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Abstract

We quantify crash risk in currency returns. To accomplish this task, we develop and estimate an
empirical model of exchange rate dynamics using daily data for four currencies relative to the US
dollar: the Australian dollar, the British pound, the Swiss franc, and the Japanese yen. The model
includes (i) normal shocks with stochastic variance, (ii) jumps up and down in the exchange rate,
and (iii) jumps in the variance. We identify these components using data on exchange rates and
at-the-money implied variances. We find that crash risk is time-varying. The probability of an
upward (downward) jump in the exchange rate, associated with depreciation (appreciation) of the
US dollar, is increasing in the domestic (foreign) interest rate. The probability of a jump in variance
is increasing in the variance but is not related to interest rates. Many of the jumps in exchange
rates are associated with macroeconomic and political news, but jumps in variance are not. On
average, jumps account for 25% of total currency risk (and can be as high as 40%), as measured
by the entropy of exchange rate changes, over horizons of one to three months. The dollar carry
index, which is based on 21 exchange rates, retains these features. A simple calibration analysis
using option-implied smiles suggests that jump risk is priced.
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1 Introduction

The time variation and high magnitude of returns to currency speculation have attracted
a lot of recent attention. Much of the literature has focused on measuring risk premiums,
or expected excess returns, in this market (e.g., Lustig and Verdelhan, 2007). However,
expected returns alone do not tell the whole story. Investors also care about the risks that
they must bear to earn these returns. Therefore, the distribution of risks is an important
ingredient in understanding currency premiums.

A number of papers have suggested that investors in currency markets require high returns
on average as a compensation for crash risk. The merit of this explanation hinges on the
magnitude and probability of large moves in currency markets. Our paper is the first empir-
ical study that systematically quantifies crashes, documents when they occurred historically
and what their determinants were.

We develop and estimate a model that incorporates both crash risk and regular, or normal,
risk. The model can accommodate information from both exchange rates and option-implied
volatilities. Our objective is to use the model to establish whether a large move in the
exchange rate takes place because of a crash, or because the conditional variance of a
normal shock is high. Implied volatilities are particularly helpful for this task because they
provide information about the market’s view on conditional variance.

We establish the relative importance of three key modelling elements. First, it is well-
documented that currency returns are heteroscedastic (e.g., Baillie and Bollerslev, 1989;
Engel and Hamilton, 1990; Engle, Ito, and Lin, 1990; Jorion, 1988; Harvey and Huang,
1991). Casual observation of time-series variation in option-implied exchange rate volatility
also confirms this point. We capture this feature of the data with a standard stochastic
volatility component in our model.

Second, there is also strong empirical evidence that daily changes in exchange rates are not
conditionally Gaussian (as would approximately be the case in a model with only stochastic
volatility). To account for this feature of the data, our model includes jump risks in exchange
rates.1 We allow the probability of these jumps to be time-varying, in order to capture the
variation in conditional skewness that has been previously documented (e.g., Bakshi, Carr,
and Wu, 2008; Brunnermeier, Nagel, and Pedersen, 2008; Carr and Wu, 2007; Johnson,
2002).

Third, changes in the at-the-money implied volatility of a typical exchange rate exhibit
unconditional skewness of 1 and kurtosis of 10 or more. To accommodate this property,
our model allows for jumps in the variance of Gaussian shocks to exchange rates. The

1In this paper, we use “crash” and “jump” interchangeably. Because we are only studying asset prices,
not the economy, we cannot say anything about economic disasters. Despite this clarification we think that
our findings could be useful for researchers interested in modelling the economy, see, e.g., Backus, Chernov,
and Martin (2011) for an example of how asset prices could be used to infer behaviour of consumption.
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importance of such jumps for modelling equity returns has been emphasized in Broadie,
Chernov, and Johannes (2007); Duffie, Pan, and Singleton (2000); Eraker, Johannes, and
Polson (2003), among others. To our knowledge, our paper is the first to investigate the
role of jumps in the volatility of exchange rates.

A jump in an exchange rate is qualitatively different from a jump in its variance. Almost
by definition, large jumps are rare events. Therefore, when there is a direct jump in the
exchange rate, one doesn’t necessarily expect there to be many subsequent jumps in the
near future. By contrast, when there is a jump in the variance of the Gaussian shock to
an exchange rate, one expects there to be many large subsequent moves in the exchange
rate because of the higher level of variance. We use our model and empirical analysis to
determine whether these qualitative distinctions lead to materially quantitative differences.

We use daily joint data for exchange rates and implied volatilities from 1986 to 2010 (the
options data start in 1994) on four spot exchange rates: Australian dollar, Swiss franc,
British pound, and Japanese yen. Crashes are rare and volatility is persistent, so it is
important to use a long time span of data. Short samples are likely to either over- or
under-represent jumps and periods of high or low volatility leading to biased estimates of
the required probabilities.

We rely on Bayesian MCMC to estimate candidate models. One of the key advantages
of this approach is that it provides estimates of the conditional distribution of currency
returns, as well as estimates of the realized shocks. This feature allows us to link large
shocks, or jumps, to important macro-finance events and thereby illuminate the potential
economic channels that are responsible for crash risk in currencies.

Our statistical tests strongly favor both jumps in exchange rates and in their variances. This
conclusion is similar to the one in the equity literature. However, the similarity ends there.
In contrast to equity models that rely on one Poisson (counting) process controlling the
arrival rate of all jumps, we find three such processes in FX. The three types of jumps arise
via different mechanisms. The arrival rate of a jump in the variance of currency returns is
positively related to the variance itself. Thus, this component belongs to the class of self-
exciting processes. The probability of a jump up in the exchange rate, which corresponds
to a depreciation of the US dollar, is positively related to the domestic (US) interest rate.
The probability of a jump down, which corresponds to an appreciation of the US dollar, is
positively related to the foreign interest rate.

Although jumps in currencies and in variance are alternative channels for large currency
returns, we find that economically they are quite distinct. We can connect most of the jumps
in FX to important macro or political announcements. In contrast, jumps in variance cluster
at the moments of high uncertainty in markets, which are captured by comments on current
events, political speculation and overall anxiety about upcoming events.

We use entropy (a generalized measure of variance) of changes in an exchange rate to
measure the amount of risk associated with currency positions and to decompose this risk
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into the contributions from different sources of shocks (Alvarez and Jermann, 2005; Backus,
Chernov, and Martin, 2011). Appropriately scaled entropy is equal to the variance of
an exchange rate return if it is normally distributed, but otherwise includes high-order
cumulants. Therefore, entropy is a convenient measure that captures both normal and tail
risk in one number. We find that, depending on the currency, the time-series average of
the joint contribution of the three types of jumps can be as high as 25% of the total risk
and on individual days this contribution can be up to 40%. Jumps in variance contribute
about a third to the average contribution and can be as high as 15% of the total risk on
individual days. Also, the contribution of jumps in variance to the total risk increases with
investment horizon.

To test whether diversification eliminates or reduces the importance of these jumps, we
estimate the dynamics of the 21-currency dollar index studied by Lustig, Roussanov, and
Verdelhan (2013). While diversification reduces jump frequency, it also reduces the volatility
of the normal risks. As a result, the relative importance of jumps stays unchanged. The
dollar carry trade switches position of the dollar index from long to short depending on
the difference between the US interest rate and the index of foreign interest rates. We find
that this trade increases the number of instances of jumps in currencies that go against the
speculator. Jumps in variance are not affected by the switching position.

Given the large contribution of jumps to the overall risk, it is natural to ask whether the
jump risk is priced. The full answer to this question requires an explicit model of the
pricing kernel and the use of assets, such as out-of-the-money options, that are particularly
sensitive to jumps for estimation. While such analysis is outside of the scope of this paper,
we carry out a limited option valuation exercise. We select representative implied volatility
smiles and attempt to fit them by allowing premiums for normal risks only. We find that
the resulting theoretical implied volatilities cannot generate the asymmetries present in the
data.

Related Literature

We limit our discussion of related literature to papers that highlight the importance of jumps
for understanding the properties of exchange rate returns. One exception is the work of
Brandt and Santa-Clara (2002) and Graveline (2006). These papers are early antecedents of
our paper in terms of methods and research questions. These authors also estimate a time-
series model of exchange rates using the time-series of FX and implied variance. However,
they do not allow for jumps.

Our paper is related to recent empirical papers that investigate whether high currency
returns can be explained as compensation for jump, or crash, risk. Brunnermeier, Nagel,
and Pedersen (2008) provide evidence consistent with the hypothesis that large exchange
rate moves are related to funding constraints of speculators enagaged in carry trades. In
particular, they relate the sign and magnitude of skewness of various exchange rates relative
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to the USD to those of the respective interest rate differentials. Jurek (2009) analyzes the
returns on carry trade portfolios in which the exposure to currency crashes is hedged with
options. He concludes that exposure to currency crashes account for 15% to 35% of the
excess returns on unhedged carry trade portfolios. Burnside, Eichenbaum, Kleshchelski,
and Rebelo (2011) investigate whether carry trade returns reflect a “peso problem” (i.e., a
low probability event that did not occur in the sample). They use carry returns hedged with
options to argue that any such peso event must be a modest negative return on the carry
trade combined with an extremely large value of the stochastic discount factor (i.e., the
marginal utility of a representative investor must be very high in the, as yet, unobserved
peso state). Jordà and Taylor (2012) propose to manage the risk of carry positions by
conditioning on macro information instead of options, but the resulting strategy still yields
a very high Sharpe ratio. The common thread in these papers is that they provide indirect
evidence on the magnitude of jump risk. Our paper aims to complement this previous work
with a formal statistical model and analysis.

Our paper is also related to the option pricing literature, which has focused on modeling the
risk-adjusted (risk-neutral) distribution of exchange rates. By construction, these papers
do not consider risk premiums. However, the shock structures under the risk-adjusted and
actual (true) distributions are usually modelled to be similar. In this respect, this work is
complimentary to our analysis. Bates (1996) considers option prices on the Deutsche Mark
and is the earliest paper that argues for the inclusion of jumps in currencies. He considers
a single normally distributed jump in FX with a constant probability. Carr and Wu (2007)
distinguish jumps up and down in FX and also allow for time-varying jump probabilities
controlled by unobservable states. Bakshi, Carr, and Wu (2008) extend the Carr-Wu model
to a triangle of currencies (GBP, JPY, and USD) and estimate it using 2.25 years of data on
exchange rates and option prices. Our analysis provides additional economic intuition, as
time variation in jump probabilities are driven by observable interest rates. None of these
papers consider jumps in variance or estimate jump times and sizes. Farhi, Fraiberger,
Gabaix, Ranciere, and Verdelhan (2009) do not have explicit time-varying states, but allow
risk-adjusted parameters to change every period in a nonparametric fashion.

There is also an important literature that attempts to explain the behaviour of exchange
rates in macro-founded equilibrium.2 Our paper is silent about the prices of risk (with the
exception of the limited option calibration exercise), but it has implications for how to best
model the fundamentals in an equilibrium setting. Gourio, Siemer, and Verdelhan (2013),
Guo (2007) and Ready, Roussanov, and Ward (2013) propose production-based models,
where productivity is allowed to experience a disastrous decline. Farhi and Gabaix (2008)
consider a pure exchange economy and a similar assumption of a disaster in consump-
tion. Disasters are modelled as jumps down, and all papers, with the exception of Ready,
Roussanov, and Ward (2013), allow unobservable time-varying processes to drive disaster
probabilities. Exchange rates inherit these properties. Our results suggest that it may also

2Examples include, but not limited to Bekaert (1996); Backus, Gavazzoni, Telmer, and Zin (2010); Bansal
and Shaliastovich (2012); Colacito (2009); Colacito and Croce (2013).
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be important to allow for jumps in the volatility of these processes and for the process
driving probability of jumps in consumption to be related to interest rates in equilibrium.

Our results also speak to the frictions-based equilibrium model of Plantin and Shin (2011).
These authors focus on endogenously generated dynamics of a carry trade. A carry trade
gets started in a high-liquidity environment, such as accommodative monetary policy. It is
self-enforcing because of the speculators’ belief that others will join the trade. The trade
crashes when the speculators hit funding constraints. As a result, extended periods of
slow appreciations of a high interest rate currency are randomly interrupted by endogenous
crashes. Because our analysis is implemented at the daily frequency, we are able to capture,
in reduced form, related phenomena.

2 Preliminaries

This section motivates our analysis and highlights properties of the data that our model is
designed to capture.

2.1 Excess Returns

In this paper we always treat USD (i.e., U.S. dollars) as the domestic currency. Let rt be
the continuously-compounded USD interest rate, r̃t be the analogous interest rate in the
foreign currency (e.g., GBP), and St be the exchange rate expressed as units of domestic
currency per unit of foreign currency. Then one U.S. dollar buys 1/St units of foreign
currency at time t, which grows at the foreign risk-free rate to 1/St · exp (r̃t) units at time
t + 1, and can be exchanged for St+1/St · exp (r̃t) U.S. dollars. Therefore, the log excess
dollar-denominated return to investing in the foreign currency (i.e., the return over and
above investing at the USD risk-free rate) is

yt+1 = st+1 − st + r̃t − rt ,

where st = ln St.

Figures 1 - 4 display the time series of log excess returns, yt+1 (panel (a)), and implied
volatilities (panel (b)) for the currencies we consider in this paper. We have selected
four currencies - Australian dollar (AUD), Swiss franc (CHF), British pound (GBP), and
Japanese yen (JPY) based on the availability of daily data, and cross-sectional and time-
series variation in the interest rate differential. We use one-month LIBOR to proxy for
interest rates. Using one-month rather than overnight rates implicitly assumes a flat term
structure at the very short end of the LIBOR curve and allows us to abstract from poten-
tial high-frequency idiosyncratic effects associated with fixed-income markets. Because we
denominate exchange rates by the U.S. dollar, movements up correspond to a depreciation
in the USD.
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2.2 Properties of Excess Returns

In Table 1 we provide summary statistics of daily log excess returns and changes in the
one-month at-the-money implied volatility. Means are close to zero at daily frequency.
Therefore, these summary statistics inform us primarily about the properties of shocks.

All currencies have volatility of about 10% per year. There is evidence of substantial kurtosis
(AUD and JPY are the most notable in this regard), which is suggestive of non-normalities.
Skewness of all currencies is mild. It turns out that this is a manifestation of time-varying
and sign-switching conditional skewness. We produce a rough estimate of conditional skew-
ness by computing a six-month rolling window. The time-series of these estimates are
displayed in panels (a) of Figures 1 - 4. Depending on the currency, conditional skewness
ranges from -2 to 2. Thus, excess returns are not only fat-tailed, but also asymmetric with
the degree of asymmetry changing over time.

The implied volatility is itself quite variable at about 60% per year (the number in the
table multiplied by

√
252) and highly non-normal with skewness and kurtosis much higher

than those of the currency returns themselves. The implied volatility from the short-dated
options should be very close to the true volatility of exchange rates (which is unobservable)
and therefore its properties provide insight into the features that a realistic model of variance
must require.

As a reference, we report the same summary statistics for the S&P 500 whose risks have
been thoroughly studied in the literature. The index returns are more volatile and exhibit
much stronger departures from normality as compared to currencies. In particular, negative
unconditional skewness is evident (in fact, a measure of conditional skewness rarely becomes
positive). In contrast, changes in VIX, a cousin of implied variance, display weaker non-
normalities than currencies. These statistics suggest that a model of currency risks could be
substantively different from that of equity risks even though one clearly has to use similar
building blocks.

2.3 Risks and Expected Excess Returns

We can generically represent excess returns as:

yt+1 = Et(yt+1) + shocks. (2.1)

Most research has focused on conditional expected excess returns Et(yt+1). For example,
if currencies do not carry a risk premium, then uncovered interest rate parity (UIP) holds
and Et(yt+1) = 0. However, Bilson (1981), Fama (1984), and Tryon (1979) establish that
the regression

st+1 − st = a1 + a2(ft − st) + shocks, (2.2)
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where ft is is the log of the one-month forward exchange rate, typically yields estimates of
a2 of approximately −2. If covered interest rate parity (i.e., no-arbitrage) holds, then the
log forward exchange rate is given by ft = st + rt − r̃t, therefore this result is equivalent to:

yt+1 = a1 + (a2 − 1)(rt − r̃t) + shocks, (2.3)

with a slope coefficient of about −3. Subsequent research has extended the specification of
risk premiums Et(yt+1) (e.g., Beber, Breedon, and Buraschi, 2010; Bekaert and Hodrick,
1992; Lustig, Roussanov, and Verdelhan, 2011; Menkhoff, Sarno, Schmeling, and Schrimpf,
2012, among others).

Asset pricing theory relates expected excess returns to compensation for bearing risks, that
is, it relates “Et (yt+1)” to the “shocks” in equation (2.1). In the language of pricing kernels,
expected excess returns are determined by the covariation of currency risks with a pricing
kernel. We don’t empirically test any specific asset pricing theories (pricing kernels) in
this paper, but a thorough analysis of the shocks is a necessary ingredient for full testing
of any dynamic asset pricing model. To illustrate this point, we provide an example of
two theories that can lead to identical expected excess returns despite the different shock
structures (Appendix A.1). In this situation, the distribution of shocks is the only element
that can distinguish one theory from the other.

To measure shocks, we need to model conditional means as well. We use a simple speci-
fication that encompasses the UIP regressions result by allowing for linear dependence on
the domestic and foreign interest rates, and includes variance of FX returns as an extra
variable.3 Because we are working with daily returns, the magnitude of the drift term is
much smaller than the higher order moments and so any omitted variables that might af-
fect expected returns are not likely to introduce much bias in our results. Verdelhan (2011)
provides direct evidence supporting this conjecture. As such, to avoid overfitting, we did
not include any other variables in the drift of the exchange rate.4

While our focus is on careful modelling of currency risks themselves, our conclusions should
have implications for modelling of economic channels leading to the observed risk premiums.
As highlighted by our examples in Appendix A.1, successful equilibrium models should be
able to replicate not only the measured risk premiums, but the distribution of currency
shocks as well. To this end, our model can be used to construct portfolios that isolate jump
risks and serve as inputs to traditional factor models that examine the pricing of these risks.
Moreover, our extensive analysis of the shocks to currency returns provides useful guidance
for specifying shocks to fundamentals in equilibrium models.

3This addition can be supported in various theoretical settings (Bacchetta and van Wincoop, 2006;
Brennan and Xia, 2006). Empirical work with such a term includes Bekaert and Hodrick (1993), Bekaert
(1995), Brandt and Santa-Clara (2002), Domowitz and Hakkio (1985), Graveline (2006), Lustig, Roussanov,
and Verdelhan (2011), and Menkhoff, Sarno, Schmeling, and Schrimpf (2012).

4A recent literature suggests that inference about the conditional mean of excess returns can be im-
proved by considering portfolios of currencies (e.g., Barroso and Santa-Clara, 2011; Lustig, Roussanov, and
Verdelhan, 2011; Lustig and Verdelhan, 2007; Menkhoff, Sarno, Schmeling, and Schrimpf, 2012).
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3 Empirical Model

We start by presenting our empirical model in Section 3.1. Section 3.2 discusses how we
arrived at the assumed functional forms.

3.1 Currency Dynamics

In this paper we model each exchange rate in isolation from others. A large fraction of cur-
rency analysis, such as UIP regressions or equilibrium modelling is conducted on a currency-
by-currency basis. This approach is able to identify the normal and non-normal shocks, and
how they should be modelled. However, we cannot say which fraction of shocks can be ex-
plained by common variation in the exchange rates, and which fraction is country-pair
specific. The important question of modelling the joint distribution of currency risks goes
hand-in-hand with modelling of the pricing kernel and we leave this investigation for future
research.5

We model log excess FX returns as

yt+1 ≡ (st+1 − st) − (rt − r̃t) = µt + v
1/2
t ws

t+1 + zu
t+1 − zd

t+1 , (3.1)

where ws
t+1 is a standard Gaussian shock (i.e., zero mean and unit variance), zu

t+1 is a jump
up (i.e., depreciation of USD) and the negative of zd

t+1 is a jump down (i.e., appreciation
of USD). The conditional spot variance is vt and the jump intensities of zu

t+1 and zd
t+1 are

hu
t and hd

t respectively.6 The discussion of µt is postponed until we have further described
these three shocks.

The conditional spot variance vt is assumed to follow a mean-reverting “square-root” pro-
cess,

vt+1 = (1 − ν)v + νvt + σvv
1/2
t wv

t+1 + zv
t+1 , (3.2)

which itself can jump with intensity hv
t .

7 The Gaussian shocks to excess returns ws and
to conditional spot variance wv have a correlation coefficient corr (ws, wv) = ρ. Finally, to

5Lustig, Roussanov, and Verdelhan (2011); Sarno, Schneider, and Wagner (2012) perform such modelling
allowing normal shocks only. Bakshi, Carr, and Wu (2008) model a triangle of currencies (GBP, JPY, and
USD) allowing for jumps in FX.

6This specification can be viewed as a discrete-time model or as a Euler discretization of a continuous-
time model (see, e.g., Platen and Rebolledo, 1985). In any case, a discrete-time model is required at the
estimation stage, which is why we omit explicit continuous-time formulation. Formally, all shocks, even the
Gaussian variables, are jumps in discrete time. We model small jumps via Gaussian shocks and large jumps
via the compound Poisson process. We distinguish the small and the large jumps by imposing the respective
priors at the estimation stage. We apply the term jump to the large component only for the ease of referral.

7In continuous time, the Feller condition σ2
v < 2v(1 − ν) ensures that the variance stays positive if there

are no jumps. A formal modelling of this process in discrete time is achieved via a Poisson mixture of
Gamma distributions (e.g., Gourieroux and Jasiak, 2006; Le, Singleton, and Dai, 2010). We use a direct
discretization of the continuous-time counterpart so that the model parameters can be easily interpreted.
We ensure that the variance stays positive at the estimation stage by a careful design of the simulation
strategy.
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ensure positivity of the variance when jumps are present, we only allow for upward jumps
so that zv

t+1 has non-negative support.

The jump arrival rate is controlled by a Poisson distribution. The assumed jump intensities
imply that the number of jumps takes non-negative integer values j with probabilities

Prob(jk
t+1 = j) = e−hk

t (hk
t )

j/j! , k = u, d, v . (3.3)

We allow all of the jump intensities to depend on the domestic and foreign interest rates,
as well as on the conditional spot variance,

hk
t = hk

0 + hk
rrt + h̃k

r r̃t + hk
vvt , k = u, d, v . (3.4)

For a given number of jumps per period, the magnitude of a jump size is assumed to be
random with a Gamma distribution,

zk
t |j ∼ Gamma(j, θk) , k = u, d, v . (3.5)

Intuitively, because we consider daily data, a Bernoulli distribution is a very good approxi-
mation to our model as it is reasonable to assume no more than one jump per day. Then, the
probability of a jump is 1 − e−hk

t ≈ hk
t and the distribution of the jump size is exponential

with mean parameter θk.
8

We complement our data on exchange rate rates with variances implied from option prices.
In this respect we follow the rich options literature that highlights the importance of us-
ing information in options for model estimation (e.g., see Äıt-Sahalia and Kimmel, 2007;
Brandt and Santa-Clara, 2002; Chernov and Ghysels, 2000; Jones, 2003; Pan, 2002; Pas-
torello, Renault, and Touzi, 2000). Many authors use implied variance in empirical work
by interpreting it as a very accurate approximation of the risk-adjusted expectation of the
average future variance realized over an option’s lifetime. This is certainly true for models
with stochastic volatility only. The one-for-one relationship between implied variance and
risk-adjusted expected variance may break down in the presence of jumps. For example,
Chernov (2007) has to assume that the risk-adjusted mean of jumps in FX is equal to zero
to retain the simple relationship. Importance of careful accounting for jumps is manifested
more clearly in the literature on model-free implied variance, such as VIX for S&P 500,
where analytic expressions are feasible. Martin (2013) shows that, in the presence of jumps,
VIX is equal to risk-adjusted expected variance plus additional terms reflecting the higher
order risk-adjusted cumulants of returns.

We treat the Black-Scholes implied variance of a short-term (one-month) at-the-money
option, IVt, as a noisy and biased observation of the conditional spot variance vt. Such
a view allows us to avoid the aforementioned difficulties in explicit connection between

8Our choice of the variance jump size distribution is frequently used when modelling variance to ensure
its positivity as discussed above. The model of variance is also capable of generating quite rapid variance
declines after jumps. A jump leads to a large deviation from the long-run mean v, and mean-reversion
controlled by parameter ν ensures that the variance is pulled back.
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implied variance and risk-adjusted expected future variance. The cost of such approach is
our inability to estimate risk-adjusted parameters of the model. Specifically,

IVt = αiv + βivvt + σivvt

√

λt εt , (3.6)

where IVt is expressed in daily terms, εt is N (0, 1) and λt is IG(ν/2, ν/2), so the product√
λtεt is tν−distributed (Cheung, 2008; Jacquier, Polson, and Rossi, 2004).9 We have

considered a version of (3.6) with non-zero loadings on rt and r̃t, but this specification did
not find empirical support.10

The model implies that expected log excess return is equal to

Et [yt+1] = µt + hu
t θu
︸︷︷︸

Et[zu
t+1]

− hd
t θd
︸︷︷︸

Et[zd
t+1]

. (3.7)

As discussed in the previous section, we assume that

µt = µ0 + µrrt + µ̃r r̃t + µvvt. (3.8)

The resulting expected excess return is

Et [yt+1] = µ∗
0 + µ∗

rrt + µ̃∗
r r̃t + µ∗

vvt (3.9)

where

µ∗
0 = µ0 + hu

0θu − hd
0θd , (3.10a)

µ∗
r = µr + hu

r θu − hd
rθd , (3.10b)

µ̃∗
r = µ̃r + h̃u

r θu − h̃d
rθd , (3.10c)

µ∗
v = µv + hu

vθu − hd
vθd . (3.10d)

Thus, our risk premium encompasses the UIP regressions which set

µ̃∗
r = −µ∗

r , (3.11)

µ∗
v = 0 . (3.12)

We conclude with a discussion of our approach to modelling interest rates. We do not need
an explicit model of interest rates to estimate our model of FX excess returns if we are willing
to assume that one-day rt and r̃t can be reasonably proxied with short-term yields. We

9Jones (2003) makes a strong case for heteroscedastic measurement errors in implied variance. His
specification sets λt = 1. Cheung (2008) generalizes the specification to the Student t−error. We tried using
a normal error with volatility σiv, a normal error with volatility σivvt, and the Student t−error described
above. We find that heavy-tailed t3 works very well.

10The error specification in (3.6) is very flexible. Therefore, it could be the case that the contribution of
interest rates to the variation in implied variance cannot be empirically distinguished from the error, if the
former is reasonably small.
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view this feature as a strength of our approach because explicitly modelling the behaviour of
spot interest rates entails significant effort. There is a separate literature dedicated to this
task and state-of-the-art models rely on five factors for capturing interest rate dynamics.
These studies are typically conducted with monthly or quarterly data, so they do not take
into account higher-frequency movements in interest rates which are susceptible to jumps
themselves (e.g., Johannes, 2004; Piazzesi, 2005). Moreover, interest rates and currencies
have low conditional correlation and variability in interest rates is much smaller than that
in currencies. In summary, elaborate modelling and estimation of interest rate dynamics
does not appear to be a first order concern for the questions that we are addressing.

Nonetheless, we use the estimated model to compute some useful objects (expectations
of future variance, or expected excess returns over multiple horizon) that depend on the
distribution of interest rates. In order to obtain reasonable quantities, we assume the
simplest possible model for the interest rates:

rt+1 = (1 − br)ar + brrt + σrr
1/2
t wr

t+1, (3.13a)

r̃t+1 = (1 − b̃r)ãr + b̃rrt + σ̃r r̃
1/2
t w̃r

t+1. (3.13b)

A square root process for interest rates is subject to caveats in discrete time that we pre-
viously discussed for the variance process. We calibrate the models to match the mean,
variance and serial correlation of the respective observed short-term interest rates. Our
computations with reasonable variation in parameters confirm our intuition that they have
minimal impact on the role of normal and non-normal currency risks.

3.2 Qualitative Features of the Model

In this section we explain how we arrived at the specified functional form of the model.
We evaluated too many models to provide a detailed account of our analysis, so we briefly
summarize the results that led us to the above specification. Our initial specifications
were motivated by the well-developed literature on equity returns (Andersen, Benzoni, and
Lund, 2002; Chernov, Gallant, Ghysels, and Tauchen, 2003; Eraker, Johannes, and Polson,
2003; Eraker, 2004; Jones, 2003) and some of the few models of currencies (Bates, 1996;
Johnson, 2002; Jorion, 1988; Maheu and McCurdy, 2008). The salient features of equity
data are presence of substantial moves up and down and a pronounced negative skewness in
the return distribution. Therefore, jumps in equity returns are often modelled via a single
compound Poisson process with a normally distributed size of non-zero mean. However,
in contrast to equity returns, currency returns have very mild skewness over long samples,
which suggests a zero-mean normal distribution for jump sizes.

Further, Bates (1996), Campa, Chang, and Reider (1998), Carr and Wu (2007), and Johnson
(2002) emphasize the time-varying and sign-switching nature of the risk-adjusted skewness
of exchange rates. The key to modelling this feature successfully is to allow the conditional
expected jump to vary over time. A single jump process with a zero mean jump size
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implies a zero conditional expected jump. Two jump processes have a potential to generate
the requisite variation either via time-varying jump intensities, or time-varying jump size
distributions, or both. We do not explore time-varying jump means as such specifications
do not allow for tractable option valuation in the affine framework, and we eventually want
our model to be used to analyze option prices. As can be seen from the expression for
the currency risk premium (3.7), the conditional jump expectation is hu

t θu − hd
t θd, which is

capable of producing the needed variation. We have also considered normally distributed
jump sizes in excess returns with means of the jump size distribution having opposing signs.
However, because normal distributions have infinite support, it was hard to distinguish
empirically the down and up components. The exponential distribution does not have this
issue because the support is on the positive line.

Another interesting feature of our specification is that we allow not only for two different
Poisson processes in currency returns, but also for a third one in the variance. Our starting
point was again in the equity literature where all jumps in returns and variance are guided
by the same (or at least correlated) Poisson processes. We found that the model with
correlated Poisson processes fit the data poorly.

4 Empirical Approach

We use Bayesian MCMC to estimate the model. This method has been successfully im-
plemented in many applications (see Johannes and Polson, 2009 for a review). For our
purposes, a key advantage of this approach over other methodologies is that unobserved
variables – e.g., variance, jump times, and sizes – are a natural by-product of the estima-
tion procedure. The online Appendix describes all the details of the implementation.

It is worth pointing out how we distinguish jumps and normal shocks in the model. Formally,
all shocks are discontinuous in our discrete-time formulation. We think of jumps as relatively
infrequent events with relatively large variance. We use priors on jump arrival and jump
size parameters to express this view.

It proved to be extremely fruitful to use option implied variances in our estimation. Ignoring
information in option prices made it very hard to settle on a particular model. Parameters
were estimated imprecisely and the algorithm had poor convergence properties – both are
manifestations of the data being not sufficiently informative about the model. We had a
similar experience when estimating the most general model, even when using the options
data. Complicated dependencies of jump intensities on state variables, and the sheer number
of separate Poisson processes was too much for the available data.

As such, we pursue the following model selection strategy. First, we treat implied vari-
ances as observed spot variances and estimate the model of variance (3.2). At this stage
we select the best model by checking the significance of parameters on the basis of both
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confidence intervals and Bayes odds ratios. Specifically, the parameters of concern are the
ones controlling the jump intensity in equation (3.4) for k = v. It turns out that, regardless
of the currency, only the loading on variance is significant. In other words, the probability
of jumps in the variance is affected by the variance itself. Thus, jumps in the variance are
self-exciting (Hawkes, 1971).11 Pinning down the model of variance is an extremely useful
step in our estimation procedure.

Second, we use the lessons from the estimation exercise on the basis of implied variance
alone to guide us in a formal search in the context of our full model. That is, we take
the model (3.1), (3.2) and combine it with equation (3.6) that recognizes implied variances
as noisy observations of the spot variance. As a benchmark, we estimate the stochastic
variance model with no jumps. Next, we estimate a model with jumps in variance but no
jumps in exchange rates (hu

t = hd
t = 0). We refer to this model as stochastic variance with

jumps.

Finally, we allow for the full model with jumps in both exchange rates and variance. Here,
we focus on the significance of the parameters controlling the jump intensities in (3.4) for
k = u and d. We are not reporting all the details here, but we find that h̃u

r , hu
v , hd

r and hd
v

are insignificant. Thus, the probability of jumps up in the exchange rate is driven by the
domestic rates only, and the probability of jumps down in the exchange rate is driven by the
foreign rate only. We also test if some interesting parameters, or combinations of parameters,
are equal to zero. First, we can test the UIP regression restrictions on the risk premiums
in Eq. (3.11) (whether interest rates affect the risk premium as a differential) and Eq.
(3.12) (whether the variance affects the risk premium). As we noted earlier, the behaviour
of the FX skewness is dramatically affected by expected effect of jumps, which is equal to
hu

t θu − hd
t θd. Here we are interested in testing whether θu = θd = θ, hu

0 = hd
0 = h0, and

hu
r = h̃d

r = hr. These hypotheses are interesting because if they cannot be jointly rejected
then expected jump would be equal to θhr(rt − r̃t). Thus, the excess return asymmetries
will be directly driven by the interest rate differential as noted in Brunnermeier, Nagel, and
Pedersen (2008). The final version of this model that incorporates all the unrejected null
hypotheses is referred to as the preferred.

We implement a series of informal diagnostics and specification tests to establish the pre-
ferred model. The diagnostics test the null hypothesis that the shocks to the observable
excess return, ws, and implied variance, ε, should be normal under the null of a given model.
We can construct the posterior distribution of these shocks and evaluate how they change
from model to model and whether they are normal. The procedure is described in the online
Appendix.

One has to exhibit caution when interpreting the evidence on normality of ε. The variance
of the error term in the implied variance equation (3.6), σ2

ivv
2
t λt is very flexible. If a model is

11The recent literature on equity returns also finds support for self-exciting jumps. See, for example,
Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2011); Carr and Wu (2011); Nowotny (2011); Santa-Clara and Yan
(2010).
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misspecified, λt will adjust so that the ε is close to a normal variable. Therefore, diagnostics
of ε are not enough. We should be tracking the size of the variance of the error term. A
better specified model should have smaller variance. We keep track of the time-series average
of this variance – which we refer to as IVvar – and report its posterior distribution.

Bayes odds ratios offer a formal specification test of the models. The test produces a number
that measures the relative odds of two models given the data (the posterior distribution
of the null model is in the denominator of the ratio). Following Kass and Raftery (1995),
we interpret a log odds ratio that is greater than 3 as strong evidence against the null.
Odds ratios do not necessarily select more complex models because the ratios contain a
penalty for using more parameters (so-called automatic Occam’s razor). The computations
are described in the online Appendix.

5 Results

We start by highlighting statistical properties of the estimated models. Next, we study
economic implications.

5.1 Statistical Properties of Currency Risks

Tables 2 - 5 report the parameter estimates and Tables 6 - 9 report the corresponding model
diagnostics. Table 10 displays the results of specification tests on the basis of Bayes odds
ratios. Table 11 summarizes parameters of the calibrated interest rate processes.

The results exhibit a lot of similarities across the different currencies. As we move from
models with stochastic variance to stochastic variance with jumps, we observe a change
in two key parameters: both the persistence ν of variance and the long-run mean of its
conditionally normal component v decline. Taking AUD as an example, ν declines from
0.9943 to 0.9855. This seemingly small change translates into drop in the half-life of the
conditionally normal component, log 2/(1 − ν), from 122 to 48 days. The high persistence
of variance in the model without jumps is a sign of misspecification. Variance has to take
high values occasionally to generate the observed exchange rates in the data. In the absence
of jumps, variance builds up to the high values gradually via the high persistent channel.
Additionally, in the case of GBP only, the volatility of variance σv declines significantly
from 0.0321 to 0.0272. High σv helps the misspecified model with stochastic variance in
generating high values of variance. The diagnostics support this interpretation. IV var
drops by 50% across all currencies; this change is statistically significant. As expected,
diagnostics for ε show that it is close to a normal variable for both models because of the
flexibility in λt. Bayes odds ratios strongly favour stochastic variance with jumps.

Continuing with AUD, its volatility (
√

v) declines from 0.70% to 0.53% per day (11.19% to
8.43% per year). This happens because the total variance has contributions from the regular
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and jump components in the model with stochastic variance with jumps. When there are
no jumps in FX, the long-run variance is equal to vJ = [(1− ν)v + hv

0θv]/[1− ν −hv
vθv]. See

Appendix A.2 for more details. This expression produces the average volatility of 0.65%,
much closer to the figure in the model with stochastic variance.

To aid in interpreting the parameters controlling jumps in variance, consider the impact of
a jump in variance. Suppose the current variance is at its long-run mean and the variance
jumps by the average amount θv. Then in the case of AUD, the resulting volatility will
move from 0.65% to (vJ + θv)

1/2 = 0.90%, a nearly 40% increase in volatility (this increase
ranges from 20% to 40% for the different currencies). The average jump intensity is equal
to hv

0 + hv
vvJ = 0.0053 jumps per day, or 1.34 per year (this number ranges from 1.34 to

2.61 for the the different currencies). Jumps in variance are self-exciting, so that a jump
increases the likelihood of another jump. When the variance jumps by θv, intensity changes
to 1.71 per year for AUD (the range is from 1.71 to 3.41 for all the currencies).

Also note that ρ, the “leverage effect,” has the same sign as the average interest rate
differential. It is positive for JPY and CHF, and negative for AUD and GBP. This result is
consistent with the analysis in Brunnermeier, Nagel, and Pedersen (2008) and the common
wisdom among market participants that investors who are long carry are essentially short
volatility. For example, consider the position of a carry trade investor who borrows money
in USD and invests in AUD. This investor can loose money when the AUD depreciates
against the USD. We estimate that ρ is negative for this currency pair, so the volatility of
this exchange rate tends to increase during times when the AUD depreciates.

The preferred version of the full model is the one with all of the aforementioned restrictions
imposed (θu = θd = θ, hu

0 = hd
0 = h0, and hu

r = h̃d
r = hr). That is, the size of the jumps in

FX up and down are symmetric and their intensities have numerically identical functional
form (but they depend on different interest rates). As a result, the overall structure of jump
arrivals differs from the one used in popular models of S&P 500 returns, where jumps in
variance and the index are simultaneous.

Parameters reflecting the average jump size have a different interpretation as compared to
jump in variance. The latter is a jump in the level of the variable, while the former is the
jump in return: it reflects by how much the return changes at the moment of the jump.
Thus, on average, AUD returns increase (decline) by 1.69% when there is a jump up (down).
To put this number into perspective, the daily volatility of AUD returns is 0.74% a day
(Table 1). Thus, an average jump exceeds a “two sigma” event. Average intensities of down
and up jumps are similar to each other and to those of variances for a given currency: they
range from 0.87 to 3.35 jumps per year (we use sample averages of interest rates to compute
average hu

t and hd
t ).

The diagnostics of residuals ws indicate that the major improvement in moving from
stochastic variance with jumps to the preferred model comes from a statistically signifi-
cant drop in kurtosis from roughly 4 to 3.5 across all currencies. The absolute value of
skewness of w experiences a significant drop for all currencies except for GBP, where it was
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insignificantly different from zero in the model with stochastic variance with jumps already.
Serial correlation is slightly negative for all currencies except for GBP (where it is zero in
the model with stochastic variance with jumps already), and the change from one model to
another is insignificant. IV var does not change appreciably because we did not change our
model for variance. Bayes odds ratios strongly favor the preferred model. In summary, the
preferred model is clearly superior, but there are some residual non-normalities left in the
fitted shocks to exchange rates. We leave improvements to future research.

The expected excess return in (3.9) can be simplified for the preferred model to

Et(yt+1) = µ0 + (µr + hrθ)rt + (µ̃r − hrθ)r̃t + µvvt. (5.1)

Thus, by testing if µr = −µ̃r and µv = 0, we test the UIP regression specification (3.11) -
(3.12) of currency excess returns across all three models. For all currency pairs, we cannot
reject that µr = −µ̃r at the conventional significance levels. Moreover, µr ≈ −3 for all
currencies, which is consistent with our earlier discussion of UIP regression results. In
addition, the loading on the variance µv is significantly negative in all currencies except for
JPY which has a significantly positive estimate. The tiny serial correlation of the residuals
ws suggests that this model is adequate in capturing the conditional mean of excess returns
and, therefore, potentially omitted variables cannot materially affect our conclusions about
the structure of currency risks.

The probability of USD depreciation, hu
t , depends positively on the US interest rate. This

result seems to contradict many people’s intuition about the relationship between interest
rates and changes in FX. It is important to note that this connection is applicable to
jumps only. Parameter estimates and expression (5.1) imply that, all else equal, the USD
appreciates, on average, when the difference between the U.S. and foreign interest rate is
higher. However, when the interest rate differential is positive, our model says that the
probability of a large depreciation in the USD (a jump up) is higher than the probability of
a large appreciation (a jump down). Another way to illustrate this effect is to focus on the
asymmetry of the conditional distribution of an exchange rate. Indeed, the third conditional
cumulant can be obtained by taking the third derivative of the cumulant-generating function
of log currency returns (provided in Appendix A.3). For example,

κ3t(st+1 − st) = 6θ3hr(rt − r̃t)

in the preferred model. We see that loadings of jump intensities on the different interest
rates translates into time-varying skewness controlled by the interest rate differential.

5.2 Jumps and Events

In this section we study the economic properties of the documented jumps. We ask basic
questions regarding the structure of the jump components, examine whether jumps can be
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related to important economic events, and gauge their impact on the overall risk of currency
trades. Our discussion is based on Figures 1 - 4 and Table 12.

For each exchange rate, the figures display the time series of data (excess returns and
implied volatilities) complemented with the estimated unobservable model components:

spot volatility v
1/2
t and jumps. Regarding the latter, the model produces an estimate of

a jump size and an ex-post probability that a jump actually took place on a specific day.
However, all of this information is not easy to digest as there are a lot of small jumps and
jumps with a small ex-post probability of taking place. Thus, to simplify the reporting,
we stratify the jump probabilities by assigning them a value of one if their actual value
is 0.5 or higher, and zero otherwise. Then we plot the estimated jumps sizes on the days
with the assigned value of one. Our strategy yields 219 jumps overall across all currencies.
Approximately 25% of these jumps take place simultaneously in at least two currencies. We
refer to such jumps as common. There are only 8 episodes when FX and variance jumped at
the same time. We overlay the plots of the estimated jumps sizes with the state-dependent
ex-ante jump probabilities hv

t , hu
t , and hd

t .

To interpret the plots better, we have to reference the jump magnitudes against the summary
statistics available in Table 1. Let us use JPY in Figure 4 as an example. Table 1 tells us
that the volatility of JPY is 0.7% per day and the mean is approximately zero. Thus, a
“regular” excess return can be within the range of ±2% (µ ± 3σ). The upper left panel of
Figure 4 shows that there are quite a few days when excess returns are outside of this range.
In practice, the volatility is time-varying and unobserved. Therefore, the “regular” range
is time-varying also and uncertain. The estimation procedure takes this uncertainty into
account by producing the ex-post probability of a jump taking place. We arbitrarily select
the level of uncertainty about jumps that we are comfortable with by discarding the jumps
with such probabilities less than 50%. The bottom left panel confirms this by showing the
estimated jumps in excess returns. Their magnitude ranges from 2% to 6% in absolute
value. Interestingly, the larger jumps coincide with spikes in the moving-window estimates
of skewness across all currencies.

However, not all of the big spikes in excess returns are attributable to jumps in FX. For
example, on October 28, 2008, the plot of excess returns shows a big drop of 5.5%. The
model tells us that there were no jumps on that day. The model is capable of generating such
a big move via a normal component because of the jump in variance. Volatility jumped by

(vt−1 + zv
t )1/2 − v

1/2
t−1 = 0.18% (2.9% annualized), on average, on each of three days between

October 22 and 24. Each day the jump in variance was increasing the probability of a jump
the following day. Over these three days volatility moved from 1.35% (21.5% annualized)
to 1.8% (28% annualized). To put this number into a perspective, the long-run volatility

mean is v
1/2
J = 0.66% (10.4% annualized). Thus, the increase in volatility over these three

days was roughly equal to the average level of volatility. Moreover, there is no significant
news associated with either October 22-24 or October 28. Thus, we attribute these events
to pure uncertainty in the markets.
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GBP generates large movements via jumps in variance in the most transparent way. The
exchange rate itself exhibits only 11 jumps throughout the sample, none of which take
place after 2000. In fact, even the famous “Black Wednesday” – the GBP devaluation on
September 16, 1992 – is attributed primarily to a jump in variance on September 8. The
volatility moved from 0.93% (14.7% annualised) to 1.13% (17.9% annualised), then it drifted
up to 1.15% (18.3% annualised) on the day of the crash. These values of volatility are high,

as the average volatility of GBP is v
1/2
J = 0.55%. Nonetheless, this level of volatility is

still insufficient to generate the whole drop of -4.10%. Of course, these rough computations
assume that vt is known with certainty. It is not, and a small deviation in the estimate may
be able to attribute the whole return to a normal shock in FX. This is why the estimated
probability of a jump in exchange rate is only 26% on this day (and the estimated jump
size is -0.42%).

As a next step, we check if the jumps we detect are related to economic, political or financial
events. For each day a currency has experienced a jump, we check if there were significant
news. To this end, we search Factiva for articles that explicitly relate movements in currency
markets to events rather than collect a comprehensive set of macro-economic releases on
the days of jumps. This strategy is complimentary to the one employed in studies of the
news impact on financial assets (see, e.g., Andersen, Bollerslev, Diebold, and Vega, 2003 for
FX). Usually one measures news surprise by computing a standardized difference between an
announcement’s expectation and realization and then checks, usually at intra-day frequency,
if the surprise had an impact on values of financial assets. Our approach does not require
us taking a stand on measuring a surprise. In addition, we are careful in distinguishing
announcements, a clear public release of a fact, from uncertainty: anticipation, comments
on the current economic situation and overall market anxiety that is sometimes evident in
the news. The online Appendix provides a jump-by-jump description of all events.

Across all currency pairs, we find that 65% of jumps in FX are associated with announce-
ments of economic, political, or financial events. By stark contrast, only 23% of jumps
in variance across all currency pairs are associated with such events.12 Perhaps, the fact
that many jumps in FX are associated with announcements is not so surprising. After all,
announcements take place on many days of a year. What is surprising is that there are
so few jumps in variance that coincide with announcements. On such days we see a lot of
discussion and interpretation of past events and, perhaps, anticipation of the future ones.
Thus, jumps in variance appear to reflect economic uncertainty rather than the revelation
of a specific fact. Thus, there is is a critical difference between jumps in FX and variance.
Table 12 provides a summary of the types of announcements associated with jumps.

We find that economically different types of announcements and uncertainty matter for
different currency pairs. Australia, a country with a large current account deficit, expe-
riences a number of interest rate cuts and interventions. These, together with the trade
news, lead to a number of jumps in AUD in the eighties and nineties. Later in the sample,

12We avoid double counting by accounting for common jump events only once and do not count simulta-
neous jumps in FX and variance (only 8 incidences across all currencies).
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AUD, as a high yield commodity currency, is vulnerable to Asian crisis and credit crunch
events, which results in numerous realizations of large negative returns. In contrast to all
other currencies, jumps in CHF are driven solely by foreign announcements and uncertainty
about the US and third countries’ economies. The exceptions are an interest rate cut by the
Swiss National Bank on November 21, 2008, and a monetary policy uncertainty on March
12, 2009. The British pound has the largest number of jumps in variance and hence most of
the jump events (72%) are driven by economic uncertainty – uncertainty about monetary
system in Europe (Exchange Rate Mechanism, Euro launch) and spillovers from the US
financial market and banking sector in Europe. Similar to AUD, JPY experiences many
jumps in prices caused by either trade news or central bank interventions in the beginning
of the sample, whereas more recent jump episodes are related to turbulence in world finan-
cial markets associated with the credit crisis. In contrast to AUD, however, Japan runs a
huge trade surplus and the realised jump returns on yen tend to be positive in the recent
financial crisis.

While we do not formally model the joint behaviour of exchange rates, we find many simul-
taneous jumps across the currencies, particularly jumps in variance. Therefore, it appears
promising to extend the existing research on common and currency-specific factors affecting
risk premiums (e.g., Lustig, Roussanov, and Verdelhan, 2013) by allowing for common and
currency-specific jump risk.

The plots of jump intensities provide some insight into why jumps in variance are so promi-
nent. Probabilities of jumps in FX are moving together with interest rates, which expe-
rienced a secular decline in our sample in all countries. As we highlighted earlier, the
probability of a jump in variance is primarily driven by the variance itself. This probability
went through a couple of cycles of high and low values, as volatility is less persistent than
interest rates.

5.3 Decomposing the total risk

Are these risks quantitatively important? Jumps in FX and variance should affect the tail
events the most. The properties of tails are captured by high-order moments or cumulants.
One could report each of these statistics separately and measure how they are affected by
the various shocks present in our model. We choose to summarize all this information by
one number and measure the total risk corresponding to investment horizon n using the
entropy of changes in FX:

Lt(St+n/St) = log Et(e
st+n−st) − Et(st+n − st). (5.2)

Entropy is a loaded term. Our use of entropy is similar to that of Backus, Chernov, and
Martin (2011) and Backus, Chernov, and Zin (2013), who characterize entropy of the pricing
kernel, and is closest to the way it is used in Martin (2013) who uses entropy of equity index
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returns. Entropy’s connection to the cumulants of log FX returns makes it attractive for
our purposes.

Specifically, the definition (5.2) implies that

Lt(St+n/St) = kt(1; st+n − st) − κ1t(st+n − st) (5.3)

= κ2t(st+n − st)/2! + κ3t(st+n − st)/3! + κ4t(st+n − st)/4! + . . . , (5.4)

where kt(1; st+n − st) is the conditional cumulant-generating function of st+n − st evaluated
at the argument equal to 1, κjt(st+n − st) is the jth conditional cumulant of st+n − st, and
we used the fact that kt(1; st+n − st) is equal to the infinite sum of κjt(st+n − st)/j! over
j starting with j = 1. The significance of the property (5.4) is that if currency changes
are normally distributed, then entropy is equal to a half of their variance (the first term in
the sum). All the higher-order terms arise from non-normalities. Thus, entropy captures
tail behaviour of returns in a compact form. As a result, we view entropy as a natural
generalization of variance as a risk measure. For this reason, Alvarez and Jermann (2005)
explicitly refer to Lt as generalized variance.

We decompose the total risk of currency returns into the contribution of the jump and
normal components. Appendix A.3 explains how we compute the full entropy on the basis
of equation (5.3). We can compute the individual components by zeroing out the rest.13

Figures 5 and 6 display the contributions of these components for the investment horizons
of 1 months (n = 21) and 3 months (n = 63). We overlay these contributions with a time-
series plot of entropy computed treating USD as the domestic currency. We scale entropy
to ensure that it is equal to variance in the normal case and to adjust for the horizon.
Finally, to make the number easily interpretable, we take the square-root and express it in
percent. Thus, we plot

√

2Lt/n. Finally, Table 13 supports the plots by reporting summary
statistics of the relative contributions of the different components.

We start by characterizing the contribution of the different components at a given point
in time. We see that the regular, or normal, risk is the most prominent regardless of the
horizon. The average total contribution of jumps at a one-month horizon ranges from 11.03
% for GBP to 20.19% for AUD. The contribution of a jump in FX (up or down) [the
range is between 6.82% and 9.17%] is higher than that of a jump in variance [the range is
between 3.76% and 4.83%] and has higher time-variation at a one-month horizon (GBP is
the exception as jumps in variance contribute 4.37% as compared to 2.98% for jumps up
and 3.68% for jumps down). Therefore, in the short-term the risk of a jump in variance
has the smallest contribution to the overall currency risk. However, this conclusion changes

13If two variables xs and ys are conditionally independent, then Lt(xsys) = Lt(xs) + Lt(ys). Therefore,
our decomposition approach correctly separates the contributions of the two jumps in currencies. Because
the probability of a jump in variance depends on the variance itself, the normal shock to variance and the
jump are conditionally independent only over one period, n = 1. When n > 1 our procedure attributes all
the covariance terms, which are positive because of the estimated functional form of jump probabilities, to
the jump in variance. We think that this approach is sensible because the presence of these covariance terms
is due to jumps.

20



as we extend the investment horizon to three months. The average total contribution of
jumps at this horizon increases – the range is from 17.71% for GBP to 25.19% for JPY.
In this case individual contribution of jumps in variance [the range is 8.94% to 11.48%] is
higher than those of jumps in FX [the range is 2.78% to 8.57%] (in the case of GBP, the
contribution of a jump in variance is greater than the sum of jumps up and down).

The contribution of jumps in FX declines towards the end of our sample, thereby making
the contribution of jumps in variance more important. We connect this result to the secular
decline in the probability of FX jumps that we highlighted earlier. This effect diminishes
the expected contribution of such jumps to the overall risk. In contrast, the probability of
jumps in variance is less persistent and, therefore, exhibits mean-reversion in our sample.

The time-series variation in total risk resembles the time-series variation in the spot variance
vt. This is not surprising because Lt is a linear function of vt (Appendix A.3). Thus,
whenever the spot variance moves, and especially when it jumps, we observe a clear move
in entropy. We conclude that the risk of jumps in variance are at least as important as the
risk of jumps in FX, even though the nature of the two types of jumps is different.

6 Importance of crash risk for valuation

The large amount of jump risk in bilateral exchange rates prompts a natural question of
whether this risk is priced. Answering this question has important implications for the
literature that establishes high returns to currency speculation. In particular, one should
be able to attribute a specific fraction of documented risk premiums to compensation for
bearing crash risk. The full answer to this question requires an explicit model of the pricing
kernel and the use of assets that are sensitive to jump risk for estimation of risk premiums.
We leave an in-depth analysis of this issue for future research.

Herein, we offer two perspectives on the question. First, one might argue that portfolios
of exchange rates could diversify crash risks and, therefore, their importance for pricing is
less relevant than it may seem on the basis of bilateral rates. Moreover, the carry trade
literature emphasizes the importance of the timing of the long vs short position in a given
currency. Arguably, perfect timing may make crashes always go in a speculator’s favor. In
particular, Lustig, Roussanov, and Verdelhan (2013) construct one such portfolio and the
corresponding trade (the dollar index and the dollar carry, respectively). The authors show
that it is more profitable than the more traditional carry trades. This index fits nicely with
our focus on foreign currencies vis-a-vis the U.S. dollar, so we repeat our analysis for the
dollar index and investigate its risk structure.

A more direct way to assess the valuation of crash risk is to measure the magnitude of risk
premiums using prices of assets that are sensitive to jump risk. In this regard, out-of-the-
money options are particularly informative about the price of jump risks (i.e., the covariance
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of the pricing kernel with jumps). A thorough analysis along these lines is outside of the
scope of this paper. Instead, we provide calibration of jump risk premiums on the basis of
average implied volatility smiles.

6.1 Crash risk of the dollar index

We follow closely Lustig, Roussanov, and Verdelhan (2013) in constructing the dollar index.
We use daily exchange rates on twenty one currency pairs against USD: Australian dollar,
Austrian schilling, Belgian franc, Canadian dollar, Danish krone, French franc, Finnish
markka, Deutsche mark, Greek drachma, Italian lira, Irish pound, Japanese yen, Dutch
guilder, New Zealand dollar, Norwegian krone, Portuguese escudo, Spanish peseta, Swedish
krona, Swiss franc, British pound, and Euro from January 1, 1986 to December 31, 2010.
We replace eleven European currencies with the Euro starting from January 1, 2002. We
construct an equally-weighted index of currencies against USD: an investor buys a one-dollar
equivalent of each foreign currency in the basket. Summary statistics in Table 1 indicate
that, consistent with the notion of risk diversification, the excess returns of the index are
less volatile, skewed and leptokurtic than those of bilateral exchange rates. As is the case
with individual FX rates, Figure 7(a) reveals that skewness is time-varying. The range of
possible values is comparable with those of specific country pairs.

Options on the index are not traded, so we do not have an option-implied variance to use
in equation (3.6) as a noisy observation of the variance of the log return on the currency
index. Instead, we use the first principal component of variances implied from at-the-money
one-month options on the bilateral exchange rates. Specifically, we collect implied variances
for AUD, CAD, CHF, DKK, EUR, GBP, JPY, NOK, NZD, and SEK from February 1, 2001
to December 31, 2010.14 The choice of currencies and data span are limited by availability
of Bloomberg data. To be clear, there is no obvious theoretical link between the principal
component and the index volatility. The principal component is a rescaled version of implied
variances, so its units do not correspond to the variance level. The values of αiv and βiv

may not be in the neighbourhood of 0 and 1, respectively. Moreover, the noise term could
be reasonably large. Given the absence of option-implied volatility on the currency index,
our empirical approach is simply our best effort, within the scope of this paper, to measure
the first order effect of jumps on currency indices.

We use the one-month LIBOR or the one-month Eurocurrency rate as a proxy for the
one-period interest rate. If these are unavailable, we use their overnight or 3 months coun-
terparts. The foreign interest rate is an equal-weighted index of the respective individual
rates. We calibrate the same model for the index as for the individual interest rates, see
Table 11.

Table 14 reports the parameter estimates and Table 15 reports the corresponding model
diagnostics. Table 10 displays the results of specification tests on the basis of Bayes odds
ratios. All the diagnostics show that the (restricted) largest model is strongly preferred.

14Options on the Euro started trading before the currency was circulated physically.
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The currency index has a smaller long-run variance and a smaller average jump in variance
than bilateral exchange rates. In relative terms, jumps in variance matter as much for the
index as they do for individual currency pairs. When current variance is at its long-run mean
and jumps by the average jump size θv, volatility increases by 35%, from 0.44% to 0.60% per
day (6.93 to 9.52 per annum). The average jump intensity is equal to hv

0 + hv
vvJ = 0.0050

jumps per day or 1.25 jumps per year, which is less frequent than that of individual exchange
rates.

The average jump size in FX for the index is θ = 1.64. It is only slighter smaller than the
average jump size for AUD (1.69) and is larger than those for other currencies. Average
intensities of up and down jumps are 1.03 and 1.14 per year, respectively. This is on the
low end of jump intensities of individual currency pairs.

Figure 7 displays estimated jumps, ex-ante jump probabilities and volatility states. We
estimate 5 jumps down, 10 jumps up and 38 jumps in volatility. All jumps up and down
take place before 1998 with the exception of the one on August 8, 2008. In contrast, jumps
in variance dominate after 2000 and especially cluster in 2008. There is only one episode
when a jump in return and a jump in variance coincide: August 8, 2008.

Table 12 reports how many jumps in our original four bilateral exchange rates are common
with the index. Among the jumps in FX, 12 jumps are common (they coincide mainly with
jump events in CHF and JPY). Among the jumps in variance, 31 jumps are common. This
suggests that many of the jumps that are common between two or three currencies do not
get diversified away in an index.

The findings are consistent with the notion of diversification in that the regular risks are
smaller, and the jump risks are less frequent. In order to establish the relative importance
of the different risks we decompose the entropy of exchange rate changes. Table 13 shows
that normal risk is the main component of risks across different investment horizons. Still,
jumps contribute jointly on average 30% and 25% of variation at monthly and quarterly
horizons, correspondingly. The role of jumps in FX is in fact higher for the currency index
than for individual currencies. This is because the mean jump size is on the high end and
the jump intensity is about the same for the index for currency pairs. In addition, the
overall variation of the index returns is smaller than for individual currency returns. These
two effects create a more prominent role for the jump risk as compared to individual FX
rates. Similar to individual currency pairs, the role of jumps in variance increases with the
investment horizon. Overall, the role of jumps in variance for the currency index is about
the same as for CHF.

Thus, combining different currencies into a portfolio does not necessarily reduce the promi-
nence of crash risk. This is not the end of the analysis, however. Lustig, Roussanov, and
Verdelhan (2013) argue that investing in the basket of foreign currencies when the corre-
sponding average foreign interest rate exceeds the US rate and in the USD otherwise is (1)
more profitable than a conventional carry portfolio (high-minus-low) and (2) uncorrelated
with it. Whereas a high-minus-low strategy is well known to suffer at times of turbulence
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in financial markets, and hence many authors conjecture that it is subject to crash risk, it
is less clear what happens with the dollar carry portfolio.

Consider the relative profitability of the original currency index (long-only portfolio) vis-
a-vis the dollar carry portfolio. If one uses the realized Sharpe ratio as a measure of
performance, the dollar carry portfolio yields a resounding success: its annualized Sharpe
ratio is 0.81, compared to 0.33 for the long-only currency index.15 The Sharpe ratio does
not reflect the departures from normality, however.

To evaluate the crash risk of such a strategy we ask whether negative jump risk disappears
as a result of flipping position in the USD. We focus our interest on the downward jumps
because upward jumps work in favour of the investor and jumps in variance do not disappear
because of rebalancing. The dollar carry portfolio experiences 9 jumps down and 6 jumps
up, versus the original currency index that has 5 jumps down and 10 jumps up (the jumps
in FX that switch signs as a result of rebalancing are marked with green in Figure 7(c)).
So the realized Sharpe ratio increases at the cost of making returns negatively skewed – the
skewness of the rebalanced index is -0.10 while that of the long-only index is 0.03. A plot of
time-varying skewness of the dollar carry portfolio in Figure 7(a) shows a higher incidence
of negative values as compared to the long-only index.

To summarize, indexation of currencies does reduce the occurrences of crashes. Indexation
diversifies regular risks as well. As a result, the relative contribution of crash risk to the
overall riskiness of the dollar index is similar to that of individual exchange rates. Condi-
tioning on the interest rate differential in the dollar carry portfolio appears to align normal
shocks in favor of a speculator. However jumps in currencies end up going against her, at
least in our sample. Conditioning on interest rates has no effect on jumps in variance.

6.2 Crash risk premiums implicit in options

The large amount of jump risk prompts a natural question of whether this risk is priced. A
qualitative answer to this question is borderline obvious. Given that diversification does not
remove jumps, one needs an infinite number of financial instruments to hedge the jump risk
perfectly (e.g., Jarrow and Madan, 1995). Thus, one would anticipate jump risk premiums
in the currency markets. Answering this question quantitatively has important implications
for the carry trade literature. In particular, one should be able to attribute a specific fraction
of the carry risk premium to compensation for bearing crash risk.

The full answer to this question requires an explicit model of the pricing kernel and the use
of assets that are sensitive to jump risk for estimation of risk premiums. In this regard,
out-of-the-money options are particularly informative about the price of jump risks (i.e.,
the covariance of the pricing kernel with jumps). However, such analysis is outside of the

15Our numbers are somewhat higher than reported previously in the literature. We can potentially improve
performance of the dollar carry portfolio because we are considering daily data and ignoring transaction costs.
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scope of this paper. Instead, we provide a back-of-the-envelope computation, which we view
as preliminary evidence of priced jump risk.

We check what kind of assumptions about risk premiums are needed to fit a “representative”
implied volatility smile. We use option data for our original three bilateral exchange rates
(AUD, GBP, and JPY) from October 16, 2003 to December 31, 2010, and for CHF from
January 5, 2006 to December 31, 2010 – we start as early as data on five strikes become
available (0.25 and 0.10 risk reversals and butterflies, ATM options). We compute the
average smiles for one-month options on each exchange rate. Then for each currency, we
find a specific day such that implied volatility on this day closely resembles the average
smile for the respective currency. We do so because we can use the state variables from that
day (the observed domestic and foreign interest rates and the estimated variance). Figure
8 depicts the resulting data points with asterisks.

Next, we construct theoretical options prices and the respective implied volatilities using
different assumptions about risk premiums. In our reduced-form framework the simplest
way to specify risk premiums is to assume that parameters under the risk-adjusted prob-
ability are different from the parameters estimated from the time-series of returns. We
distinguish risk-adjusted parameters by an asterisk ∗. The “volatility of volatility” σv and
the “leverage” parameter ρ are the same under both probabilities by convention, a byprod-
uct of the model’s continuous-time origins. The risk-adjusted drift µ∗

t of returns (rather
than excess returns) is constrained by the law of one price. Specifically, we have

q̃1
t = q1

t E
∗
t (St+1/St),

where q1
t and q̃1

t are domestic and foreign one-period risk-free bonds, respectively. Dividing
by q1

t and taking logs we obtain

rt − r̃t = log E∗
t (est+1−st) = µ∗

t + vt/2 + hu∗
t (E∗

t exp(zu
t+1) − 1) + hd∗

t (E∗
t exp(zd

t+1) − 1)

= µ∗
t + vt/2 + hu∗

t ((1 − θ∗u)−1 − 1) + hd∗
t ((1 + θ∗d)

−1 − 1).

Thus,

µ∗
t = rt − r̃t − vt/2 − hu∗

t θ∗u/(1 − θ∗u) + hd∗
t θ∗d/(1 + θ∗d). (6.1)

The terms following the interest rate differential reflect the “convexity adjustment” associ-
ated with log-returns.

In our first exercise, we do not allow for any jump risk premiums. That is, we try to fit
the smiles in Figure 8 by minimizing the sum of squared implied volatility errors and by
allowing for deviation between v and v∗, and ν and ν∗ only. Our best fit is depicted with
green lines. It is evident that without jump risk premiums we cannot get anywhere close
to the observed smiles. The theoretical risk-adjusted probabilities of extreme outcomes are
too low relative to those in the data.

In our second exercise, we allow jump risk to be priced as well. However, we have too
much flexibility in selecting the risk-adjusted jump parameters. First, the jump mean

25



and jump intensity are not identified separately in practice because they approximately
enter option pricing formulas as a product (e.g., Broadie, Chernov, and Johannes, 2007).
Therefore, we constrain the jump means to be the same under both probabilities. Second,
jump intensities could be time-varying, but we are looking at only one day per currency.
Therefore, we cannot separate differences between risk-adjusted parameters that control the
constant and time-varying part of jump intensities. Therefore, we only allow for hv∗

0 6= hv
0,

and h∗
0 6= h0. While we find the constant components of hu

t and hd
t to be the same under

the actual probability, this does not have to be the case under the risk-adjusted probability.
Thus, instead of calibrating just h∗

0 we distinguish hu∗
0 and hd∗

0 .

Figure 8 depicts the results of the second exercise with solid lines. The smiles can be fitted
perfectly. While our calibration is limited in its scope, it clearly suggests that jump risks are
priced. In what follows, we provide some discussion to help our readers with interpretation
of the jump risk premium parameters. Before we do so, we wish to emphasize that the key
conclusion is that without jump risk premiums, one cannot fit options even in the simplest
case of one representative day with only one maturity. The flip side of the simplicity of this
setting is that the calibrated jump risk premiums may be unreliable.

Tables 2 – 5 report the calibrated values of the risk-adjusted parameters. Parameters µ∗
0,

µ∗
r and µ∗

v are not calibrated: they are determined by the law of one price via equation
(6.1).16 To interpret these parameters, consider GBP as an example. First, the risk-
adjusted parameters are larger than their time-series counterparts. Option investors assign
higher probabilities of extreme outcomes when valuing assets that are sensitive to these
outcomes. Second, the smile is skewed to the left which indicates that, relatively speaking,
out-of-the-money calls are less expensive than out-of-the-money puts. Therefore, extreme
negative outcomes (GBP depreciation) are more likely than extreme positive outcomes.
The risk-adjusted jump intensities of hu∗

0 = 0.0329 and hd∗
0 = 0.0723 reflect this asymmetry.

The effect of a jump in variance is more subtle. As jump intensity increases, so does the
overall level of variance (Appendix A.2). As a result, the relative contribution of jumps in
currencies declines, resulting in fewer extreme negative outcomes and thereby skewing the
smile to the right. Therefore, the risk-adjusted intensity of jump in variance cannot be too
high to match the observed smile.

It is customary to measure risk premiums as the difference between risk-adjusted and actual
parameters. To see why, consider a hypothetical security that pays $1 if there are no jumps
next period. The price of this security is

P k
t = e−rtE∗

t (Ijk
t+1

=0) = e−rtP ∗
t (jk

t+1 = 0) = e−rte−hk∗
t ,

where k = u, d, v, Ix is the indicator function of event x, and P ∗
t is the risk-adjusted con-

ditional cumulative distribution function. The excess log expected return on this security,

16Readers may wonder why the loading of −0.5 on vt in (6.1) is replaced by −0.005 in the Tables. The

adjustment of −0.5 corresponds to all quantities being expressed in decimals. We express v
1/2

t in percent.
Thus, in order to get a sensible result for log-returns expressed in percent, the easiest solution is to use
−0.005 and keep other quantities as they are.
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a.k.a. the risk premium, is:

rpzk
t ≡ log

Et(Ijk
t+1

=0)

P k
t

− rt = hk∗
t − hk

t .

The risk premiums range (in percent per day) from 0.02 (JPY) to 0.07 (GBP) for k = d,
from 0.01 (AUD) to 0.07 (JPY) for k = u, and from 0.01 (AUD) to 0.03 (JPY) for k = v. All
risk premiums are positive reflecting the aforementioned higher risk-adjusted probability of
jumps. The variance jump premiums are smaller than those of currency jumps, but they
are of the same order of magnitude. Whether the magnitudes of these risk premiums are
reliable and sensible is hard to establish without more elaborate empirical work and a
reference equilibrium model, respectively. We leave these endeavours for future research.

7 Conclusion

We explore sources of risk affecting currency returns. We find a large time-varying com-
ponent that is attributable to jump risk. The most interesting part of this finding is that
jumps in currency variance play an important role, especially at long (quarterly) invest-
ment horizons, yet there is no obvious link between macroeconomic fundamentals and these
jumps. We interpret this evidence as a manifestation of economic uncertainty.

We see at least two important directions in which our analysis can be extended. First, the
prices of financial assets associated with currencies (e.g., bonds, options) can be used to
estimate the pricing kernel. This would allow one to characterize how the risks documented
in this paper are valued in the marketplace. Second, existing research presents evidence
of common and currency-specific factors affecting risk premiums. Our evidence suggests
informally that common jump risks are shared across different currencies. It would be
useful to establish a model of joint currency behaviour that explicitly incorporates common
and country-specific jump components and how they contribute to risk premiums.
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Table 1

Properties of excess log currency and S&P 500 returns and changes in

implied volatility

Mean Std Dev Skewness Kurtosis Nobs

AUD Excess return 0.0186 0.7435 -0.3870 13.7202 6332

∆
√

IV 0.0109 3.7661 0.9077 9.7290 3933

CHF Excess return 0.0057 0.7232 0.1194 4.7841 6521

∆
√

IV 0.0073 3.8057 0.9966 9.8095 3823

GBP Excess return 0.0096 0.6197 -0.2337 5.6832 6521

∆
√

IV 0.0142 4.0001 1.3884 44.2683 3823

JPY Excess return 0.0003 0.6950 0.3626 8.0878 6393

∆
√

IV -0.0045 4.8277 1.0395 10.7764 3934

Currency Index Excess return 0.0086 0.4664 0.0342 4.6448 6393

S&P 500 Excess return 0.0090 1.1803 -1.3584 32.9968 6522

∆
√

V IX 0.0089 5.8997 0.5096 6.7502 3914

Notes. Descriptive statistics for daily log currency and log S&P 500 excess returns and
changes in implied volatility, in percent, per day: AUD return from September 25, 1986,
to December 31, 2010, and AUD IV from December 6, 1995, to December 31, 2010; CHF
return from January 3, 1986, to December 31, 2010, and CHF IV from May 8, 1996, to
December 31, 2010; GBP return from January 3, 1986, to December 31, 2010, and GBP IV
from May 8, 1996, to December 31, 2010; JPY return from July 2, 1986, to December 31,
2010, and JPY IV from December 5, 1995, to December 31, 2010; Currency Index return
is from January 2, 1986, to December 31, 2010; S&P 500 return from January 3, 1986, to
December 31, 2010 and VIX from January 2, 1996, to December 31, 2010. The interest
rates used to compute returns are one-month LIBOR rates. Source: Bloomberg.
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Table 2

AUD Parameter Estimates

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred Risk-adjusted

µ0 -0.0004 0.0003 0.0014 0.0640
(-0.0181,0.0173) (-0.0175, 0.0182) (-0.0166, 0.0194)

µr -2.4893 -2.5200 -2.7643 -0.2988u/0.2888d

(-3.5895, -1.3910) (-3.6170, -1.4190) (-3.8613, -1.6801)
µv -0.0150 -0.0152 -0.0147 -0.0050

(-0.0247, -0.0053) (-0.0249, -0.0056) (-0.0244, -0.0051)
v 0.4968 0.2819 0.2819 0.2165

(0.2903, 0.8984) (0.2101, 0.3728) (0.2110, 0.3734)
ν 0.9943 0.9855 0.9857 0.8198

(0.9925, 0.9961) (0.9837, 0.9873) (0.9838, 0.9875)
σv 0.0391 0.0343 0.0342 σv

(0.0379, 0.0404) (0.0330, 0.0357) (0.0329, 0.0356)
ρ -0.2924 -0.2770 -0.2839 ρ

(-0.3279, -0.2563) (-0.3156, -0.2378) (-0.3237, -0.2435)
θv 0.3864 0.3837 θv

(0.3392, 0.4406) (0.3367, 0.4362)
θ 1.6910 θ

(1.5208, 1.8779)
hv

0 0.0037 0.0036 0.0098
(0.0029, 0.0040) (0.0028, 0.0040)

hv 0.0038 0.0038 hv

(0.0031, 0.0040) (0.0031, 0.0040)
h0 0.0017 0.0136u/0.0525d

(0.0000, 0.0038)
hr 0.1737 hr

(0.1177, 0.1992)
αiv 0.0033 0.0027 0.0033

(0.0009, 0.0064) (-0.0002, 0.0056) (0.0005, 0.0063)
βiv 1.0006 1.0021 1.0022

(0.9958, 1.0054) (0.9983, 1.0059) (0.9984, 1.0061)

Notes. The estimates correspond to daily excess currency returns, in percent. The 95% confidence intervals
are reported in parentheses. The preferred model is:

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2

t w
s
t+1 + z

u
t+1 − z

d
t+1

vt+1 = (1 − ν)v + νvt + σvv
1/2

t w
v
t+1 + z

v
t+1

h
u
t = h0 + hrrt, h

d
t = h0 + hr r̃t, h

v
t = h

v
0 + hvvt

z
u
t |j ∼ Gamma(j, θ), z

d
t |j ∼ Gamma(j, θ), z

v
t |j ∼ Gamma(j, θv)

“Risk-adjusted” is the preferred model calibrated to one-month options (with parameters that are denoted

by symbols fixed at their time-series values).

35



Table 3

CHF Parameter Estimates

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred Risk-adjusted

µ0 0.0340 0.0353 0.0324 -0.0138
(0.0150, 0.0531) (0.0163, 0.0543) (0.0132, 0.0516)

µr -2.9851 -3.0674 -3.2501 -0.2995u/0.2914d

(-4.3345, -1.6354) (-4.4174, -1.7169) (-4.5952, -1.8996)
µv -0.0198 -0.0199 -0.0199 -0.0050

(-0.0333, -0.0064) (-0.0335, -0.0065) (-0.0334, -0.0064)
v 0.5088 0.3502 0.3427 0.2377

(0.3136, 0.8364) (0.2564, 0.4741) (0.2507, 0.4639)
ν 0.9891 0.9789 0.9785 0.7324

(0.9863, 0.9919) (0.9758, 0.9818) (0.9755, 0.9815)
σv 0.0388 0.0337 0.0337 σv

(0.0373, 0.0404) (0.0321, 0.0352) (0.0321, 0.0352)
ρ 0.0875 0.0856 0.0856 ρ

(0.0480, 0.1271) (0.0439, 0.1273) (0.0416, 0.1298)
θv 0.2205 0.2145 θv

(0.1845, 0.2622) (0.1804, 0.2550)
θ 1.3582 θ

(1.1771, 1.5744)
hv

0 0.0037 0.0037 0.0212
(0.0029, 0.0040) (0.0028, 0.0040)

hv 0.0145 0.0144 hv

(0.0131, 0.0150) (0.0130, 0.0150)
h0 0.0051 0.0376u/0.0283d

(0.0011, 0.0078)
hr 0.2175 hr

(0.0615, 0.2973)
αiv 0.0061 0.0041 0.0056

(0.0009, 0.0113) (-0.0013, 0.0093) (0.0003, 0.0104)
βiv 0.9919 0.9934 0.9946

(0.9753, 1.0091) (0.9795, 1.0071) (0.9802, 1.0096)

Notes. The estimates correspond to daily excess currency returns, in percent. The 95% confidence intervals
are reported in parentheses. The preferred model is:

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2

t w
s
t+1 + z

u
t+1 − z

d
t+1

vt+1 = (1 − ν)v + νvt + σvv
1/2

t w
v
t+1 + z

v
t+1

h
u
t = h0 + hrrt, h

d
t = h0 + hr r̃t, h

v
t = h

v
0 + hvvt

z
u
t |j ∼ Gamma(j, θ), z

d
t |j ∼ Gamma(j, θ), z

v
t |j ∼ Gamma(j, θv)

“Risk-adjusted” is the preferred model calibrated to one-month options (with parameters that are denoted

by symbols fixed at their time-series values).
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Table 4

GBP Parameter Estimates

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred Risk-adjusted

µ0 0.0348 0.0360 0.0337 0.0445
(0.0128, 0.0565) (0.0138, 0.0584) (0.0116, 0.0556)

µr -3.0632 -3.1692 -3.1897 -0.1445u/0.1412d

(-4.4127, -1.7209) (-4.5046, -1.8351) (-4.5138, -1.8673)
µv -0.1326 -0.1377 -0.1341 -0.0050

(-0.1928, -0.0720) (-0.1986, -0.0773) (-0.1952, -0.0731)
v 0.3773 0.2227 0.2180 0.1015

(0.1855, 0.8002) (0.1631, 0.2989) (0.1619, 0.2909)
ν 0.9941 0.9810 0.9809 0.7544

(0.9919, 0.9963) (0.9786, 0.9834) (0.9786, 0.9833)
σv 0.0321 0.0272 0.0273 σv

(0.0311, 0.0332) (0.0262, 0.0283) (0.0263, 0.0284)
ρ -0.1341 -0.1295 -0.1303 ρ

(-0.1713, -0.0965) (-0.1692, -0.0896) (-0.1709, -0.0895)
θv 0.1953 0.1959 θv

(0.1728, 0.2206) (0.1731, 0.2211)
θ 1.1680 θ

(0.9593, 1.4127)
hv

0 0.0038 0.0038 0.0133
(0.0033, 0.0040) (0.0033, 0.0040)

hv 0.0121 0.0121 hv

(0.0110, 0.0125) (0.0110, 0.0125)
h0 0.0012 0.0329u/0.0723d

(0.0001, 0.0020)
hr 0.1223 hr

(0.0634, 0.1491)
αiv 0.0109 0.0063 0.0089

(0.0063, 0.0155) (0.0009, 0.0109) (0.0039, 0.0137)
βiv 0.9905 0.9951 0.9940

(0.9855, 0.9955) (0.9905, 0.9996) (0.9895, 0.9985)

Notes. The estimates correspond to daily excess currency returns, in percent. The 95% confidence intervals
are reported in parentheses. The preferred model is:

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2

t w
s
t+1 + z

u
t+1 − z

d
t+1

vt+1 = (1 − ν)v + νvt + σvv
1/2

t w
v
t+1 + z

v
t+1

h
u
t = h0 + hrrt, h

d
t = h0 + hr r̃t, h

v
t = h

v
0 + hvvt

z
u
t |j ∼ Gamma(j, θ), z

d
t |j ∼ Gamma(j, θ), z

v
t |j ∼ Gamma(j, θv)

“Risk-adjusted” is the preferred model calibrated to one-month options (with parameters that are denoted

by symbols fixed at their time-series values).
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Table 5

JPY Parameter Estimates

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred Risk-adjusted

µ0 0.0253 0.0253 0.0203 -0.0717
(0.0064, 0.0441) (0.0062, 0.0443) (0.0018, 0.0389)

µr -3.1861 -3.2046 -3.4590 -0.5561u/0.5426d

(-4.4200, -1.9526) (-4.4540, -1.9531) (-4.6992, -2.2266)
µv 0.0151 0.0152 0.0152 -0.0050

(0.0054, 0.0248) (0.0055, 0.0249) (0.0054, 0.0248)
v 0.4816 0.3143 0.3012 0.2382

(0.2926, 0.8111) (0.2328, 0.4223) (0.2207, 0.4079)
ν 0.9896 0.9762 0.9771 0.7022

(0.9868, 0.9924) (0.9730, 0.9794) (0.9739, 0.9802)
σv 0.0496 0.0438 0.0436 σv

(0.0476, 0.0516) (0.0419, 0.0458) (0.0417, 0.0455)
ρ 0.3681 0.3505 0.3631 ρ

(0.3316, 0.4040) (0.3098, 0.3902) (0.3205, 0.4047)
θv 0.3917 0.3771 θv

(0.3313, 0.4622) (0.3198, 0.4447)
θ 1.2351 θ

(1.0847, 1.4071)
hv

0 0.0037 0.0037 0.0331
(0.0031, 0.0040) (0.0029, 0.0040)

hv 0.0077 0.0076 hv

(0.0068, 0.0080) (0.0067, 0.0080)
h0 0.0052 0.0774u/0.0206d

(0.0034, 0.0060)
hr 0.4447 hr

(0.3133, 0.4984)
αiv 0.0140 0.0116 0.0159

(0.0086, 0.0193) (0.0062, 0.0169) (0.0099, 0.0214)
βiv 1.0052 1.0083 1.0248

(0.9871, 1.0248) (0.9916, 1.0256) (1.0069, 1.0431)

Notes. The estimates correspond to daily excess currency returns, in percent. The 95% confidence intervals
are reported in parentheses. The preferred model is:

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2

t w
s
t+1 + z

u
t+1 − z

d
t+1

vt+1 = (1 − ν)v + νvt + σvv
1/2

t w
v
t+1 + z

v
t+1

h
u
t = h0 + hrrt, h

d
t = h0 + hr r̃t, h

v
t = h

v
0 + hvvt

z
u
t |j ∼ Gamma(j, θ), z

d
t |j ∼ Gamma(j, θ), z

v
t |j ∼ Gamma(j, θv)

“Risk-adjusted” is the preferred model calibrated to one-month options (with parameters that are denoted

by symbols fixed at their time-series values).
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Table 6

Model diagnostics for AUD

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

skewnessC -0.3080 -0.3074 -0.2004
(-0.3308, -0.2860) (-0.3304, -0.2855) (-0.2408, -0.1599)

kurtosisC 4.1472 4.0822 3.4892
(4.0677, 4.2366) (4.0006, 4.1810) (3.3802, 3.6055)

autocorrelationC -0.0281 -0.0271 -0.0324
(-0.0311, -0.0252) (-0.0303, -0.0241) (-0.0406, -0.0242)

skewnessIV 0.0402 0.0303 0.0310
(-0.0373, 0.1181) (-0.0466, 0.1070) (-0.0459, 0.1080)

kurtosisIV 3.0618 3.0385 3.0375
(2.9103, 3.2314) (2.8902, 3.2034) (2.8896, 3.2033)

autocorrelationIV 0.1043 0.0634 0.0637
(0.0749, 0.1336) (0.0331, 0.0937) (0.0334, 0.0940)

IV var 0.0064 0.0034 0.0034

(0.0041, 0.0122) (0.0021, 0.0070) (0.0021, 0.0070)

Notes. Posterior means and 95% confidence intervals (reported in parentheses) for the
residuals from the currency return and from the IV equations. Superscript C stands for the
residuals from the currency return equation, superscript IV stands for the residuals from
the IV equation.
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Table 7

Model diagnostics for CHF

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

skewnessC 0.1178 0.1282 0.0586
(0.0994, 0.1365) (0.1078, 0.1486) (0.0182, 0.0983)

kurtosisC 3.9497 3.9438 3.4333
(3.8825, 4.0198) (3.8919, 4.0011) (3.3373, 3.5405)

autocorrelationC -0.0203 -0.0198 -0.0272
(-0.0227, -0.0179) (-0.0226, -0.0170) (-0.0352, -0.0192)

skewnessIV 0.0224 0.0201 0.0210
(-0.0574, 0.1022) (-0.0585, 0.0985) (-0.0573, 0.0995)

kurtosisIV 3.0648 3.0399 3.0406
(2.9091, 3.2378) (2.8887, 3.2097) (2.8890, 3.2094)

autocorrelationIV 0.0777 0.0565 0.0564
(0.0459, 0.1094) (0.0247, 0.0883) (0.0246, 0.0881)

IV var 0.0010 0.0006 0.0006

(0.0007, 0.0017) (0.0004, 0.0011) (0.0004, 0.0011)

Notes. Posterior means and 95% confidence intervals (reported in parentheses) for the
residuals from the currency return and from the IV equations. Superscript C stands for the
residuals from the currency return equation, superscript IV stands for the residuals from
the IV equation.
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Table 8

Model diagnostics for GBP

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

skewnessC -0.0407 -0.0211 -0.0232
(-0.0606, -0.0202) (-0.0436, 0.0012) (-0.0609, 0.0143)

kurtosisC 3.9181 3.8540 3.4947
(3.8427, 4.0061) (3.7784, 3.9423) (3.4006, 3.5969)

autocorrelationC 0.0009 0.0006 -0.0027
(-0.0024, 0.0040) (-0.0038, 0.0047) (-0.0094, 0.0037)

skewnessIV 0.0352 0.0212 0.0215
(-0.0443, 0.1146) (-0.0565, 0.0995) (-0.0568, 0.0998)

kurtosisIV 3.0710 3.0293 3.0296
(2.9160, 3.2461) (2.8798, 3.1972) (2.8786, 3.1977)

autocorrelationIV 0.0791 0.0510 0.0510
(0.0483, 0.1096) (0.0204, 0.0814) (0.0204, 0.0815)

IV var 0.0011 0.0004 0.0004

(0.0007, 0.0019) (0.0003, 0.0008) (0.0003, 0.0008)

Notes. Posterior means and 95% confidence intervals (reported in parentheses) for the
residuals from the currency return and from the IV equations. Superscript C stands for the
residuals from the currency return equation, superscript IV stands for the residuals from
the IV equation.
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Table 9

Model diagnostics for JPY

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

skewnessC 0.3348 0.3360 0.1298
(0.3060, 0.3650) (0.3038, 0.3668) (0.0799, 0.1800)

kurtosisC 4.8254 4.7148 3.6054
(4.7109, 4.9645) (4.5982, 4.8361) (3.4829, 3.7445)

autocorrelationC -0.0146 -0.0140 -0.0221
(-0.0176 -0.0116) (-0.0174, -0.0108) (-0.0312, -0.0131)

skewnessIV 0.0568 0.0278 0.0311
(-0.0210, 0.1349) (-0.0495, 0.1054) (-0.0465, 0.1087)

kurtosisIV 3.0707 3.0430 3.0423
(2.9175, 3.2420) (2.8940, 3.2100) (2.8923, 3.2098)

autocorrelationIV 0.1042 0.0758 0.0768
(0.0733, 0.1349) (0.0443, 0.1070) (0.0453, 0.1083)

IV var 0.0061 0.0029 0.0037

(0.0036, 0.0125) (0.0017, 0.0059) (0.0021, 0.0078)

Notes. Posterior means and 95% confidence intervals (reported in parentheses) for the
residuals from the currency return and from the IV equations. Superscript C stands for the
residuals from the currency return equation, superscript IV stands for the residuals from
the IV equation.

42



Table 10

Log-Bayes-Odds Ratios

AUD CHF GBP JPY Index

SVJ/SV 22.03 52.05 44.50 34.89 24.12
Preferred/SVJ 26.36 18.77 13.43 61.22 10.13

Notes. Statistical model assesement. We compare the SV (θ = 0, θv = 0), SVJ (θ = 0)
and the preferred models pairwise. In the first row, we consider the SV and SVJ models
and quantify evidence against the SV model; in the second row, we consider the SVJ and
the preferred models and quantify evidence against the SVJ model. Focusing on the AUD,
the first number tells us the odds are 22.03 to 1 that the SVJ model (the alternative) is
preferable to the SV model (the null).

Table 11

Calibration of the interest rates

AUD CHF GBP JPY Index

ar 0.0181 0.0184 0.0184 0.0182 0.0185
ãr 0.0291 0.0121 0.0269 0.0077 0.0222

br 0.9999 0.9997 0.9997 0.9998 0.9998

b̃r 0.9992 0.9995 0.9998 0.9997 0.9998

σr 0.0012 0.0016 0.0016 0.0014 0.0015
σ̃r 0.0035 0.0030 0.0018 0.0027 0.0015

Notes. We calibrate processes for domestic (US)

rt+1 = (1 − br)ar + brrt + σrr
1/2
t wr

t+1

and foreign interest rates

r̃t+1 = (1 − b̃r)ãr + b̃r r̃t + σ̃r r̃
1/2
t w̃r

t+1

Parameters correspond to daily interest rates in percent. There are five versions of the
parameters corresponding to the US interest rate. This is because the foreign data have
different starting dates, and we calibrated the US rate in the matching samples.
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Table 12

Summary of announcements associated with jumps

Jumps Jumps
Up Down Vol Up Down Vol

AUD CHF

Total 6 21 34 17 6 45
Common 2 5 17 9 3 23
Common with index 1 2 14 6 3 19

Type of announcement
Trade 1 1 1 4 0 1
Political 0 1 0 3 0 1
Intervention 0 4 1 2 2 2
Macroeconomic 3 2 4 1 3 4
Monetary policy 1 6 5 1 0 1

GBP JPY

Total 5 6 56 34 13 52
Common 3 1 25 12 4 19
Common with index 3 1 18 6 2 13

Type of announcement
Trade 1 0 1 9 2 3
Political 0 1 4 2 1 1
Intervention 2 1 0 7 5 1
Macroeconomic 0 2 4 3 2 5
Monetary policy 0 0 3 1 0 5

Notes: We assess how many jumps in the preferred model are associated with economic, political or

financial announcements. In the first three rows we report the total number of jumps, how many

of these are common (at least two currencies jump on the same day), and how many of these are

common with the dollar index. The subsequent five rows report counts of jumps that took place on

the days of announcements.
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Table 13

Decomposition of the total risk

Jump Up Jump Down Jump in Vol Normal

n = 21 n = 63 n = 21 n = 63 n = 21 n = 63 n = 21 n = 63

AUD

Mean 6.90 6.37 9.17 8.40 4.12 10.18 79.81 75.05
Std 3.70 2.97 5.22 4.13 1.10 1.99 9.60 8.38
Min 0.31 0.38 0.60 0.74 1.58 4.45 55.17 56.33
Max 15.84 12.41 26.24 21.34 7.14 14.73 97.45 94.32

CHF

Mean 6.82 6.66 5.48 5.37 3.76 8.94 83.94 79.04
Std 2.56 2.03 1.82 1.50 0.27 0.39 4.32 3.34
Min 1.02 1.31 0.98 1.26 3.13 8.01 66.78 69.49
Max 16.34 11.88 12.04 10.55 4.84 9.91 94.87 89.38

GBP

Mean 2.98 2.78 3.68 3.45 4.37 11.48 88.96 82.29
Std 1.51 1.19 1.68 1.38 0.80 1.35 3.73 3.42
Min 0.18 0.23 0.25 0.32 2.64 7.79 74.21 72.60
Max 8.84 5.83 9.87 8.45 7.70 15.48 96.87 91.58

JPY

Mean 9.10 8.57 5.80 5.43 4.83 11.19 80.27 74.82
Std 4.18 3.32 3.53 2.96 0.71 1.08 7.56 6.10
Min 0.93 1.23 0.69 0.91 3.05 7.96 54.70 57.34
Max 22.04 18.05 17.68 13.89 6.82 13.61 65.20 89.67

Index

Mean 10.39 10.05 10.96 10.63 3.70 8.85 74.95 70.48
Std 3.96 3.28 4.01 3.38 0.57 0.98 8.05 6.78
Min 1.37 1.76 1.91 2.48 1.93 5.24 55.85 55.56
Max 19.44 17.65 21.65 19.11 5.18 10.87 94.58 90.12

Notes. We report summary statistics of the percentage contribution of the different risks
to the total risk of currency returns (horizon n = 21 and n = 63 days).
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Table 14

Index Parameter Estimates

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

µ0 0.0062 0.0059 0.0050
(-0.0042, 0.0166) (-0.0045, 0.0163) (-0.0055, 0.0154)

µr -2.3987 -2.5243 -2.6140
(-3.4799, -1.3162) (-3.6003, -1.4557) (-3.6949, -1.5336)

µv -0.0208 -0.0209 -0.0209
(-0.0345, -0.0072) (-0.0345, -0.0073) (-0.0346, -0.0073)

v 0.1935 0.1357 0.1335
(0.0854, 0.4543) (0.0911, 0.1994) (0.0991, 0.1783)

ν 0.9941 0.9832 0.9801
(0.9916, 0.9965) (0.9801, 0.9859) (0.9775, 0.9826)

σv 0.0199 0.0168 0.0168
(0.0192, 0.0206) (0.0162, 0.0174) (0.0161, 0.0174)

ρ -0.0552 -0.0530 -0.0508
(-0.0944, -0.0159) (-0.0944, -0.0115) (-0.0932, -0.0083)

θv 0.1687 0.1714
(0.1521, 0.1870) (0.1546, 0.1902)

θ 1.6385
(1.4635, 1.8334)

hv
0 0.0037 0.0037

(0.0030, 0.0040) (0.0031, 0.0040)
hv 0.0092 0.0093

(0.0073, 0.0100) (0.0075, 0.0100)
h0 0.0020

(0.0001, 0.0052)
hr 0.1141

(0.0113, 0.2542)

Notes. The estimates correspond to daily excess returns on currency index, in percent. The
95% confidence intervals are reported in parentheses. The preferred model is:

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2
t ws

t+1 + zu
t+1 − zd

t+1

vt+1 = (1 − ν)v + νvt + σvv
1/2
t wv

t+1 + zv
t+1

hu
t = h0 + hrrt, hd

t = h0 + hr r̃t, hv
t = hv

0 + hvvt

zu
t |j ∼ Gamma(j, θ), zd

t |j ∼ Gamma(j, θ), zv
t |j ∼ Gamma(j, θv)
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Table 15

Model diagnostics for Currency Index

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

skewnessC 0.0144 0.0222 0.0049
(-0.0053, 0.0342) (0.0032, 0.0456) (-0.0292, 0.0389)

kurtosisC 3.6921 3.6386 3.4022
(3.6292, 3.7611) (3.5790, 3.7057) (3.3053, 3.5100)

autocorrelationC 0.0020 0.0005 -0.0081
(-0.0010, 0.0049) (-0.0027, 0.0041) (-0.0155, -0.0012)

skewnessIV 0.0220 0.0212 0.0153
(-0.0729, 0.1173) (-0.0743, 0.1169) (-0.0794, 0.1097)

kurtosisIV 3.0422 3.0419 3.0206
(2.8601, 3.2515) (2.8598, 3.2506) (2.8423, 3.2248)

autocorrelationIV 0.0604 0.0508 0.0499
(0.0240, 0.0966) (0.0141, 0.0873) (0.0138, 0.0859)

IV var 0.0518 0.0388 0.0239

(0.0304, 0.1077) (0.0229, 0.0810) (0.0155, 0.0416)

Notes. Posterior means and 95% confidence intervals (reported in parentheses) for the
residuals from the currency return and from the IV equations. Superscript C stands for the
residuals from the currency return equation, superscript IV stands for the residuals from
the IV equation.
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Figure 1

AUD data and estimated states
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(d) Jumps in volatility

Notes. Panel (a): thin red line displays observed log currency returns; thick blue line displays the

conditional 6-months skewness of the log currency returns. Panel (b): thick red line shows observed

one-month at-the-money implied volatility; thin blue line shows the estimated spot volatility
√

vt.

The bottom panels display estimated jump sizes in returns (c) and volatility (d) with jump intensities.

Panel (c): brown solid line is the intensity of the jump down; the red dashed line is the intensity of

the jump up; blue bars are jumps themselves. Panel (d): the red line is the intensity of the jump in

volatility; blue bars are jumps. We say that there was a jump at time t if the estimated probability

of a jump on that day was above 50%. Gray vertical bars with the dashed border indicate recessions

in Australia; light blue vertical lines with the the thin solid border indicate recessions in the US.
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Figure 2

CHF data and estimated states
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Notes. Panel (a): thin red line displays observed log currency returns; thick blue line displays the

conditional 6-months skewness of the log currency returns. Panel (b): thick red line shows observed

one-month at-the-money implied volatility; thin blue line shows the estimated spot volatility
√

vt.

The bottom panels display estimated jump sizes in returns (c) and volatility (d) with jump intensities.

Panel (c): brown solid line is the intensity of the jump down; the red dashed line is the intensity of

the jump up; blue bars are jumps themselves. Panel (d): the red line is the intensity of the jump in

volatility; blue bars are jumps. We say that there was a jump at time t if the estimated probability

of a jump on that day was above 50%. Gray vertical bars with the dashed border indicate recessions

in Switzerland; light blue vertical lines with the thin solid border indicate recessions in the US.

49



Figure 3

GBP data and estimated states
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Notes. Panel (a): thin red line displays observed log currency returns; thick blue line displays the

conditional 6-months skewness of the log currency returns. Panel (b): thick red line shows observed

one-month at-the-money implied volatility; thin blue line shows the estimated spot volatility
√

vt.

The bottom panels display estimated jump sizes in returns (c) and volatility (d) with jump intensities.

Panel (c): brown solid line is the intensity of the jump down; the red dashed line is the intensity of

the jump up; blue bars are jumps themselves. Panel (d): the red line is the intensity of the jump in

volatility; blue bars are jumps. We say that there was a jump at time t if the estimated probability

of a jump on that day was above 50%. Gray vertical bars with the dashed border indicate recessions

in the UK; light blue vertical lines with the thin solid border indicate recessions in the US.
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Figure 4

JPY data and estimated states
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Notes. Panel (a): thin red line displays observed log currency returns; thick blue line displays the

conditional 6-months skewness of the log currency returns. Panel (b): thick red line shows observed

one-month at-the-money implied volatility; thin blue line shows the estimated spot volatility
√

vt.

The bottom panels display estimated jump sizes in returns (c) and volatility (d) with jump intensities.

Panel (c): brown solid line is the intensity of the jump down; the red dashed line is the intensity of

the jump up; blue bars are jumps themselves. Panel (d): the red line is the intensity of the jump in

volatility; blue bars are jumps. We say that there was a jump at time t if the estimated probability

of a jump on that day was above 50%. Gray vertical bars with the dashed border indicate recessions

in Japan; light blue vertical lines with the thin solid border indicate recessions in the US.
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Figure 5

Conditional decomposition of the total risk for monthly returns
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Notes. We display cumulative contribution of the different risks to the total risk of excess returns
(the left axis). We measure the total amount of risk using entropy

Lt(St+n/St) = κ2t(st+n − st)/2! + κ3t(st+n − st)/3! + κ4t(st+n − st)/4! + . . . ,

where κjt(st+n − st) is the jth cumulant of log FX returns. Investment horizon is n = 21 days. The

contribution of the down jumps in FX is displayed in light blue, contribution of the up jumps in FX

is in brown, and the contribution of the jumps in variance is in red. Gray area is the contribution

of the normal shocks. The blue line shows
√

2Lt/n in percent (the right axis). This quantity has

an interpretation of one-period volatility in the case of normally distributed returns.
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Figure 6

Conditional decomposition of the total risk for quarterly returns
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Notes. We display cumulative contribution of the different risks to the total risk of excess returns
(the left axis). We measure the total amount of risk using entropy

Lt(St+n/St) = κ2t(st+n − st)/2! + κ3t(st+n − st)/3! + κ4t(st+n − st)/4! + . . . ,

where κjt(st+n − st) is the jth cumulant of log FX returns. Investment horizon is n = 63 days. The

contribution of the down jumps in FX is displayed in light blue, contribution of the up jumps in FX

is in brown, and the contribution of the jumps in variance is in red. Gray area is the contribution

of the normal shocks. The blue line shows
√

2Lt/n in percent (the right axis). This quantity has

an interpretation of one-period volatility in the case of normally distributed returns.
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Figure 7

Index and estimated states
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Notes. Panel (a): thin red line displays observed log currency returns; thick blue line displays the

conditional 6-months skewness of the log currency returns; thick green line displays the conditional

6-months skewness of the log currency returns of the dollar carry trade. Panel (b): thin blue line

shows the estimated spot volatility
√

vt. The bottom panels display estimated jump sizes in returns

(c) and volatility (d) with jump intensities. Panel (c): brown solid line is the intensity of the jump

down; the red dashed line is the intensity of the jump up; blue bars are jumps themselves; green bars

are jumps that change the direction if there is rebalancing based on the interest rate differential.

Panel (d): the red line is the intensity of the jump in volatility; blue bars are jumps. We say that

there was a jump at time t if the estimated probability of a jump on that day was above 50%. Light

blue vertical lines with the thin solid border indicate recessions in the US.
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Figure 8

Implied volatility
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Notes. We check the ability of the model to generate the implied volatility (IV) smiles. The smiles

on selected days are the closest to the sample average. The asterisks indicate observed implied

volatilities. The dashed green lines display theoretical smiles when only compensation for normal

risks is allowed (we optimize over v∗ and ν∗ only). The solid blue lines depict theoretical implied

volatilities when jump risk premiums are allowed as well (we optimize over v∗, ν∗, hv∗
0 , hu∗

0 , and

hd∗
0 ).
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A Appendix

A.1 Long-Run Risk models with identical risk premium implications

In this section we provide two examples of models with critically different shocks to the
respective endowment processes that, nonetheless, yield the same functional dependence of
currency excess returns on observable variables. We rely on the Long-Run Risk framework
of Bansal and Yaron (2004) and use various modelling elements inspired by Bansal and
Shaliastovich (2012); Benzoni, Collin-Dufresne, and Goldstein (2011); Drechsler and Yaron
(2011); Wachter (2013).

We neither make any claims about realism of these models nor attempt to distinguish them
empirically. In fact, we try to construct the simplest models possible that deliver risk
premiums dependent on the interest rate differential and the variance of changes in the
exchange rate. Moreover, the models have implications for real exchange rates while we are
studying the empirical behaviour of nominal exchange rates. Thus, these models serve for
pure illustrative purposes.

We use recursive preferences and define utility from date t on

Ut = [(1 − β)cρ
t + βµt(Ut+1)

ρ]
1/ρ

, (A.1)

and certainty equivalent function,

µt(Ut+1) =
[
Et(U

α
t+1)

]1/α
.

In standard terminology, ρ < 1 captures time preference (with intertemporal elasticity
of substitution 1/(1 − ρ)) and α < 1 captures risk aversion (with coefficient of relative
risk aversion 1 − α). The time aggregator and certainty equivalent functions are both
homogeneous of degree one, which allows us to scale everything by current consumption. If
we define scaled utility ut = Ut/ct, equation (A.1) becomes

ut = [(1 − β) + βµt(gt+1ut+1)
ρ]1/ρ , (A.2)

where gt+1 = ct+1/ct is consumption growth. The pricing kernel is

mt+1 = β(ct+1/ct)
ρ−1 [Ut+1/µt(Ut+1)]

α−ρ

= βgρ−1
t+1 [gt+1ut+1/µt(gt+1ut+1)]

α−ρ .

The relationship (A.2) serves, essentially, as a Bellman equation. Its loglinear approximation

log ut = ρ−1 log [(1 − β) + βµt(gt+1ut+1)
ρ]

= ρ−1 log
[

(1 − β) + βeρ log µt(gt+1ut+1)
]

≈ b0 + b1 log µt(gt+1ut+1) (A.3)
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gives us transparent closed-form expressions for pricing kernels (Hansen, Heaton, and Li,
2008). The last line is a first-order approximation of log ut in log µt around the point
log µt = log µ, with

b1 = βeρ log µ/[(1 − β) + βeρ log µ]

b0 = ρ−1 log[(1 − β) + βeρ log µ] − b1 log µ.

The equation is exact when ρ = 0, in which case b0 = 0 and b1 = β. We focus on this case for
the simplicity sake and to avoid the debate on the accuracy of the log-linear approximation
as this subject is not the focus of our paper.

We extend this setting to two countries that we refer to as home (US) and foreign. The
representative agents in each country have different risk aversion: 1 − α and 1− α̃, respec-
tively. Similarly, all other foreign-country-specific objects, such as consumption growth, or
pricing kernel are denoted by tilde .̃

A.1.1 Model 1: Stochastic Variance

The domestic consumption growth is

log gt+1 = log g + xt + kσg,tηt+1,

xt+1 = γxt + σx,tet+1,

σ2
g,t+1 = (1 − νg)vg + νgσ

2
g,t + σgwσg,twg,t+1,

σ2
x,t+1 = (1 − νx)vx + νxσ2

x,t + σxwσx,twx,t+1.

The foreign consumption growth is similar, except for the loading of the variance of con-
sumption growth on σ2

g,t:

log g̃t+1 = log g + xt + k̃σg,tη̃t+1,

xt+1 = γxt + σx,tet+1,

σ2
g,t+1 = (1 − νg)vg + νgσ

2
g,t + σgwσg,twg,t+1,

σ2
x,t+1 = (1 − νx)vx + νxσ2

x,t + σxwσx,twx,t+1.

For simplicity, we assume that all the shocks, ηt, η̃t, et, wg,t, and wx,t, are independent.

The model is solved by guessing the value function for each country

log ut = log u + pxxt + pσgσ
2
g,t + pσxσ2

x,t.

and finding the coefficients px, pσg, and pσx using the equation (A.3). The full solution of
the model is presented in the online Appendix. Here we summarize the key implications.
The log pricing kernel at home is

log mt+1 = log β − log gt+1 + α[log gt+1ut+1 − log µt(gt+1ut+1)]

= log β − log g − xt − α2(k2 + p2
σgσ

2
gw)σ2

g,t/2 − α2(p2
x + p2

σxσ2
xw)σ2

x,t/2

+ (α − 1)kσg,tηt+1 + αpxσx,tet+1 + αpσgσgwσg,twg,t+1 + αpσxσxwσx,twx,t+1.
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The log pricing kernel abroad m̃t has a similar expression.

We can compute domestic interest rate rt = − log Et(mt+1). A similar expression applies to
the foreign interest rate r̃t. By no-arbitrage:

st+1 − st = log m̃t+1 − log mt+1. (A.4)

Therefore, we can compute expected excess returns Et(st+1 − st − (rt − r̃t)) and conditional
variance of the exchange rate changes vart(st+1−st). All of these objects depend on σ2

g,t and
σ2

x,t. Therefore, one can express the dependence of expected excess returns on σ2
g,t and σ2

x,t

as a dependence on the interest rate differential and conditional variance of the exchange
rate changes. The details are in the online Appendix.

As a result, we have:

Et(st+1 − st − (rt − r̃t)) = δr(rt − r̃t) + δvvart(st+1 − st),

where

δr = (Bvsg − Avsx)/(ArBv),

δv = sx/Bv ,

sg = [(α − 1)2k2 − (α̃ − 1)2k̃2 + α2p2
σgσ

2
gw − α̃2p̃2

σgσ
2
gw]/2,

sx = [p2
x(α2 − α̃2) + α2p2

σxσ2
xw − α̃2p̃2

σxσ2
xw]/2,

Ar = [(2α − 1)k2 − (2α̃ − 1)k̃2]/2

Av = (α̃ − 1)2k̃2 + (α − 1)2k2 + (α̃p̃σg − αpσg)
2σ2

gw,

Bv = p2
x(α̃ − α)2 + (α̃p̃σx − αpσx)2σ2

xw.

A.1.2 Model 2: Disasters

The domestic and foreign consumption growths are

log gt+1 = log g + xt + σgηt+1 + zg,t+1,

log g̃t+1 = log g + xt + σgη̃t+1 + zg,t+1,

xt+1 = γxt + σxet+1 + zx,t+1,

where the jump sizes are drawn from the normal distributions

zg,t+1|j ∼ N (jµg, jσ
2
g),

zx,t+1|j ∼ N (jµx, jσ2
x),

and the jump arrival rate is controlled by a Poisson distribution

Prob(jt+1 = j) = exp (−hk,t)h
j
k,t/j!, k = g, x.
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The jump intensities hg,t and hx,t are time-varying:

hg,t+1 = (1 − νhg)vhg + νhghg,t + σhgh
1/2
g,t εhg,t+1,

hx,t+1 = (1 − νhx)vhx + νhxhx,t + σhxh
1/2
x,t εhx,t+1.

The model is solved by guessing the value function for each country

log ut = log u + pxxt + phghg,t + phxhx,t.

and finding the coefficients px, phg, and phx using the equation (A.3) (px = β/(1−βγ) when
ρ = 0). The details are provided in the online Appendix.

The log pricing kernel at home is

log mt+1 = [log β − log g − α2σ2
g/2 − α2p2

xσ2
x/2] − xt − α2p2

hgσ
2
hghg,t/2 − α2p2

hxσ
2
hxhx,t/2

− (eαµg+(ασg)2/2 − 1)hg,t − (eαpxµx+(αpxσx)2/2 − 1)hx,t + (α − 1)σgηt+1 + αpxσxet+1

+ αphgσhgh
1/2
g,t εhg,t+1 + αphxσhxh

1/2
xt εhx,t+1 + (α − 1)zg,t+1 + αpxzx,t+1.

The log pricing kernel abroad has a similar expression.

We can compute domestic interest rate rt = − log Et(mt+1). A similar expression applies to
the foreign interest rate r̃t. By no-arbitrage:

st+1 − st = log m̃t+1 − log mt+1. (A.5)

Therefore, we can compute expected excess returns Et(st+1 − st − (rt − r̃t)) and conditional
variance of the exchange rate changes vart(st+1−st). All of these objects depend on hg,t and
hx,t. Therefore, one can express the dependence of expected excess returns on hg,t and hx,t

as a dependence on the interest rate differential and conditional variance of the exchange
rate changes. The details are in the online Appendix.

As a result, we have:

Et(st+1 − st − (rt − r̃t)) = δ0 + δr(rt − r̃t) + δvvart(st+1 − st),

where

δ0 = ((α − 1)2 − (α̃ − 1)2)σ2
g/2 + (α2 − α̃2)p2

xσ2
x/2 − sg(α − α̃)σ2

g/Ar

− sx(Ar[((α̃ − 1)2 + (α − 1)2)σ2
g + (α̃ − α)2p2

xσ2
x] − Av(α − α̃)σ2

g)/(ArBv),

δr = (Bvsg − Avsx)/(ArBv),

δv = sx/Bv,

sg = (α2p2
hg − α̃2p̃2

hg)σ
2
hg/2 + (eµg(α−1)+((α−1)σg )2/2 − e(α̃−1)µg+((α̃−1)σg)2/2) + µg(α̃ − α),

sx = (α2p2
hx − α̃2p̃2

hx)σ
2
hx/2 + eαpxµx+(αpxσx)2/2 − eα̃pxµx+(α̃pxσx)2/2 + µxpx(α̃ − α),

Ar = eαµg+(ασg)2/2 − eα̃µg+(α̃σg)2/2 + e(α̃−1)µg+((α̃−1)σg)2/2 − e(α−1)µg+((α−1)σg )2/2

Av = (α̃p̃hg − αphg)
2σ2

hg + (α̃ − α)2µ2
g + σ2

g ,

Bv = (α̃p̃hx − αphx)2σ2
hx + p2

x(α̃ − α)2µ2
x + σ2

x.
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A.2 Expected future variance

We do not consider the most general model to streamline the presentation. We focus on
the empirically relevant case where intensity of jumps in variance depends on variance
only, and jumps up (down) in FX depend on domestic (foreign) interest rate only. We
start by computing expectation of the variance process in (3.2). Conditional expectation
Et(vt+i) ≡ vt,i can be computed via a recursion. Note that vt,0 = vt. Suppose we know
vt,i−1. Then

vt,i = (1 − ν)v + νvt,i−1 + σvEt(Et+i−1(v
1/2
t+i−1w

v
t+i)) + Et(Et+i−1z

v
t+i)

= (1 − ν)v + νvt,i−1 + θvh
v
0 + θvh

v
vvt,i−1 = (1 − ν)v + θvh

v
0 + (ν + θvh

v
v)vt,i−1.

We can solve this recursion analytically:

vt,i = [(1 − ν)v + θvh
v
0](1 + (ν + θvh

v
v)) + (ν + θvh

v
v)

2vt,i−2

= [(1 − ν)v + θvh
v
0](1 − (ν + θvh

v
v)

i)/(1 − (ν + θvh
v
v)) + (ν + θvh

v
v)

ivt.

Next, we can compute expectation of average future v :

Et

(
n∑

i=1

vt+i

)

/n = 1/n
n∑

i=1

Etvt+i = 1/n
n∑

i=1

vt,i

= 1/n

n∑

i=1

[(1 − ν)v + θvh
v
0](1 − (ν + θvh

v
v)

i)/(1 − (ν + θvh
v
v)) + 1/n

n∑

i=1

(ν + θvh
v
v)

ivt

=
(1 − ν)v + θvh

v
0

1 − (ν + θvhv
v)

[

1 − ν + θvh
v
v

n

1 − (ν + θvh
v
v)

n

1 − (ν + θvhv
v)

]

+
ν + θvh

v
v

n

1 − (ν + θvh
v
v)

n

1 − (ν + θvhv
v)

vt

≡ (1 − ν)v + θvh
v
0

1 − (ν + θvhv
v)

[1 − βn]

︸ ︷︷ ︸

αn

+βnvt.

Similarly, we can obtain conditional expectations of future interest rates:

rt,i ≡ Et(rt+i) = ar(1 − bi
r) + bi

rrt,

and the expectations of average future interest rates:

Et

(
n∑

i=1

rt+i

)

/n = 1/n

n∑

i=1

Etrt+i = 1/n

n∑

i=1

rt,i

= ar

[

1 − br

n

1 − bn
r

1 − br

]

+
br

n

1 − bn
r

1 − br
rt

and the similar expression holds for expectations associated with r̃t.
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Now, we can characterize the variance of excess returns:

vy
t ≡ vart(yt+1) = vt + 2hu

t θ2
u + 2hd

t θ
2
d.

Therefore, the conditional expectation of this variance can be computed on the basis of our
results for the variance of the normal component vt and the expectations of interest rates:

vy
t,i ≡ Et(v

y
t+i) = vt,i + 2θ2

uhu
0 + 2θ2

uhu
r Et(rt+i) + 2θ2

dh
d
0 + 2θ2

dh̃
d
rEt(r̃t+i).

This expression implies that the unconditional expectation, or long-run mean, of the vari-
ance is:

vJ = lim
i→∞

vy
t,i = [(1 − ν)v + θvh

v
0]/(1 − (ν + θvh

v
v))

+ 2θ2
uhu

0 + 2θ2
uhu

r ar + 2θ2
dh

d
0 + 2θ2

dh̃
d
r ãr.

When there are no jumps, that is, θv = 0, θu = 0, and θd = 0, then vJ = v.

Next, we compute Et(
∑n

i=1 vy
t+i)/n

Et

(
n∑

i=1

vy
t+i

)

/n = 1/n

n∑

i=1

Etv
y
t+i = 1/n

n∑

i=1

vy
t,i

= αn + 2θ2
uhu

0 + 2θ2
uhu

r ar

[

1 − br

n

1 − bn
r

1 − br

]

+ 2θ2
dh

d
0 + 2θ2

dh̃
d
r ãr

[

1 − b̃r

n

1 − b̃n
r

1 − b̃r

]

+ βnvt + 2θ2
uhu

r

br

n

1 − bn
r

1 − br
rt + 2θ2

dh̃
d
r

b̃r

n

1 − b̃n
r

1 − b̃r

r̃t.

A.3 Computing entropy

Entropy of currency changes over a horizon of n days is equal to:

Lt(St+n/St) = log Et(e
xt,n) − Et(xt,n) = kt(1;xt,n) − κ1t(xt,n),

where xt,n = log(St+n/St) =
∑t+n

i=t (si+1 − si), kt(s;xt,n) is a cumulant-generating function
of xt,n, and κ1t(xt,n) is the first cumulant of xt,n. Thus, we need to compute the cumulant-
generating function of xt,n :

kt(s;xt,n) = log Ete
sxt,n .

The first cumulant can be recovered as ∂kt(s;xt,n)/∂s at s = 0. Denote the the drift of log
currency changes by µ̄t = µt + (rt − r̃t).

Guess

kt(s;xt,n) = A(n) + Bv(n)vt + Br(n)rt + B̃r(n)r̃t.
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Then

A(n) + Bv(n)vt + Br(n)rt + B̃r(n)r̃t

= k(s;xt,n) = log Et[e
sxt,1Et+1e

sxt+1,n−1 ]

= log Et[e
sxt,1eA(n−1)+Bv(n−1)vt+1+Br(n−1)rt+1+B̃r(n−1)r̃t+1 ]

= A(n − 1) + log Ete
sxt,1+Bv(n−1)vt+1 + log Ete

Br(n−1)rt+1+B̃r(n−1)r̃t+1

= A(n − 1) + sµ̄t + Bv(n − 1)((1 − ν)v + νvt)

+ Br(n − 1)((1 − br)ar + brrt) + B̃r(n − 1)((1 − b̃r)ãr + b̃r r̃t)

+ log Ete
s(1−ρ2)1/2v

1/2

t ws
t+1

+sρv
1/2

t wv
t+1

+szu
t+1

+szd
t+1

+Bv(n−1)σvv
1/2

t wv
t+1

+Bv(n−1)zv
t+1

+ log Ete
Br(n−1)r

1/2

t σrwr
t+1

+B̃r(n−1)r̃
1/2

t σ̃rw̃r
t+1

= A(n − 1) + sµ̄t + Bv(n − 1)((1 − ν)v + νvt)

+ Br(n − 1)((1 − br)ar + brrt) + B̃r(n − 1)((1 − b̃r)ãr + b̃r r̃t)

+ s2vt/2 + vtsρσvBv(n − 1) + B2
v(n − 1)σ2

vvt/2 + hu
t ((1 − sθu)−1 − 1) + hd

t ((1 + sθd)
−1 − 1)

+ hv
t ((1 − Bv(n − 1)θv)

−1 − 1) + B2
r (n − 1)σ2

rrt/2 + B̃2
r (n − 1)σ̃2

r r̃t/2

= A(n − 1) + s(µ + (µr + 1)(rt − r̃t) + µvvt) + Bv(n − 1)((1 − ν)v + νvt)

+ Br(n − 1)((1 − br)ar + brrt) + B̃r(n − 1)((1 − b̃r)ãr + b̃r r̃t)

+ s2vt/2 + vtsρσvBv(n − 1) + B2
v(n − 1)σ2

vvt/2 + sθu(hu
0 + hu

r rt)/(1 − sθu) − sθd(h
d
0 + h̃d

r r̃t)/(1 + sθd)

+ (hv
0 + hv

vvt)Bv(n − 1)θv/(1 − Bv(n − 1)θv) + B2
r (n − 1)σ2

rrt/2 + B̃2
r (n − 1)σ̃2

r r̃t/2.

Collect terms, match them with the corresponding terms in the first line, solve for the
coefficients:

A(n) = A(n − 1) + sµ + Bv(n − 1)(1 − ν)v + sθuhu
0/(1 − sθu) − sθdh

d
0/(1 + sθd)

+ hv
0Bv(n − 1)θv/(1 − θvBv(n − 1)) + Br(n − 1)(1 − br)ar + B̃r(n − 1)(1 − b̃r)ãr

Bv(n) = sµv + Bv(n − 1)ν + s2/2 + sρσvBv(n − 1) + B2
v(n − 1)σ2

v/2

+ hv
vBv(n − 1)θv/(1 − Bv(n − 1)θv),

Br(n) = s(µr + 1) + Br(n − 1)br + sθuhu
r /(1 − sθu) + B2

r (n − 1)σ2
r/2,

B̃r(n) = −s(µr + 1) + B̃r(n − 1)b̃r − sθdh̃
d
r/(1 + sθd) + B̃2

r (n − 1)σ̃2
r/2.

To compute initial conditions for the above recursion, write down the cumulant generating
function of a one-period return:

kt(s;xt,1) = sµ̄t + s2vt/2 + (hu
0 + hu

r rt)
sθu

1 − sθu
− (hd

0 + h̃d
r r̃t)

sθd

1 + sθd
.
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Therefore,

A(1) = sµ + hu
0

sθu

1 − sθu
− hd

0

sθd

1 + sθd
,

Bv(1) = sµv + s2/2,

Br(1) = s(µr + 1) + sθuhu
r /(1 − sθu),

B̃r(1) = −s(µr + 1) − sθdh̃
d
r/(1 + sθd).
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