s probability irreversibly into
either of the possible tipping regimes. The individual tipping probabilities are independent in any
given state of the world and the hazard of tipping is determined by the global average temperature
increase. These assumptions induce a binomial distribution over the number of tipping points
triggered between any two periods. When there are n potential tipping points, the probability
of crossing k of them between times t and t + 1 is: n!

k! (n−k)! [h(Tt, Tt+1)]
k [1− h(Tt, Tt+1)]

n−k
.

The term h(·) is the hazard rate for a single tipping point as a function of current and future
temperature. Currently, scientific modeling cannot suggest that one temperature is a more likely
threshold than another similar temperature (Kriegler et al., 2009; Smith et al., 2009; Valdes, 2011).
Our policymaker therefore believes that each threshold is uniformly distributed between a fixed

upper bound T̄ and a lower bound subject to learning: h(Tt, Tt+1) = max
{

0, min{Tt+1,T̄}−Tt

T̄−Tt

}

. The

hazard rate increases with Tt+1 because greater warming over the next interval carries a greater
risk of tipping over the next interval. The hazard rate’s dependence on Tt reflects that if a tipping
point is still possible (i.e., it has not been crossed yet), then the policymaker has learned that its
threshold must be above the current temperature (or does not exist).
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We calibrate the threshold distributions so that in a model with three potential thresholds,
the policymaker with year 2005 information expects that 2.5◦C of warming relative to 1900 would
trigger some tipping point. This requirement implies an upper bound T̄ of 7.8◦C, which is among
the highest values explored in the sensitivity analysis for the single-tipping runs in Lemoine and
Traeger (2014). An expected trigger of 2.5◦C is consistent with the political 2◦C limits for avoiding
dangerous anthropogenic interference. Further, in the most recent version of the “burning embers”
diagram (Smith et al., 2009), the yellow (medium-risk) shading for the “risk of large-scale discon-
tinuities” begins around 1.6◦C of warming relative to 1900, and the red (high-risk) shading begins
around 3.1◦C of warming relative to 1900.

We solve the tipping scenarios recursively, starting with a world where all tipping thresholds have
been crossed. We solve the corresponding Bellman equation by function iteration and approximate
the value function using a 104 dimensional Chebychev-basis. Each iteration uses the knitro solver
to optimize abatement and consumption decisions at the Chebychev nodes. We use the resulting
value function in the scenarios where all but one tipping points have been crossed, where it captures
the continuation value in the case of further tipping with hazard rate h. We recursively proceed
to find all value function until we reach our current world where no tipping threshold has been
crossed.
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