
 
 
 
 
 

  
 
 
 

The Effect of Beijing’s Driving Restrictions on 
Pollution and Economic Activity* 

 
Abstract 

 
We evaluate the environmental benefit and economic cost of Beijing’s driving 
restrictions. Based on daily data from multiple monitoring stations, air pollution falls 
20% during every-other-day and 9% during one-day-per-week restrictions. Based on 
hourly television viewership data, viewership during the restrictions increases by 8.7 
to 12.8% for workers with discretionary work time but is unaffected for workers 
without, consistent with the restrictions’ higher per-day commute costs reducing 
daily labor supply. Causal effects are identified from both time-series and spatial 
variation in air quality and intra-day variation in viewership. We provide possible 
reasons for the policy’s success, including evidence of high compliance based on 
parking garage entrance records. 
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1. Introduction 

 

Driving restrictions are used in numerous cities around the world to reduce pollution 

and congestion.1 Such restrictions may be ineffective either due to non-compliance or 

compensating responses such as inter-temporal substitution of driving or adding 

second vehicles. If effective, they may lower economic activity by increasing 

commute costs and reducing workers’ willingness to supply labor for given 

compensation. There is little empirical evidence of driving restrictions’ effect on 

pollution and none about their effect on economic activity. We examine both effects 

under driving restrictions imposed by the Beijing government since July 20, 2008. 

The restrictions, based on license plate numbers, initially prevented driving every 

other day and later one day per week. 

 

On the benefits side, we find that the restrictions significantly reduce particulate 

matter, a pollutant estimated to claim 6.4 million life-years annually worldwide 

(Cohen, et al. 2005) and a severe air pollutant in Beijing and many other cities 

worldwide. Using daily data and a regression discontinuity design (RD), our point 

estimates indicate that the every-other-day restrictions reduced particulate matter by 

20% and one-day-a-week restrictions by 9%. Given that motor vehicles create roughly 

50% of particulate matter in Beijing through emissions and road dust; this is 

consistent with strong compliance with the restrictions. We find little evidence of 

inter-temporal substitution of driving. 

 

Particulate matter’s ambient properties dictate that it is deposited within a few 

kilometers of its release. We exploit this to develop a differences-in-differences (DD) 

approach that combines time-series variation with spatial variation in monitoring 

stations’ locations to eliminate other explanations besides cars for the pollution 

reduction. Pollution drops more at stations closer to a major road.2 This means 

confounding factors are related to proximity to a major road and therefore traffic flow. 

We consider, and rule out, changes in gasoline prices, parking rates, number of taxis, 

emissions standards, and government-imposed working hours. 

 

This DD approach can be used to evaluate any intra-city policy change that can be 

related to identifiable pollution sources. Station-specific policy effects can be 

                                                 
1 These include Santiago, Mexico City, São Paulo, Bogotá, San Jose, La Paz, Athens, Barcelona, 
Amsterdam, Tokyo, all of Honduras, and several Italian cities. See Mahendra (2008), Wolff and Perry 
(2010), and “With Mixed Results, Cities Battle Traffic and Pollution,” Spiegel Online, April 4, 2005. 
2 As we explain later, we define a major road as a Ring or Class I Road. 



 
 
 

3 
 
 

correlated with distances to pollution sources such as factories, roads, airports, or 

subways to disentangle the impact of concurrent and overlapping policies that affect 

different pollution sources differently. The approach is generally applicable to cities 

that monitor air pollution since city-wide air quality measures are based on multiple 

monitoring locations to ensure representativeness. Papers that use variation in 

distance from pollution sources for DD identification include Currie and Walker 

(2011) (response to toll traffic changes based on distance from toll plazas); Schlenker 

and Walker (2012) (response to changes in airport congestion in areas downwind and 

upwind of airports); and Hanna and Oliva (2011) (response to a factory closure based 

on distance to the erstwhile factory). 

 

On the cost side, we investigate how the driving restrictions’ higher commute costs 

affect economic activity. Lacking direct measures of work time or traffic flows, we 

rely on observed consumption of a major substitute – leisure time watching television 

(TV). Using viewership as a proxy biases against finding an effect. The restrictions 

reduce auto congestion and pollution making outdoor activities more attractive 

relative to indoor TV viewership.3 To rule out confounding factors that affect 

viewership, we compare viewership responses of workers with discretionary work 

time (self-employed) to those whose days worked and daily hours are fixed 

conditional on their remaining employed (hourly employees). Since the one-day-a-

week driving restrictions apply (initially from 6:00 a.m. to 9:00 p.m. and later 7:00 

a.m. to 8:00 p.m.) during most workers’ regular working hours, we examine 

viewership during the restricted hours to ascertain the effect on days worked but also 

examine viewership outside the restricted hours to determine if work day length more 

than compensates for effects on days worked. 

 

Using an RD design, viewership by self-employed workers increases by 8.7 to 12.8% 

(1.4 to 1.9% of all self-employed workers whether watching television or not) during 

the restricted hours of the one-day-a-week policy, consistent with a reduction in days 

worked and substitution to leisure in response to higher commute costs. Viewership 

changes only slightly outside the restricted hours ruling out the possibility that longer 

daily work hours more than compensate for the fewer work days. While we cannot 

say with certainty that output is reduced as a result, for this not to be so would require 

increased efficiency during the fewer remaining work hours. 

 

                                                 
3 TV viewing on mobile devices is extremely limited during our sample period. 
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Hourly employee viewership slightly decreases during restricted hours consistent with 

these workers having no choice over days worked but experiencing fewer at-home 

sick days due to reduced pollution. Although daily work hours for these workers 

should also remain unchanged, their leisure time could change depending on changes 

in commute modes and congestion. We find minor adjustments in viewership outside 

the restricted hours. Besides providing evidence on the restrictions’ economic cost, 

the viewership results further corroborate our pollution results. They preclude 

confounding factors that decrease both public transit and auto commute times, such as 

expanded subway capacity, because these would not decrease work days for those 

with discretionary work time. 

 

Using back-of-the-envelope calculations, we estimate the annual benefits from 

reduced morbidity and fewer reduced activity days due to the OneDay driving 

restrictions to be around RMB 1.1 to 1.4 billion while the cost of reduced output is 

about RMB 0.51 to 0.72 billion. 

 

The only other detailed economic analysis of driving restrictions is Davis (2008),4 

who finds no discernible effect on several pollutants (not including particulate matter) 

from a similar policy in Mexico City.5 Our work differs in three key respects. First, 

we use geographic in addition to time-series variation in pollution measures to 

identify the effects. Second, we examine the impact on work time. Third, while Davis 

(2008) only describes the penalties and detection methods used in Mexico City, we 

provide direct, detailed compliance evidence. In the absence of publicly-available 

violations data, we gathered data from a centrally-located Beijing parking garage. All 

Beijing parking garages are required to record the time and license plate numbers of 

all entering cars but are not required to report violators of the driving restrictions. 

Using this minute-by-minute data, we find high compliance. 

 

Chen, et. al. (2011) examine which, if any, of the policies implemented during and 

shortly after the Olympics had an effect on Beijing pollution. Their paper 

complements ours in that it concludes that the driving restrictions were one of two 

effective policies. They use two different DD approaches to show this. One uses only 

Beijing data and estimates whether the policies discontinuously change aerosol 

                                                 
4 Policy papers examining driving restrictions include Osakwe (2010); Cropper, et. al. (2010); and 
Cambridge Systematics, Inc. (2007). 
5 Salas (2010) finds that the Davis (2008) results are sensitive to assumptions about time window and 
time trend. Eskeland and Feyzioglu (1995) use data on gasoline consumption to conclude that the 
Mexico City restrictions increased driving but they do not control for any pre-existing time trend. 
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optimal depth (AOD) – a satellite measure of atmospheric particulates –differently for 

areas with different road densities. AOD drops more precipitously in high- than in 

low-density areas during the every-other-day policy consistent with them having an 

effect.6 The other DD approach uses nearby cities as a control group and estimates 

whether Beijing’s air pollution index (API) changed differently during the every-

other-day policy. This produces a similar estimate to ours – a 17% reduction.7 

 

Our paper differs from theirs in two respects. First, our approach more conclusively 

identifies driving restrictions as the cause of the pollution decrease. Comparing areas 

with different road densities cannot rule out confounding factors that lower both auto 

and public transit congestion. Our TV viewership results fulfill this role. Unlike our 

station-level data which can detect sub-kilometer changes, satellite data is not precise 

enough (accurate within about 10 kilometers) to evaluate within-city policies affecting 

pollution sources in close proximity. Comparing Beijing to control cities cannot rule 

out other coincident policy effects within Beijing. Second, the paper does not consider 

labor supply effects. Lin, Zhang, and Umanskaya (2011) examine driving restrictions 

in three cities including Beijing. They find a 20 to 29% reduction in the API during 

the every-other-day restrictions and no drop in the API during the one-day-per week 

restrictions.8 This difference may result from their using an RD design with a single 

time trend throughout the sample period. 

 

Our study also adds to the very small empirical literature relating commute costs to 

labor supply. This is important for evaluating how transport changes affect worker 

productivity. That driving restrictions reduce work time implies that shifting to a 

commuting-related tax will not necessarily reduce the work-time distortion from an 

income tax. We know of one study that relates commute cost changes to work time 

changes while properly controlling for endogeneity. Gutiérrez-i-Puigarnau and van 

Ommeren (2010) find a very small elasticity of labor supply with respect to commute 

distance. In contrast to their study, we distinguish workers with and without discretion 

over work time, allowing us to compare control and treatment groups as well as 

separately identify the effect on those with discretion. 

 

                                                 
6 The paper does not explicitly test for the effects of the one-day-per-week policy. However, it 
concludes that it was ineffective based on a regression that tests whether pollution remains lower in the 
months after the Olympics (a time period which includes the one-day-per-week policy). Contrary to the 
conclusion in the paper the results of this test (the paper’s Table 12) show pollution levels 14% lower 
even at the end of the sample period – similar to the magnitude of our estimates. 
7 This is from the specification closest to ours (Column 4 of Table 11). 
8 This is from the specification closest to ours (Columns 2 to 4 of Table 14b). 
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2. Pollution-Relevant Policies 

 

Air pollution and its health implications are a major concern in Beijing, which was 

ranked in 2004 as the thirteenth “most polluted city” in the world for suspended 

particulates.9 The economic cost of suspended particulates to China is estimated at 

$22.4 billion in 2005 (in 1997 USD) (Matus, et al., 2012). Although a particularly 

acute problem in developing economies (see Greenstone and Hanna, 2011), 

particulate matter is a major concern in cities worldwide (see Watkiss, Pye, and 

Holland (2005) for European Union evidence). Particulate matter is linked to 

cardiopulmonary diseases, respiratory infections, and lung cancer (EPA, 2004), and is 

found to increase infant mortality (Chay and Greenstone, 2003). Other types of air 

pollutants also have negative health effects linked to infant mortality (Currie and 

Neidell, 2005) and childhood asthma (Neidell, 2004). 

 

We focus on PM10 which is the ambient concentration (in μg/m3) of particulates 

smaller than 10μm. Various sources create PM10, but autos are the major contributor 

in most urban areas. Autos create PM10 through emissions and by creating road dust.10 

Jiang (2006) finds that approximately 53% of Beijing’s PM10 is attributable to motor 

vehicles – 23% due to emissions and 30% due to road dust.11 Therefore, autos create 

roughly half of the air pollution we examine. As this is fairly consistent across 

countries, reducing auto pollution is important more generally.12 

 

The driving restrictions began on July 20, 2008 with an odd-even (“OddEven”) policy 

restricting cars to drive only every-other-day. The OddEven policy applied seven days 

a week and to all hours except midnight to 3:00 a.m. These restrictions ended on 

September 20, 2008. On October 11, 2008 the government re-instated driving 

restrictions, preventing cars from driving one-day-per-week (“OneDay”). The 

OneDay policy applied on weekdays and initially between 6:00 a.m. and 9:00 p.m. 

We call this period “OneDay69.” On April 11, 2009 the daily restriction period 

narrowed to apply between 7:00 a.m. and 8:00 p.m. and remained unchanged beyond 

our sample period. We call this period “OneDay78” and use “OneDay” to apply to the 

combined OneDay69 and OneDay78 periods. 

                                                 
9 “Beijing Pollution: Facts and Figures,” BBC News, August 11, 2008 based on 2004 World Bank data. 
10 Some governments measure PM2.5, which includes only smaller particulates (below 2.5 μm) and does 
not capture road dust. 
11 Citing “Beijing’s Strategy to Control Air Pollution” by the Beijing Environmental Protection Bureau. 
Cui, et. al., (2009) estimate that autos create 62% of all air pollutants, including PM10. 
12 In the U.S., the EPA’s 2005 National Emissions Inventory Data attributes 10.7 (53.5%) of the 20.0 
million tons of PM10 particulate matter nationwide to “Road Dust” and “On Road Vehicles.” 
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The policies restricted vehicles based on the last digit of their license plate numbers. 

During the OddEven policy, odd-numbered license plates could drive only on odd-

numbered dates and even-numbered only on even-numbered dates. The OneDay 

policy restricted two out of the ten plate numbers each weekday so that the restrictions 

followed a weekly cycle. The pairing of digits remained the same week-to-week ((0, 

5), (1, 6), (2, 7), (3, 8), (4, 9)) but the assignment of these pairs to weekdays were 

initially rotated each month and, beginning April 11, 2009, every thirteen weeks. 

 

The OddEven and OneDay69 policies applied to all roads (regardless of size) within 

and including the 5th Ring Road while the OneDay78 policy applied to all roads 

within but not including the 5th Ring Road (Figure 1 shows these areas). Police cars, 

taxis, ambulances, postal vehicles, and embassy cars were exempt although these are 

small in number.13 

 

As Figure 2 shows, other pollution-relevant policies occurred around the time of the 

driving restrictions. These included bus fare reductions and subway line openings. In 

addition, during the Olympic Games many non-essential businesses and factories 

were closed; and migrant workers (those without Beijing hukous) were sent home. 

Although the government may have had other goals for some of these policies (e.g., 

reduced congestion or easier commutes), they all may affect air pollution.14 Factory 

closures and migrant worker relocation were coincident with the Olympic Games and 

we include a dummy variable in our estimates to capture that period. For the other 

policies – bus and subway fare reductions and subway openings – we address in a 

variety of ways. In our RD estimates, we include flexible time trends to control for 

these policies and perform robustness checks to see whether these trends are 

sufficiently flexible to capture them. We also estimate the effect of the driving 

restrictions using small windows around the beginning of the driving restrictions (bus 

and subway fare reductions and Subway Line 4 and 5 openings are not within these 

windows). Finally, for those policies beginning close to the time of the driving 

restrictions (Subway Line 8, 10, and Airport openings), our DD results showing 

                                                 
13 Two-wheel, combustion-engine vehicles such as mopeds and motorcycles were banned from 
Beijing’s 2nd, 3rd, 4th, and 5th Ring Roads beginning December 8, 2000. 
14 Air travel also likely changed during this period but aircrafts produce only small amounts of PM10. 
According to “Aviation & Emissions: A Primer” (Federal Aviation Administration Office of 
Environment and Energy, January 2005, page 1) particulate matter is less than 1% of aircraft engine 
emissions. Also, since particulate matter dissipates within a few kilometers, the small amount of PM10 
that would be measurable by ground sensors would be produced during takeoff and landing near the 
Beijing airport and the airport is 10.5 kilometers from the nearest station in our sample. 
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viewership increasing for workers with discretionary work time but not for those 

without are inconsistent with an expansion of public transit. 

 

3. Theoretical Background 

 

Appendix A contains a model that predicts the short-run effects of Beijing’s driving 

restrictions on pollution and economic activity. We outline the model here and discuss 

its main results but refer the reader to the appendix for details. It incorporates the 

choice of commute mode in a labor supply model. There are two groups of workers:15 

those with discretionary work time and those with fixed work times. Since most 

Beijing workers with fixed work times must arrive at work by 8:30 a.m. and stay until 

5:30 p.m.,16 we assume a fixed daily schedule for them. Within each group there is a 

distribution of workers with heterogeneous commute properties, wages, and non-wage 

income. Each worker chooses an optimal commute mode (auto, public transit, or not 

working if they have discretion over their time) considering its effect on their labor-

leisure choice. Each worker’s commute properties are defined by the monetary cost, 

time, and non-monetary disutility for each mode. Non-monetary disutility allows for 

the fact that some workers prefer one commute mode over another even if it requires 

more time and greater monetary cost. Examples are expending effort to commute, 

bearing the burden of a crowded subway, or inhaling exhaust fumes. 

 

The model considers workers’ total utility over restricted and non-restricted days. 

Absent the policy the two types of days are identical. With the policy, workers suffer 

a penalty for driving on restricted days. The model assumes perfect compliance and 

that workers do not purchase a second car to comply with the restrictions; any 

presence of these in the empirical data would bias against finding an effect.17 The 

model considers only short-run effects and therefore ignores changes in workforce 

                                                 
15 The restrictions apply to non-commuters but they likely have greater flexibility for inter-temporal 
substitution. Including non-commuters, as our pollution data does, will bias us toward finding no effect. 
Since our viewership data is comprised only of workers the model applies directly to it. According to 
the 3rd Beijing Transportation Comprehensive Survey (Beijing Transportation Research Center, 2006), 
48% of daily Beijing travelers across all modes are commuters. 
16 After our sample period (beginning April 12, 2010) official working hours became 9 a.m. to 6 p.m. 
17 Eskeland and Feyzioglu (1995) model the latter effect. Due to the integer nature of car purchases, 
some households are on the margin between zero and one car while others are on the margin between 
one and two. Driving restrictions reduce the service flow from owning a single vehicle and can lead the 
former to sell their vehicle but the latter to buy another. Gallego, Montero, and Salas (2011) find that 
middle-income households in Mexico City and Santiago respond more in the long run to driving 
restrictions than low- or high-income consistent with middle-income households being on the margin 
between one and two vehicles absent the restrictions but low- and high-income being infra-marginal. 
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participation,18 transitioning between discretionary and fixed work-time jobs, changes 

in housing prices and wages, and changes of residential or work locations. The 

appendix considers only first-order effects but we comment below on second-order 

effects due to changes in congestion. Driving restrictions affect work time on both an 

extensive margin (days worked) and an intensive margin (daily work hours 

conditional on working that day). Extensive margin changes affect pollution because 

they change the number of auto trips. Leisure (and therefore TV viewership) is 

affected on both margins. 

 

Extensive Margin: For those with fixed work times, the restrictions have no impact 

on the extensive margin since they must work. They will use public transit when 

restricted regardless of their preferred mode when unconstrained. Therefore, 

Implication 1: Across all workers with fixed work times, days worked and therefore 

days spent entirely on leisure are unchanged due to the policy. 

The extensive margin effect for workers with discretionary work time depends on 

their preferred commute mode absent the restrictions. Those who prefer public transit 

are unaffected and will continue to work “full time” and take public transit on both 

restricted and non-restricted days. Workers who prefer to drive can either take public 

transit or not work on their restricted day (“reduced time”). Those with high public 

transit commute costs (in terms of time, money, or discomfort) will choose the latter 

and substitute to leisure activities. Therefore, 

Implication 2: Across all workers with discretionary work time, days worked decrease 

and days spent entirely on leisure increase due to the policy. 

Second-order effects may attenuate these first-order effects. Auto congestion will 

decline and public transit congestion will increase. This will induce some people to 

drive who otherwise would take public transit on their non-restricted day. Given 

Implications 1 and 2, the pollution effects are straightforward: 

Implication 3: Total auto commutes and pollution decrease due to the policy. 

Because our model does not consider non-work driving and assumes all days are work 

days, there is no possibility of inter-temporal substitution. In a more general model, 

workers may drive more on their non-restricted day because they cannot on the 

                                                 
18 Gibbons and Machin (2006) discuss the theoretical effect of increased commute costs on the labor 
participation margin. Black, Kolesnikova, and Taylor (2010) find that female labor force participation 
rates are lower in cities with longer commute times consistent with women as the primary margin of 
labor supply adjustments. 
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restricted day.19 This will attenuate the pollution reduction effects and lower empirical 

estimates. 

 

Intensive Margin: Workers with fixed work times who take public transit absent the 

restrictions will also do so when restricted and their daily leisure time is unaffected. 

For those who drive absent the restrictions, they must take public transit on restricted 

days. Their leisure time increases if public transit commuting is faster than auto and 

decreases if not. Since our data includes all workers with fixed work times,20 

Implication 4: Daily leisure time across all workers with fixed work times could either 

increase or decrease due to the policy. 

Workers with discretionary work time who take public transit absent the restrictions 

will still do so when restricted and their daily leisure time is unchanged. Those who 

prefer driving and choose to work “full time” must commute by public transit on 

restricted days. As a result, daily leisure time changes depending on how public 

transit commute times and costs compare to those by car. Those who prefer driving 

and choose to work “reduced time” decrease their leisure time on non-restricted days 

to compensate for working fewer days unless their non-wage income is high.21 Since 

our data includes all workers with discretionary time, 

Implication 5: Daily leisure time across all workers with discretionary work time 

could either increase or decrease due to the policy. 

 

4. Data 

 

We use two primary data sets. The first is a daily measure of Beijing air pollution at 

both an aggregate and individual monitoring-station level. The second is an hourly 

measure of TV viewership by different categories of Beijing residents. We 

supplement these with control variables thought to affect air pollution and viewership. 

Our sample is from January 1, 2007 to December 31, 2009. This provides us with 

1,096 total days of which 566 days occur before OddEven, 63 during OddEven, 20 
                                                 
19 The OneDay policy restrictions also do not apply on weekends allowing for more inter-temporal 
substitution. We allow for this in our empirical tests. 
20 The second-order effects (increased public transit ridership and decreased auto commute times) of 
the restrictions also impact Implications 4 and 5 but do not change their ambiguity. 
21 This is consistent with Gutiérrez-i-Puigarnau and van Ommeren (2009), who consider a general, 
concave wage function. Commute costs are fixed per daily trip so workers reduce the number of trips 
and spread these costs over longer daily hours. Allowing for a concave rather than linear wage function 
in our model leads to a smaller share of workers working “reduced time” and a smaller increase in daily 
work hours because declining marginal productivity leads to lower wages with longer daily work hours. 
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between OddEven and OneDay, 182 during OneDay69, and 265 during OneDay78. 

This provides a fairly symmetric window – approximately 1.5 years both before and 

during the policy regimes. Appendix E provides descriptions and Table 1 summary 

statistics for the main variables. 

 

Pollution Data: Our pollution measure is the daily Beijing Air Pollution Index (API) 

published by the State Environmental Protection Agency and Beijing Environmental 

Protection Bureau.22 The API provides specific advice on behavior (e.g., not 

exercising or spending time outdoors) and ranges from 0 to 500 with higher values 

indicating stronger pollution concentrations and more harmful effects (EPA, 2009). Its 

value depends on concentrations of three different pollutants which affect breathing: 

particulate matter (PM10), nitrogen dioxide (NO2), and sulfur dioxide (SO2). An API 

is calculated for each of the three pollutants but only the maximum is reported. To 

compare the relative severity of the three pollutants, the concentration of each is 

rescaled before choosing the maximum. In our sample, the API ranges from 12 to 500 

and averages 91. The maximal pollutant is identified if the API exceeds 50. PM10 is 

reported as the maximal pollutant on 917 of the 953 days with an API above 50. 

 

The aggregate API is based on API measures at multiple monitoring stations around 

Beijing. Station composition varied slightly over time. In 2007 the aggregate API is 

based on 28 stations. Five stations are dropped and four added for a net total of 27 

stations in 2008 and 2009. Figure 1 shows the 2008 through 2009 locations. The 

station-level API ranges from 6 to 500 and averages 90. As with the aggregate API, 

the station-level API is based on the maximal pollutant which is identified if the API 

is above 50. This prevents us from constructing an uninterrupted daily, station-level 

measure of PM10 although it is the “major pollutant” on 68% to 91% of days 

depending on the station. The API’s construction prevents us from fully verifying the 

relationship between the aggregate and station-level APIs or creating an alternative 

aggregate index (see Appendix F). 

 

TV Viewership Data: We use viewership to measure how driving restrictions affect 

economic activity. In the absence of data on work and total leisure time, viewership is 

a good proxy – it is a large component of leisure and therefore a big substitute for 

                                                 
22 Our description of the pollution data is based on Andrews (2008). Chen, et. al. (2011) provide 
evidence on the accuracy of the aggregate Beijing API using independent satellite data. 
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work time.23 Our viewership measure is CSM Media Research’s “Television 

Audience Measurement” (TAM) database, the most comprehensive TV ratings data in 

China. TAM measures the number of people watching each TV program and 

commercial. We aggregate to the hourly level across all channels. TAM’s ratings are 

based on a household panel, although the data is individual. A “PeopleMeter,” an 

electronic device installed inside the TV, detects when it is on and, if so, the channel 

displayed. Panelists use a remote-control device to enter which members are currently 

watching, displayed on the screen for confirmation. CSM’s Beijing data covers an 

area very similar to that subject to the driving restrictions – all areas inside the 5th 

Ring Road and a small part of the outside suburban area. 

 

TAM provides viewership data by employment categories. We use two categories for 

which we know the degree to which its members control their work time. Those in the 

“self-employed” category have great discretion, while those in the “hourly workers” 

category have fixed work times. The work time of an “hourly worker” could vary at 

their employer’s discretion but only in the upward direction with overtime pay.24 The 

two categories we use comprise over 72% of Beijing’s non-government workers. 

CSM conducts an establishment survey estimating the number of individuals in each 

category with TV access so that viewership rates can be translated into number of 

people watching TV. Table 1 provides summary statistics for each category. Across 

all hours there are an average of 91 thousand “self-employed” and 149 thousand 

“hourly workers” watching TV although the number varies greatly across hours. 

 

Control Variables: Our pollution regressions include a variety of daily weather 

variables known to affect particulate matter (see EPA, 2010) all taken from China 

Meteorological Data Sharing Service System. We include dummies for the four 

quartiles of the daily maximum wind speed.25 Higher wind speeds can remove 

particulates but also import them from neighboring areas. Beijing air quality is greatly 

affected by wind direction. Northerly winds carry local pollutants while Easterly and 

Southeasterly bring pollutants from the Eastern coastal and mid-China cities 

                                                 
23 A 2008 survey conducted by the Beijing Statistics Bureau (2009) estimates that the average Beijing 
resident spends 7.6 hours working, 1.4 hours commuting, 1.8 hours on household chores, and 3.5 hours 
on leisure activities during a work day. TV watching comprises 1.9 hours or 54% of total leisure time. 
24 For brevity we call TAM’s “proprietor/private” category as “self-employed.” We choose two 
categories to limit the cost of data. We prioritized the other categories (“unemployed,” “cadres/ 
managers,” “junior civil servants/office clerks,” “students,” “other”) lower either because we do not 
have specific predictions for them or we are less certain whether they have control over their work time. 
25 Maximum is across averages during all ten-minute periods of the day. We experimented with using 
average daily speed, wind gusts (maximum speed during any three-second period), and maximum level 
directly. Quartiles of maximum daily speed provided the best fit of all these. 
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(Wiedensohler, et al., 2007). To control for this flexibly, we use dummies for the four 

directional quadrants and interact these with the four wind speeds. We include the 

daily hours of sunshine to control for the amount of atmospheric solar radiation, 

which creates ozone and more particulate matter. 

 

Humidity can interact with pollutants to create secondary ones so we include daily 

average humidity. Precipitation has opposing effects. Rain can interact with existing 

pollutants to create secondary ones, but can also wash particles from the air and 

minimize their formation. To control for either possibility, we include total daily 

rainfall. Daily maximum surface temperature has an indeterminate effect on 

particulate matter depending on whether a temperature inversion is created. 

 

For the viewership regressions, we include measures of daily weather variables that 

might affect the desire to remain indoors watching TV. These include total rainfall, 

average wind speed, total hours of sunshine, and average surface temperature. We use 

daily measures even though our regressions are at the hourly level because we assume 

households decide whether to travel to work based on daily weather. 

 

5. Effect of Driving Restrictions on Pollution 

 

Implication 3 predicts that traffic density and therefore pollution declines during the 

policy periods. To test this we employ an RD method using the aggregate API. 

Intuitively, our test determines if any pre-existing time trend in pollution is altered 

during the policy periods conditional on the control variables. Since coincident factors 

may confound these results, we provide additional evidence based on DD estimates 

using station-level API data. Geographic variation allows us to relate the policy 

impact to each station’s distance from the closest major road. The restrictions cause 

the local API to drop more at stations closer to a major road than at those further away 

and the effects dissipate at a distance consistent with PM10’s atmospheric behavior. 

 

Effect on Aggregate Pollution: Our RD method tests for a potential discontinuity in 

the aggregate API due to the driving restrictions: 

(1)    
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A
tAPI  is the aggregate API on day t , tm  are month-of-year dummies to capture 

seasonality not captured by the weather controls, tWE  is a weekend dummy, tHO  is a 

holiday dummy, and tBR  is a dummy for the break period between the OddEven and 
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OneDay policies. 3  captures any differences in pollution on weekends, 4  during 

holidays, and 5  during the break relative to the period before the driving restrictions 

begin. Besides weather controls, tZ  includes a dummy for the Olympic Games period 

and dummies to distinguish days when the API is below 50 and we do not observe the 

maximal pollutant and when sulfur dioxide is the worst pollutant. It is important to 

control for the last because automobiles are not a significant contributor to sulfur 

dioxide emissions.26  

 

The policy effects are captured by: 

(2) 1 2 3 * ,t t t t tPolicy OE OD OD WE      

where OE  denotes the OddEven and OD the OneDay policy. 1  and 2  are of 

primary interest. 3  allows for inter-temporal substitution to weekends within the 

OneDay policy period so we expect it to be non-negative. The identifying assumption 

underlying our RD estimation is that, conditional on the covariates, unobserved 

factors affecting the API are uncorrelated with time. If they were, it may induce a 

correlation between A
t  and time and thus with tPolicy  biasing our estimates. This 

could occur due to changes in economic activity or other policies that alter the long-

term trend of the API. To control for this we include an L th-order time trend within 

each of the regimes: “Before OddEven,” the “Break” between the two policies, 

“During OneDay69,” and “During OneDay78” (we attempted to include a separate 

time trend for the “During OddEven” regime but it was not possible to separately 

identify the OddEven policy dummy from it because the correlation with even a linear 

trend is 0.860 with a significance level below 0.01%):27 

 

(3) 
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where   is an indicator variable for the statement being true, OEt  is the first day of the 

OddEven policy, BRt  of the break period, 69ODt  of the OneDay69 policy, and 78ODt  of 

the OneDay78 policy. This allows for different time trends during the pre-treatment 

and policy regimes as suggested in Angrist and Pischke (2009). Formally, 

identification of the RD effect requires: 

(4)  , , , , , 0.
t

A
t t t t t tE Policy m WE HO BR Z f t     

                                                 
26 According to EPA (2000, p. 2-2) on-road sources are less than two percent. 
27 The same issue arises with the short “Break” regime but we include a time trend for it since we wish 
to control for it but do not need to perform hypotheses tests on it. 
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This requires that we have correctly specified the function of time. While our 

specification is fairly flexible, this assumption could be violated if unobserved factors 

affect the API in a nonlinear way over time that is not captured by the time trend. 

Therefore, we provide various robustness checks below.  

 

Column 1 of Table 2 shows a regression with no time trend  0L  . In Columns 2 

and 3, we introduce linear  1L   and quadratic  2L   time trends for each of the 

four regimes.28 A regression of residuals on lagged residuals revealed that they 

exhibited order-one autocorrelation so we use Newey-West standard errors with a 

one-day lag in all aggregate API regressions.29 Using a Bayesian Information 

Criterion of model selection the no time-trend model ranks the best, followed by the 

linear time-trend model, and finally the quadratic time-trend model.30 The main 

difference from including a time trend is that the OneDay coefficient is larger because 

it is highly correlated with the “During OneDay” time trend. This highlights the 

importance of our station-level and viewership evidence presented later which do not 

rely exclusively on time-series variation. To be conservative and because of the model 

selection test, we focus on the no time-trend results as our baseline model.31 

 

Both policy variables are highly statistically significant and show a decrease in 

pollution during the restricted periods. The aggregate API was 20.4% lower during 

the OddEven restrictions with a 95% confidence interval of 11.3 to 29.4%. With 

perfect compliance, no substitution to non-restricted hours, and a linear relationship 

between the number of cars and pollution, we would expect about a 25% decrease 

during the OddEven period (traffic reduced by 50% and 50% of PM10 produced by 

motor vehicles).32 The aggregate API was 9.3% lower with a 95% confidence interval 

                                                 
28 We include only up to a linear time trend during the Break regime because its short duration creates 
near collinearities beyond this. 
29 A Durbin-Watson test did not reveal any significant serial autocorrelation in the residuals nor did a 
test of partial autocorrelation of the residuals using a Portmanteau (Q) test for white noise with 
different numbers of lags. An OLS baseline regression produced very similar standard errors. A Tobit 
regression constraining the API to a maximum of 500 produced almost identical results. We do not use 
this as the primary specification because it does not control for autocorrelation. 
30 There was also a four-day period (August 17 to 20, 2007) including a weekend when odd-even 
restrictions were partially tested. Setting the OddEven variable to one for these days yields similar 
results. 
31 We also re-estimated the regression in Column 1 distinguishing the OneDay69 and OneDay78 
policies. The OddEven coefficient was very similar and the two OneDay coefficients were both 
statistically indistinguishable from the single OneDay coefficient in Column 1. 
32 Substitution effects are likely small since the restrictions applied except from midnight to 3:00 a.m. 
Pollution rises convexly with car density because congestion causes cars to spend more time idling and 
a longer time traveling the same distance (see Arnott and Kraus, 2003; Small and Verhoef, 2007). 
During the OneDay policy, a larger adjustment for inter-temporal substitution is required because the 
OneDay restrictions do not apply in the late evening and early morning hours. 
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of 4.0 to 14.6% during the OneDay policy. We would expect about a 10% decline 

(traffic reduced by 20% each day and 50% of PM10 created by motor vehicles). These 

estimates are consistent with high compliance. The API does not significantly differ 

during the Break regime so that it is the same entering the OddEven period as it is 

exiting. The API is significantly lower on the weekends but there is no significant 

substitution to weekends during OneDay relative to weekends absent the policy. 

 

As expected, the API is significantly lower on days when the API less than 50. It is 

also lower on days when SO2 is the predominant pollutant although we have no prior 

expectation on this. The API is not significantly different during the Olympics or on 

holidays consistent with many days with API less than 50 occurring during these 

days.33 A one-degree temperature increase is associated with a 4.0% increase in the 

API – consistent with greater ozone and secondary pollution creation. A one-percent 

increase in humidity increases the API by 0.4%, consistent with humidity creating 

secondary particulates. Rainfall has no significant effect, but each additional hour of 

sunshine decreases the API by 3.0%. 

 

Column 4 is a partial check of the ramifications of omitting a separate time trend for 

the “During OddEven” regime. We estimate using the whole sample but assume that 

OddEven is the only policy intervention. This allows us to include separate quadratic 

time trends before and after the policy. The policy effect is similar to the baseline 

results. Column 5 uses logarithm of PM10 as the dependent variable using the 

transformation in Appendix F to convert from the API. The number of observations 

falls to 917 because there are 143 days when the API is below 50 and the maximal 

pollutant unknown, 29 days when the worst pollutant is other than PM10, and 7 days 

when the API is above 50 but the pollutant identity is missing. Given that the data is 

not contiguous, we use standard errors clustered in rolling two-day blocks rather than 

Newey-West. We do not include a time trend for comparison to the baseline results. 

The OneDay effects are very similar and the OddEven effects are larger but not 

significantly different than the baseline results. 

 

An identifying assumption of our RD estimates is that our time trend is sufficiently 

flexible to control for the unobserved factors that they are uncorrelated with time. We 

perform two tests of this assumption. First, we test for discontinuities at the median of 

the two subsamples on either side of the policy as recommended by Imbens and 

                                                 
33 59% of Olympics days have API less than 50 and 28% of holidays during the driving restrictions 
have API less than 50 or S02 as the predominant pollutant. 



 
 
 

17 
 
 

Lemieux (2008). The closest analogy in our setting is the midpoint of the sample prior 

to the OddEven and after the OneDay policy. We supplement this by testing for a 

discontinuity at the ¾ point before the OddEven policy and the ¼ point after the 

OneDay. The results are shown in Online Appendix G: “Pre-OddEven” in the top and 

“Post-OneDay” in the bottom panel. Neither panel reflects significant discontinuities 

with no, linear, or quadratic time trends suggesting that any of these is sufficiently 

flexible to capture trends due to unobserved factors. 

 

Second, we check our results using “discontinuity samples” – small windows of 

observations around the cutoffs (Angrist and Levy, 1999). In a sufficiently small 

window identification requires only that no confounding factors change 

discontinuously at the cutoff. The top panel of Table 3 shows results for a thirty-day 

window around the OddEven policy employing the same control variables as in our 

full-sample regressions along with different time trends on each side of the policy. 

Because the time trends are not highly collinear with the policy dummies over these 

small windows we are able to employ higher-order trends.34 For third- through fifth-

order time trends (Columns 1 to 3), the policy effect is significant and within 1.0 

standard deviation of our full-sample estimate of 20.4%. Columns 4 and 5 maintain 

the 5th-order time trend but widen the window to 45 and 60 days. The estimates are 

larger but within 1.6 standard deviations of the full-sample estimates. 

 

Column 1 in the bottom panel estimates the OneDay effect in a twenty-day window 

(the longest possible to avoid overlapping with the OddEven policy) using a quadratic 

trend. The point estimate is significant and large although within 1.7 standard 

deviations of our full-sample estimate. Columns 2 to 4 in the bottom panel show 

estimates in thirty-day windows around the OddEven and OneDay policies together. 

The OddEven coefficient is only marginally significant (at the 10.5% level) with 

linear time trends but is significant using quadratic or cubic trends. The point 

estimates are all within 0.8 standard deviation of those using the full sample. The 

OneDay estimates are significant with linear and cubic time trends and at the 10.4% 

level using quadratic. The coefficients are all within 0.9 standard deviation of the full-

sample estimate. 

 

Although the API’s high volatility (coefficient of variation of 0.55) makes it difficult 

to identify the effect of a sharp discontinuity visually, it is useful to examine 

                                                 
34 The API also exhibits more persistent serial autocorrelation over these small windows. We control 
for this by clustering standard errors in rolling blocks of days as in Davis (2008). 
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discontinuity samples graphically.35 Figure 3 shows the residuals and a fitted cubic 

time trend for a thirty-day window around the beginning of the OddEven policy. The 

residuals appear to oscillate in short cycles. Although the residuals are quite volatile 

even after controlling for weather the plot shows a discontinuous drop on the first day 

of the policy period and, with the exception of three outliers, generally lower residuals 

after the policy than before. Figure 4 shows a similar plot for a twenty-day window 

around the beginning of the OneDay policy using a quadratic time trend. It shows a 

secular upward trend in the data during this period along with a discontinuous drop at 

the threshold. 

 

Effect on Station-Level Pollution: The RD results depend only on time-series 

variation and therefore could be confounded by contemporaneous factors. To 

supplement this, we use geographic variation in the location of individual monitoring 

stations and apply a DD test.36 These regressions test whether pollution decreased 

more for monitoring stations located closer to major roads than for those further away 

in response to the policies: 
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where S
stAPI  is the daily API at station s  on day t . As before, we include month-of-

year dummies to capture seasonality, weekend and holiday dummies to allow for 

differential effects, and dummies during the break between the two policies. The 

control variables  stZ  include the same daily weather controls as before as well as 

station-level indicators for days when the API is below 50 or sulfur dioxide is the 

worst pollutant. In addition to controlling for these two factors that affect stations 

differently, the control variables improve precision of the estimates. Of primary 

interest is the treatment effect  stDD  which captures the effect of the driving 

restrictions as a function of distance  sDist  between each station and the nearest 

major road. We use robust standard errors clustered at the station level to allow for 

general autocorrelation within stations and heteroskedasticity. 

 

                                                 
35 Rockoff and Turner (2010) also rely on RD econometric analysis because visually their volatile data 
exhibits no discontinuity due to the policies (Figures 4 and 5). 
36 Another DD approach would use any non-uniformity in the plate number distribution and allow for 
differential effects in which plate numbers were restricted on a given day. However, plate numbers 
were assigned randomly by the Beijing Traffic Management Bureau for a uniform fee through March 9, 
2009. Only after that could a plate number be selected from a set of available numbers for a fee. Since 
April 10, 2009 plates can be exchanged at no cost but only from a list of ten numbers. 
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We include station-level fixed effects  s  that control for time-constant unobserved 

factors that cause some stations to have higher pollution levels. This includes nearby 

stationary pollution sources as well as the baseline effect of distance to a major road. 

These fixed effects prevent the estimate of the treatment effect from being biased 

upward by the fact that stations closer to a major road have higher pollution levels, 

both before and after the treatment, than do stations further away. The BR , OE , OD , 

and *OD WE  terms prevent the estimate of the treatment effect from being biased by 

the fact that all monitoring stations, regardless of distance from a major road, may be 

affected by the driving restrictions. 

 

The identifying assumption for our DD estimation is that, conditional on the other 

covariates, station-specific unobserved factors affecting the API are uncorrelated with 

the treatment. That is, unobserved factors do not vary systematically with distance 

from a major road during the policy periods relative to before. This assumption may 

not hold if stations closer to a major road have different long-term pollution trends 

than those further away. This might be the case if, for example, traffic patterns 

changed differently over time on major roads relative to smaller roads. To control for 

factors that affect closer and more distant stations differentially over time we include 

separate, station-specific time trends for the three regimes: “Before OddEven,” 

“Break,” and “During OneDay:”37 
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Formally, identification of the treatment effect requires: 

(7)  , , , , , , , , 0.
st
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While this specification is fairly flexible, it could be violated if unobserved factors 

affecting station-level pollution change in a way over time that is not captured by the 

time trend and is correlated with the timing of the driving restrictions and distance 

from a major road. We provide some evidence on this below. 

 

Before presenting our DD results we perform a few RD estimates  0stDD   using 

the station-level data.38 Column 1 of Table 4 uses a panel of 24 stations, 22 of which 

                                                 
37 As with our RD estimates we are unable to include a separate time trend for the “During OddEven” 
regime because it is highly collinear with the policy dummy itself. We also consolidate the “During 
OneDay69” and “During OneDay78” regimes into a single regime for our DD estimates because 
otherwise they introduce near collinearities. 
38 We are able to include separate time trends for the “During OneDay69” and “During OneDay78” 
regimes in these regressions. 
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operated the entire time and two of which operated from 2008 to 2009. We include 

the additional two stations because they are present during most of our time period 

and are located within the restricted area which adds identifying variation to our DD 

estimates below. Results are similar to those at the aggregate level. The OddEven 

policy reduces the API by 12.5% and the OneDay policy by 16.0%. Andrews (2008) 

argues that compositional changes in monitoring stations over time may reflect 

systematic government decisions to close stations in highly polluted places. To ensure 

that this does not introduce compositional bias in the unbalanced panel we compare to 

balanced panel results in Column 2. The results are very similar. 

 

Columns 3 and 4 provide separate RD estimates for stations inside and outside the 

restricted area. The restricted area includes the area inside the 5th Ring Road and 

during the OddEven and OneDay69 policies the 5th Ring Road itself. Outside the 

restricted area, pollution could either increase or decrease depending on whether the 

roads there act as a complement or substitute to those inside. The restrictions decrease 

traffic if, absent the restrictions, it primarily feeds into the area within the 5th Ring 

Road. Traffic increases if drivers use these roads more intensively to travel from one 

side of the city to the other while complying with the restrictions.39 Since no stations 

are located on the 5th Ring itself, Column 3 includes the eight stations inside the 5th 

Ring Road and Column 4 the 16 stations outside of it. The results in Columns 3 and 4 

are similar suggesting roads outside are complements.  

 

For our DD estimates, we use the minimum distance “as the crow flies” between a 

monitoring station and the nearest major road (Ring or Class I Road).40 We use only 

the eight monitoring stations within the restricted area for two reasons. First, there is 

no ambiguity about how traffic is affected within the restricted area if the driving 

restrictions have an impact. Second, including stations too far from major roads will 

bias against finding an effect because they will be outside PM10’s dispersion radius. 

All of the stations within the restricted area are not only inside the 5th Ring Road but 

also within the 4th Ring Road (see Figure 1). This is where Beijing’s road network is 

densest and ensures that monitoring stations are sufficiently close to a major road to 

                                                 
39 This ambiguity also rules out using monitoring stations outside the 5th Ring Road as a control group 
for those inside in a DD specification. 
40 The Ring Roads are large, multi-lane highways that loop around Beijing. The segments (East, West, 
North, or South) of four of the Ring Roads (2nd, 3rd, 4th, or 5th) are the busiest roads in Beijing 
according to 2006 data from the Beijing Transportation Research Institute. A Class I Road is a multi-
lane highway in each direction with controllable entries and exits and a divider in the median. We use 
the Geographic Information System (GIS) software’s ARCINFO command “Near” to compute the 
distance between the monitoring station and the nearest point on the road. 
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identify an effect if it exists. Table 1 confirms that stations within the restricted area 

are much closer to the nearest Ring or Class I Road than those outside. 

 

Our first DD estimator uses linear  1l  , station-specific time trends specific to each 

regime and allows for differential effects of the policies on “near” and “far” stations 

(defined by median distance) inside the restricted area: 

(8)  1 2
s

st t t Dist Dist
DD OE OD 


   , 

where Dist  is the median distance to the nearest Ring Road across all eight stations. 

Column 1 of Table 5 shows the results. The OddEven policy reduces pollution by 

14.0% at “far” stations but the effect is significantly greater at “near” stations – a drop 

of 19.8%. For the OneDay policy, pollution drops 11.6% at the “far” stations and 

14.1% at the “near” stations. The estimates for OddEven and OneDay in Column 3 of 

Table 4 lie between the “near” and “far” effects as expected. 

 

The specification in Column 1 allows for different trends at different stations. To 

provide suggestive evidence as to whether the trends differ at “near” and “far” 

stations, Column 2 allows for separate time trends for “near” and “far” stations and 

that differ within each of the three regimes.41 The policy effects are virtually identical 

to those in Column 1. Moreover, the “far” time trends are not statistically different 

than the “near” time trends in any of the three regimes or collectively (F-test fails to 

reject at 51% level). Although because of the API’s high volatility we prefer relying 

on regression estimates, Figure 5 plots the residuals from the regression in Column 2 

averaged by “near” and “far” stations in the 45 days around the start of the OddEven 

policy along with the fitted time trends. Prior to the policy the residual averages for 

“near” and “far” track each other closely (correlation of 0.966 with a significance 

level below 0.01%) consistent with the unobservables trending similarly. The fitted 

time trends nearly coincide and show a gradual downward slope. Although the 

volatility of the data makes it difficult to see, the residual averages still track each 

other closely after the policy. The fitted time trends are relatively parallel but the 

“near” trend lies below the “far.” Also, the residual averages coincide on the days 

immediately before the policy. Both drop on the first day of the policy but the “near” 

drops more than the “far” and with the exception of a few outliers the “near” residuals 

lie below the “far” after the policy. 

 

                                                 
41 As additional supporting evidence the correlation between the average log API at “near” stations and 
that at “far” stations prior to the OddEven policy is 0.988 with a significance level below 0.01%. 



 
 
 

22 
 
 

The results in Column 3 of Table 5 maintain the separate time trends for “near” and 

“far” stations but substitute a quadratic distance function: 

(9)    
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Pollution drops by 46.2% at the Ring Roads during OddEven. Both distance terms are 

significant and the effect diminishes with distance to a drop of 19.3% at 1.1 

kilometers. Pollution drops by 24.3% at the Ring Roads during OneDay. Again, both 

distance terms are significant and the effect diminishes to a drop of 13.0% at 1.0 

kilometers. This is consistent with PM10’s dispersion radius – most PM10 emissions 

are deposited within a few kilometers of their release according to EPA (2000, p. 2-3). 

Although the quadratic functional form implies that pollution increases beyond these 

distances this is mostly outside our sample (stations inside the restricted area are 

within 1.3 kilometers of a Ring Road). The “near” and “far” time trends are not 

statistically different in this specification either. 

 

In theory, our DD test could be applied using any size road. In practice, there is a 

tradeoff. With smaller roads, the average distance to the nearest road shrinks 

improving identification. However, smaller roads have less traffic and generate less 

pollution. This and the fact that neighboring large-road pollution may overwhelm that 

from small roads may make identification harder. Column 4 uses distance to the 

nearest Class I Road. Although less trafficked than Ring Roads these are still high-

volume roads. Using the same specification as in Column 2, the OddEven policy 

reduces pollution by 19.3% at “far” stations but the effect is significantly greater at 

“near” stations – a drop of 24.7%. For the OD policy, pollution drops 12.5% at the 

“far” stations and 16.9% at the “near” stations. The time trend coefficients also 

confirm that the “far” and “near” stations experience similar trends before and after 

the policies (F-test fails to reject at 73% level). Although the magnitudes are not 

directly comparable – the median distance is lower for Class I than Ring Roads but 

emissions output is also lower – the policy effects are in the same general range 

except that the OddEven baseline effect is larger.42 

 

                                                 
42 We tried the same regression using distance to the nearest Class II Road – the next largest class of 
roads. These allow speeds between 60 and 80 kilometers per hour and have at least two lanes in each 
direction but, unlike Class I Roads, have no barrier in the median. Although we still found significant 
drops in the API due to the OddEven and OneDay policies (22.0% and 15.0%) we did not find 
significant differential effects for “near” and “far” stations. This is possibly because the volume of 
traffic on these roads is not sufficient to identify an effect given the API’s high volatility. 
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Table 6 shows the effect of the OddEven policy on stations inside the restricted area 

and the differential effect on “near” stations in discontinuity samples. The 

requirements for identification are less demanding in these small windows – it 

requires only that no confounding factors change discontinuously at the cutoff 

differently for the “near” and “far” stations. The effects are highly significant with 

either a 45- and 60-day window showing declines of 12% and 19% for “far” stations 

and declines of 16% and 23% for “near” stations. 

 

Policy Comparisons: “Back-of-the-envelope” calculations can be used to 

approximate the increase in gasoline prices or auto registration fees necessary to 

achieve the same pollution reduction as the OneDay policy (9%). Cheung and 

Thomson (2004) estimate a long-run gasoline price elasticity of -0.56 in China using 

data from 1980 to 1999. The gas price at our sample midpoint is about RMB 6 per 

gallon, implying that a long-run price increase of RMB 0.96 per gallon (16.1%) would 

achieve the same pollution reduction if pollution falls linearly with gas usage.43 

 

An alternative is to increase registration fees to reduce the stock of cars. If registration 

is one-time and transferrable across owners, a fee increase is equivalent to a vehicle 

price increase. Deng and Ma (2010) estimate an own-price elasticity of -9.2 for autos 

in China using annual data from 1995 to 2001. This estimate is about three times 

greater than ones using U.S. data, possibly due to less elastic demand at higher 

incomes. Given income increases in China since 2001 it is useful to consider 

elasticities ranging from -3.0 to -9.2. If pollution falls linearly with car ownership and 

assuming an average car price of USD 15 thousand,44 a license fee increase of USD 

147 to 450 (RMB 965 to 2,961) would lead to a 9% pollution reduction. This 

compares to the current RMB 500 (USD 76) registration price in Beijing.45 

 

Robustness and Alternative Explanations: Our DD approach provides a convenient 

procedure to confirm that the policy effects are associated with the driving restrictions 

rather than proximate policy changes. We estimate a fixed-effects regression using the 

station-level data but also interact the fixed effects with the policy variable. The 

coefficients on the interaction terms provide the station-specific changes due to the 

                                                 
43 Auffhammer and Kellogg (2011) find that precisely-targeted, inflexible regulation of gasoline 
elements most prone to form ozone is effective in reducing ozone pollution. 
44 Unless otherwise noted, all exchange rate conversions performed at January 2011 rates (1 RMB = 
0.152 USD). Most 2009 car purchasers targeted a car price of RMB 50 to 150 thousand according to 
“Annual Report of China Car Industry 2009 – 2010,” An, et al., (2010). The midpoint of this range 
yields USD 15.2 thousand. 
45 See “Beijing’s Plan to Steer Clear of Traffic Jams,” China Daily, December 14, 2010. 
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policy. These station-specific changes should be correlated with the distance to 

pollution sources known to be affected by the policy and uncorrelated with those not. 

In our case, the correlation between the station-specific OddEven effects and distance 

to the nearest Ring Road is 0.822 with a significance level of 1.2% while the 

correlations with distance to the airport and nearest subway line are insignificant (at 

the 58% and 99% levels). 

 

This implies that any confounding factors are related to proximity to a major road and 

therefore traffic flow. These could include gasoline prices, parking rates, vehicle 

emission standards, and subway capacity changes. The National Development and 

Reform Commission (NRDC) regulates retail gasoline prices and changed them 

somewhat during our sample period. Prior to December 19, 2008, the NRDC set a 

baseline price and allowed firms to charge a retail price within 8% of it. After this, 

NRDC imposed a retail price ceiling. The timing of price changes is generally 

different than the driving restriction policy changes, although there was a significant 

price drop around the start of the OneDay policy which would bias against our 

findings. Adding the logarithm of retail gas price to our baseline aggregate API 

regression produces very similar results.46 

 

Regulated parking rates at public garages did not change during our sample period.47 

Private garages are allowed to charge market rates but this would bias against a 

reduction in driving under the restrictions. The number of official taxis in Beijing has 

remained constant at 66,646 since 2006 under a decision by the Beijing Council of 

Transportation as part of the “Tenth Five-Year Plan.”48 Taxi cab emissions have 

declined over time through replacement of older taxis and upgrading of existing ones 

but this has occurred gradually. Staggered working hours were implemented in 

Beijing for those employed by social organizations, non-profit institutions, state-

owned enterprises, and urban collective-owned enterprises but this did not take effect 

until April 12, 2010, after our sample period. 

 

China’s auto emissions regulations are similar to European Standards I to V and 

changed once during our sample period. From the beginning of our sample through 

                                                 
46 The price coefficient was insignificant in the regression. Price data taken from NDRC documents at 
the Beijing Development and Reform Council website (http://www.bjpc.gov.cn). 
47 According to parking regulations in, “Notice of Adjusting the Rates for Non-Residential Parking 
Lots in Beijing,” Beijing Municipal Commission of Development and Reform (2010), File No. 144 (in 
Chinese) and “Notice of Adjusting the Rates of Motor Vehicle Parking Lots in Beijing,” Beijing 
Bureau of Commodity Prices (2002), File No. 194 (in Chinese). 
48 According to Beijing Statistic Yearbook (2007, 2008, 2009), China Statistics Press. 
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February 28, 2008 autos registered in Beijing had to conform to the Level III standard. 

From March 1, 2008 through the end of our sample, new vehicles had to meet the 

stricter Level IV standard. This timing differs from those of the driving restrictions 

and since the change applied only to new vehicles any effects occurred gradually. 

 

Beijing added subway capacity during our sample period (see Figure 2). The timings 

did not generally coincide with the OddEven and OneDay policies and our 

correlations above show no significant correlation between station-specific effects and 

distance to subway; however some of the effect that we measure could result from 

substitution from auto to public transit commuting. As a partial test of whether these 

policies confound our estimates we examine the opening of subway Line 5 and 

reduction of subway fares on October 7, 2007 and the reduction of suburban bus fares 

on January 15, 2008. 

 

The top panel of Online Appendix H, Columns 1 to 3 adds policy dummies for these 

to our RD specification. The OddEven and OneDay effects remain similar to the 

baseline results and the subway and bus policy effects are close to zero and very 

insignificant. This is suggestive evidence that the RD estimates do not confound the 

subway and bus policies with the driving restriction effects. Columns 1 to 3 of the 

bottom panel perform RD estimates on the subway and bus policies without 

controlling for the driving restrictions. The policy effects are insignificant consistent 

with these policies occurring gradually enough that our time trends control for them. 

Columns 4 and 5 of the top panel implement our DD specification for the subway and 

bus policies while controlling for the driving restriction policies. Columns 4 and 5 of 

the bottom panel do the same not controlling for the driving restrictions. We find no 

significant evidence of monitoring stations closer to Ring Roads being differentially 

affected during the two policies. The following viewership results also eliminate the 

possibility of substitution to public transit in explaining our results. 

 

6. Effect of Driving Restrictions on TV Viewership 

 

We examine viewership for two reasons. First, it provides evidence on how the 

restrictions affect economic activity. Implications 1 and 2 predict that the restrictions 

should have different extensive margin effects on viewership for workers with and 

without labor supply discretion. We test this using viewership for two different 

employment categories: “self-employed” and “hourly workers.” Second, it provides a 

means to rule out additional confounding factors that might explain the pollution 
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reductions. Factors that reduce both auto and public transit congestion, such as greater 

subway capacity, should decrease viewership on the extensive margin for those with 

discretionary work time – an implication we test. 

 

Our comparison embeds RD estimation within a DD design. We estimate the policy’s 

effect on each worker category using an RD. This estimates whether there is a 

discontinuity in viewership during the policy periods relative to any pre-existing time 

trend conditional on control variables. We then use a DD design to see if the policy 

change affects the two groups differently. 

 

Since most workers’ regular work hours occur during the restricted hours, we measure 

extensive margin effects by changes in aggregate viewing during restricted hours. 

Although extensive margin changes may extend outside the restricted hours if work 

day length exceeds the restricted period, they will certainly affect viewership inside 

the restricted hours. The model in Section 3 predicts that during the policy period TV 

viewership across all workers with fixed work times is unchanged during restricted 

hours (Implication 1) while it increases across all workers with discretionary work 

time (Implication 2). 

 

Since the intensive margin will adjust primarily outside restricted hours, we measure 

intensive margin effects by changes in aggregate viewership outside the daily 

restricted period. Given the less-than-perfect correspondence between regular work 

and restricted hours and since theory is ambiguous about the intensive margin effects 

(see Implications 4 and 5), our primary goal in estimating the intensive margin effects 

is to see if they overwhelm those on the extensive margin. 

 

Our RD design allows for a potential discontinuity for each of the three policies 

(OddEven, OneDay69, and OneDay78). For the OneDay69 and OneDay78 policies 

we allow for intra-day discontinuities to estimate the effect on the extensive and 

intensive margins. We allow for only a daily discontinuity for the OddEven policy 

because the Olympic Games greatly disrupted intra-day work patterns. For the same 

reason, we focus on the OneDay results. We estimate 
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c
thView  is thousands of people watching TV on day t  during hour h  for worker 

category c  (“self-employed” and “hourly workers”). We include lagged hourly 

viewership since viewing is persistent across programs (Goettler and Shachar, 2001). 

This hourly dependency is distinct from the daily time trend. The hourly dummies 

   capture intra-day variation in the appeal of other leisure activities (including 

sleep) and TV program quality. We allow these hourly effects to differ before the 

driving restrictions begin ( 2 ) and during the break period ( 3 ). We include month-

of-year dummies to capture seasonality in outdoor activity. 5  and 6  capture 

differences in weekend and holiday viewership (due to programming differences or 

differential appeal of outdoor options) before the policy and 7  captures change in 

viewership during the OddEven policy. 8 10   capture difference in viewership on 

weekends during the different policy regimes while 11 13   do the same for holidays. 

Besides weather controls, tZ  includes a dummy for the Olympic Games period since 

programming differed greatly then. We cluster standard errors by day to capture intra-

day correlation among the hourly unobservables.49 

 

The policy effect contains the primary coefficients of interest. These capture intra-day 

viewership differences during the OneDay periods relative to the pre-existing trend: 
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We divide the day into three time segments to separately estimate the effects on the 

extensive and intensive margins. thRH  equals one during restricted hours and zero 

otherwise. For non-restricted hours, thNMH  equals one during morning hours 

(midnight to 6:00 a.m. during OneDay69 and midnight to 7:00 a.m. during OneDay78) 

and thNEH equals one during evening hours (9:00 p.m. to midnight during OneDay69 

and 8:00 p.m. to midnight during OneDay78) and zero otherwise. Morning and 

evening segments are a parsimonious way to distinguish non-restricted periods with 

very different viewing patterns. We expect the extensive margin effects to be positive 

for “self-employed”  1 2 0    and zero for “hourly workers”  1 2 0   . 3 6   capture 

intensive margin effects and theory is ambiguous about these. 

 

Identification of our RD estimates again requires controlling for unobservables 

affecting viewership to ensure they are uncorrelated with the error. To do so we 

                                                 
49 The residuals exhibit autocorrelation with a maximum lag of four hours, so we also estimated using 
Newey-West standard errors with a four-hour lag. The estimated standard errors are slightly larger but 
it does not have a significant effect on which coefficients are significant at the 10%, 5% and 1% level. 
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include separate daily time trends for the regimes “Before OddEven,” “Break,” and 

“During OneDay:” 
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Viewership by Workers with Discretionary Work Time: Columns 1 and 2 of Table 7 

display the “self-employed” results using a fourth-order time trend  4L   – a choice 

justified below. Viewership is persistent with 55% of viewers watching from the 

previous hour. Greater rainfall has a statistically significant but negligible effect. 

More sunlight hours are associated with less viewership. “Self-employed” watch more 

TV on weekends, holidays, and during the Olympics relative to weekdays before the 

restrictions began. Viewership is not differentially affected during the OddEven 

policy although holidays during that period have lower relative viewership. We do not 

have specific predictions for the OddEven period because the Olympics greatly 

altered regular work and leisure patterns. 

 

Relative to weekdays before the restrictions began, viewership during the OneDay69 

restricted hours is 8.7% higher with a t-statistic of 4.3 and 12.8% higher during the 

OneDay78 restricted hours with a t-statistic of 5.9. On the extensive margin, workers 

with discretionary labor supply work less and enjoy more leisure in the restricted 

periods. This is consistent with marginal workers who normally drive finding it too 

costly to do so on their restricted days. On average, there are 102.1 thousand “self-

employed” viewers during the restricted hours of the OneDay69 policy, implying an 

increase of 8.9 thousand viewers per hour. Assuming that preferences for viewing and 

commute cost sensitivity are uncorrelated, this extrapolates to 1.4% of the 656 

thousand self-employed people and 0.10% of the 9.2 million employed people in 

Beijing.50 During the OneDay78 restricted hours there are an average of 98.1 

thousand viewers so our estimates imply an increase of 12.5 thousand additional 

“self-employed” viewers or 1.9% of all self-employed. 

 

Viewership outside the restricted hours (the intensive margin) can either increase or 

decrease. Those who do not work on their restricted day may compensate by working 

longer hours on non-restricted days; therefore, it is important to check whether 

intensive margin changes undo some or all of the extensive margin effects. During the 

                                                 
50 Population data according to The China Urban Statistic Yearbook 2009, China Statistics Press. These 
calculations assume all Beijing residents have access to a TV. There were 134 color TVs per 100 
households in Beijing in 2008 according to Beijing Statistics Yearbook 2009, China Statistics Press. 
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OneDay69 policy, viewership decreases during the morning hours. This could reflect 

a shift to an earlier commute to comply with the restrictions. During the OneDay78 

policy, viewership increases in both the morning and evening hours. While not the 

only possibilities, this could reflect decreased auto congestion or a less-than-perfect 

correspondence between regular work hours and restricted hours (i.e., regular work 

hours of “self-employed” would have exceeded the restricted hours had they not 

stayed home on their restricted day). 

 

The intensive margin effects do not offset those on the extensive margin and the 

increased commute costs under the driving restrictions raise total viewership. The 

OneDay69 policy increases viewing by 123.4 thousand person-hours and the 

OneDay78 policy by 223.4 each restricted day.51 Work time would decrease less than 

this if TV viewing became more attractive relative to other leisure during the policy 

periods. It is more likely that we understate the effects because lower congestion 

increases the appeal of leisure activities other than TV watching. Overall output fell 

unless productivity increased during the fewer hours not spent watching TV. 

 

Viewership by Workers with Fixed Work Times: Columns 3 and 4 of Table 7 display 

the results for “hourly workers” again using a fourth-order time trend. Consistent with 

predictions for the extensive margin (Implication 1), viewership is unaffected during 

the restricted hours of the OneDay69 policy relative to weekdays before the 

restrictions began. This is a “tight zero” – it is not due to lack of variation. These 

workers must commute to work despite the restrictions and their leisure during 

required working times is unaffected. There is a small (4.2% or 6.9 thousand-viewer) 

decrease during the restricted hours of the OneDay78 policy. This is consistent with 

these workers or their children experiencing fewer sick days from pollution. Hanna 

and Oliva (2011) find such an effect from sulfur dioxide pollution reduction after a 

Mexico City factory closure. The effects of the control variables are similar to those 

for “self-employed” except that viewership is less persistent, is significantly lower on 

warmer days, and displays a greater differential on weekends and holidays relative to 

weekdays prior to the restrictions consistent with “hourly workers” having less 

discretion over when they work. 

 

Theory is ambiguous about intensive margin changes. Work day length will not be 

affected given fixed work times, but leisure time may decrease or increase depending 
                                                 
51 For OneDay69 this equals 8.9 thousand additional viewers for 15 restricted hours less 1.7 thousand 
viewers for 6 morning hours. For OneDay78 this equals the sum of 12.5 thousand additional viewers 
for 13 restricted hours, 10.0 thousand for 4 evening hours, and 2.9 thousand for 7 morning hours.  
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on whether public transit takes more or less time than car commuting. Viewership is 

unaffected during OneDay69 non-restricted hours. For OneDay78, viewership 

increases 7.4% in the morning. Although this is a large percentage increase, because 

of the small viewership in the morning hours it represents only 1.8 thousand 

additional viewers per hour. 

 

Robustness and Alternative Explanations: Appendix I shows the impact of the time 

trend on estimates of the policy effect during restricted hours. The top panel shows 

that for “self-employed,” the coefficients on both the OneDay69 and OneDay78 

interactions are positive and highly statistically significant. The time trend affects the 

magnitude of the coefficients but they are reasonably stable.52 In contrast, the bottom 

panel shows that the “hourly worker”-OneDay69 interaction coefficient is small, 

variable, and insignificant beginning with the second-order time trend. The OneDay78 

interaction is small, highly variable, and insignificant above a fourth-order time trend. 

 

To ensure robustness to the grouping of hours into three segments, we re-estimate 

Equation (10) but interact the OneDay69 and OneDay78 policy variables each 

separately with 24 hourly dummies. The results confirm our main estimates. 

Appendix J, Panel A plots the coefficients on the interaction terms between 

OneDay69 and the 24 hourly dummies for the “self-employed” category. The 

magnitudes of the coefficients are plotted on the y-axis only if significant at the 10% 

level or better. Relative to weekdays before the restrictions began, viewership is 

higher during eleven of the fifteen restricted hours and all ten of these are significant 

at the 2% level or better.53 The decrease in the first restricted hour (6:00 – 7:00 a.m.) 

is consistent with workers who otherwise would have driven during this hour shifting 

their commute earlier to comply with the restrictions. 

 

Panel B provides the same graph for the “hourly workers” category. The results again 

confirm our main estimates. Viewership is largely unaffected during the restricted 

period with only five of the thirteen hours showing an increase. There is also a 

decrease in the first hour of the restrictions (6:00 – 7:00 a.m.) similar to that for “self-

                                                 
52 More than a fourth-order time trend created collinearities between the “Break” time trend and control 
variables so we limit it to a maximum of fourth-order. More than a sixth-order time trend also created 
collinearities between the “During OddEven” time trends and other variables. 
53 The four significant effects in the early morning hours are large in percentage but small in absolute 
terms. The average decrease from midnight to 4:00 a.m. is 3.5 thousand viewers per hour. The effect on 
absolute viewership is much greater during the restricted hours. The average increase from 7:00 a.m. to 
7:00 p.m. is 12.1 thousand viewers per hour. These magnitudes are similar to the average effects in the 
three time-segment model of Table 7. 
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employed” and consistent with some workers shifting their commute earlier. 

Although not displayed, the results for the OneDay78 policy are qualitatively similar 

but stronger. For “self-employed,” viewership is significantly higher during all 

thirteen restricted hours and all are significant at the 1% level or better. For “hourly 

workers” viewership is not significantly different during any restricted hour. 

 

Alternative explanations must be consistent with the differing policy effects for those 

with and without discretionary work time. This excludes increased subway capacity 

which would directly decrease public transit and indirectly decrease auto commute 

times as commuters substitute from buses, taxis, or private cars to subways. While 

this could partially explain our pollution results to the extent its timing overlapped 

with the driving restrictions, it cannot explain our intra-day viewership results.54 It is 

at odds with the “self-employed” increasing their viewership during restricted hours. 

Quicker auto and public transit commute times should stimulate daily labor supply. 

Also, shorter commute times should increase leisure time in non-restricted hours for 

both groups of workers (Appendix D shows this formally). It does so only during the 

OneDay78 policy and only for the “self-employed.” 

 

7. Cost-Benefit Quantification 

 

We combine our pollution and TV estimates to quantify some of the driving 

restrictions’ short-run costs and benefits. While we cannot perform a full welfare 

analysis, our results could serve as inputs to one. We focus on the OneDay policy 

since we are unable to estimate viewership effects for the OddEven policy. 

 

The primary benefits of the driving restrictions are reduced morbidity and mortality 

from lowering PM10 by 13.2 µg/m3 (9% drop in an average level of 147 µg/m3). To 

estimate these we rely on Matus, et al. (2012) which estimates pollution’s long-run 

effects in urban China. In their model, the welfare costs of pollution exposure include 

reduced activity days, acute mortality, and chronic mortality.55 In the short run, 

chronic mortality effects are negligible as they depend on PM10 exposure over a 

lifetime56 so we ignore any benefits from this. 

                                                 
54 The Subway Line 4 opening during the OneDay period provides an opportunity to test whether 
subways had a differential effect on pollution. We tried adding a policy dummy equal to one after the 
opening of Line 4 to the regression in Column 3 of Table 2. The coefficient was negative but not 
statistically significant. However, this is a low-powered test as Line 4 is a low-volume line. 
55 Medical costs are also estimated but these redistribute wealth from households to medical providers 
and do not affect welfare. 
56 See Equation (4) on page 60 of Matus, et al. (2012). 
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Restricted activity days occur when pollution exposure confines adults to bed because 

of shortness of breath from even slight exertion. Epidemiological data that relates 

pollution exposure to health outcomes implies 6.6 (5.8, 7.4)57 million fewer restricted 

activity days annually due to the driving restrictions (Appendix K has detailed benefit 

calculations). Restricted activity days involve a loss of both work and leisure time. 

We follow Matus, et al. (2012) and assume that leisure is also valued at the wage rate. 

Beijing’s average daily wage in 2007 was RMB 189,58 implying a mean annual loss 

of RMB 1.24 (1.09, 1.39) billion. 

 

Acute mortality is death resulting from current-year pollution exposure. Applying 

epidemiological data implies 477 (318, 637) fewer deaths annually due to the driving 

restrictions. Valuing the hastened mortality due to pollution is a controversial issue so 

we use both a lower-bound, human-capital approach and an upper-bound, value-of-

statistical-life (VOSL) approach. Death from acute exposure normally only occurs to 

those that are close to death from other causes and hastens death by around one-half 

year (Matus, et al., 2008). As a lower bound, we value each case of acute mortality as 

one-half year of foregone wages. This yields a gain from the driving restrictions of 

RMB 11 (8, 15) million. For an upper bound, we value a life using VOSL estimates 

from Hammitt and Zhou (2006) and assume it is independent of life expectancy. This 

yields a gain from the driving restrictions of RMB 70 (47, 94) million. Reduced 

mortality benefits are small compared to those from fewer restricted activity days – at 

most 8.6% – so our conclusion is not very sensitive to value-of-life assumptions. 

 

The primary cost of the driving restrictions is the lost output from reduced work time 

by the “self-employed” less the value of the leisure time they enjoy instead. Daily 

output per Beijing worker is about RMB 417.59 Lacking a more precise figure, we 

value leisure time enjoyed by the “self-employed” at the average daily wage in 

Beijing (RMB 189). This implies a loss of RMB 228 per day for each person 

watching TV rather than working. We estimate an average 8.9 (12.5) thousand 

additional viewers each day during the restricted OneDay69 (OneDay78) periods. 

                                                 
57 Since pollution costs are sensitive to the relationship between health outcomes and pollution 
exposure, we provide lower and upper bounds in parentheses as explained in Appendix K. 
58 Average annual wage of RMB 47,132 for all employed persons in the “city area” of Beijing (see 
China Urban Statistic Yearbook 2008) converted to a daily wage assuming 250 work days per year. 
59 Beijing’s 2007 annual per-capita GDP is RMB 60.0 thousand in the “city area” – roughly inside the 
5th Ring Road (The China Urban Statistic Yearbook 2008). From the TAM data, 57.5% of Beijing’s 
population is employed implying annual per-worker GDP of RMB 104.3 thousand. Dividing by 250 
work days per year yields daily output of RMB 417. 
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Given 250 work days per year, the driving restrictions cost RMB 509 (715) million 

annually. This could understate costs if “self-employed” generate greater profits than 

the average worker and because we do not estimate viewership changes for all worker 

categories. However, our estimates include 72% of non-government employees and 

most government employees have fixed work times. 

 

This is all we can say about costs and benefits. A full welfare analysis would need to 

include other short-run effects. On the cost side these include implementation costs, 

driver compliance costs (trips not taken or taken in a non-preferred mode of transport), 

and reduced workplace agglomeration externalities (Arnott, 2007). On the benefit side 

these include reduced traffic congestion for drivers and pedestrians and the associated 

reduction in vehicle accidents (Parry, Walls, and Harrington, 2007). 

 

8. Reasons for Effectiveness 

 

The only other systematic economic evaluation of driving restrictions is Davis (2008), 

which examines a similar one-day-per-week driving restriction in Mexico City. The 

study finds no effect from the restrictions, even in the short run, primarily because it 

increased the number of vehicles in use and the proportion of high-emissions, used 

vehicles. Since the supply of used cars is relatively fixed, this suggests some pollution 

was diverted from outside Mexico City. 

 

Both of the reasons that Davis (2008) cites for the policy’s failure in Mexico City are 

probably less relevant in Beijing. Although auto ownership is increasing quickly in 

Beijing, its cost is still a significant fraction of income for most residents. In 2007, the 

average annual salary in Beijing was RMB 46,508 (USD 7,069) compared to USD 

25,258 in Mexico City.60 Since sharing cars is difficult, purchasing a second vehicle 

with a different plate number to satisfy the restrictions is prohibitively expensive for 

most residents as is purchasing a first vehicle in response to the reduced auto 

congestion created by the restrictions. 

 

Cars added in Beijing are also likely to be newer, lower-emissions vehicles. The 

number of vehicles in Beijing increased rapidly from 62 million in 1992 to 344 

million in 2008.61 This implies a younger auto stock compared to more developed 

                                                 
60 Beijing data from The China Urban Statistics Yearbook 2008 and Mexico City data from 
http://mexico-city.co.tv/. 
61 Data from “Independent Environmental Assessment: Beijing 2008 Olympic Games,” United Nations 
Environment Programme, February 2009 (p. 42). 
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countries where widespread car ownership began much earlier. Cars remain less 

prevalent in China than in developed countries. As of 2007, China had 24 cars per 

thousand people (0.065 per household) compared to 787 in the U.S. and 211 in 

Mexico (0.84 per household).62 This means cheaper, higher-emissions used cars are 

not as readily available in China and therefore cannot be imported easily into Beijing 

from other cities. 

 

Although the viewership results rule out Beijing’s increase in public transit capacity 

as an explanation for the pollution reduction, it may play a complementary role. To 

the extent that the new subway lines acted as substitutes rather than complements for 

driving, they may have provided better commuting options thereby lowering 

compliance costs and limiting the labor supply decrease. 

 

Compliance Evidence: We find detailed evidence of high compliance in Beijing. It is 

uncertain whether compliance differences might explain the different outcomes in 

Beijing and Mexico City. Davis (2008) argues that penalties and monitoring in 

Mexico City are high but does not provide direct compliance evidence. In Beijing 

there are about 2,215 traffic surveillance cameras (one for every 7.7 square kilometers) 

and about five thousand traffic police officers to detect violations. Every year, the first 

violation triggers a loss of approximately RMB 595 (about USD 90). Subsequent 

violations in the same year incur a fine of RMB 100 (about USD 15). Violators also 

incur time and possibly psychic costs (Appendix L provides more details on penalties 

and detection). 

 

To test compliance, we obtained entrance records for a parking garage located within 

the restricted area and that attracts traffic from all parts of the city. The garage serves 

a mall and office tower so that parkers are a mix of shoppers and workers. The police 

require all Beijing garages to record the license plate number and entrance time to the 

minute of each entering car but they are not required to take any action against 

violators of the restrictions. We obtained one week of data (June 27 to July 3, 2010) 

chosen at random among weeks not containing holidays or government meetings that 

                                                 
62 Cars per thousand people based on “Urban Population, Development and the Environment,” United 
Nations Department of Economic and Social Affairs, United Nations Publication #ST/ESA/SERA/274 
(2008). Household size for Mexico City is based on nationwide data from “OECD Family Database,” 
OECD (2012); household size for Beijing from China Statistic Yearbook (2008). 



 
 
 

35 
 
 

might affect traffic. The garage’s document retention policy prevented us from taking 

a sample within the time period of our main data.63 

 

We divide the week’s hours into three categories: restricted weekday, non-restricted 

weekday, and weekend (non-restricted). The week occurred during OneDay78 so we 

define restricted hours as weekday hours between 7:00 a.m. and 8:00 p.m. and non-

restricted hours as weekday hours between 9:00 p.m. and 6:00 a.m. We avoid 

sampling data from 6:00 – 7:00 a.m. and 8:00 – 9:00 p.m. because commuting from 

the 5th Ring Road to the inner part of Beijing can take up to one hour and therefore 

these hours may contain a mixture of restricted and non-restricted effects. 

 

Since we do not know whether this garage represents Beijing traffic more generally, 

we only make within-garage comparisons. Weekend activity, when no drivers are 

restricted, should closely represent that absent restrictions. Although we do not find 

evidence in our pollution results, weekend driving may increase overall as drivers 

substitute from restricted weekdays. Even if this is so, we expect this to be uniform 

across plate numbers. Therefore, we use the weekend distribution of plate numbers as 

the expected distribution. We compare this expected distribution to that observed 

during weekday restricted and weekday non-restricted periods. We discuss the results 

for regular (hourly) parkers first. 

 

Figure 6 illustrates the comparison of the expected (weekend) distribution to the 

observed distribution during Tuesday restricted hours when plates “2” and “7” are 

restricted. The expected distribution contains 5,975 observations with at least 83 

observations for each plate number. The distribution is not uniform because drivers 

can pay extra to choose a plate number. The unlucky number “4” is least popular, 

while the lucky number “9” is most popular. The two restricted plates appear much 

less frequently than on the weekend and the other plates appear more frequently.64 

Appendix M analyzes data for all five weekdays and applies formal statistical tests. 

Overall, compliance is high. Of the ten restricted plate numbers during the week, eight 

are not significantly different from zero. Only plates “8,” restricted on Wednesday, 

and “9,” restricted on Friday, are significantly different from zero and only in 

proportions of 2.7% and 2.4% and at significance levels of 7.3% and 8.3%. A few 

                                                 
63 Therefore the sample is not necessarily representative of the plate number distribution during the 
time period of our pollution and viewership data. In particular, over time drivers may have sought out 
less common plate numbers to avoid congestion. 
64 Figure 6 does not control for the fact that plates “2” and “7” should not occur under perfect 
compliance. Our detailed analysis in Appendix M does so. 
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cars entered the garage with no license plate – likely a method for avoiding detection 

by camera – but they did not exceed 1.3% of all cars on any day. The garage serves 

primarily professional businesses and an upscale mall so this may understate 

compliance to the extent that the parkers have high incomes and are less sensitive to 

penalties. 

 

There is little evidence of inter-temporal substitution across weekdays. Only four of 

the forty non-restricted plates during the week occur in a proportion greater than 

expected. Drivers do not seem to compensate by driving more on non-restricted days. 

We find no evidence of intra-day substitution when we compare the expected 

distribution to that for weekday, non-restricted hours although we have less data here. 

Of the fifty combinations of day/plate numbers, only five occur in greater proportion 

than expected and only one (“2” on Tuesday) is restricted.65 

 

The parking data separately identify monthly pass holders. The expected (weekend) 

distribution contains only 168 observations but the weekdays all have more than 235 

observations, consistent with this group containing mostly workers. This group also 

exhibits high compliance. Of the ten restricted plates none of them are statistically 

different from zero. As with regular parkers, we find little evidence of inter-temporal 

substitution across weekdays. Of the forty non-restricted plate/day observations, only 

six appear in significantly greater proportion than expected. There was insufficient 

data on monthly pass holders during non-restricted, weekday hours to perform 

statistical tests for intra-day substitution. 

 

9. Conclusion 

 

Beijing’s driving restrictions reduced air pollution, but at the cost of less work time by 

those with discretionary labor supply. We identify the pollution reduction both inter-

temporally and spatially, with larger drops at monitoring stations that are closer to 

major roads. This spatial test improves upon previous analyses by ruling out 

coincident policies unrelated to driving. Since most cities that monitor air pollution 

collect data from multiple locations, our approach can be used elsewhere to improve 

identification of policy changes within a city center that can be linked to identifiable 

emissions locations. Because the approach allows precise distance measures, it can be 

used to disentangle the effects of different policies that affect separate but proximately 

                                                 
65 We cannot test for substitution to weekends because we cannot measure activity “but for” the 
restrictions. 
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close areas. We offer possible reasons for the policy’s success in contrast to evidence 

of failure in Mexico City. Many of these reasons are shared by other rapidly-

developing economies, which bear a substantial portion of the worldwide burden from 

urban air pollution (Cohen, et al., 2005). 

 

The higher commute costs created by the restrictions reduce daily labor supply. To 

overcome data limitations in measuring work time, we use substitution to TV 

viewership. Workers with discretion over their work time increase their viewership 

during restricted driving hours, consistent with reduced work time due to higher 

commute costs. Viewership by workers with fixed work time is unaffected consistent 

with their inability to adjust in the short run. Since factors that reduce both auto and 

public transit congestion, such as expanded subway capacity, would increase work 

time for workers with discretion, we can also eliminate these as explaining the 

pollution reduction. Driving restrictions impact workers with discretion the most; 

these are often business owners and entrepreneurs and important sources of new jobs 

and innovations. 

 

We consider only short-run effects. As incomes in China increase, demand for driving 

will increase and so will the number of cars.66 Thus, to keep auto pollution levels 

constant may require further increases in driving costs (e.g., by restricting driving 

more than one day per week). To the extent that sharing vehicles is costly, this will 

keep average driving costs high and reduce the equilibrium number of cars. One cost 

of this would be further work time decreases. 

 

Although we find that the restrictions’ short-run benefits likely exceed its costs, they 

are not the most efficient way to reduce auto pollution. The restrictions arbitrarily 

reduce demand based on the last digit of a driver’s license plate regardless of 

willingness to pay for driving. A more efficient allocation would result from 

increasing vehicle license fees or pricing congestion. We provide rough calculations 

of the increase in fees necessary to accomplish an equivalent pollution reduction. 

Beijing has moved in this direction, beginning to limit the number of new car 

registrations in December 2010. 
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Figure 1 Map of Beijing Monitoring Station Locations in 2008 and 2009 
 

 
Map shows the locations of the monitoring stations (represented by dots) within or close to the 6th Ring Road (additional stations are located 
outside the 6th Ring Road). The green lines are subway lines. The blue lines are the Ring Roads. The inner-most blue line (which partially 
overlaps with a subway line) is the 2nd Ring Road and expanding out from there are the 3rd, 4th, 5th, and 6th Ring Roads. 

 
Figure 2 Timeline of Pollution-Relevant Policies 

Bus Fares Reduced1

Subway Fares Reduced2

Subway Line 5 Opens3

Subway Line 10/Airport Line Opens5

OddEven

Olympic Games

Subway Line 8 Opens6

OneDay69

OneDay78

Subway Line 4 Opens7

Suburban Bus Fares Reduced4

 
1 Bus fares reduced from RMB 1 per trip to 0.4 for regular bus pass holders and to 0.2 for student pass holders. 2 Subway fares reduced from 
RMB 2 per transfer to RMB 2 per trip regardless of number of transfers. 3 Runs south to north. 4 Fares on suburban routes lowered by 60% 
for adults and 80% for students. “Suburban” routes connect the ten districts and counties outside the inner city with the eight city districts 
inside. 5 Runs southeast to northwest including the airport. 6 Serves the Olympics Park area. Opened on a more limited basis earlier to serve 
Olympic athletes and tourists. 7 Runs south to northwest. 



 
 
 

 
 
 

Figure 3 Aggregate API Discontinuity Sample (Thirty-Day Window around OddEven 
Policy) 
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Residuals from a regression of aggregate logarithm of API in the 30 days before and after the beginning of the 
OddEven policy (the vertical dashed line) on Olympics dummy, holiday dummy, maximum temperature, 
average humidity, total rainfall, hours of sunshine, wind speed quartiles, wind speed direction, interactions 
between wind speed and direction, monthly dummies, weekend dummy, a dummy for API less than 50, and a 
dummy for SO2 day. The square dots are the residuals and the dashed lines are the fitted cubic time trends from 
the regression. 
 
Figure 4 Aggregate API Discontinuity Sample (Twenty-Day Window around OneDay 

Policy) 
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Residuals from a regression of aggregate logarithm of API in the 20 days before and after the beginning of the 
OneDay policy (the vertical dashed line) on Olympics dummy, holiday dummy, maximum temperature, average 
humidity, total rainfall, hours of sunshine, wind speed quartiles, wind speed direction, interactions between wind 
speed and direction, monthly dummies, weekend dummy, a dummy for API less than 50, a dummy for SO2 day, 
and an interaction between OneDay and weekend. The square dots are the residuals and the dashed lines are the 
fitted quadratic time trends from the regression. 



 
 
 

 
 
 

 
Figure 5 Residuals from Station-Level Differences-in-Differences Regression in 45-

Day Window around OddEven Policy 
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Residuals in the 45-day window before and after the beginning of the OddEven policy (the vertical dashed line) 
from the regression in Column 2 of Table 5. The data includes the 8 stations within the restricted area. The 
square dots are the average residuals for the 4 “near” stations (those below the median distance to the nearest 
Ring Road) and the “x” dots the average for the 4 “far” stations (those above). The dashed lines are the linear 
fitted time trends for the “near” residuals and the solid lines are the linear fitted time trends for the “far” stations. 
 
Figure 6 Expected (Weekend) versus Observed (Tuesday) Distribution of 

License Plate Numbers 
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Ending license plate numbers of autos entering a Beijing parking garage inside the restricted area collected by 
authors. Expected distribution contains 5,975 observations and is based on June 27 (Sunday) and July 3 
(Saturday), 2010. Observed distribution contains 2,848 observations and is based on Tuesday, June 29, 2010 
between the hours of 7:00 a.m. and 8:00 p.m. when plates “2” and “7” were restricted. 



 
 
 

 
 
 

Table 1 Descriptive Statistics 

    Variable N Mean
Standard 
Deviation Min Max

Daily Aggregate Pollution Data
Aggregate API 1,096 90.834 49.527 12.000 500.000
Log(Aggregate API) 1,096 4.392 0.486 2.485 6.215
PM10 917 146.652 79.097 18.000 600.000

Log(PM10) 917 4.867 0.482 2.890 6.397

OddEven 1,096 0.057 0.233 0.000 1.000
Break 1,096 0.018 0.134 0.000 1.000
OneDay 1,096 0.408 0.492 0.000 1.000
Olympics 1,096 0.016 0.124 0.000 1.000
Weekend 1,096 0.259 0.438 0.000 1.000
Holiday 1,096 0.071 0.257 0.000 1.000
Maximum Temperature 1,096 18.896 11.144 -6.900 39.600
Average Humidity 1,096 52.527 20.271 11.000 97.000
Total Rainfall 1,096 24.014 85.061 0.000 327.000
Sunshine 1,096 6.619 3.974 0.000 14.000
SO2 Day 1,096 0.026 0.161 0.000 1.000

API < 50 1,096 0.130 0.337 0.000 1.000

Daily Station-Level Pollution Data
Station-Level API 25,482 90.227 50.751 6.000 500.000
Log(Station-Level API) 25,482 4.375 0.512 1.792 6.215

Station-Level Data (distance in kilometers)
Distance from Ring Road 24 8.210 11.884 0.406 38.578
Distance from Ring Road (w/i Restricted Area) 8 0.831 0.264 0.406 1.280
Distance from Class I Road 24 2.216 2.630 0.073 10.040
Distance from Class I Road (w/i Restricted Area) 8 0.679 0.494 0.073 1.615

Hourly Viewership Data
"Self-Employed" Viewership (thousands) 26,304 90.7 76.0 0.0 480.0
"Self-Employed" Log(thousands viewers) 26,304 4.042 1.179 0.000 6.176
"Hourly Workers" Viewership (thousands) 26,304 148.8 128.9 0.0 652.0
"Hourly Workers" Log(thousands viewers) 26,304 4.377 1.445 0.000 6.482
OneDay69 26,304 0.166 0.372 0.000 1.000
OneDay78 26,304 0.242 0.428 0.000 1.000
Average Temperature 26,304 13.600 10.976 -9.400 31.600
Average Wind Speed 26,304 2.212 0.915 0.500 6.700

See Appendix E for a description of the variables and their sources. Number of observations for daily station-level 
pollution data is slightly less than 26,304 (24 stations for 1,096 days) because not all stations present for whole sample 
duration. Number of observations for hourhly viewership data is equal to 24 hours per day for 1,096 days.  
 
 



 
 
 

 
 
 

Table 2 RD Estimates using Log Aggregate Daily API (2007 – 2009) 

 

OddEven -0.2036 *** -0.1882 *** -0.1628 ** -0.1441 ** -0.3433 ***

(0.0453) (0.0544) (0.0728) (0.0583) (0.0806)

OneDay -0.0930 *** -0.1934 *** -0.1894 ** -0.1269 ***

(0.0265) (0.0496) (0.0785) (0.0359)

Weekend -0.0514 * -0.0505 * -0.0509 * -0.0403 * -0.0900 **

(0.0280) (0.0281) (0.0280) (0.0209) (0.0399)

OneDay*Weekend 0.0271 0.0308 0.0298 0.0431
(0.0415) (0.0411) (0.0412) (0.0601)

Olympics -0.0142 -0.0139 -0.0129 -0.0171 -0.2023
(0.0780) (0.0777) (0.0773) (0.0766) (0.1585)

Holiday -0.0211 -0.0298 -0.0286 -0.0194 -0.0372
(0.0428) (0.0430) (0.0425) (0.0417) (0.0656)

API < 50 -0.7346 *** -0.7291 *** -0.7292 *** -0.7356 ***

(0.0367) (0.0368) (0.0369) (0.0366)

SO2 Day -0.3161 *** -0.3091 *** -0.3129 *** -0.3138 ***

(0.0547) (0.0562) (0.0553) (0.0556)

Break -0.1220 -0.1613 -0.1257 -0.1180
(0.0937) (0.1980) (0.2038) (0.1436)

Maximum Temperature 0.0395 *** 0.0414 *** 0.0419 *** 0.0408 *** 0.0593 ***

(0.0035) (0.0035) (0.0036) (0.0036) (0.0047)

Average Humidity 0.0035 *** 0.0035 *** 0.0037 *** 0.0036 *** 0.0056 ***

(0.0010) (0.0010) (0.0010) (0.0010) (0.0013)

Total Rainfall -0.0001 -0.0001 -0.0001 -0.0001 -0.0002
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Sunshine -0.0302 *** -0.0305 *** -0.0301 *** -0.0301 *** -0.0479 ***

(0.0035) (0.0035) (0.0035) (0.0035) (0.0046)

R
2

BIC
N

Trend

748.2741.2

OddEven

0.3672

1,096 1,096 1,096

Trend

0.6272

917
763.9

Log(PM10)

0.6311

Log(API)
No Linear

Dependent variable is logarithm of aggregate, daily API in Models 1 through 4 and log of daily PM10 in 

Column 5. Standard errors in parentheses. Newey-West standard errors with one-day lag used in Models 1 
through 4; standard errors clustered in rolling 2-day blocks in Model 5. * = 10% significance, ** = 5% 
significance, *** = 1% significance. All regressions include month-of-year dummies, wind direction, wind-
speed quartiles, and interactions between wind speed and wind direction. A linear time trend is included in 
Model 2 and a quadratic time trend in Model 3. Separate time trends are allowed for the regimes Before 
Oddeven, Break, During OneDay69, and During OneDay78 (except that the Break regime includes only up to a 
linear trend because its short duration creates near collinearities above this). Model 4 allows for separate 
quadratic time trends before and after OddEven. BIC is a Bayesian Information Criterion of model fit.

Quadratic

Only

0.6222 0.6293

1,096

Trend

(1) (2) (3) (4) (5)

 
 



 
 
 

 
 
 

Table 3 RD Estimates using Log Aggregate Daily API in Discontinuity Samples 

 

OddEven -0.2183 ** -0.2871 ** -0.3336 *** -0.4732 *** -0.3499 **

(0.1066) (0.1251) (0.1239) (0.1648) (0.1472)

Time Trend Order

R
2

N

OddEven -0.2786 -0.2464 ** -0.3041 **

(0.1702) (0.1211) (0.1192)

OneDay -0.4004 ** -0.1268 ** -0.1239 -0.1680 **

(0.1730) (0.0567) (0.0756) (0.0826)

Time Trend Order

R
2

N

(4)

Window30-Day Window

90 12060

Window

5 5

Dependent variable is log of aggregate, daily API. Standard errors in parentheses. All regressions 
cluster standard errors in rolling blocks of days: 30-Day "OddEven Only" with 10-day blocks, 45-Day 
"OddEven Only" with 20-day blocks, 60-Day "OddEven Only" with  20-day blocks, 20-Day "OneDay 
Only" with 12-day blocks, and "OddEven & OneDay Together" with 20-day blocks. * = 10% 
significance, ** = 5% significance, *** = 1% significance. All regressions include month-of-year 
dummies, maximum temperature, average humidity, total rainfall, hours of sunshine, wind direction, wind-
speed quartiles, interactions between wind speed and wind direction, holiday dummy (where 
applicable), Olympic dummy (where applicable), weekend dummy, interaction between weekend and 
OneDay (where applicable),  and dummies for days with API less than 50 and days with SO2 as the 

predominant pollutant. Separate time  trends are allowed before and after the policy events in the top 
panel and in Column 1 of the bottom panel. Separate time trends are allowed for the regimes Before 
OddEven, During OddEven, Break, and During OneDay69 in Columns 2 through 4 of the bottom panel.

45-Day 60-Day

0.8273 0.8299
143

0.9400 0.9416

OneDay Only
20-Day

0.8338

3

(1) (2)
OddEven Only

(3) (4) (5)

0.9019

0.8214

(3)

60 60

Window

(1)

4

(2)

2

40
0.9477

2

143

0.9602

1

143

OddEven & OneDay Together
30 Days Before OddEven -

30 Days After OneDay

3
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Table 4 RD Estimates using Log Station-Level Daily API (2007 – 2009) 

 

OddEven -0.1254 *** -0.1233 *** -0.1725 *** -0.1408 ***

(0.0127) (0.0133) (0.0144) (0.0184)

OneDay -0.1600 *** -0.1627 *** -0.1288 *** -0.1470 ***

(0.0135) (0.0139) (0.0071) (0.0155)

Olympics -0.0064 -0.0060 0.0152 -0.0141
(0.0146) (0.0159) (0.0181) (0.0197)

Weekend -0.0424 *** -0.0425 *** -0.0458 *** -0.0388 ***

(0.0037) (0.0038) (0.0036) (0.0052)

OneDay*Weekend 0.0443 *** 0.0440 *** 0.0378 *** 0.0446 ***

(0.0046) (0.0048) (0.0049) (0.0066)

Holiday -0.0571 *** -0.0572 *** -0.0280 *** -0.0427 ***

(0.0060) (0.0063) (0.0065) (0.0075)

R
2

Station Fixed Effects
Number of Stations
N

Yes Yes

(1) (2) (3)
Inside

0.6378 0.6059

Stations Panel
Restricted

Area
Balanced Restricted

Area
24

24,027 8,361

0.6422

16
Yes Yes

Dependent variable is log of daily API at monitoring stations. Robust standard errors 
clustered at the station level in parentheses. * = 10% significance, ** = 5% significance, *** 
= 1% significance. All regressions include month-of-year dummies, maximum temperature, 
average humidity, total rainfall, hours of sunshine, wind speed quartiles, wind direction 
dummies, interactions between wind speed and wind direction, and dummies for days with 

API less than 50 and days with SO2 as the predominant pollutant. Separate quadratic time 
trends are allowed for the regimes Before OddEven, Break, During OneDay69, and During 
OneDay78 and these are interacted with station fixed-effects in Columns 1 and 2. Separate 
linear time trends are allowed for the regimes Before OddEven, Break, and During OneDay 
and these are interacted with station fixed-effects in Columns 3 and 4. The number of 
observations is not evenly divisable by the number of stations due to missing values.

24 22 8

0.6399

(4)
Outside

17,12125,482

 
 



 
 
 

 
 
 

Table 5 DD Estimates using Log Station-Level, Daily API (2007 – 2009), N = 8,361 

OddEven -0.1396 *** -0.1400 *** -0.4617 *** -0.1927 ***

(0.0129) (0.0129) (0.0457) (0.0221)

Near*OddEven -0.0580 *** -0.0536 *** -0.0540 **

(0.0119) (0.0117) (0.0255)

OddEven*Distance 0.5110 ***

(0.1054)

OddEven*Distance
2 -0.2425 ***

(0.0588)

OneDay -0.1160 *** -0.1155 *** -0.3290 *** -0.1254 ***

(0.0089) (0.0085) (0.0350) (0.0145)

Near*OneDay -0.0248 ** -0.0204 ** -0.0440 *

(0.0098) (0.0102) (0.0226)

OneDay*Distance 0.4150 ***

(0.0862)

OneDay*Distance
2 -0.2160 ***

(0.0466)

Before OddEven Trend -0.0330 0.0100 -0.0247
(0.0281) (0.0320) (0.0424)

Near*(Before OddEven Trend) -0.0072 -0.0797 0.0063
(0.0586) (0.0597) (0.0750)

Break Trend -9.3796 *** -6.8852 *** -3.7289
(0.8287) (1.7231) (2.4161)

Near*(Break Trend) 2.5255 -0.2934 -6.6855 **

(2.3474) (3.3823) (3.0088)

During OneDay Trend 0.3334 *** 0.3817 *** 0.3463 ***

(0.0323) (0.0348) (0.0534)

Near*(During OneDay Trend) 0.0027 0.0116 0.0840
(0.0512) (0.0779) (0.0577)

R
2

Station Fixed Effects
Number of Stations
Dependent variable is log of daily API at monitoring stations inside the retricted area. 
Robust standard errors clustered at the station level in parentheses. * = 10% significance, ** 
= 5% significance, *** = 1% significance. All regressions include month-of-year dummies, 
Olympics dummy, weekend dummy, holiday dummy, interaction between weekend dummy 
and OneDay dummy, maximum temperature, average humidity, total rainfall, hours of 
sunshine, wind speed quartiles, wind direction dummies, and interactions between wind 
speed and wind direction. Dummies for days with API less than 50 and days with SO2 as the 

predominant pollutant included in Columns 1 and 2. Separate linear time trends are allowed 
for the regimes Before OddEven, Break, and During OneDay and these are interacted with 
station fixed-effects in Column 1.  The number of observations is not evenly divisable by the 
number of stations due to missing values.

 
(4)

to Class I
Roads

0.4173

8

(1)

0.4179

8

(2)

8 8

0.6053

Quadratic
Distance

(3)

Near/Far

Yes Yes Yes Yes

DistanceDistance to Ring Roads

0.6059

 



 
 
 

 
 
 

Table 6 DD Estimates using Log Station-Level, Daily API in Discontinuity Samples 

OddEven -0.1192 *** -0.1899 ***

(0.0153) (0.0166)

"Near"*OddEven -0.0447 ** -0.0414 **

(0.0199) (0.0205)

R
2

Number of Stations
Station Fixed Effects
N

Dependent variable is log of daily API at eight monitoring 
stations inside the restricted area. Robust standard errors 
clustered at the station level in parentheses. * = 10% 
significance, ** = 5% significance, *** = 1% significance. All 
regressions include an Olympics dummy, maximum 
temperature, average humidity, total rainfall, hours of 
sunshine, wind speed quartiles, wind direction dummies, 
interactions between wind speed and wind direction, dummy 
for weekends, and dummy for days with API less than 50.  
The number of observations is not evenly divisable by the 
number of stations due to missing values.

8 8

WindowWindow

Yes Yes
718 958

0.8083 0.7248

45-Day 60-Day

 
 



 
 
 

 
 
 

Table 7 RD Estimates using Log Hourly Television Viewership (2007 – 2009), N = 
26,303 

 

Coeff. Std. Err. Coeff. Std. Err.

Lagged Viewership 0.5501 (0.0076) *** 0.4360 (0.0092) ***

Total Rainfall -0.0001 (0.0000) ** -0.0001 (0.0000) **

Average Wind Speed 0.0049 (0.0029) * 0.0048 (0.0028) *

Sunshine -0.0023 (0.0007) *** -0.0016 (0.0006) **

Average Temperature -0.0008 (0.0009) -0.0015 (0.0008) *

Weekend 0.0180 (0.0074) ** 0.0717 (0.0073) ***

Holiday 0.0481 (0.0128) *** 0.1305 (0.0138) ***

Olympics 0.0777 (0.0311) ** 0.0577 (0.0315) *

OddEven 0.0312 (0.0396) -0.0654 (0.0579)

OddEven*Weekend -0.0103 (0.0181) 0.0333 (0.0228)

OddEven*Holiday -0.0884 (0.0312) *** -0.0541 (0.0251) **

OneDay69*Weekend 0.0031 (0.0223) -0.0101 (0.0214)

OneDay69*Holiday 0.0781 (0.0459) * -0.0180 (0.0486)

OneDay78*Weekend 0.0627 (0.0235) *** 0.0088 (0.0210)

OneDay78*Holiday 0.0496 (0.0462) -0.0502 (0.0329)

OneDay69*Restr. Hours 0.0872 (0.0204) *** -0.0106 (0.0183)

OneDay69*Non-Restr. Morning Hours -0.0734 (0.0349) ** -0.0280 (0.0311)

OneDay69*Non-Restr. Evening Hours -0.0153 (0.0194) -0.0291 (0.0179)

OneDay78*Restr. Hours 0.1278 (0.0218) *** -0.0418 (0.0187) **

OneDay78*Non-Restr. Morning Hours 0.1311 (0.0300) *** 0.0741 (0.0267) ***

OneDay78*Non-Restr. Evening Hours 0.0495 (0.0205) ** 0.0215 (0.0177)

R
2

Dependent variable is log number of thousands of individuals watching television each 
hour. Standard errors clustered at the daily level in parentheses. * = 10% significance, ** = 
5% significance, *** = 1% significance. Both regressions include hour dummies, month-of-
year dummies, a dummy for the break period interacted with hour dummies, and separate 4th-
order time trends for the regimes Before Oddeven, During OddEven, Break, and During 
OneDay.

0.8849

"Hourly Workers"

0.9293

"Self-Employed"

 
 



ONLINE APPENDIX 

A1 

Appendix A 
Labor Supply Model with OddEven Driving Restrictions 

 
Consider a two-stage model. In the first stage, workers choose their optimal commute mode (auto, 
public transit, or not working if they have discretion over their time). In stage two, they choose work 
time, leisure time, and goods consumption to maximize utility given their first-stage choice. Workers 
consider how their commute choice affects their utility so we solve the model by backward induction. 
For second-stage utilities, we modify a standard Cobb-Douglas labor supply function to accommodate 
commute mode choice and distinguish restricted from non-restricted days. We model the OddEven 
restrictions and consider each worker’s utility over a representative two-day period: one non-restricted 
and one restricted day. With driving restrictions, the worker suffers a penalty for driving on the 
restricted day. Absent the policy, the two days are identical. We consider the OddEven policy because 
it is simpler to model than and generates the same intuition as the OneDay policy.1 
 
There are two groups of workers: those with discretionary work time (D) and those with fixed work 
times (F) in proportions D  and 1F D    respectively. The distribution of workers in each group is 
given by the cumulative density functions  DG   and  FG   where  , , , ,i i iw Y c t M  . w  is hourly 

wage, Y  is two-day non-wage income, and i  is commute mode. Possible commute modes are auto 

 i A , public transit  i P , and for those with discretion, not working  0i  . For mode i , 
ic  is 

daily commute cost and 
it  time (with 

0 0 0t c  ). 
iM  is the worker’s daily non-monetary disutility 

from commuting by mode i . Commuting by either mode is unpleasant: ,P AM M 0 0M  . A worker’s 

two-day utility conditional on commute choices ( i  for the non-restricted and j  for the restricted day) is: 

 
(A1)    1 1 ; , , ,0

Nij Nij Rij Rijij i j Policy j AU L X L X M M Q i j A P     
       , 

 
with  0 1  . This distinguishes the restricted  R  and non-restricted  N  days. L  is daily leisure 

hours and X  daily consumption of other goods. We ignore across-day discounting and assume that 
utility derived from each two-day period is independent of other two-day periods.   is an indicator 
variable equal to one when the condition is true and zero otherwise and Policy  is a logical variable 

distinguishing the policy period. Q  is expected penalty (monetary and psychic) in utility terms of 

driving a car while restricted. 
 
We assume perfect compliance and full-time work absent the restrictions and focus on short-run effects: 
 
(A) Absent the restrictions, commute times and costs are low enough that it is optimal for all workers 

to work both days. 
(B) Compliance costs are small enough that workers do not leave the workforce or transition between 

jobs with discretionary and fixed work times. This ensures that the restrictions do not change 
these proportions. 

(C) Wages and house prices do not adjust, workers do not move their residences or change their 
workplace (i.e., commute times and costs are fixed), and workers do not purchase a second car to 
comply with the restrictions. 

(D) The penalty is great enough that it is never optimal to drive on a restricted day. 
(E) License plate numbers are uniformly distributed with half restricted each day. 
 
After solving the model for each worker we examine the aggregate effects on pollution and work time 
across the distributions of workers. 
 
Second Stage: Discretionary Work Time: Those with discretion may choose to work either “full time” 
(both days) or “reduced time” (one day). Assumption (A) and diminishing marginal utility of 
consumption ensure that the worker will at most remain home on the restricted day.2 We consider only 

                                                 
1 It is straightforward to adapt the model to the OneDay policy and the results differ only in magnitude. The commute costs it 
imposes are lower making “reduced time” less likely. However, declining marginal utility makes “reduced time” more likely 
because goods consumption suffers less from not working one day out of five rather than one day out of two. A full analysis of 
the OneDay model is available from the authors. 
2 Appendix B shows that it is not optimal to work on the restricted day and instead stay home on the non-restricted day under 
fairly general conditions. 
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a representative two-day period so all restricted days are identical. As a result, “reduced time” means 
taking every other day off from work. A more general model with random variation in daily 
productivity and leisure options would allow for less regular and extreme reductions. This simple 
model is adequate since we do not use it for calibration or direct estimation. Ignoring the penalty Q , 

the worker’s second-stage problem conditional on mode choices i  and j  is: 

 

(A2) 
 1 1

, , ,

, ,

M ax ; , , ,0 :
Nij Nij Rij Rijij i j

H L XNij Nij Nij
H L XRij Rij Rij

U L X L X M M i j A P st    

  
 
  

   
 

(A3)       0,Nij Rij Nij i Rij jY w H H X c X c        

(A4a)   0,Nij i NijT H t L       (A4b)   0,Rij j RijT H t L     

(A5a) 0Nij NH   ,    (A5b) 0Rij RH   ; 

 
where T  is total available hours per day, H  is daily working hours, and the  ’s are Kuhn-Tucker 
multipliers. Equation (A3) is the resident’s two-day budget constraint with the price of X  normalized 
to one. Equations (A4a) and (A4b) are the resident’s day-by-day time constraints. We assume that the 
budget and time constraints bind but that the constraints on positive working hours may not. 
Substituting (A3) and (A4) the problem becomes: 
 

(A6) 
         11

, ,

M ax
Nijij Nij i Rij j Nij Rij Nij i j i j

H X HNij Nij Rij

U T H t X T H t Y wH wH X c c M M
                

 
The first-order conditions for the worker’s problem are: 
 

(A7a)      1
: ,

ij i j ij i j

Nij
Nij i Nij Rij Nij i j

U M M w U M M
H

T H t Y wH wH X c c

     
          

 

(A7b)      1
: ,

ij i j ij i j

Rij
Rij j Nij Rij Nij i j

U M M w U M M
H

T H t Y wH wH X c c

 


    
           

 

(A8)      1 1
: ,

ij i j ij i j

Nij
Nij Nij Rij Nij i j

U M M U M M
X

X Y wH wH X c c

      
        

 

(A9a)   : 0R Rij RH   ,    (A9b)   : 0N Nij NH   . 

 
There are two cases to solve: “full time”   , 0; , ,Nij RijH H i j A P   and “reduced time” (

0 0,NiH   

 ,i A P ; but 
0 0RiH   or vice versa). Conditional on the commute mode choices i  and j , define: 

 

(A10a) 
Ni iNT T t   and 

Rj jNT T t  ,  (A10b) i j
ij

Y c c
NI

w

 
 ; 

(A10c) 
ji j it t t   ,    (A10d)  ji j ic c ct w   . 

 

NiNT  and 
RjNT  are the time available net of commuting on restricted and non-restricted days while 

ijNI  

is the two-day, non-wage income net of commute costs. 
jit  and 

jic  are the difference in commute 

times and costs respectively on the restricted versus non-restricted days. Both 
ijNI  and 

jic  are 

converted to hours based on the opportunity cost of time. 
 
Case 1): “Full Time”   , 0; , ,Nij RijH H i j A P  . Solving the model (the Optional Appendix contains 

a detailed derivation), the results are: 
 

(A11a)  1
2Nij Ni ij jiH NT NI t
      

,  (A11b)  1
2Rij Rj ij jiH NT NI t
       

; 
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(A12)  1

2Nij Rij Ni ij jiL L NT NI t       
, 

(A13)    1
1

2Nij Rij Ni ij jiX X w NT NI t        
. 

 
Two-day indirect utility is, where we re-introduce the penalty Q : 

 

(A14)   
2

2
1 ; , 0

2 2
ij ji

ij Ni i j Policy j A

NI t
U kw NT M M Q i j



 
         

 
 where    1

1k
    . 

 
Leisure time is equated across the days. For workers who prefer public transit the work day lengths are 
the same: 0RPP NPPH H  . For those who prefer driving, their restricted work day will be shorter or 

longer than their non-restricted depending on whether their public transit commute is longer or shorter 
than by car (  1RAP NAP PAH H t    ). 

 
Case 2): “Reduced Time” (  0 0, ,NiH i A P   but 0RijH  ). We solve the model assuming zero hours 

on the restricted day. In this case 0R Rt c  . The results for instead working zero hours on the non-

restricted days are symmetric but Appendix B shows that this is not optimal under fairly general 
conditions. Solving (the Optional Appendix contains a detailed derivation), the results are: 
 

(A15a) 
   0 0

2
1

1 1 2Ni Ni iH NT NI



       

, (A15b) 
0 0RiH  ; 

(A16a) 
   0 01 1Ni Ni iL NT NI



 

 
,  (A16b) 

0RiL T ; 

(A17a)  
   0 0

1

1 1Ni i i

w
X NT NI





 

 
,  (A17b)  

   0 0

1

1 1Ri i i

w
X NT NI





 

 
. 

 
Two-day indirect utility is: 
 

(A18) 
  

        

2
1

1 1

0 01 1
1 1

i Ni i i

kw
U NT NI T M


 

  


 

 
  

 
, where    1

1k
    . 

 
The worker cannot balance leisure or work time across restricted and non-restricted days. The results 
for 0NijH   but 0RijH   are obtained by replacing N  with R , i  with 0 , and 0  with j . 

 
Second Stage: Fixed Work Times: Since daily work hours are fixed   0; , ,Nij RijH H H i j A P    , 

the worker chooses only 
NijL , 

RijL , 
NijX , and 

RijX . Solving, (the Optional Appendix contains a detailed 

derivation), the results are: 
 
(A19a) 

Nij iL T H t   ,    (A19b) 
Rij jL T H t   ; 

(A20) 1

2Nij Rij ijX X w H NI
     

. 

 
Two-day indirect utility is, where we re-introduce the penalty Q : 

 

(A21)     
 2 1

2 1 ; , 0
2

ij
ij i j i j Policy j A

NI
U w T H t T H t H M M Q i j










                 
. 

 
The difference in leisure time on restricted versus non-restricted days depends on relative commute 
times for the chosen modes  Rij Nij jiL L t    but the difference is not shared across the two days. 
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This completes the second-stage solution for type  . We now consider the first stage when workers 
choose their commute mode. Using the distributions of the  ’s we can specify the share of each 
commute mode for both categories of workers:    , , ; , , ,0

ij

ks k D F i j A P  . We solve the first stage 

with and without the restrictions. 
 
First Stage – Without Restrictions: Without the restrictions, the two days are identical and the worker 
makes the same choice across days ( i j ). The shares of each mode are  ,k D F : 

 
(A22a)       | ; , 0

AA

k k
AA iis U U i P dG d       , (A22b)       | ; , 0

PP

k k
PP iis U U i A dG d       , 

 
where 

ijU  is given by (A14) and Assumption (A) implies 
00

0ks   so that 1
AA PP

k ks s  . 

 
First Stage – With Restrictions: Assumption (D) ensures that Q  is great enough that no workers drive 

on their restricted day so that  ,i A P  and  ,0j P . Regardless of whether they have discretion or 

not, commuters who prefer public transit absent the restrictions will take public transit both days under 

the restrictions so that  ; ,PP

k k
PPs s k D F   where we use hats to denote outcomes under the 

restrictions. This follows because    PP AAU U   implies    PP APU U   in both Equations (A14) 

and (A21). 
 
Workers who prefer to drive absent the restrictions will continue to drive on the non-restricted day. On 
the restricted day, those with fixed work times must take public transit on the restricted day so that 

0 0A

F
s   and 

AP AA

F
Fs s . On the restricted day, those with discretion can either take public transit or not 

work. The shares doing each are: 
 

(A23a)       0|AP

D D
AP As U U dG d      , (A23b)       0 0|A

D D
A APs U U dG d      . 

 

Given Assumption (B), we know that 
0AP A AA

D D
Ds s s    and if some commuters find it optimal to stay 

home when restricted  0 0A

D
s   then 

AP AA

D Ds s . 

 
Extensive Margin Effects: For those with fixed work times, there is no effect on the extensive margin 

since they have no control over work time (i.e., 
AP AA

F Fs s  and 
PP PP

F Fs s ). This yields Implication 1 in 

the main text. 
 
Assumption (A) implies that absent the restrictions no workers with discretionary work time stay home 

on the restricted day.3 With the restrictions, this increases to 
0 2A

DD s   – the density of workers 

choosing “reduced time.” This yields Implication 2 in the main text. 
 

Under the restrictions, daily car density and pollution on Beijing roads decreases by  1

2 AA AA

D D F Fs s  . 

That is, half the drivers cannot drive on a given day. This yields Implication 3 in the main text. 
 
Intensive Margin Effects – Workers with Fixed Work Times: Those who took public transit absent the 
restrictions will still do so and their leisure time is unaffected   0NPP RPPNPP RPPL L L L     by 

Equation (A19). Those who prefer to drive, with density 2
AA

F Fs , are forced to take public transit and 

leisure is unaffected on non-restricted  0NAP NAAL L   but affected on restricted days 

 RAP RAAL L  PAt  by Equation (A19). Since intensive margin effects are zero for those who 

                                                 
3 In our data, this is not literally zero due to multiple daily work shifts, vacations, and sick days. 
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normally take public transit and ambiguous for those who normally drive, the total effect 

 2
AA

F F
PAs t   could be positive or negative. This yields Implication 4 in the main text. 

 
Intensive Margin Effects – Workers with Discretionary Work Time: Workers who prefer public 
transit absent the restrictions choose to work “full time” and there is no effect on leisure time: 
  0NPP RPPNPP RPPL L L L     by Equation (A12). Those who prefer driving absent the restrictions and 

choose to work “full time” must commute by public transit on the restricted day and their leisure time 
could increase or decrease depending on whether public transit commute times and costs are less than 
those by car or not:  NAP NAAL L   RAP RAAL L   2 PA PAc t     by Equation (A12). Unlike those with 

fixed work times, commute costs also matter because daily labor supply is discretionary. Due to 
diminishing marginal utility, the worker equalizes leisure time across the work days and shares the 
difference in commute times and costs across the restricted and non-restricted days. 
 
For workers who work “reduced time,” leisure time most likely decreases on the non-restricted day. 
Equations (A12) and (A16a) imply: 
 

(A24) 
      0 1 1

1 1 2
A

NA NAA A

cY
L L T t

w w

  


             
. 

 
That the expression in Equation (A24) can be positive (negative) is most easily seen by setting   close 
to one (zero). This expression is more likely positive the greater Y , 

Ac , or 
At . The total effect across all 

workers with discretionary work time is  0 2
D D

D
A AP PA PAs s c t       
  , which could be positive or 

negative. This yields Implication 5 in the main text. 
 

Appendix B 
Non-Optimality of Staying Home on Non-Restricted Day 

 
Working on the restricted day but not on the non-restricted is not optimal under at least two general 
cases: 
 
Case 1: 

A PM M  and 
A Pc c . For a worker who prefers to commute by auto, 

AA PPU U  which by 

Equation (A14) implies: 
 

(B1)    
2 2

2

2 2
AA PP

NA NP P A A P

NI NI
NT NT t t c c

w
            
   

. Now: 

(B2)        1 2 1
A P A P A P P A A Pc c c c c c t t c c

w w w
          which implies: 

(B3)            1 1 1 1

0 0 0 0NA A NP P NA A NP PNT NI NT NI NT NI NT NI
    

       . This implies 

0 0A PU U  using Equation (A18). 

 
Case 2: 

A Pt t  and 
A Pc c  but 

A PM M . By Equation (A14) 
AA PP P AU U M M   . This implies 

0 0A PU U  using Equation (A18). 

 
Assumption (A) ensures that the worker will remain home on at most the restricted day since the non-
restricted day is unaffected and extra leisure is already enjoyed on the restricted day under “reduced-
time” work. 
 

Appendix C 
Conditions for “Reduced-Time” Work for Discretionary Workers 

 
We consider two cases: 
 
Case 1: 0A PM M  . Comparing Equations (A14) and (A18), 

0A APU U  when: 
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(C1)    

    
1 1

1 10
2

0

1 1 .

2 2

NA A

P PA
NA A

NT NI T

c t
NT NI

 
  

 
 

  
    

 

 

 
It follows immediately that this is more likely the greater 

Pc  or 
PAt . 

 
Case2:  0PM  . Since 

0AU  in Equation (A18) does not depend on 
PM  and 

APU  in Equation (A14) is 

decreasing in 
PM  it follows directly that 

0A APU U  when 
PM  is sufficiently large  0PM  . 

 
Appendix D 

Effect of Expanded Subway Capacity on Leisure Time 
 
Expanded subway capacity reduces both public transit and auto commute times: A At t  and P Pt t , 

where tildes indicate outcomes after the expansion. Assume that the expansion has no effect on 
commute costs ( A Ac c  and P Pc c ) and does not change workers’ optimal commute modes. 

Assuming all workers obey the restrictions and continue to work “full time” (i.e., there is no extensive 
margin effect), compute the change in leisure time due to the subway expansion for each category of 
worker and commute mode. For those with discretionary work time who prefer driving and public 
transit respectively (by Equation (A12)): 
 

(D1)      1 1

2 2
A P

NAP RAP A ANAA RAA A P

c c
L L L L t t t t

w
           

  , 

(D2)    NPP RPP PNPP RPP PL L L L t t      . 

 
For those with fixed work times who prefer driving and public transit respectively (by Equation (A19)): 
 
(D3a)   NAP ANAA AL L t t    ,   (D3b)   RAP PRAA AL L t t    ; 

(D4)    NPP RPP PNPP RPP PL L L L t t      . 

 
All of the expressions on the right-hand sides of Equations (D1) through (D4) are weakly decreasing in 
both At  and Pt  and are strictly decreasing in one of them for at least one commute mode within each 
group of workers. This implies that leisure time increases for both groups due to the expansion. 
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Appendix E 
Variable Descriptions and Data Sources 

Frequency/
Variable Description Availability Data Source

Aggregate API Aggregate Air Pollution Index; see text 
for detailed description.

Daily SEPA and BJEPA

Station-Level API Air Pollution Index from 24 monitoring 
stations.

Daily Andrews (2008) and BJEPA

Maximum Temperature Maximum daily temperature in celcius. Daily CMDSSS

Average Humidity Average percent humidity over the day. Daily CMDSSS

Total Rainfall Total rainfall over the day in 
centimeters.

Daily CMDSSS

Sunshine Number of total hours of sunlight 
during the day.

Daily CMDSSS

Wind Direction Predominant direction of wind during 
the day divided into four quadrants 
(Northeast, Southeast, Southwest, 
Northwest).

Daily CMDSSS

Max. Wind Speed Maximum of the average wind speed 
over 15-minute increments across the 
day in meters per second.

Daily CMDSSS

Distance from Ring 
Road

Distance in kilometers of monitoring 
station from nearest Ring Road.

Once Geographic Information System 
calculations

Distance from Class I 
Road

Distance in kilometers of monitoring 
station from nearest Class I Road.

Once Geographic Information System 
calculations

Television Viewership Number of people in thousands 
watching television.

Hourly CSM Media Research Television 
Audience Measurement (TAM)

Average Temperature Average daily temperature in celsius. Daily CMDSSS

Average Wind Speed Average daily wind speed in meters per 
second.

Daily CMDSSS

CMDSSS refers to China Meteorological Data Sharing Service System, SEPA to State Environmental Protection Agency, and 
BJEPA to Beijing Environmental Protection Agency.  
 
 

Appendix F 
Construction of API Indices 

 
A daily measure of particulate matter, sulfur dioxide, and nitrogen dioxide at each station s  on day t  is 

based on the average of 24 hourly (indexed by h ) readings: 
24

1

1
10 10

24st sth
h

PM PM


  , 

24

1

1
2 02

24st sth
h

SO S


  , and 
24

1

1
2 02

24st sth
h

NO N


  . The three measures are then scaled to reflect 

comparable severity  10 , 2 , 2st st stPM SO NO . The piece-wise linear conversion formula for particulate 

matter is given in the table below – similar conversions are used for sulfur dioxide and nitrogen dioxide. 
Station-level API is: 
 
(F1)  max 10 , 2 , 2S

st st ststAPI PM SO NO . 

 
The aggregate API is calculated as: 
 
(F2)  max 10 , 2 , 2t t ttAPI PM SO NO , 
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where  10 , 2 , 2t t tPM SO NO  are the scaled versions of the average daily measures across all stations: 

1

1
10 10

S

t st
s

PM PM
S 

  , 
1

1
2 2

S

t st
s

SO SO
S 

  , and 
1

1
2 2

S

t st
s

NO NO
S 

  . 

 
We observe only S

stAPI , 
tAPI , and the identity of the “major pollutant” for each if the value exceeds 50. 

We do not observe daily data for all three pollutants for each station – we observe only the “major 
pollutant” for each station on each day – and we do not observe the underlying hourly data. The 
percentage of days that PM10 is the “major pollutant” at a station ranges from 68% to 91% across 
stations. At the aggregate level, PM10 is the “major pollutant” on 83% of the days. 
 
What we observe about these indices limits their use. First, since the “major pollutant” at a station may 
differ from that at the aggregate level, we are unable to fully verify the construction of the aggregate 
API from the station-level APIs. Second, since the “major pollutant” for each station can vary day-by-
day we cannot construct station-level PM10 measures over time. Finally, since the “major pollutant” 
varies across stations within a day and across days within a station, we cannot construct an alternative, 
aggregate pollution measure. 
 
Conversion of PM10 to API 
 

API PM10 Conversion Formula

0 – 50 0 – 50 API = PM10

50 – 200 50 – 350 API = (1/2)*PM10 + 25

200 – 300 350 – 420 API = (10/7)*PM10 – 300

300 – 400 420 – 500 API = (5/4)*PM10 – 225

400 – 500 500 – 600 API = PM10 – 100

Based on Andrews (2008).  
 
 

Appendix G 
Placebo Tests of RD Design 

"OddEven" Placebo 0.1174 0.1152 0.1007 -0.0195 -0.0681 -0.0661
(0.1433) (0.1435) (0.1364) (0.0686) (0.0899) (0.1319)

R
2

N

"OneDay" Placebo 0.0748 -0.1238 0.1444 0.0960 -0.2749 -0.1996
(0.0525) (0.0954) (0.1007) (0.0593) (0.3568) (0.2484)

R
2

N

Dependent variable is log of aggregate, daily API. Standard errors in parentheses. Newey-West standard errors with one-day 
lag used in all regressions. * = 10% significance, ** = 5% significance, *** = 1% significance. Month-of-year dummies, 
maximum temperature, average humidity, total rainfall, hours of sunshine, wind speed quartiles, wind direction dummies, 
interactions between wind speed and wind direction, and dummies for days with API less than 50 and days with SO2 as the 

predominant pollutant included in all regressions. The top panel regressons include all days before the OddEven policy begins 
on July 20, 2008. The bottom panel regressions include all days after the OneDay policy begins on October 11, 2008. Separate 
time  trends are allowed before and after the placebo policies.

Post-OneDay - Mid-Point
No

No Linear Quadratic No
Trend Trend Trend Trend

Pre-OddEven - Mid-Point

0.5528

566

0.5539

566

Pre-OddEven - 3/4-Point

0.5590

566

0.5515

566 566 566

Post-OneDay - 1/4-Point

Trend

Linear Quadratic
Trend Trend

0.5540 0.5596

Linear Quadratic No Linear Quadratic
Trend Trend Trend Trend Trend

0.6637 0.6693 0.6975 0.6646 0.6666 0.6950

446 446 446 446 446 446
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Appendix H 

Effect of Subway Line 5/Subway Fare and Bus Fare Reduction Policies 

OddEven -0.1808 *** -0.1948 *** -0.1898 *** -0.1684 *** -0.1718 ***

(0.0547) (0.0550) (0.0556) (0.0145) (0.0134)

OneDay -0.1730 *** -0.1724 *** -0.1538 *** -0.1312 *** -0.1242 ***

(0.0543) (0.0494) (0.0540) (0.0116) (0.0072)

Line 5 Opening/Subway Fare Reduction 0.0887 0.1130 -0.0900
(0.0899) (0.0891) (0.0685)

Bus Fare Reduction 0.0482 0.0794 0.0018
(0.0807) (0.0801) (0.0994)

Line 5 Opening/Subway Fare 0.0781

     Reduction*Distance (0.1626)

Line 5 Opening/Subway Fare 0.0166

     Reduction*Distance
2

(0.0947)

Subway Fare Reduction*Distance 0.1521

(0.2911)

Subway Fare Reduction*Distance
2

-0.1076

(0.1718)

R
2

Line 5 Opening/Subway Fare Reduction 0.0940 0.0959 -0.0979 *

(0.0662) (0.0683) (0.0507)

Bus Fare Reduction -0.0002 -0.0123 -0.0947
(0.0630) (0.0647) (0.0701)

Line 5 Opening/Subway Fare 0.0525

     Reduction*Distance (0.1095)

Line 5 Opening/Subway Fare 0.0062

     Reduction*Distance
2

(0.0598)

Subway Fare Reduction*Distance 0.0905

(0.1788)

Subway Fare Reduction*Distance
2

-0.0558

(0.1002)

R
2

Number of Stations
N

(2) (3) (4) (5)

RDD regressions: Dependent variable is log of aggregate, daily API. Standard errors in parentheses. Newey-West 
standard errors with one-day lag. * = 10% significance, ** = 5% significance, *** = 1% significance. Regressions 
include all control variables used in Column 1 of Table 2 as well as separate linear time trends for the regimes Before 
Oddeven, Break, During OneDay69, and During OneDay78. DD regressions: Dependent variable is log of daily API at 
monitoring stations inside the restricted area. Robust standard errors clustered at the station level in parentheses. * = 
10% significance, ** = 5% significance, *** = 1% significance. Regressions include all control variables used in 
Column 3 of Table 5. In the top panel, separate linear time trends are allowed for the regimes Before OddEven, Break, 
and During OneDay and these are interacted with station fixed effects. In the bottom panel, linear and quadratic time 
trends are included in Columns 1 to 3; and linear time trends are interacted with station fixed effects in Columns 4 and 
5. The number of observations in the DD regressions is not evenly divisable by the number of stations due to missing 
values.

8,361

0.6188

1,096

(4)

8
8,361

Both

0.5975
8

(5)(3)
DD

DD

0.60600.6059

Both

0.6303

Bus Fare
Reduction

RD

Subway Fare

1,096 1,096

Line 5/
Subway Fare

0.59740.6188

0.6295

Line 5/

RD

Reduction

0.6179

Line 5/ Bus Fare

(1) (2)

Line 5/ Bus Fare

(1)

0.6299

Subway Fare Reduction Subway Fare Reduction

Bus Fare
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Appendix I 

Sensitivity of Policy Coefficients to Order of Polynomial Daily Time Trend in 
Regression of Log Hourly Television Viewership, N = 26,303 

"Self-Employed"

OneDay69*Restricted Hours 0.1883 *** 0.1161 *** 0.1219 *** 0.0832 *** 0.0872 *** 0.1203 *** 0.1684 ***

(0.0092) (0.0107) (0.0168) (0.0196) (0.0204) (0.0215) (0.0214)

OneDay78*Restricted Hours 0.2659 *** 0.1162 *** 0.1363 *** 0.1308 *** 0.1278 *** 0.1779 *** 0.2450 ***

(0.0096) (0.0181) (0.0216) (0.0216) (0.0218) (0.0228) (0.0231)

Prob > F (Time Trend) 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

"Hourly Workers"

OneDay69*Restricted Hours 0.1049 *** 0.0747 *** 0.0084 -0.0130 -0.0106 0.0153 0.0296
(0.0080) (0.0095) (0.0141) (0.0182) (0.0183) (0.0195) (0.0203)

OneDay78*Restricted Hours 0.1378 *** 0.0283 * -0.0452 ** -0.0459 ** -0.0418 ** -0.0138 0.0201
(0.0067) (0.0165) (0.0187) (0.0185) (0.0187) (0.0194) (0.0203)

Prob > F (Time Trend) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

 

Coefficents on selected policy variables in regression of log viewership on control variables and a polynomial time trend as in 
Table 7. Dependent variable is log number of thousands of individuals watching television each hour.  All regressions include the 
control variables shown in Table 7 as well as hour dummies, month-of-year dummies, and a dummy for the break period interacted 
with hour dummies. Standard errors clustered at the daily level in parentheses. * = 10% significance, ** = 5% significance, *** = 
1% significance. Separate time trends are allowed for the regimes: Before Oddeven, During OddEven, Break, and During OneDay. 

The F-test is the p-value for the joint significance level of the time trend variables. 
1
 Time trend during the break period becomes 

collinear above a 4th-order trend and are omitted.

6-Order
1

0-Order 1-Order 2-Order 3-Order 4-Order
1

5-Order
1
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Appendix J 
Coefficients on Interaction between Policy Variables and Hourly Dummies 

 
Panel A – “Self-Employed” Percentage Difference in Viewership during OneDay69 Period 
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Chart shows coefficients on interactions between the OneDay69 policy variable and hourly dummies in the regression of 
Columns 1 and 2 of Table 5 but with OneDay69 and OneDay78 interacted with each hour separately. Coefficients are shown 
only if significant at the 10% level or better. The vertical dotted lines demarcate the restricted period. 

 
Panel B – “Hourly Workers” Percentage Difference in Viewership during OneDay69 Period 
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Chart shows coefficients on interactions between the OneDay69 policy variable and hourly dummies in the regression of 
Columns 3 and 4 of Table 5 but with OneDay69 and OneDay78 interacted with each hour separately. Coefficients are shown 
only if significant at the 10% level or better. The vertical dotted lines demarcate the restricted period. 
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Appendix K 
Detailed Welfare Benefit Estimates 

 
Number of Restricted Activity Days: Matus, et al. (2012) provide an exposure-response (ER) function 
of 0.0541 (0.0475, 0.0608)4 additional restricted activity days per year-adult-µg/m3 increase in PM10 
concentration. A 13.2 µg/m3 decrease in PM10 concentration due to the driving restrictions and a 
Beijing adult population of 9.2 million implies 6.6 (5.8, 7.4) million fewer restricted activity days. 

Number of Acute Mortality Cases: Matus, et al. (2012) provide an ER function of a 0.06% (0.04%, 
0.08%) increase in the mortality rate per µg/m3 increase in PM10 concentration. Given total Beijing 
population of 10.9 million and a mortality rate of 0.55% (2007 data from Beijing Health Yearbook 
2008) this implies 477 (318, 637) fewer deaths per year from the pollution reduction under the driving 
restrictions. 

Acute Mortality Value –Lower Bound: Death from acute exposure normally hastens death by about 0.5 
years (Matus, et al., 2008). Therefore, a human-capital estimate of the value of lost life is one-half 
year’s wages or RMB 23,566 (average daily wage of RMB 189 for 125 work days per half-year). 
Applying this to the number of cases yields annual welfare gains of RMB 11 (8, 15) million. 

Acute Mortality Value –Upper Bound: Hammitt and Zhou (2006) use a contingent valuation method to 
estimate a mean value-of-statistical-life (VOSL) in Beijing of RMB 147.3 thousand.5 Applying the 
VOSL to the number of cases yields benefits of RMB 70 (47, 94) million. 
 

Appendix L 
Penalties for and Detection of Driving Restrictions Violations 

 
Violation penalties include monetary and time costs and depend on the detection method. Violators are 
immediately fined RMB 100 and incur a time cost because payment requires going to the relevant 
police station for documentation and then to a bank to pay. The latter step can be done online but only 
if the recipient has an account at the Industrial and Commercial Bank of China. The driver can delegate 
these tasks to someone with a lower cost of time by loaning them their national identity card. If a police 
officer detects the violation, it must be paid within fifteen days or interest is accrued at RMB 3 per day. 
For violations detected by cameras there is no immediate deadline. Regardless of how detected, the fine 
must be paid before renewal of the vehicle’s bi-annual registration. During our sample period, only one 
penalty could be issued per day.6 
 
A first-time violation would also trigger the loss of several fee waivers. Those complying with the 
OddEven restrictions received a waiver of three months’ vehicle taxes (about RMB 100)

7
 and highway 

maintenance fees (about RMB 330).
8
 During the OneDay period the waiver equaled one month’s fees. 

During both the OddEven and OneDay periods, a driver received a discount on auto insurance equal to 
the number of days their car was restricted. Although the precise amount depended on individual 
premiums, the average reduction was RMB 65 during the OneDay69 period.

9
 

 
Beijing had 1,958 traffic surveillance cameras as of March 31, 2009 and the number increased to 2,215 
by the end of 2009. This equals 0.13 cameras per square kilometer if equally spaced.10 As of October, 
2010 Beijing had about five thousand police officers to direct traffic.

11
 

                                                 
4 We provide lower and upper bounds in parentheses. 
5 The authors estimate a value of USD 16,000 (in 1999 terms). We convert to RMB as of July 1, 1999 (www.xe.com) and adjust 
for inflation using “Beijing by Data: 30 Years since Reform and Opening” (China Statistic Press, 2008). The authors’ survey 
methodology may understate VOSL by up to ten times (page 415). To be conservative, we use their main estimate. 
6 As of December 24, 2010 the law was changed to allow multiple citations to be issued per day. 
7 Annual vehicle taxes ranged from RMB 300 to 600 depending on vehicle size according to Beijing Local Taxation Bureau 
Document Nos. 329 (2004) and 339 (2007). 
8 Until December 31, 2008, monthly highway maintenance fees for passenger vehicles were RMB 22 for each seat of capacity 
according to the Beijing Highway Bureau (http://www.ylfzhj.bj.cn). For a common passenger vehicle with five seats the monthly 
fees would therefore be RMB 110. After December 31, 2008, the fees were absorbed into fuel taxes and not affected by a 
violation. 
9 According to China Insurance Regulatory Commission Beijing Bureau (http://www.china-
insurance.com/newscenter/newslist.asp?id=132329). 
10 Data from Beijing Traffic Management Bureau, accessed at http://www.bjjtgl.gov.cn. Density calculated based on Beijing’s 
land area of 16,411 square kilometers. 
11 According to http://www.chinanews.com/gn/2010/10-11/2579335.shtml. 
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Panel A: Comparison of Expected (Weekend) and Observed (Weekday) Distributions of Ending License Plate Numbers Entering a Beijing Parking Garage during 
Restricted Hours (7:00 am - 8:00 pm) from June 27 to July 3, 2010 - Regular Parkers 
 

The top panel shows the expected distribution from 
the two weekend days (June 27 and July 3). The 
second panel shows data for the Monday (June 28) 
restricted hours, when plate numbers “1” and “6” 
were banned: 

 The first two rows show the observed 
distribution of plate numbers. 

 The third row tests whether each plate’s 
proportion during the restricted hours is 
significantly greater than zero using a one-
tailed test. Plain text indicates that the 
proportion is not significantly greater than zero 
(plates “1,” “4,” and “6”) and bold indicates 
that it is statistically greater than zero (all other 
plates). 

 The fourth row tests whether the observed 
proportion of each non-restricted plate differs 
from the expected proportion using a two-tailed 
test. In doing so, we adjust the expected 
distribution for the fact that there should be no 
“1” and “6” plates (i.e., we compute the 
expected proportion assuming only the 
presence of the eight other plates). Bold 
significance levels indicate that the plate 
appears in statistically greater proportion than 
expected (none), those in bold italics indicate 
that it appears in significantly lower proportion 
than expected (plates “2” and “3”) and those in 
plain text that it is not significantly different 
(all others). 

The data for the other weekdays is in the same 
format. Restricted numbers are shown in boxes. 

Distribution 0 1 2 3 4 5 6 7 8 9 Total No Plate

Expected Distribution (Weekend)
Number 635 534 594 597 83 593 753 636 743 807 5,975 96
Percentage 10.6% 8.9% 9.9% 10.0% 1.4% 9.9% 12.6% 10.6% 12.4% 13.5% 100.0% 1.6%

Observed Distributions
Monday (1, 6 Restricted)

Number 398 45 312 315 54 380 67 400 486 490 2,947 28
Percentage 13.5% 1.5% 10.6% 10.7% 1.8% 12.9% 2.3% 13.6% 16.5% 16.6% 100.0% 1.0%

Different from Zero (SL)
1

0.0% 20.2% 0.0% 0.0% 15.8% 0.0% 10.6% 0.0% 0.0% 0.0%

Different from Expected (SL)
2

54.7% 3.2% 3.7% 67.3% 34.5% 50.8% 14.1% 93.8%

Tuesday (2, 7 Restricted)
Number 357 319 50 325 63 339 436 63 440 456 2,848 26
Percentage 12.5% 11.2% 1.8% 11.4% 2.2% 11.9% 15.3% 2.2% 15.4% 16.0% 100.0% 0.9%

Different from Zero (SL)
1

0.0% 0.0% 17.2% 0.0% 11.6% 0.0% 0.0% 11.6% 0.0% 0.0%

Different from Expected (SL)
2

34.3% 29.6% 18.8% 4.8% 44.9% 46.7% 31.2% 35.5%

Wednesday (3, 8 Restricted)
Number 353 270 327 31 43 351 453 393 75 447 2,743 29
Percentage 12.9% 9.8% 11.9% 1.1% 1.6% 12.8% 16.5% 14.3% 2.7% 16.3% 100.0% 1.1%

Different from Zero (SL)
1

0.0% 0.0% 0.0% 27.6% 20.4% 0.0% 0.0% 0.0% 7.3% 0.0%

Different from Expected (SL)
2

35.4% 4.7% 30.4% 30.7% 26.4% 15.2% 8.2% 30.9%

Thursday (4, 9 Restricted)
Number 382 375 333 369 0 409 492 372 526 79 3,337 29
Percentage 11.4% 11.2% 10.0% 11.1% 0.0% 12.3% 14.7% 11.1% 15.8% 2.4% 100.0% 0.9%

Different from Zero (SL)
1

0.0% 0.0% 0.0% 0.0% N/A
4

0.0% 0.0% 0.0% 0.0% 8.3%

Different from Expected (SL)
2

29.9% 14.9% 3.8% 56.4% 22.1% 71.4% 13.6% 5.7%

Friday (0, 5 Restricted)
Number 69 349 340 373 46 68 402 348 497 533 3,025 39
Percentage 2.3% 11.5% 11.2% 12.3% 1.5% 2.2% 13.3% 11.5% 16.4% 17.6% 100.0% 1.3%

Different from Zero (SL)
1

10.2% 0.0% 0.0% 0.0% 20.0% 10.6% 0.0% 0.0% 0.0% 0.0%

Different from Expected (SL)
2

26.8% 33.8% 66.6% 60.9% 2.2% 8.8% 7.4% 10.5%

Ending license plate numbers of autos entering a Beijing parking garage inside the 4th Ring Road collected by authors. 
1
 SL = significance level. Bold indicates 

significantly greater than zero (at the 10% level or better) using a one-tailed equality of proportions test. 
2
 SL = significance level. Bold indicates significantly greater (at 

the 10% level or better) than expected proportion (assuming restricted plates occur in proportion zero) using a two-tailed equality of proportions test and bold, italics 

significantly lower. 
3
 No observations - significance level is undefined. Boxes indicate restricted plate numbers on that day.  
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Panel B: Comparison of Expected (Weekend) and Observed (Weekday) Distributions of Ending License Plate Numbers Entering a Beijing Parking Garage during Non-
Restricted Weekday Hours (9:00 pm - 6:00 am) from June 27 to July 3, 2010 - Regular Parkers 
 

The top panel shows the expected distribution from 
the two weekend days (June 27 and July 3). The 
second panel shows data for the Monday (June 28) 
non-restricted hours: 

 The first two rows show the observed 
distribution of plate numbers. 

 The third row provides test statistics comparing 
the observed proportion of each plate to the 
expected based on a two-tailed test. Bold font 
indicates that the observed proportion is 
significantly greater than expected (none), bold 
italics lower (none), and plain text not 
significantly different (all plates). 

The data for the other weekdays is in the same 
format. Restricted numbers are shown in boxes. 
 

Distribution 0 1 2 3 4 5 6 7 8 9 Total No Plate

Expected Distribution (Weekend)
Number 635 534 594 597 83 593 753 636 743 807 5,975 96
Percentage 10.6% 8.9% 9.9% 10.0% 1.4% 9.9% 12.6% 10.6% 12.4% 13.5% 100.0% 1.6%

Observed Distributions
Monday (1, 6 Restricted)

Number 7 3 4 2 1 3 7 4 7 4 42 2
Percentage 16.7% 7.1% 9.5% 4.8% 2.4% 7.1% 16.7% 9.5% 16.7% 9.5% 100.0% 4.8%

Different from Expected (SL)1 20.6% 68.4% 92.8% 25.9% 58.5% 54.8% 42.9% 81.4% 40.8% 45.1%

Tuesday (2, 7 Restricted)
Number 13 9 2 9 1 4 11 6 14 7 76 2
Percentage 17.1% 11.8% 2.6% 11.8% 1.3% 5.3% 14.5% 7.9% 18.4% 9.2% 100.0% 2.6%

Different from Expected (SL)1 7.0% 37.9% 3.4% 59.3% 95.7% 17.6% 62.6% 43.9% 11.7% 27.5%

Wednesday (3, 8 Restricted)
Number 7 4 2 6 2 5 9 5 5 5 50 2
Percentage 14.0% 8.0% 4.0% 12.0% 4.0% 10.0% 18.0% 10.0% 10.0% 10.0% 100.0% 4.0%

Different from Expected (SL)1 44.2% 81.7% 16.1% 63.7% 11.9% 98.6% 25.3% 88.3% 60.3% 47.0%

Thursday (4, 9 Restricted)
Number 1 2 4 0 0 2 8 1 1 0 19 0
Percentage 5.3% 10.5% 21.1% 0.0% 0.0% 10.5% 42.1% 5.3% 5.3% 0.0% 100.0% 0.0%

Different from Expected (SL)1 44.8% 80.9% 10.7% 14.6% 60.5% 93.0% 0.0% 44.7% 34.4% 8.5%

Friday (0, 5 Restricted)
Number 6 9 13 10 3 3 14 9 11 5 83 0
Percentage 7.2% 10.8% 15.7% 12.0% 3.6% 3.6% 16.9% 10.8% 13.3% 6.0% 100.0% 0.0%

Different from Expected (SL)1 31.7% 54.6% 8.5% 53.5% 8.9% 5.5% 24.6% 95.3% 82.3% 4.7%

Ending license plate numbers of autos entering a Beijing parking garage inside the restricted area collected by authors.
1
 SL = significance level. Bold indicates significantly 

greater (at the 10% level or better) than expected proportion using a one-tailed equality of proportions test, bold italics indicates significantly less (at the 10% level or better) 
than expected proportion using a two-tailed equality of proportions test. Boxes indicate restricted plate numbers on that day.
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Panel C: Comparison of Expected (Weekend) and Observed (Weekday) Distributions of Ending License Plate Numbers Entering a Beijing Parking Garage during 
Restricted Hours (7:00 am - 8:00 pm) from June 27 to July 3, 2010 - Monthly Parkers 
 

The top panel shows the expected distribution from 
the two weekend days (June 27 and July 3). The 
second panel shows data for the Monday (June 28) 
restricted hours, when plate numbers “1” and “6” 
were banned: 
 The first two rows show the observed 

distribution of plate numbers. 
 The third row tests whether each plate’s 

proportion during the restricted hours is 
significantly greater than zero using a one-tailed 
test. Plain text indicates that the proportion is not 
significantly greater than zero (plates “1,” “4”, 
and “6”) and bold indicates that it is statistically 
greater than zero (all other plates). 

 The fourth row tests whether the observed 
proportion of each non-restricted plate differs 
from the expected proportion using a two-tailed 
test. In doing so, we adjust the expected 
distribution for the fact that there should be no 
“1” and “6” plates (i.e., we compute the 
expected proportion assuming only the presence 
of the eight other plates). Bold significance 
levels indicate that the plate appears in 
statistically greater proportion than expected 
(plates “3” and “5”), those in bold italics indicate 
that it appears in significantly lower proportion 
than expected (plate “8”) and those in plain text 
that it is not significantly different (all others). 

The data for the other weekdays is in the same 
format. Restricted numbers are shown in boxes. 

Distribution 0 1 2 3 4 5 6 7 8 9 Total No Plate

Expected Distribution (Weekend)
Number 14 20 15 7 1 9 27 20 29 26 168 3
Percentage 8.3% 11.9% 8.9% 4.2% 0.6% 5.4% 16.1% 11.9% 17.3% 15.5% 100.0% 1.8%

Observed Distributions
Monday (1, 6 Restricted)

Number 46 3 46 56 6 60 6 60 58 70 411 1
Percentage 11.2% 0.7% 11.2% 13.6% 1.5% 14.6% 1.5% 14.6% 14.1% 17.0% 100.0% 0.2%

Different from Zero (SL)
1

0.8% 44.1% 0.8% 0.1% 38.3% 0.1% 38.3% 0.1% 0.1% 0.0%

Different from Expected (SL)
2

96.9% 77.4% 1.6% 57.6% 3.3% 66.7% 1.3% 31.0%

Tuesday (2, 7 Restricted)
Number 26 27 3 21 3 28 36 5 44 42 235 3
Percentage 11.1% 11.5% 1.3% 8.9% 1.3% 11.9% 15.3% 2.1% 18.7% 17.9% 100.0% 1.3%

Different from Zero (SL)
1

3.6% 3.1% 42.2% 7.6% 42.2% 2.6% 0.5% 37.1% 0.1% 0.1%

Different from Expected (SL)
2

78.7% 39.3% 17.3% 61.9% 9.3% 28.4% 58.1% 80.7%

Wednesday (3, 8 Restricted)
Number 36 29 51 3 3 43 36 49 11 51 312 2
Percentage 11.5% 9.3% 16.3% 1.0% 1.0% 13.8% 11.5% 15.7% 3.5% 16.3% 100.0% 0.6%

Different from Zero (SL)
1

1.5% 4.2% 0.1% 43.2% 43.2% 0.4% 1.5% 0.1% 26.3% 0.1%

Different from Expected (SL)
2

66.0% 10.3% 12.7% 80.4% 2.6% 2.4% 73.6% 51.9%

Thursday (4, 9 Restricted)
Number 25 23 21 27 0 34 38 26 31 11 236 2
Percentage 10.6% 9.7% 8.9% 11.4% 0.0% 14.4% 16.1% 11.0% 13.1% 4.7% 100.0% 0.8%

Different from Zero (SL)
1

4.3% 5.8% 7.6% 3.1% N/A
4

0.8% 0.3% 3.6% 1.5% 23.2%

Different from Expected (SL)
2

72.1% 25.2% 68.3% 2.4% 1.2% 58.2% 46.0% 8.8%

Friday (0, 5 Restricted)
Number 1 47 41 54 3 9 66 61 59 66 407 4
Percentage 0.2% 11.5% 10.1% 13.3% 0.7% 2.2% 16.2% 15.0% 14.5% 16.2% 100.0% 1.0%

Different from Zero (SL)
1

48.0% 0.7% 1.6% 0.2% 44.1% 32.6% 0.0% 0.1% 0.1% 0.0%

Different from Expected (SL)
2

54.1% 99.5% 0.4% 93.7% 58.5% 65.0% 15.1% 72.0%

Ending license plate numbers of autos entering a Beijing parking garage inside the 4th Ring Road collected by authors. 
1
 SL = significance level. Bold indicates 

significantly greater than zero (at the 10% level or better) using a one-tailed test. 
2

SL = significance level. Bold indicates significantly greater (at the 10% level or better) 
than expected proportion (assuming restricted plates occur in proportion zero) using a two-tailed test and bold, italics significantly lower. 3 No observations - 
significance level is undefined. Boxes indicate restricted plate numbers on that day.

 


