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Abstract

In this paper, we propose a Vuong (1989)-type model selection test for conditional moment in-

equality models. The test uses a new average generalized empirical likelihood (AGEL) criterion

function designed to incorporate full restriction of the conditional model. We also introduce a new

adjustment to the test statistic making it asymptotically pivotal whether the candidate models are

nested or nonnested. The test uses simple standard normal critical value and is shown to be asymp-

totically similar, to be consistent against all fixed alternatives and to have nontrivial power against

n−1/2-local alternatives. Monte Carlo simulations demonstrate that the finite sample performance of

the test is in accordance with the theoretical prediction.

JEL classification: C12, C52

Keywords: Asymptotic size, Model selection test, Conditional moment inequalities, Partial identi-

fication, Generalized empirical likelihood
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1 Introduction

Conditional moment inequality (CMI) models have been increasingly recognized as a convenient and

useful statistical formulation of many nonstandard economic programs. Such models are shown to

arise naturally in models with missing data (e.g. Manski and Pepper (2000)), in games with multiple

equilibria (e.g. Ciliberto and Tamer (2009)), in large scale dynamic games (e.g. Pakes, Porter, Ho

and Ishii (2007)) and in differentiated product demand models with measurement error (Gandhi,

Lu and Shi (2012)). Methods for parameter inference for such models have become abundant by

now, however, there has been no method available to assist practitioners to choose between different

CMI specifications. This paper fills in this gap by proposing a Vuong (1989)-type model selection

test that allows one to choose between two CMI models according to their distance to the true data

distribution. We show that the test has correct asymptotic size no matter the candidate models are

nested, overlapping or strictly nonnested, is consistent against all fixed alternatives and has nontrivial

n−1/2-local power.

Our test is set up in a CMI context allowing for partial identification, but it is worth noting that we

do not require partial identification. In fact, our test has general applicability to the problem of model

selection among partially identified CMI models, point identified CMI models, partially identified

conditional moment equality models and point identified conditional moment equality models, as

well as selection across these four types of models. To the best of our knowledge, our test is the first

model selection test available for any of these model selection testing scenarios.

From a technical point of view, this paper builds upon the empirical process arguments in Shi

(2009a). However, the conditional models are substantially different from the unconditional models

studied in Shi (2009a). In particular, we face two new challenges. First of all, the exponential tilting

criterion function used in Shi (2009a) allows only finite number of moment inequalities and thus

does not apply to the CMI models, where the CMI’s imply infinite number of unconditional moment

inequalities. Instead, we propose a new criterion function, namely the average generalized empirical

likelihood (AGEL) criterion function. To form the AGEL function, we first transform the CMI’s into

equivalent infinite number of unconditional moment inequalities following Andrews and Shi (2013;

AS hereafter), and then take a weighted average of the generalized empirical likelihood of the models

defined by each (set of) unconditional moment inequality (-ies). The weighted average defines the

AGEL function and preserves the full model restriction of the CMI model.

Secondly, an essential feature of the unconditional moment inequalities transformed from the

CMI’s is that many of the moment functions have variance arbitrarily close to zero. This creates new

challenges in proving the convergence rate of the GEL nuisance parameters (which is a necessary

step in deriving the asymptotic distribution of our test statistic) that is not faced in Shi (2009a). We

deal with this by introducing a careful truncation of the weighted average.
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One challenge that we share with Shi (2009a) is the possible degeneracy of the asymptotic dis-

tribution of the pseudo-likelihood ratio statistic. We propose a different solution than Shi (2009a).

Specifically, we introduce a new adjustment to the pseudo-likelihood ratio statistic, making it asymp-

totically pivotal (in fact, standard normal) under the null regardless of the true data distribution or

the relationship between the candidate models. As a result, our test simply uses the standard normal

critical value and achieves asymptotic similarity. The adjustment simplifies the split sample idea of

Yachew (1992) and achieves the same purpose as the latter.

Besides Shi (2009a), this paper is related to a large literature on model selection test following

Vuong (1989). A literature review can be found in the introduction of Shi (2009a). We only note here

that none of those papers deal with conditional moment (either equality or inequality) models. This

paper is also related to the empirical likelihood approaches for parameter inference in conditional

moment equality models proposed in Donald, Imbens and Newey (2003) and Kitamura, Tripathi and

Ahn (2004). Our AGEL criterion function differs from both. We choose the AGEL criterion func-

tion primarily for tractability in the context of (potentially) partially identified conditional moment

inequality models.

The rest of the paper is organized as follows. Section 2 presents the model selection problem of

our interest and gives several motivating examples. Section 3 establishes the AGEL criterion function

to measure the distance between the CMI models and the true distribution. The model selection

test is proposed in Section 4. Section 5 summarizes the uniform asymptotic size property of our test

and and Section 6 summarizes the power properties against fixed alternative and local alternatives.

Section 7 discusses possible extensions in three different directions. Section 8 presents Monte-Carlo

simulation results for a missing data example and Section 9 concludes. All mathematical proofs are

contained in the Appendix.

2 Model Selection problems

We consider two conditional moment inequality/equality models P1 =
⋃
θ1∈Θ1

P1,θ1 and P2 =⋃
θ2∈Θ2

P2,θ2 , where P1,θ1 and P2,θ2 are the set of distributions that are consistent with the moment

conditions for parameters θ1 and θ2, respectively:1

P1,θ1 =

{
P : EP [m1,j(W, θ1)|X] = 0 a.s. [Px] for j = 1, ..., p1,

EP [m1,j(W, θ1)|X] ≥ 0 a.s. [Px] for j = p1 + 1, ..., k1.

}

P2,θ2 =

{
P : EP [m2,j(W, θ2)|X] = 0 a.s. [Px] for j = 1, ..., p2,

EP [m2,j(W, θ2)|X] ≥ 0 a.s. [Px] for j = p2 + 1, ..., k2.

}
(2.1)

1We start with models with the same conditioning variables and later extend our theory to allow the conditioning

variables to differ.
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In the above equation, {Wi = (Y ′i , X
′
i) ∈ W}ni=1 is a random sample generated from P0, a generic

true distribution on W. Also, Yi ∈ Y ⊆ Rdy , Xi ∈ X ⊆ Rdx , W = Y × X . The notation EP denotes

the expectation under the distribution P and Px the marginal distribution of X implied by P . The

true distribution P0 may or may not belong to either model. For s = 1 and 2, ms ≡ (ms,1, ...,ms,ps ,

ms,ps+1, ...,ms,ks)
′ are Rks -valued moment functions known up to the finite-dimensional parameters

θs ∈ Θs ⊂ Rdθs . Model Ps is called correctly specified if P0 ∈ Ps and is called misspecified

otherwise. The parameters θs may or may not be point-identified.

The goal of this paper is to compare models P1 and P2 and select the one that is closer to the

true distribution P0 in terms of a pseudo-distance measure. Let dL(Ps, P0) be the pseudo-distance

measure that will be defined later. We want to construct model selection tests for the null hypothesis

H0 : dL(P1, P0) = dL(P2, P0). (2.2)

Now, we give a few illustrative examples of model selection problems in the context of conditional

moment inequalities. The examples extend those in Shi (2009a).

Example 1 (Interval Outcome in Regression Models). Consider the regression models with

interval outcomes from Manski (2005). It is of interest to select different regressors or functional

forms for the regression functions. To be more specific, let Y be a latent random variable (e.g.

wealth or income) that is not perfectly observed. Instead, we observe an upper bound and a lower

bound on Y , say Y and Y , respectively. For a vector of covariates X and a function r1(X, θ1) that

is known up to a finite-dimensional parameter θ, let Y = r1(X, θ1) + ε. Suppose Z is a vector of

instrument variables such that E(ε|Z) = 0 a.s. [Pz]. Then, the model P1 is

P1 = {P :EP [Y − r1(X, θ1)|Z] ≥ 0 a.s. [Pz] and

EP [r1(X, θ1)− Y |Z] ≥ 0 a.s. [Pz], θ1 ∈ Θ1.} (2.3)

The distribution P are defined on the space of the observed random variables (Y , Y , X, Z). For

model P2, the r1(X, θ1), θ1 and Θ1 in (2.3) are replaced with r2(X, θ2), θ2 and Θ2, respectively. A

model selection test is to determine whether P1 or P2 is closer to the true distribution.

Example 2 (Interval Regressor in Regression Models). Consider the regression models with

interval regressors from Manski (2005). Let Y be a dependent variable and X be a set of covariates.

Also, let v be a regressor that is not observed perfectly but we observe an upper bound and a lower

bound on v, say v and v. Assume that E(Y |X, v) = f(x, v, θ), where f is a function known up to the

finite-dimensional parameter θ. Manski (2005) assumes that f is weakly increasing in v, and obtains

the following moment inequality model:

P1 = {P :EP [Y − f(x, v, θ1)|X] ≥ 0 a.s. [Px], and
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EP [f(x, v, θ1)− Y |X] ≥ 0 a.s. [Px], θ1 ∈ Θ1.} (2.4)

The distribution P are defined on the space of the observed random variables (Y, v, v,X).

On the other hand, if we assume that f is weakly decreasing in v, we have a different moment

inequality model:

P2 = {P :EP [Y − f(x, v, θ2)|X] ≤ 0 and

EP [f(x, v, θ2)− Y |X] ≤ 0 a.s. [Px], θ2 ∈ Θ2.} (2.5)

By comparing models P1 and P2, one can determine which model is closer to the true data distribu-

tion. If one has the prior information that one of the model is true, the test then helps one determine

the sign of ∂f/∂v.

Example 3 (Entry Game – Cross-firm Effect). Consider the entry game model from Andrews,

Berry and Jia (2004) and Ciliberto and Tamer (2009). Consider a 2×2 entry game with the following

payoff matrix:

Firm 2

0 1

Firm 1 0 0, 0 0, X ′2β2 − ε2

1 X ′1β1 − ε1, 0 X1θ1 + a1 − ε1, X2θ2 + a2 − ε2

The observable random variables are the market characteristics X ≡ (X1, X2)′ and the game outcome

Y . The variable Y may take four values: (0, 0), (0, 1), (1, 0) and (1, 1), where the first number in the

parenthesis is the equilibrium action of firm 1 and the second number, the equilibrium action of firm

2. The coefficients β1 and β2 are the marginal effects of the characteristics X on profits, and ε1 and

ε2 are the unobserved components of the firms’ profits. The parameters a1 and a2 are the cross-firm

effects, which are the effects of the firms on their opponents’ profit when they are on the market at

the same time.

Let Fε1,ε2(·, ·; θε) denote the joint c.d.f. of ε1 and ε2, Fε1(·;βε) the marginal c.d.f. of ε1, and

Fε2(·; θε) the marginal c.d.f. of ε2. The c.d.f.s are known to the econometrician up to the finite-

dimensional parameter βε. Assume that the firms have full information about their own and their

opponents’ payoffs and play a simultaneous-move Nash game.

Andrews, Berry and Jia (2004) assume a1 ≤ 0 and a2 ≤ 0 and obtain the following moment

inequality model:

P1 = {P :EP [pj(X, θ1)− 1(Y = j)|X] = 0, for j = (0, 0) or (1, 1),

EP [pj(X, θ1)− 1(Y = j)|X] ≥ 0, for j = (0, 1), or (1, 0) a.s. [Px],
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θ1 ≡ (β′1, β
′
2, a1, a2, β

′
ε) ∈ Θ1.} (2.6)

where

p(0,0)(X, θ1) = 1− Fε1(X ′1β1; θε)− Fε2(X ′2β2;βε) + Fε1,ε2(X ′1θ1, X
′
2β2; θε),

p(0,1)(X, θ1) = Fε2(X ′2β2;βε)− Fε1,ε2(X ′1β1 + a1, X
′
2β2;βε),

p(1,0)(X, θ1) = Fε1(X ′1β1;βε)− Fε1,ε2(X ′1β1, X
′
2β2 + a2;βε),

p(1,1)(X, θ1) = Fε1,ε2(X ′1β1 + a1, X
′
2β2 + a2;βε). (2.7)

If we assume the cross-firm effects have different signs as in Andrews, Berry and Jia (2004), we

obtain a different moment inequality model:

P2 = {P :EP [pj(X, θ2)− 1(Y = j)|X] ≥ 0, for j = (0, 0) or (1, 1),

EP [pj(X, θ2)− 1(Y = j)|X] = 0, for j = (0, 1), or (1, 0) a.s. [Px],

θ2 ≡ (β′1, β
′
2, a1, a2, β

′
ε) ∈ Θ2.} (2.8)

where pj , j = (0, 0), (1, 1), (0, 1) and (1, 0) are defined in (2.7).

A model selection test comparing the two models can determine which sign of the cross-firm

effects is more consistent with the data. Such test is useful especially when there are reasons to be

unsure about the signs of a1 and a2 in some markets. For example, in a shopping center, one retail

stores may worry about the other store stealing its business, but on the other hand may benefit from

the casual shoppers that the other store attracts to the shopping center. The overall sign of the

cross-firm effect then becomes an empirical question.

3 Preliminaries

3.1 Pseudo-distance Measure

To define our pseudo-distance measure, we first use AS’s method to transform the conditional mo-

ment equality/inequality to infinitely many number of unconditional moment equalities/inequalities

without loss of information. That is, we choose a collection of instrument functions G = {g` : X →
[0, 1] : ` ∈ L} for an index set L to make sure, for s = 1, 2, and every θs ∈ Θs,

Ps,θs =

{
P : EP [ms,j(W, θs)g`(X)] = 0 a.s. for j = 1, · · · , ps

EP [ms,j(W, θs)g`(X)] ≥ 0 a.s. for j = ps + 1, · · · , ks, for all ` ∈ L.

}
(3.1)

AS give a list of G sets that can ensure that the above equation hold. Here, we impose an assumption

on X and focus on two types of G for simplicity.
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Assumption 3.1 X is a Cartesian product of compact intervals, X =
∏dx
j=1[x`j , xuj ] and without

loss of generality, we assume X =
∏dx
j=1[0, 1].

The first G we consider is the indicator functions of countable hyper cubes:

Gc-cube = {g`(·) = 1(· ∈ C`) : ` ≡ (x, r) ∈ Lc-cube} , where

C` =
(
×dxj=1[xj , xj + r]

)
∩ X and

Lc-cube =
{

(x, (2q)−1) : 2q · x ∈ {0, 1, 2, · · · , 2q − 1}dx , and q = q0, q0 + 1, · · ·
}
, (3.2)

where q0 is a natural number. Note that for each q, {C` : ` ∈ Lc-cube and r = (2q)−1} forms a

partition of X . The set Gc-cube is an example given in AS and Lemma 1 of AS guarantees that it

satisfies equation (3.1)

The second G that we consider is the indicator functions of a continuum of hypercubes:

Gcube = {g`(·) = 1(· ∈ C`) : ` ∈ Lcube} , where Lcube = {(x, r) : x ∈ [0, 1− r]dx , r ∈ (0, r̄]}, (3.3)

for some r̄ > 0. The set Gcube is similar to AS’s Gbox except that all edges of a hypercube in Gcube

are of the same length. Note that Gc-cube is a subset of Gcube. Therefore, Gcube also guarantees (3.1)

We will define the pseudo-distance from Ps to P0 to be the infimum of the pseudo-distance from

Ps,θs to P0 over θs ∈ Θs. Thus, we need to define the latter distance first. To do so, we first define

the `-th supermodel of Ps,θs as

Ps,θs,` =

{
P : EP [ms,j(W, θs)g`(X)] = 0 a.s. for j = 1, · · · , ps

EP [ms,j(W, θs)g`(X)] ≥ 0 a.s. for j = ps + 1, · · · , ks,

}
(3.4)

for each ` ∈ L. The term “supermodel” is used to indicate the fact that Ps,θs ⊆ Ps,θs,`. Then, for

each θs ∈ Θs and each ` ∈ L, Ps,θs,` is an unconditional moment inequality model covered in Shi

(2009a).

Like in Shi (2009a), we can define the GEL distance from Ps,θs,` to P0

d(Ps,θs,`, P0) = Ψ

(
sup

γs∈Γs(θs)
EP0

[
κ
(
γ′sms(X, θs)g`(X)

)])
, (3.5)

where κ(·) : K → R is a strictly concave function defined on a subset K of R, Ψ(·) : R → R is a

strictly increasing function and Γs(θs) = {γs ∈ Rps × Rks−ps+ : γ′sms(x, θs) ∈ K for all x ∈ X}. The

functions κ(·) and Ψ(·) are user chosen and determine which of the GEL distances one is using. The

common choices of the GEL distances include the empirical likelihood (EL), the exponential tilting

(ET) and the continuous updating GMM (CUE), which corresponds to (κ(y) = log(1 − y), K =

(−∞, 1), Ψ(κ) = κ), (κ(y) = 1−ey, K = R, Ψ(κ) = − log(1−κ)), and (κ(y) = (1−(y+1)2)/2, K =
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R, Ψ(κ) = κ), respectively.2 Other choices can be used as well, as long as the following assumption

is satisfied:

Assumption 3.2 (i) κ(·) is strictly concave, three times continuously differentiable with κ(0) = 0,

and κ′(0) = κ′′(0) = −1.

(ii) Ψ(·) is strictly increasing and is twice continuously differentiable with Ψ(0) = 0 and Ψ′(0) = 1.

We then define the pseudo-distance from Ps,θs to P0 to be a weighted average of d(Ps,θs,`, P0)

across ` ∈ L:

dL(Ps,θs , P0) =

∫
L
d(Ps,θs,`, P0)dF (`), (3.6)

where F (`) is a probability measure whose support contains L. Because the new pseudo-distance

is an average of the GEL distances, we refer to it by the average generalized empirical likelihood

distance (AGEL). Finally, we define the distance from Ps to P0 as

dL(Ps, P0) = inf
θs∈Θs

dL(Ps,θs , P0) = inf
θs∈Θs

∫
L
d(Ps,θs,`, P0)dF (`). (3.7)

Note that different choices of F (`), κ(·) or Ψ(·) will produce different pseudo-distance measures. If

both P1 and P2 are misspecified, different choices of the pseudo-distance measures do not necessarily

agree on which model is closer to P0. On the other hand, in Lemma A.6 in the appendix, we show

that dL(Ps, P0) ≥ 0 and dL(Ps, P0) = 0 iff P0 ∈ Ps. This holds for general choices of F (`), κ(·) or

Ψ(·). This implies that if P0 ∈ P1 and P0 6∈ P2, then 0 = dL(P1, P0) < dL(P2, P0), i.e. P1 is closer

to P0 than P2 no matter what F (`), κ(·) or Ψ(·) to use. This is an important property because it

means that the model selection test can determine (up to statistical error) which model is correctly

specified when one has the prior information that one of them is.

3.2 A Uniqueness Assumption

Next we introduce a uniqueness assumption that extends the unique pseudo-true distribution as-

sumption in Shi (2009a). This assumption allows the model selection test to be of a simple form.

Let the optimal value of Lagrange multiplier γ for each ` and each θs be

γ∗s,`,P0
(θs) = arg max

γs∈Γs(θs)
EP0

[
κ
(
γ′sms(W, θs)g`(X)

)]
. (3.8)

Assumptions that we impose later for our main results will guarantee that γ∗s,`,P0
(θs) exists (that is,

is finite) and is unique, for every ` ∈ L and θs ∈ Θs. With γ∗s,`(θs, P0) defined, we can write

dL(Ps,θs , P0) =

∫
L
κ
(
γ∗′s,`,P0

(θs)ms(W, θs)g`(X)
)
dF (`). (3.9)

2In the CUE case, the distance measure is equivalent to the the GMM criterion function with the continuously

updating weighting matrix being the inverse of the non-recentered covariance matrix.
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Our assumptions will also guarantee that dL(Ps,θs , P0) is continuous in θs ∈ Θs and that Θs is

compact. Given those, the following set is well defined:

Θ∗s(P0) = arg min
θs∈Θs

dL(Ps,θs , P0). (3.10)

We call this set the Pseudo-true Set as an analogue to the “pseudo-true value” in potentially mis-

specified point identified models. If the model is correctly specified, that is, if P0 ∈ Ps, then Θ∗s(P0)

is the identified set. One of the important features of conditional moment inequality model is that

their identified set can contain more than one point. We respect this feature and allow (but do not

require) Θ∗s(P0) to contain more than one value.

While we allow the pseudo-true set to be multi-valued, one uniqueness condition is needed to

give the model selection test that we propose in the next section a simple form. This uniqueness

condition is stated below:

Assumption 3.3 γ∗s,`,P0
(θs)

′ms(W, θs)g`(X) = γ∗s,`,P0
(θ∗s)

′ms(W, θ
∗
s)g`(X) a.s. [P0] for all ` ∈ L and

θs, θ
∗
s ∈ Θ∗s(P0).

Assumption 3.3 is similar to and serves the same purpose as the unique pseudo-true distribution

assumption in Shi (2009a), although it is difficult to give it a pseudo-true distribution interpretation

in the conditional models here. Like the unique pseudo-true distribution assumption, Assumption

3.3 is automatically satisfied if the model is correctly specified (still partially identified) because

γ∗s,`,P0
(θs) = 0 for all θs ∈ Θ∗s(P0) and for all ` ∈ L in that case. It is also automatically satisfied

when (a) the model is misspecified and Θ∗s(P0) is a singleton, and (b) Θ∗s(P0) is not a singleton, but

we can reparametrize the model so that the new parameter has a unique pseudo-true value.

Because Assumption 3.3 is automatically satisfied in the above cases, it is innocuous in the

following important model selection testing scenarios:

• conventional nested testing, in which the correct specification of the bigger (less restrictive)

model is maintained,

• nonnested testing in which one has the prior knowledge that one of the models is correctly

specified,

• nested or nonnested testing in which the conditional moment inequality models are point iden-

tified. Point identified CMI models are important special cases of CMI models, and their use

has been studied in Moon and Schorfheide (2009), among others, and

• nested or nonnested testing for point identified conditional moment equality models.

In the cases other than those, Assumption 3.3 can be restrictive, and we discuss a way to relax

this assumption in Section 7.
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4 Model Selection Test

In this section, we introduce our model selection test. The test is based on the pseudo-likelihood

ratio statistic and uses a standard normal critical value. We introduce both a 2-sided version and a

1-sided version of the test.

The pseudo-likelihood ratio statistic is the sample analogue estimator of LRP0 := dL(P1, P0) −
dL(P2, P0): 3

L̂Rn = d̂L(P1, P0)− d̂L(P2, P0) (4.1)

where

d̂L(Ps, P0) = min
θs∈Θs

∫
Lrn

Ψ

[
n−1

n∑
i=1

κ(γ̂s,`,n(θs)
′ms(Wi, θs)g`(Xi))

]
dF (`) (4.2)

with Lrn = {` ∈ L : r ≥ rn} for rn being a positive sequence that converges to zero as n→ 0, and

γ̂s,`,n(θs) = arg min
γs∈Rps×Rks−ps+

n−1
n∑
i=1

κ(γ′sms(Wi, θs)g`(Xi)). (4.3)

Notice that in d̂L(Ps, P0), the integrations is over Lrn instead of L. We use the trimming argument

to control the estimation accuracy of γ̂s,`,n(·) when the last element of ` is small. We pick rn to

balance the estimation accuracy of γ̂n and the approximation quality of dLrn (Ps, P0) for dL(Ps, P0).

The pseudo-likelihood ratio statistic L̂Rn can be shown to satisfy n1/2(L̂Rn−LRP0)→d N(0, ω2
P0

)

under regularity conditions for

ω2
P0

= EP0(Λ∗P0,i)
2, where

Λ∗P0,i =

∫
L

{
Ψ′(M∗1,`,P0

)
[
κ
(
γ∗1,`,P0

(θ∗1)′m1(W, θ∗1)g`(X)
)
−M∗1,`,P0

]
−Ψ′(M∗2,`,P0

)
[
κ
(
γ∗2,`,P0

(θ∗2)′m2(W, θ∗2)g`(X)
)
−M∗2,`,P0

]}
dF (`), for

M∗s,`,P0
= EP0

[
κ
(
γ∗s,`,P0

(θ∗s)
′ms(W, θ

∗
s)g`(X)

)]
, and

θ∗s ∈ Θ∗s(P0), for s = 1 and 2. (4.4)

This weak convergence result can be used to build a hypothesis test when two additional problems

are solved.

The first problem is standard – the asymptotic variance ω2
P0

needs to be estimated and used to

studentize L̂Rn. To estimate ω2
P0

, we use ω̂2
n = sup

θs∈Θ̂s,n, s=1,2
ω̂2
n(θ1, θ2), where

Θ̂s,n = arg min
θs∈Θs

∫
Lrn

Ψ[M̂s,`,n(θs)]dF (`), and

3Notice that here the population “pseudo”-likelihood ratio has the opposite interpretation as the likelihood ratio in

a parametric model in that here LRP0 > 0 means Model 2 is better (closer to P0) than Model 1.
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ω̂2
n(θ1, θ2) =

1

n

n∑
i=1

[ ∫
Lrn

Ψ′(M̂1,`,n(θ1))
[
κ
(
γ̂1,`,n(θ1)′m1(Wi, θ1)g`(Xi)

)
− M̂1,`,n(θ1)

]
−Ψ′(M̂2,`,n(θ2))

[
κ
(
γ̂2,`,n(θ2)′m2(Wi, θ2)g`(Xi)

)
− M̂2,`,n(θ2)

]}
dF (`)

]2

, for

M̂s,`,n(θs) = n−1
n∑
i=1

κ(γ̂s,`,n(θs)
′ms(Wi, θs)g`(Xi)), for s = 1, 2. (4.5)

The set Θ̂s,n is not necessarily singleton, which is why we define ω̂2
n to be a supremum over points in

Θ̂1,n × Θ̂2,n. However, we note that in theory, we can use ω̂2
n(θ̂1,n, θ̂1,n) as ω̂2

n for any θ̂s,n ∈ Θ̂s,n. In

practice, different points (θ′1, θ
′
2)′ ∈ Θ̂1,n × Θ̂2,n typically produce the same ω̂2

n(θ1, θ2).

The second and trickier problem is the possibility that ω2
P0

= 0. This possibility happens when

Λ∗0 = 0 a.s., in particular, when both models are correctly specified. When it happens, the noise in the

estimation of Θ∗s(P0) will dominate and cause the studentized L̂Rn not to have a simple asymptotic

distribution. This problem is the same as that studied in Shi (2009b) in regular point-identified

models, but unfortunately does not have a neat solution as that in Shi (2009b) due to the partial

identification and the inequality constraints.

Our solution to this problem is to introduce some extra randomness to L̂Rn so that the noise in

the estimation of Θ∗s(P0) will be dominated by this extra randomness when ω2
P0

= 0.4 Specifically, we

introduce an auxiliary random variable, U ∼ N(0, 1), which is independent from the original sample,

and let our test statistic be

T̂n = (ω̂2
n + σ̂2

n)−1/2(
√
nL̂Rn + σ̂nU), (4.6)

where σ̂n is a data-dependent scalar that is asymptotically independent of
√
n(L̂Rn−LRP0), ω̂n and

U . The scalar σ̂n should be bounded away from zero in probability when ω2
P0

= 0 and converges to

zero when ω2
P0
> 0. A suitable choice is given in at the end of Section 5 below.

In the next section, we show that under H0 and regularity conditions and with suitable choices

of σ̂n, T̂n →d N(0, 1). Thus, our model selection test uses the N(0, 1) quantile as critical value.

Specifically, our two-sided model selection test of level α is defined as

ϕ2-sided
n (α) = 1{|T̂n| > zα/2}, (4.7)

where zα/2 is the 1 − α/2 quantile of N(0, 1). We select Model 1 if ϕ2-sided
n (α) = 1 and T̂n > 0 and

select Model 2 if ϕ2-sided
n (α) = 1 and T̂n < 0. Our one-sided model selection test of level α (for H0

4The use of extra randomness works in a very similar fashion as the sample-splitting technique used in Yachew

(1992), but instead of implicitly add noise to the test statistic by sample-splitting, we add the noise explicitly. The

advantage of our approach is that the amount of noise added can be easily controlled and in particular can be made to

vanish with sample size when it is not needed, that is when ω2
P0

> 0.
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vs. H1 : dL(P1, P0)− dL(P2, P0) > 0) is defined as

ϕ1-sided
n (α) = 1{T̂n > zα}. (4.8)

The one-sided test should be used when one has prior knowledge that LRP0 ≥ 0. One notable

example where such prior knowledge is available is when it is known that Model P2 nests Model P1.

5 Asymptotic Size

In this section, we show that the model selection test we proposed above has correct asymptotic size,

that is

AsySZ(α) := lim sup
n→∞

SZn(α) := lim sup
n→∞

sup
P∈F0

EPϕn(α) = α, (5.1)

where ϕn(α) = ϕ2-sided
n (α) or ϕ1-sided

n (α) and F0 is the set of true data distributions under which H0

and regularity conditions hold and is defined in Assumption 5.3 below. In fact, we will show that

our test is asymptotically similar, that is, not only AsySZ(α) = α but also

lim inf
n→∞

inf
P∈F0

EPϕn(α) = α. (5.2)

To begin, we need additional assumptions. The first assumption is on the parameter space and

the moment functions:

Assumption 5.1 For s = 1, 2, assume that:

(i) Θs is compact, and

(ii) for all w ∈ W, ms(w, θs) is three times continuously differentiable in θs.

Next, we impose regularity conditions on the data generating process. These conditions will

specify the set F0 on which the asymptotic size is defined. To introduce the regularity conditions,

some additional notations are needed. Let

Ms,`,P0(γs, θs) = EP0κ(γ′sm(Wi, θs)g`(Xi)). (5.3)

Let eigmax(A) denote the biggest eigenvalue of a matrix A. For a positive number M , let ΓsM denote

NM (0ks)∩(Rps×Rks−ps+ ), where NM (0ks) is a closed ball in Rks centered at the origin with radius M .

Let φs = (γ′s, θ
′
s)
′. Let “∧ ” and “∨ ” denote the minimum and the maximum operator, respectively.

Let Nε(Θ
∗
s(P0)) =

⋃
θs∈Θ∗s(P0)Nε(θs). Let pP0,` = EP0(g`(X)) for all ` ∈ L, which is the probability

of X in C` under P0. Finally, let the left Hausdorff distance from a subset A1 of a Euclidean space

to another, A2, be defined as

ρlh(A1, A2) = sup
a∈A1

inf
a′∈A2

||a− a′||. (5.4)
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We call it the left Hausdorff distance because the symmetrized version of ρlh is the Hausdorff distance:

ρh(A1, A2) = max{ρlh(A1, A2), ρlh(A2, A1)}.
Assumption 5.2 summarizes the regularity conditions that we hold as the maintained hypothesis,

and Assumption 5.3 defines the null hypothesis.

Assumption 5.2 For positive constants M and δ, the set F is the set of P0 such that for s = 1, 2,

Assumption 3.3 holds, and

(i) {Wi}ni=1 is an i.i.d. sample drawn from P0,

(ii) dL(Ps, P0)− dL(Ps,θs , P0) < −δ · (ρ2
lh(θs,Θ

∗
s(P0)) ∧ δ),

(iii) γ′sms(w, θs) ∈ K for all w ∈ W and for all φs ∈ ΓsM ×Θs,

(iv) supθs∈Θs,`∈L ‖γ
∗
s,`,P0

(θs)‖ ≤M − δ,

(v) infφs∈ΓsM×Θs eigmax

(
EP0

[
∂2κ(γ′sms(W,θs))

∂γs∂γ′s

∣∣X]) < −δ, a.s. [P0,x]

(vi) almost surely in [P0,x],

EP0

[
sup

φs∈ΓsM×Θs

{
|κ(γ′sms(W, θs))|2+δ +

∥∥∥∂κ(γ′sms(W, θs))

∂φs

∥∥∥2+δ

+
∥∥∥∂2κ(γ′sms(W, θs))

∂φs∂φs

∥∥∥2+δ
+

ks∑
j=1

∥∥∥∂3κ(γ′sms(W, θs))

∂γs,j∂γs∂φ′s

∥∥∥} ∣∣∣X] < M

(vii) EP0(ω−1
P0

Λ∗P0,i
)2+δ < M , if ωP0 > 0, and

(viii) P0,x is absolutely continuous on X w.r.t the Lebesgue measure with density f(x) such that

δ ≤ f(x) ≤M for all x ∈ X .

Assumption 5.3 The set F0 = {P0 ∈ F : dL(P1, P0) = dL(P2, P0)}.

Assumption 5.2(ii) is a global identifictaion condition, which can be weakened at the expense

of more stringent condition on the adjustment factor σ̂n. Assumption 5.2(iv) basically requires the

models to be not too misspecified.5 Assumption 5.2(v) is a full-rank condition, which is needed for

γ∗s,`,P0
(θs) to be uniquely defined. This assumption is standard in the GEL literature, although it is

not standard in the moment inequality literature. Assumption 5.2(viii) will make sure that p`,P0 is

proportional to the volume of C`, which is useful for us to characterize the effect of the truncation.

Assumption 5.2(viii) requires that all covariates be continuous. However, at the expense of additional

5This does not mean that we do not allow for global misspecification, but rather means that the global misspecifi-

cation cannot be unbounded.
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notation, we can deal with the case where X has both continuous and discrete components. We

present two ways to do so in Section 7.

The next assumption is on the measure on L used in the integral, and on the truncation of L. In

the assumption, Lc for a subset L of L denote the complement of L relative to L.

Assumption 5.4 (i)
√
nrdx+1

n → 0,
√
nrdxn →∞ as n→∞, and

(ii) The support of F (`) is L and
∫
Lcrn

dF (`) = O(rn).

For Lcube, any F (`) with bounded density satisfies Assumption 5.4(ii). For Lc-cube, one F (`) that

satisfies Assumption 5.4(ii) has a probability mass function: f(x, r) ∝ r3, where ∝ stands for “is

proportional to”.6

Under the assumptions above, we can characterize the asymptotic behavior of L̂Rn and ω̂n. The

result is summarized in the following lemma. In the lemma, tn = (n1/2rdx+1
n ) ∨ (n−1/2r−dxn ). By the

assumption above, tn → 0 as n→∞.

Lemma 5.1 Suppose Assumptions 3.1, 3.2, 5.1, 5.2 and 5.4 hold. Then for any subsequence {an}
of {n} and any sequences {Pan ∈ F} such that t−2

an ω
2
Pan
→ v∞ ∈ [0,∞],

(a) if v∞ ∈ [0,∞), then t−1
an

√
an(L̂Ran − LRPan ) = Op(1), t−2

an ω̂
2
an →p v∞, and

(b) if v∞ =∞,
√
an(L̂Ran − LRPan )/ωPan →d N(0, 1) and ω̂2

an/ω
2
Pan

p→ 1.

From Lemma 5.1, we see that the asymptotic behavior of L̂Rn and ω̂2
n depend on the speed

at which ω2
Pan

converges to zero. These different behaviors suggest the conditions that extra noise

introduced in T̂n should satisfy. In particular, when ω2
Pan

converges to zero faster than t2an , we can

only derive rate at which
√
an(L̂Ran −LRPan ) and ω̂an converge to zero. In this case, we would like

σ̂an to dominate these terms so that we will still have T̂an converging to the N(0, 1) distribution.

The assumption below summarizes the requirement on σ̂n:

Assumption 5.5 (i) σ̂n ∈ [0, 1] and is independent of U , and for any subsequence {an} of n and

any sequence {Pan ∈ F}n≥1 such that t−2
an ω

2
Pan
→ v∞ ∈ [0,∞],

(ii) if v∞ ∈ [0,∞), we have σ̂an →p 1, and

(iii) if v∞ = ∞, we have PrPan (
√
an(L̂R − LRPan )/ωPan ≤ x|σ̂an)→pΦ(x) for all x ∈ R and

PrPan (|ωPan/ω̂an − 1| > ε|σ̂an)→p 0 for all ε > 0, where Φ(x) is the cdf of N(0, 1).

Now, we are ready to show that the model selection test we propose in the previous section is

asymptotically similar: that is, for any sequences {Pn ∈ F0}, limn→∞EPnϕn(α) = α for ϕn(α) =

ϕ2-sided
n (α) or ϕ1-sided

n (α).

6With such an F (`), one can show that
∫
Lrn

dF (`) ∝ 1− 2r−1
n (2r−1

n −1)

(2r−1
n +1)2

∝ r−1
n , where the first ∝ follows from Cauchy’s

proof for the Basel problem.
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Theorem 5.1 Suppose Assumptions 3.1, 3.2, 5.1, 5.2, 5.3, 5.4 and 5.5 hold. Then for ϕn(α) =

ϕ2-sided
n (α) or ϕ1-sided

n (α) (a) equation (5.1) holds, and (b) equation (5.2) holds.

We conclude this section by giving a data-dependent choice of σ̂n that satisfies Assumption 5.5.

For a positive integer bn, let ω̂∗bn be estimated according to (4.5) based on a subsample of size bn.

To be more specific, we first re-estimate γ∗s,`,P0
(θs) according to (4.3) using the subsample. Then re-

estimate Θs(P0) according to the first line of (4.5) with the rn replaced with rbn accordingly. Finally,

compute ω̂∗bn according to the second line of (4.5) with those re-estimated parameters and using the

subsample. We define

σ̂n = exp(−t−2
bn

(ω̂∗bn)2). (5.5)

The following lemma shows that σ̂n defined this way satisfies Assumption 5.5 if the subsample size

grows with n but at a slower rate than n.

Lemma 5.2 Suppose Assumptions 3.1, 3.2, 5.1, 5.2 and 5.4 hold.. Also suppose bn/n → 0. Then

σ̂n defined in equation (5.5) satisfies Assumption 5.5.

6 Power Properties

In this section, we show that our model selection test is consistent against all fixed alternatives and

it has nontrivial power against all n−1/2-local alternatives.

First, we show the fixed alternative result. Theorem 6.1 below shows that our model selection

test rejects H0 with probability approaching one under a fixed data distribution such that H0 is

violated.

Theorem 6.1 Suppose Assumptions 3.1, 3.2, 5.1, 5.2, 5.3, 5.4 and 5.5 hold. Then for any P∗ ∈
F\F0, we have limn→∞EP∗ϕn(α) = 1 for ϕn(α) = ϕ2-sided

n (α) or ϕ1-sided
n (α).

Next, we show the local power result. The following assumption specifies the n−1/2-local alterna-

tives we consider. Without loss of generality, we assume that the model P1 is closer to the sequence

of true distribution than the model P2.

Assumption 6.1 The sequence of true data distribution {Pn,∗}n≥1 satisfies Pn,∗ ∈ F\F0 for all

n ≥ 1, (i) ωPn,∗ > 0 for all n ≥ 1, ωPn,∗ → ω∞ ≥ 0, and (ii)
√
nLRPn,∗ → h1 > 0.

Theorem 6.2 below shows that our test has non-trivial power against n−1/2-local alternatives

satisfying Assumption 6.1. It is also straightforward to see from the theorem that when the local

alternatives approach the global alternatives in that h1 →∞, the asymptotic power increases to one.
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Theorem 6.2 Suppose Assumptions 3.1, 3.2, 5.1, 5.2, 5.3, 5.4, 5.5 and 6.1 hold. Then,

(a) lim infn→∞EPn,∗ϕ
2-sided
n (α) ≥ 1− Φ(zα/2 − h1/

√
ω2
∞ + 1) + Φ(−zα/2 − h1/

√
ω2
∞ + 1) and

(b) lim infn→∞EPn,∗ϕ
1-sided
n (α) ≥ 1− Φ(zα − h1/

√
ω2
∞ + 1).

7 Extensions

In this section, we extend our method in three different directions: (i) to allow for discrete variables

in the conditioning sets, (ii) to allow the conditioning sets in competing models to be different, and

(iii) to relax Assumption 3.3.

7.1 Discrete Variable in Conditioning Set

Here we discuss two methods to deal with discrete conditioning variables. For both methods, we

discuss the case where there is only one discrete conditioning variable and it is a binary variable

taking values in {0, 1}. More general discrete variables can be incorporated similarly.

Let W = (Y,X,Z) where Z is a binary variable and X are continuous variables. Let the condi-

tional moment inequality/equality models be Ps =
⋃
θs∈Θs

Ps,θs for s = 1 and 2

Ps,θs =

{
P : EP [ms,j(W, θs)|X,Z] = 0 a.s. [Pxz] for j = 1, ..., ps,

EP [ms,j(W, θs)|X,Z] ≥ 0 a.s. [Pxz] for j = ps + 1, ..., ks

}
(7.1)

where Pxz is the marginal distribution of (X,Z) implied by P .

The first method we consider is as follows. Define the instrument functions as g`,z(X,Z) =

g`(X) ·1(Z = z) where z ∈ {0, 1}, and g`(X) and ` are the same as before. Then Ps,θs can be written

as
⋂
`∈L,z∈{0,1} Ps,θs,`,z, where

Ps,θs,`,z =

{
P : EP [ms,j(W, θs)g`,z(X,Z)] = 0 for j = 1, ..., ps,

EP [ms,j(W, θs)g`,z(X,Z)] ≥ 0 for j = ps + 1, ..., ks.

}
(7.2)

and L can be Lc-cube or Lcube. Then all the results discussed above can be extended to this case with

suitable modification of the regularity conditions.

In the second method, we treat the two values of Z as argumenting the number of conditional

moment restrictions, that is, we write

Ps,θs =

{
P : EP [ms,j,z(W, θs)|X] = 0 a.s. [Px] for j = 1, ..., ps, and z = 1, 2,

EP [ms,j,z(W, θs)|X] ≥ 0 a.s. [Px] for j = ps + 1, ..., ks, and z = 1, 2,

}
(7.3)

where ms,j,z(W, θs) = ms,j(W, θs) · 1(Z = z) . Transform the conditional moment restriction into

unconditional ones, and we can again write Ps,θs ≡
⋂
`∈L Ps,θs,`, where

Ps,θs,` =

{
P : EP [ms,j,z(W, θs)g`(X)] = 0 for j = 1, ..., ps, and z = 1, 2,

EP [ms,j,z(W, θs)g`(X)] ≥ 0 for j = ps + 1, ..., ks, and z = 1, 2,

}
(7.4)
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and L can be Lc-cube or Lcube. Then all the results discussed above can be extended to this case

easily with suitable modification of the regularity conditions.

7.2 Competing Models with Difference Conditioning Sets

In the sections above, we require that the competing models have the same conditioning set. Here we

show that with suitable modification, our method can easily allow for the cases where the conditioning

sets for competing models are different.

For s = 1 and 2, consider Ps =
⋃
θs∈Θs

Ps,θs where

Ps,θs =

{
P : EP [ms,j(W, θs)|Xs] = 0 a.s. [Pxs ] for j = 1, ..., ps,

EP [ms,j(W, θs)|Xs] ≥ 0 a.s. [Pxs ] for j = ps + 1, ..., ks.

}
(7.5)

In the above equation, W = (Y,X1, X2) is generated from P0 where Xs ∈ Xs ⊆ Rds . The conditioning

variables X1 and X2 can be the same, nest each other, overlap but be nonnested, or be disjoint.

Let `s = (xs, r) ∈ [0, 1]ds ×R and define Gs = {g`s(Xs) : `s ∈ Ls}. Define distance from Ps to P0

as

dLs(Ps, P0) = inf
θs∈Θs

∫
Ls
d(Ps,θs,`s , P0)dFs(`s). (7.6)

where Fs(`s) is a probability measure whose support contains Ls and d(Ps,θs,`s , P0) is defined as in

(3.5). Define Ms,`s,P0(γs, θs), M̂s,`s,P0(γs, θs), γ
∗
s,`s,P0

, γ̂s,`s,n, Ls,rsn , and M∗s,`s,P0
accordingly.

Define ts,n = n1/2rds+1
sn ∨n−1/2rdssn and tn = t1,n∨t2,n. Assume that rsn satisfies Assumption 5.4 for

s = 1, 2. With suitable modification on the regularity conditions, under all sequences {Pn ∈ F}∞n=1,

we have

√
n(L̂Rn − LRPn) =

1√
n

n∑
i=1

Λ∗Pn,i +Op(tn), (7.7)

Λ∗Pn,i =

∫
L1

Ψ′(M∗1,`1,Pn)
[
κ
(
γ∗1,`1,Pn(θ∗1, Pn)′m1(Wi, θ

∗
1)g`1(Xi)

)
−M∗1,`1,Pn

]
dF1(`1)

−
∫
L2

Ψ′(M∗2,`2,Pn)
[
κ
(
γ∗2,`2,Pn(θ∗2)′m2(Wi, θ

∗
2)g`2(Xi)

)
−M∗2,`2,Pn

]
dF2(`2), for

θ∗s ∈ Θ∗s(Pn), for s = 1 and 2.

Define ω̂2
n = sup

(θ′1,θ
′
2)′∈Θ̂1,n×Θ̂2,n

ω̂2
n(θ1, θ2), where

ω̂2
n(θ1, θ2) (7.8)

=
1

n

n∑
i=1

[ ∫
L1,r1n

Ψ′(M̂1,`1,n(θ1))
[
κ
(
γ̂1,`1,n(θ1)′m1(Wi, θ1)g`1(Xi)

)
− M̂1,`1,n(θ1)

]
dF1(`1)

−
∫
L2,r2n

Ψ′(M̂2,`2,n(θ2))
[
κ
(
γ̂2,`2,n(θ2)′m2(Wi, θ2)g`2(Xi)

)
− M̂2,`2,n(θ2)

]
dF2(`2)

]2

.

Then all the results discussed in the previous sections can be extended to this case easily.
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7.3 The Uniqueness Assumption

First, we explain why the uniqueness assumption, Assumption 3.3 is useful. From Lemma A.8, we

see that when Assumption 3.3 is satisfied, we can establish that

n1/2(L̂Rn − LRP0) = n−1/2
n∑
i=1

Λ∗P0,i + op(1). (7.9)

If Assumption 3.3 is not satisfied, Λ∗P0,i
will not be well-defined. Instead, we can only define a function

Λ∗P0,i
(θ∗1, θ

∗
2), which takes different values for different θ∗s ∈ Θ∗s(P0). Consequently, Lemma A.8 will

establish

n1/2(L̂Rn − LRP0) = n−1/2
n∑
i=1

Λ∗P0,i(θ
∗
1,n, θ

∗
2,n) + op(1), (7.10)

where θ∗s,n is the closest point in Θ∗s(P0) to θ̂s,n, for the θ̂s,n used in constructing L̂Rn. The ran-

dom sequence θ∗2,n may not converge, and is correlated with the data that forms Λ∗P0,i
(·, ·), causing

n−1/2
∑n

i=1 Λ∗P0,i
(θ∗1,n, θ

∗
2,n) not to have a normal asymptotic distribution. Losing the asymptotic

normality destroys the simple structure of our test.

One way to preserve the simplicity of the test without the unique assumption is to estimate Θ̂s,n

from a separate sample, and then use a random point θ̂s,n from that set estimator to construct L̂Rn,

ω̂n and σ̂n. Because the θ̂s,n is from a separate sample, its closest point in Θ∗s(P0), θ∗s,n, will be

independent with the data that forms Λ∗P0,i
(·, ·). Then all our derivations in the previous section can

be done conditional on θ̂s,n.

The natural way to come up with a separate sample is to split the original sample into two equal

halves. One half is used to estimate the parameters and the other to construct the statistics.

8 Monte Carlo Simulation

In this section we report Monte Carlo results for a missing data example. Let Yi be a binary variable

that is observable only if a selection variable Di = 1 and is missing if Di = 0. Let Y i = YiDi+(1−Di)

and Y i = YiDi. Then by definition Yi ∈ [Y i, Y i]. Let X1i and X2i be two covariates. Suppose two

candidates models are both Probit models but disagree on which of the two covariates is relevant.

That is, for j = 1, 2:

Pj = {P : EP [Φ(θ1 + θ2Xji)− Y i|X1i, X2i] ≥ 0, and

EP [Y i − Φ(θ1 + θ2Xji)|X1i, X2i] ≥ 0}, (8.1)

where Φ(·) is the standard normal cumulative distribution function (cdf).
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Consider the following data generating process:

Yi = 1{1 + 1.51/2(θ21X1i + θ22X2i) + ui ≥ 0},

Di = 1{1.5 + 0.5(X1i +X2i) + vi}, (ui, vi) ∼ N(0, [1, 0.5; 0.5, 1]), (8.2)

where X1i and X2i are generated as follows: X1i = Z1iΦ(Z2i), X2i = Z2iΦ(Z1i) with (Z1i, Z2i)
′ ∼

N(0, I2). The parameter (θ21, θ22) determines which covariate(s) is (are) relevant for Y in the data

generating process. When θ21 = θ22, the two candidate models are equally good. In particular when

θ21 = θ22 = 0, the two candidate models are both correctly specified. When θ21 > θ22 ≥ 0, model P1

is better than model P2 and when 0 ≤ θ21 < θ22, model P2 is better than model P1. We consider four

configurations to investigate the size and the power properties of our test. The four configurations

are: (θ21, θ22) = (0, 0), (1, 1), (0, 1), (1, 1.5).

To implement our method, we first transform the variables X1i and X2i to the unit interval.

Define (X∗1i, X
∗
2i) = Φ(Σ̂

−1/2
n · (X1i, X2i)

′), where Σ̂n is the sample covariance matrix of (X1i, X2i)
′

and Φ is the standard normal cdf function applied element by element. Then we treat the trans-

formed variables X∗1i and X∗2i as the conditioning variables. Finally we use the countable hypercube

instrumental functions on the new conditioning variables:

G =

{
1

(
(x∗1, x

∗
2) ∈

[
b1
2q
,
b1 + 1

2q

]
×
[
b2
2q
,
b2 + 1

2q

])
: b1, b2 = 0, 1, . . . , 2q − 1, q = q0, . . . , q1

}
.

(8.3)

We use q0 = 1 and q1 = 2 for all the settings we consider. The probability measure on Gc-cube gives

equal probability to the b′s given each r and gives each q a probability proportional to 1/q2. For σ̂n,

we use bn = n/ log(n) and tn = n(1/2−(dx+1)/(2dx+1)) = n−1/10.

The results are reported in Table 1. The two numbers in the parentheses are respectively the

probability of rejecting the null and selecting model P1 and that of rejecting the null and selecting

model P2. As we can see, the selection probabilities (first two rows) for either model is close to 5%

when the two models are equally good (the first two rows). It is worth noting that this is the case

even when both models are correctly specified (the first row), in which case ω2 = 0. The selection

probability of the better model is bigger than 5% and grows with the sample size when there is a

better model among the two (the last two rows), suggesting that the test is consistent.

9 Conclusion

To sum up, we propose a model selection test for conditional moment inequality models. The

test can be applied when the competing models are nested or nonnested. In all cases, the test is

asymptotically similar, consistent against fixed alternatives and has non-trivial power against n−1/2

local alternatives. This is the first such test for conditional moment inequality models.
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Table 1: Null and Alternative Selection Probabilities (α = 10%)

(θ21, θ22) n = 250 n = 500 n = 1000

(0, 0) (.063, .049) (.053, .049) (.039, .054)

(1, 1) (.063, .056) (.057, .055) (.056, .067)

(0, 1) (.011, .249) (.003, .323) (.001, .454)

(1, 1.5) (.007, .340) (.000, .575) (.000, .823)

APPENDIX

A Auxiliary Lemmas

In this section, we collect all the auxiliary lemmas used to prove the main results in the text. The proofs of

these auxiliary lemmas are deferred to Appendix C.

To begin, we first introduce some new notation. Let φs denote the combined parameter vector (γ′s, θ
′
s)
′.

Let Φs = ΓsM ×Θs for s = 1 and 2. For any two sets A and B, let A4B ≡ {x : x ∈ A, x ∈ B, but x 6∈ A∩B}.
Define a pseudo metric on L as

ρ`(`1, `2) = λ(C`14C`2)1/2, (A.1)

where C` is defined in the second line of (3.2) and λ(·) is the Lebesgue measure. Define a pseudo-metric on

Φs × L as

ρs((φs1, `1), (φs2, `2)) = ‖φs1 − φs2‖+ ρ`(`1, `2), (A.2)

for (φs1, `1), (φs2, `2) ∈ Φs × L.

For s = 1, 2, let

Ms,`,P0

(
γs, θs

)
= EP0

κ(γ′sm(Wi, θs)g`(Xi)), and

M̂s,`,n(γs, θs) = n−1
n∑
i=1

κ(γ′sm(Wi, θs)g`(Xi)). (A.3)

Lemma A.1 below shows some basic properties of stochastically equicontinuous empirical processes. This

result is not new in the literature, but we state and prove it here for easy reference.

Lemma A.1 Consider the triangular array of empirical processes {νn(t) : t ∈ T }∞n=1. If (i) (T , ρ) is a totally

bounded pseudo-metric space, (ii) νn(t) is stochastically equicontinuous w.r.t. ρ and (iii) for every t ∈ T ,

‖νn(t)‖ = Op(1), then supt∈T ‖νn(φ)‖ = Op(1).

Lemma A.2 below shows the stochastic equicontinuity of several empirical processes that form different

parts of T̂n.
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Lemma A.2 Suppose Assumptions 3.1, 3.2, 5.1 and 5.2 hold. Then, under any sequence {Pn ∈ F}∞n=1, for

s = 1 and 2,

(a) the triangular arrays of empirical process:

{ν0
s,n(φs, `) := n1/2(M̂s,`,n(φs)−Ms,`,Pn(φs)) : φs ∈ Φs, ` ∈ L}

is stochastically equicontinuous w.r.t. the pseudo-metric ρs defined in (A.2),

(b) supφs∈Φs,`∈L |n
1/2(M̂s,`,n(φs)−Ms,`,Pn(φs))| = Op(1),

(c) the triangular arrays of empirical processes

{ν1
s,n(φs, `) := n1/2(∂M̂s,`,n(φs)/∂φs − ∂Ms,`,Pn(φs)/∂φs) : φs ∈ Φs, ` ∈ L} and

{ν2
s,n(φs, `) := n1/2(∂2M̂s,`,n(φs)/∂φs∂φ

′
s − ∂2Ms,`,Pn(φs)/∂φs∂φ

′
s) : φs ∈ Φs, ` ∈ L}

are stochastically equicontinuous w.r.t. the pseudo-metric ρs,

(d) supφs∈Φs,`∈L ‖n
1/2(∂M̂s,`,Pn(φs)/∂φs − ∂Ms,`,Pn(φs)/∂φs‖ = Op(1), and

supφs∈Φs,`∈L ‖n
1/2(∂2M̂s,`,n(φs)/∂φs∂φ

′
s − ∂2Ms,`,Pn(φs)/∂φs∂φ

′
s)‖ = Op(1),

(e) for any random mappings {φ(1)
s,n, φ

(2)
s,n :L → Φs}∞n=1 such that sup`∈L ‖φ

(1)
s,n(`)− φ(2)

s,n(`)‖ = op(1), we have

sup
`∈L
|M̂s,`,n(φ(1)

s,n(`))−Ms,`,Pn(φ
(2)
s,Pn

(`))| →p 0

sup
`∈L
‖∂2M̂s,`,n(φ(1)

s,n(`))/∂φs∂φ
′
s − ∂2Ms,`,Pn(φ(2)

s,n(`))/∂φs∂φ
′
s‖ →p 0.

Lemma A.3 below shows the consistency of γ̂s,`,n(θs) for γ∗s,`,Pn(θn) under drifting sequences of data

distributions Pn.

Lemma A.3 Suppose Assumptions 3.1, 3.2, 5.1, 5.2 and 5.4 hold. Under any sequence {Pn ∈ F}∞n=1, we

have for s = 1 and 2,

(a) supθs∈Θs,`∈Lrn ‖γ̂s,`,n(θs)− γ∗s,`,Pn(θs)‖ →p 0,

(b) supθs∈Θs,`∈Lrn p`,n
∥∥γ̂s,`,n(θs) − γ∗s,`,Pn(θs)

∥∥ = Op(n
−1/2), and supθs∈Θs,`∈Lrn

∥∥γ̂s,`,n(θs) − γ∗s,`,Pn(θs)
∥∥ =

Op(n
−1/2r−dxn ),

(c) for any two random sequences {θ(1)
s,n}∞n=1 and {θ(2)

s,n}∞n=1 such that
∥∥θ(1)
s,n − θ

(2)
s,n

∥∥ = op(1), we have that

sup`∈L
∥∥γ∗s,`,Pn(θ

(1)
s,n)− γ∗s,`,Pn(θ

(2)
s,n)
∥∥ = Op(

∥∥θ(1)
s,n − θ(2)

s,n

∥∥), and

(d) for the two random sequences in part (c), we have sup`∈Lrn

∥∥γ̂s,`,n(θ
(1)
s,n)− γ∗s,`,Pn(θ

(2)
s,n)
∥∥→p 0.

Lemma A.4 below shows that under our assumptions the effect of the truncation of L is small.

Lemma A.4 Suppose Assumptions 3.1, 3.2, 5.1, 5.2 and 5.4 hold. Uniformly over P0 ∈ F and θs ∈ Θs for

s = 1, 2,

r−dx−1
n

∫
Lcrn

Ψ[Ms,`,P0(γ∗s,`,P0
(θs), θs)]dF (`) = Op(1) (A.4)

Lemma A.5 below shows a full-rank condition for each super model Ps,`,θs of Ps,θs . This full-rank condition

guarantees that γ∗s,`,P0
(θs) is uniquely defined for every θs and every `.
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Lemma A.5 Suppose Assumptions 3.1, 3.2, 5.1, 5.2 and 5.4 hold. Under any P0 ∈ F , for all ` ∈ L and for

all φs ∈ Φs,

eigmax (E[κ′′(γ′sms(W, θs))ms(W, θs)ms(W, θs)
′g`(X)]) ≤ −pP0,` · δ for s = 1 and 2. (A.5)

Lemma A.6 below shows an important property of our pseudo-distance measure: the pseudo-distance is

zero when and only when intuitively it should be zero, that is when P0 belongs to the model, or in other words,

the model is correctly specified.

Lemma A.6 Suppose Assumptions 3.1, 3.2, 5.1, 5.2 and 5.4 hold. For any P0 ∈ F , then P0 ∈ Ps iff

dL(Ps, P0) = 0 for s = 1, 2.

Lemma A.7 below establishes the convergence rate of Θ̂1,n and Θ̂2,n w.r.t. the left Hausdorff distance.

Lemma A.7 Suppose Assumptions 3.1, 3.2, 5.1, 5.2 and 5.4 hold. Then, under all sequences {Pn ∈ F}∞n=1,

we have maxs=1,2 ρlh(Θ̂s,n,Θ
∗
s(Pn)) = Op(n

−1/2r
−dx/2
n ).

Lemma A.8 below shows a linear representation of
√
n(L̂Rn−LRPn) under a sequence of data distributions

{Pn}. This lemma is a crucial step for establishing Lemma 5.1.

Lemma A.8 Suppose Assumptions 3.1, 3.2, 5.1, 5.2 and 5.4 hold. Then, under all sequences {Pn ∈ F}∞n=1,

√
n(L̂Rn − LRPn) =

1√
n

n∑
i=1

Λ∗Pn,i +Op(tn), (A.6)

where Λ∗Pn,i is defined in (4.4) and tn is defined above Lemma 5.1.

The following three lemmas prove a Kuhn-Tucker condition that is used repeatedly in the proof of our

main results. These lemmas are taken from Chong and Żak (2001) with minor modification. Consider the

following problem:

maximizef(x) subject to g(x) ≥ 0, (A.7)

where f : Rd → R and g : Rd → Rm.7 Let x∗ satisfy g(x∗) ≥ 0 and define J(x∗) ≡ {j : gj(x
∗)} which is the

set of the index of active inequality. We say that x∗ is a regular point if the vectors ∂gj(x
∗)/∂x for j ∈ J(x∗)

are linear independent. We say that x∗ is a feasible point if g(x∗) ≥ 0. Define

L(x∗, µ∗) =
∂2f(x∗)

∂x∂x′
+

m∑
j=1

µ∗j ·
∂2gj(x

∗)

∂x∂x′
, (A.8)

T (x∗, µ∗) = {y : ∂gj(x
∗)/∂x · y = 0, j ∈ J̃(x∗, µ∗)}, (A.9)

J̃(x∗, µ∗) = {j : gj(x
∗) = 0, µ∗j > 0}. (A.10)

It is obvious that J̃(x∗, µ∗) ⊆ J(x∗).

7Note that here, f(x), g(x) and x here refer to some generic functions and their argument and do not refer to the

same things as similar or the same symbols defined in the main sections of this paper. Since these new definitions only

apply locally from here to the end of this section, there should be no confusion caused by this abuse of notations.
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Lemma A.9 Karush-Kuhn-Tucker Theorem. Let f(x) and g(x) are once continuously differentiable on

x. Let x∗ be a regular point and a local maximum for the problem defined in (A.7). Then there exists µ∗ ∈ Rm

such that

1. µ∗ ≥ 0,

2. ∂f(x∗)/∂x+
∑m
j=1 µ

∗
j · ∂gj(x∗)/∂x = 0, and

3. g(x∗)′ · µ∗ = 0.

Lemma A.10 Second-Order Sufficient Conditions. Suppose f and g are twice continuously differentiable

in x and there exists a feasible point x∗ ∈ Rd and µ∗ ∈ Rm such that

1. µ∗ ≥ 0, ∂f(x∗)/∂x+
∑m
j=1 µ

∗
j · ∂gj(x∗)/∂x = 0, g(x∗)′ · µ∗ = 0, and

2. For all y ∈ T (x∗, µ∗) with y 6= 0, we have y′L(x∗, µ∗)y < 0.

Then, x∗ is a strict local maximizer of problem defined in (A.7).

Lemma A.11 Suppose in problem (A.7), f and g are once continuously differentiable in x. Suppose gj for

j = 1, . . . ,m are concave in x. If there exists a feasible point x∗ ∈ Rd and µ∗ ∈ Rm such that µ∗ ≥ 0,

∂f(x∗)/∂x+
∑m
j=1 µ

∗
j · ∂gj(x∗)/∂x = 0, and g(x∗)′ ·µ∗ = 0, then ∂f(x∗)/∂x · (x− x∗) ≤ 0 for any x such that

g(x) ≥ 0.

B Proof of Main Results

Proof of Lemma 5.1: Lemma 5.1 is stated in terms of subsequences {an}∞n=1. For notational simplicity, we

prove it for the sequence {n}. All the arguments go through with {an} in place of {n}.
For (a), t−1

n

√
n(L̂Rn − LRPn) = Op(1) follows simply from Lemma A.8 and the CLT.

For t−2
n ω̂2

n, observe that

ω̂2
n = op

(
1

n

)
+

1

n

n∑
i=1

[ ∫
Lrn

Ψ′(M̂1,`,n(θ̂1,n))
[
κ
(
γ̂1,`,n(θ̂1,n)′m1(Wi, θ̂1,n)g`(Xi)

)
− M̂1,`,n

]
−Ψ′(M̂2,`,n(θ̂2,n))

[
κ
(
γ̂2,`,n(θ̂2,n)′m2(Wi, θ̂2,n)g`(Xi)

)
− M̂2,`,n

]}
dF (`)

]2

= op

(
1

n

)
+

1

n

n∑
i=1

[
Λ∗Pn,i −

∫
Lcrn

{
Ψ′(M∗1,`,Pn)

[
κ
(
γ∗1,`,Pn(θ∗1,n)′m1(Wi, θ

∗
1)g`(Xi)

)
−M∗1,`,Pn

]
−Ψ′(M∗2,`,Pn)

[
κ
(
γ∗2,`,Pn(θ∗2,n)′m2(Wi, θ

∗
2,n)g`(Xi)

)
−M∗2,`,Pn

]}
dF (`)

+

∫
Lrn

{
Ψ′(M̂1,`,n(θ̂1,n))

[
κ
(
γ̂1,`,n(θ̂1,n)′m1(Wi, θ̂1,n)g`(Xi)

)
− M̂1,`,n(θ̂1,n)

]
−Ψ′(M∗1,`,Pn)

[
κ
(
γ∗1,`,Pn(θ∗1,n)′m1(Wi, θ

∗
1,n)g`(Xi)

)
−M∗1,`,Pn

]}
dF (`)

−
∫
Lrn

{
Ψ′(M̂2,`,n(θ̂2,n))

[
κ
(
γ̂2,`,n(θ̂2,n)′m2(Wi, θ̂2,n)g`(Xi)

)
− M̂2,`,Pn(θ̂2,n)

]
−Ψ′(M∗2,`,Pn)

[
κ
(
γ∗2,`,Pn(θ∗2,n)′m2(Wi, θ

∗
2,n)g`(Xi)

)
−M∗2,`,Pn

]}
dF (`)

]2
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≡ op
(

1

n

)
+

1

n

n∑
i=1

[Λ∗Pn,i − C1,i + C2,i − C3,i]
2, (B.1)

for some θ̂s,n ∈ Θ̂s,n and some θ∗s,n ∈ Θ∗s(Pn), for s = 1, 2. By (B.1), we have

t−2
n ω̂2

n = t−2
n

1

n

n∑
i=1

[Λ∗Pn,i − C1,i + C2,i − C3,i]
2 + op(t

−2
n n−1)

≤ 4
(
t−2
n

1

n

n∑
i=1

(Λ∗Pn,i)
2 + t−2

n

1

n

n∑
i=1

C2
1,i + t−2

n

1

n

n∑
i=1

C2
2,i + t−2

n

1

n

n∑
i=1

C2
3,i

)
+ op(t

−2
n n−1), (B.2)

because
[∑k

i=1 ai
]2 ≤ k ·

∑k
i=1 a

2
i for any finite k. Therefore, to show (a), it is sufficient to show that all the

four terms in the parenthesis in the last line of (B.2) are Op(1). Note that t−2
n n−1

∑n
i=1(Λ∗Pn,i)

2 →p v∞ by

Assumption 5.2(vii) and EPn
[
t−2
n n−1

∑n
i=1(Λ∗Pn,i)

2
]

= t−2
n ω2

Pn
→ v∞ <∞. Next, note that

|C1,i| ≤ C
∫
Lcrn

{
sup

φ1∈Γ1
M×Θ1

|κ(γ′1m1(Wi, θ1))|+ sup
φ2∈Γ2

M×Θ2

|κ(γ′2m2(Wi, θ2))|
}
dF (`)

≤ C · rn
(

sup
φ1∈Γ1

M×Θ1

|κ(γ′1m1(Wi, θ1))|+ sup
φ2∈Γ2

M×Θ2

|κ(γ′2m2(Wi, θ2))|
)
, (B.3)

where C is a generic positive number not dependent on Pn. The first inequality holds because for all `,

|κ(γ′sm1(Wi, θs)g`(Xi))| ≤ |κ(γ′sm1(Wi, θs))| and Ψ′(M̂s,`,n(θ̂1,n)) ≤ C by assumptions. The second inequality

holds by Assumption 5.4(ii). Therefore,

EPn

[
t−2
n

1

n

n∑
i=1

C2
1,i

]
≤C · r2

nt
−2
n · EPn

[
sup

φ1∈Γ1
M×Θ1

|κ(γ′1m1(Wi, θ1))|2 + sup
φ2∈Γ2

M×Θ2

|κ(γ′2m2(Wi, θ2))|2
]

→0, (B.4)

where the first line follows (B.3) and (a+ b)2 ≤ 2a2 + 2b2. The last line follows from the definition of tn and

Assumption 5.4(i). Equation (B.4) implies that t−2
n n−1

∑n
i=1 C

2
1,i = op(1). Also, for all ` ∈ Lrn ,

Ψ′(M̂1,`,n(θ̂1,n)
[
κ
(
γ̂1,`,n(θ̂1,n)′m1(Wi, θ̂1,n)g`(Xi)

)
− M̂1,`,n

]
−Ψ′(M∗1,`,Pn)

[
κ
(
γ∗1,`,Pn(θ∗1,n)′m1(Wi, θ

∗
1)g`(Xi)

)
−M∗1,`,Pn

]
= Ψ′(M̂1,`,n)−Ψ′(M∗1,`,Pn)

[
κ
(
γ̂1,`,n(θ̂1,n)′m1(Wi, θ̂1,n)g`(Xi)

)
− M̂1,`,n

]
+ Ψ′(M∗1,`,Pn)

[
κ
(
γ̂1,`,n(θ̂1,n)′m1(Wi, θ̂1,n)g`(Xi)

)
− κ
(
γ∗1,`,Pn(θ∗1,n)′m1(Wi, θ

∗
1)g`(Xi)

)
−Ψ′(M∗1,`,Pn)(M̂1,`,n −M∗1,`,Pn)

≡ C21,i,` + C22,i,` − C23,i,`. (B.5)

For any ` ∈ Lrn ,∣∣M̂1,`,n −M∗1,`,Pn
∣∣

≤
∣∣M̂1,`,n −M1,`,Pn(γ̂1,`,n(θ̂1,n), θ̂1,n)

∣∣+
∣∣M1,`,Pn(γ̂1,`,n(θ̂1,n), θ̂1,n)−M∗1,`,Pn

∣∣
≤
∣∣M̂1,`,n −M1,`,Pn(γ̂1,`,n(θ̂1,n), θ̂1,n)

∣∣+
∥∥∥∂M1,`,Pn(γ̃1, θ̃1,n)

∂φ′1

∥∥∥
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×
(
‖γ̂1,`,n(θ̂1,n)− γ∗1,`,Pn(θ̂1,n)‖+ ‖γ∗1,`,Pn(θ̂1,n)− γ∗1,`,Pn(θ∗1,n)‖+ ‖θ̂1,n − θ∗1,n‖

)
= Op(n

−1/2) +Op(n
−1/2) +Op(n

−1/2r−dx/2n ) +Op(n
−1/2r−dx/2n )

= Op(n
−1/2r−dx/2n ), (B.6)

because

|M̂1,`,n −M1,`,Pn(γ̂1,`,n(θ̂1,n), θ̂1,n)| = Op(n
−1/2),∥∥∥∂M1,`,Pn(γ̃1, θ̃1,n)

∂φ′1

∥∥∥ · ‖γ̂1,`,n(θ̂1,n)− γ∗1,`,Pn(θ̂1,n)‖

= p−1
`,n

∥∥∥∂M1,`,Pn(γ̃1, θ̃1,n)

∂φ′1

∥∥∥ · p`,n‖γ̂1,`,n(θ̂1,n)− γ∗1,`,Pn(θ̂1,n)‖ = O(1) ·Op(n−1/2) = Op(n
−1/2),∥∥∥∂M1,`,Pn(γ̃1, θ̃1,n)

∂φ′1

∥∥∥ · ‖γ∗1,`,Pn(θ̂1,n)− γ∗1,`,Pn(θ∗1,n)‖

= Op(1) ·Op(‖θ̂1,n − θ∗1,n‖) = Op(n
−1/2r−dx/2n ),∥∥∥∂M1,`,Pn(γ̃1, θ̃1,n)

∂φ′1

∥∥∥ · ‖θ̂1,n − θ∗1,n‖ = Op(n
−1/2r−dx/2n ). (B.7)

Similarly,

|Ψ′(M̂1,`,n)−Ψ′(M∗1,`,Pn)| = |Ψ′′(M̃1,`,n) · (M̂1,`,n −M∗1,`,Pn)| = Op(n
−1/2r−dx/2n ). (B.8)

Next, ∣∣∣t−2
n

1

n

n∑
i=1

C2
2,i

∣∣∣
=
∣∣∣ ∫
Lrn

∫
Lrn

{
t−2
n

1

n

n∑
i=1

(C21,i,`1 + C22,i,`1 − C23,i,`1) · (C21,i,`2 + C22,i,`2 − C23,i,`2)
}
dF (`1)dF (`2)

∣∣∣
≤
∫
Lrn

∫
Lrn

{
t−2
n

1

n

n∑
i=1

3∑
j=1

3∑
k=1

∣∣C2j,i,`1 · C2k,i,`2

∣∣}dF (`1)dF (`2).

To show t−2
n n−1

∑n
i=1 C

2
2,i = op(1), it is sufficient to show that t−2

n n−1
∑n
i=1

∣∣C2j,i,`1 · C2k,i,`2

∣∣ = op(1) for all

j, k = 1, 2, and 3 uniformly over `1, `2 ∈ Lrn . We have t−2
n n−1

∑n
i=1

∣∣C21,i,`1C21,i,`2

∣∣ = op(1) by

t−2
n

1

n

n∑
i=1

∣∣C21,i,`1C21,i,`2

∣∣
= t−2

n

∣∣∣(Ψ′(M̂1,`1,n)−Ψ′(M∗1,`1,Pn)
){ 1

n

n∑
i=1

[
κ
(
γ̂1,`1,n(θ̂1,n)′m1(Wi, θ̂1,n)g`1(Xi)

)
− M̂1,`1,n

]
×
[
κ
(
γ̂1,`2,n(θ̂1,n)′m1(Wi, θ̂1,n)g`2(Xi)

)
− M̂1,`2,n

]}(
Ψ′(M̂1,`2,n)−Ψ′(M∗1,`2,Pn)

)∣∣∣
= t−2

n ·Op(n−1/2r−dx/2n ) ·Op(1) ·Op(n−1/2r−dx/2n ) = Op(n
−1r−dxn t−2

n ) = op(1), (B.9)

where Ψ′(M̂1,`1,n) − Ψ′(M∗1,`1,Pn) = Op(n
−1/2r

−dx/2
n ) by (B.8) and the sample average is Op(1), and the

last equality follows from Assumption 5.4 and the definition of tn. Similar arguments as above show that
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t−2
n n−1

∑n
i=1

∣∣C21,i,`1C23,i,`2

∣∣ = op(1), t−2
n n−1

∑n
i=1

∣∣C23,i,`1C21,i,`2

∣∣ = op(1), and t−2
n n−1

∑n
i=1

∣∣C23,i,`1C23,i,`2

∣∣ =

op(1). Also, note that

t−2
n

1

n

n∑
i=1

∣∣C21,i,`1C22,i,`2

∣∣
= t−2

n

∣∣∣(Ψ′(M̂1,`1,n)−Ψ′(M∗1,`1,Pn)
){ 1

n

n∑
i=1

[
κ
(
γ̂1,`1,n(θ̂1,n)′m1(Wi, θ̂1,n)g`1(Xi)

)
− M̂1,`1,n

]
×
[
Ψ′(M∗1,`1,Pn)

[
κ
(
γ̂1,`2,n(θ̂1,n)′m1(Wi, θ̂1,n)g`2(Xi)

)
− κ
(
γ∗1,`2,Pn(θ∗1,n)′m1(Wi, θ

∗
1,n)g`2(Xi)

)]}∣∣∣
= t−2

n

∣∣∣(Ψ′(M̂1,`1,n)−Ψ′(M∗1,`1,Pn)
){ 1

n

n∑
i=1

[
κ
(
γ̂1,`1,n(θ̂1,n)′m1(Wi, θ̂1,n)g`1(Xi)

)
− M̂1,`1,n

]
×
[
Ψ′(M∗1,`1,Pn)

[∂κ(γ̃′1m1(Wi, θ̃1)g`2(Xi)
)

∂φ1

]}
(φ̂1,`2,n(θ̂1,n)− φ∗1,`2,Pn(θ∗1,n))

∣∣∣
= t−2

n ·Op(n−1/2r−dx/2n )
(
Op(n

−1/2) +Op(n
−1/2r−dx/2n )) = op(1), (B.10)

where φ∗s,`,Pn(θs) = (γ∗s,`,Pn(θs)
′, θ′s)

′, the second equality holds by a mean-value expansion and the last

line holds by similar arguments in the proof of Lemma A.7 and in (B.9). By similar arguments, we have

t−2
n n−1

∑n
i=1

∣∣C22,i,`1C21,i,`2

∣∣ = op(1), t−2
n n−1

∑n
i=1

∣∣C22,i,`1C23,i,`2

∣∣ = op(1), and t−2
n n−1

∑n
i=1

∣∣C23,i,`1C22,i,`2

∣∣ =

op(1). Last, we have

t−2
n

1

n

n∑
i=1

∣∣C22,i,`1C22,i,`2

∣∣
= t−2

n

∣∣∣{ 1

n

n∑
i=1

[
Ψ′(M∗1,`1,Pn)κ

(
γ̂1,`1,n(θ̂1,n)′m1(Wi, θ̂1,n)g`1(Xi)

)
− κ
(
γ∗1,`1,Pn(θ∗1,n)′m1(Wi, θ

∗
1)g`1(Xi)

)]
×
[
Ψ′(M∗1,`2,Pn)

[
κ
(
γ̂1,`2,n(θ̂1,n)′m1(Wi, θ̂1,n)g`2(Xi)

)
− κ
(
γ∗1,`2,Pn(θ∗1,n)′m1(Wi, θ

∗
1)g`2(Xi)

)]}∣∣∣
= t−2

n

∣∣∣Ψ′(M∗1,`1,Pn)
(
(φ̂1,`1,n(θ̂1,n)− φ∗1,`1,Pn(θ∗1))′

){ 1

n

n∑
i=1

[∂κ(γ̈′1m1(Wi, θ̈1)g`1(Xi)
)

∂φ1

]′
×
[∂κ(γ̃′1m1(Wi, θ̃1)g`2(Xi)

)
∂φ1

]}(
(φ̂1,`2,n(θ̂1,n)− φ∗1,`2,Pn(θ∗1,n))′

)
= t−2

n ·Op(n−1r−dxn ) = op(1), (B.11)

where the second equality holds by a mean-value expansion and the last line holds by similar arguments in the

proof of Lemma A.7. These results hold uniformly over `1, `2 ∈ Lrn and they imply that t−2
n

1
n

∑n
i=1 C

2
2,i =

op(1). Similarly, t−2
n

1
n

∑n
i=1 C

2
3,i = op(1). Part (a) follows.

For part (b), note that under Assumption 5.2(vii) and by Lyapounov central limit theorem, we have

ω−1
Pn
n1/2(L̂Rn − LRPn) = n−1/2

∑n
i=1 ω

−1
Pn

Λ∗Pn,i + op(1) →d N(0, 1). Next, by similar argument for part (a)

with ω−2
n in place of t−2

n , we have ω−2
Pn
ω̂2
n = ω−2

Pn
n−1

∑n
i=1(Λ∗Pn,i)

2 + op(1). And by the fact that t−2
n ω2

Pn
→∞.

Also, ω−2
Pn
n−1

∑n
i=1(Λ∗Pn,i)

2 → 1 by the law of large number. Therefore, (b) follows.�

Proof of Theorem 5.1: To show both part (a) and part (b), it suffices to show that for any subsequence

{an} of {n}, and any {Pan ∈ F}n≥1, there exists a further subsequence {un} of {an} such that

lim
n→∞

EPunϕn(α) = α, (B.12)
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for ϕn(α) = ϕ2-sided
n (α) or ϕ1-sided

n (α). By the completeness of the real line, there is always a subsequence {hn}
of {un} such that t−2

hn
ω2
Phn
→ v∞ for some v∞ ∈ [0,∞]. We discuss two cases below.

Case 1: v∞ ∈ [0,∞). In this case, we have

T̂hn =

√
hnL̂Rhn + σ̂hnU√
ω̂2
Phn

+ σ̂2
hn

=
σ̂−1
hn

√
hnL̂Rhn + U√
σ̂−2
hn
ω̂2
hn

+ 1

→d U ∼ N(0, 1), (B.13)

where the convergence holds by Assumption 5.5(ii) and Lemma 5.1(a). Thus, in this case, (B.12) holds.

Case 2: v∞ =∞. In this case, by Lemma 5.1(b) and Assumption 5.5(iii), we have PrPhn (
√
hn(L̂R−LRPhn ) ≤

x|σ̂hn)→ Φ(x) ∀x ∈ R, a.s. and PrPhn (|ω̂hn/ωhn − 1| > ε|σ̂hn)→ 0,∀ε > 0 a.s.. Define the subset Ω0 of the

underlying probability space as

Ω0 :=
{
o ∈ Ω : PrPhn (

√
hn(L̂R− LRPhn ) ≤ x|σ̂hn = σ̂hn(o))→ Φ(x) ∀x ∈ R, and

PrPhn (|ω̂hn/ωhn − 1| > ε|σ̂hn = σ̂hn(o))→ 0,∀ε > 0.
}

(B.14)

and

Σ0 ≡
{
{σhn}n≥1 : {σhn}n≥1 = {σ̂hn(o)}n≥1 for some o ∈ Ω0

}
. (B.15)

Clearly, P (Ω0) = 1. Thus, it suffices to show that for any point {σhn}n≥1 ∈ Σ0 and any real number x,

lim
n→∞

PrPhn (T̂hn ≤ x|σ̂hn = σhn) = Φ(x). (B.16)

By the property of limits, it suffices to show that for any subsequence of {hn}, there exists a further subsequence

{ζn} such that the above equality holds with {hn} replaced by {ζn}. We prove this sufficient condition next.

Note that for any subsequence of {hn}, there exists a further subsequence {ζn} such that σζn/ωPζn →
c ∈ [0,∞]. By definition of Ω0 and Σ0, PrPζn (

√
ζn(L̂Rζn − LRPζn )/ωPζn ≤ x|σ̂ζn = σζn)→ Φ(x) ∀x ∈ R and

PrPζn (|ω̂ζn/ωPζn − 1| > ε|σ̂ζn = σζn)→ 0,∀ε > 0.

If c ∈ [0,∞), then by the continuous mapping theorem

PrPζn (T̂ζn ≤ x|σ̂ζn = σζn) = PrPζn

√ζn(L̂Rζn − LRPζn )/ωPζn + σζnU/ωPζn√
ω̂2
ζn
/ω2

Pζn
+ σ2

ζn
/ω2

Pζn

≤ x


→ Pr

(
Z + cU√

1 + c2
≤ x

)
= Φ(x), (B.17)

where Z ∼ N(0, 1) and Z is independent of U . Then the sufficient condition mentioned above holds.

Similarly, if c =∞,

PrPζn (T̂ζn ≤ x|σ̂ζn = σζn)→ Pr (U ≤ x) = Φ(x). (B.18)

Then the sufficient condition also holds.

Therefore, in case 2, (B.12) holds as well.�
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Proof of Lemma 5.2: It is trivial to see that σ̂an is independent of U and σ̂an ∈ [0, 1].

To check Assumption 5.5(ii), note that if t−2
an ω

2
Pan
→ v∞ ∈ [0,∞), then t−2

ban
ω2
Pan
→ 0 and by Lemma

5.1(a), we have t−2
ban

(ω̂∗ban )2 →p 0 and this implies that σ̂an ≡ exp(−t−2
ban

(ω̂∗ban )2)→ 1. Therefore, σ̂an satisfies

Assumption 5.5(ii).

To check Assumption 5.5(iii), first from Lemma A.8,

√
an(L̂Ran − LRPan )

ωPan
=

1
√
an

an∑
i=1

Λ∗Pan ,i

ωPan
+ op(1)

=
1
√
an

an∑
i=ban+1

Λ∗Pan ,i

ωPan
+

1
√
an

ban∑
i=1

Λ∗Pan ,i

ωPan
+ op(1)

=: A1n +A2n, (B.19)

where A1n = 1√
an

∑an
i=ban+1

Λ∗Pan ,i
ωPan

and A2n =
√
an(L̂Ran−LRPan )

ωPan
−A1n.

Note that

1
√
an

ban∑
i=1

Λ∗Pan ,i

ωPan
=

√
ban√
an

1√
ban

ban∑
i=1

Λ∗Pan ,i

ωPan
= o(1) ·OP (1) = op(1), (B.20)

Thus, A2n →p 0. This implies

PrPan (|A2n| > ε|σ̂an)→p 0 ∀ε > 0, (B.21)

by an application of the Markov inequality.

Because A1n and σ̂n are computed from separate samples, they are independent to each other. Also by

Lemma A.8(i), we have

A1n → N(0, 1). (B.22)

Thus, PrPan (A1n ≤ x|σ̂an) = PrPan (A1n ≤ x) → Φ(x) ∀x ∈ R. Combining this with (B.21) and using an

arguments similar to those that prove the continuous mapping theorem, we get

PrPan

(√
an(L̂Ran − LRPan )

ωPan
≤ x|σ̂an

)
→p Φ(x) ∀x ∈ R. (B.23)

Hence, the first statement of Assumption 5.5(iii) is proved. The second statement of Assumption 5.5(iii) follows

from similar arguments. �

Proof of Theorem 6.1: Let ω∗ and µ∗ denote ωP∗ and LRP∗ respectively. We need to consider two cases:

ω∗ > 0 and ω∗ = 0. We first consider ω∗ > 0. When ω∗ > 0, we have t−2
bn
ω2
∗ → ∞ and by Lemma 5.1,

t−2
bn
ω̂2
bn
→∞ and this implies that σ̂n

p→ 0 because σ̂n = exp(−t−2
bn
ω̂2
bn

). Also, t−2
n ω2

∗ →∞ and by Lemma 5.1,

ω̂n/ω∗
p→ 1. Therefore,

n−1/2T̂n =
L̂Rn + n−1/2σ̂nU√

ω̂2
n + σ̂2

n

p→ µ∗/ω∗ > 0,

so T̂n →∞. This implies that EP∗ϕn(α) = 1.
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Second, we consider ω∗ = 0. When ω∗ = 0, t−2
n ω2

∗ = 0, then by Lemma 5.1(a), ω̂2
n = op(1). Also, by

Assumption 5.5(ii), we have σ̂2
n →p 1. Therefore,

√
nµ∗/

√
ω̂2
n + σ̂2

n →p ∞. Also, by the same argument for

the Case 1 of Theorem 5.1, we have

√
n(L̂Rn − µ∗) + σ̂nU√

ω̂2
n + σ̂2

n

→dU = Op(1).

Therefore,

T̂n =

√
n(L̂Rn − µ∗) + σ̂nU√

ω̂2
n + σ̂2

n

+

√
nµ∗√

ω̂2
n + σ̂2

n

→∞.

This implies that EP∗ϕn(α) = 1. This completes the proof.�

Proof of Theorem 6.2: Since part (b) follows from similar arguments as part (a), for brevity, we only show

part (a).

Let {un}n≥1 be a subsequence of {n} such that

lim
n→∞

Pr
Pun,∗

(|T̂un | > zα/2) = lim inf
n→∞

Pr
Pn,∗

(|T̂n| > zα/2). (B.24)

Note that such {un} always exists by the definition of lim inf. By the completeness of the real line, there is

always a subsequence {an} of {un} such that t−2
an ω

2
Pan
→ v∞ for some v∞ ∈ [0,∞]. We discuss two cases

below.

Case 1: v∞ ∈ [0,∞). In this case, we have

T̂an =

√
an(L̂Ran − LRPan,∗) +

√
anLRPan,∗ + σ̂hnU√

ω̂2
Pan

+ σ̂2
an

=
σ̂−1
an

√
anL̂Ran + σ̂−1

an

√
anLRPan,∗ + U√

σ̂−2
an ω̂

2
an + 1

→p h1 + U. (B.25)

where the second equality holds by Assumption 5.5(ii) and Lemma 5.1(a). Thus,

lim
n→∞

PrPan,∗(|T̂an | > zα/2) = Pr(|U + h1| > zα/2)

= 1− Φ(zα/2 − h1/
√
ω2
∞ + 1) + Φ(−zα/2 − h1/

√
ω2
∞ + 1), (B.26)

where the second equality holds because ω2
∞ = 0 by t−2

an ω
2
Pan
→ v∞ <∞.

Case 2: v∞ = ∞. In this case, we follow similar arguments as those in Case 2 of the proof of Theorem 5.1.

First let the sets Ω0 and Σ0 be defined as in (B.14) and (B.15), respectively. It suffices to show that for any

point {σan}n≥1 ∈ Σ0,

lim
n→∞

PrPan,∗(|T̂an | ≥ zα/2|σ̂an = σan) ≥ 1−Φ(zα/2 − h1/
√
ω2
∞ + 1) + Φ(−zα/2 − h1/

√
ω2
∞ + 1). (B.27)

By the property of limits, it suffices to show that for any subsequence of {an}, there exists a further subsequence

{ζn} such that the above equality holds with {an} replaced by {ζn}. We prove this sufficient condition next.
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Note that for any subsequence of {an}, there exists a further subsequence {ζn} such that σζn → σ∞ and

σζn/ωPζn → c for some σ∞ ∈ [0, 1] and c ∈ [0,∞]. By the definition of Ω0 and Σ0, PrPζn (
√
ζn(L̂Rζn −

LRPζn )/ωPζn ≤ x|σ̂ζn = σζn)→ Φ(x) ∀x ∈ R and PrPζn (|ω̂ζn/ωPζn − 1| > ε|σ̂ζn = σζn)→ 0,∀ε > 0.

If c ∈ [0,∞) and ω∞ > 0, then by the continuous mapping theorem

PrPζn,∗(|T̂ζn | ≥ zα/2|σ̂ζn = σζn)

= PrPζn,∗

∣∣∣∣∣∣
√
ζn(L̂Rζn − LRPζn )/ωPζn +

√
ζnLRPζn /ωPζn + σζnU/ωPζn√

ω̂2
ζn
/ω2

Pζn
+ σ2

ζn
/ω2

Pζn

∣∣∣∣∣∣ ≥ zα/2
∣∣∣σ̂ζn = σζn


→ Pr

(∣∣∣∣Z + h1/ω∞ + cU√
1 + c2

∣∣∣∣ ≥ zα/2)
≥ 1− Φ(zα/2 − h1/

√
ω2
∞ + 1) + Φ(−zα/2 − h1/

√
ω2
∞ + 1), (B.28)

where Z ∼ N(0, 1) and Z is independent of U and the last equality holds because h1/(ω∞
√

1 + c2) =

h1/
√
ω2
∞ + c2ω2

∞ and c2ω2
∞ ≤ 1 because it is the limit of σζn . Then (B.27) holds.

If c ∈ [0,∞) and ω∞ = 0, then

PrPζn,∗(|T̂ζn | ≥ zα/2|σ̂ζn = σζn)→ 1, (B.29)

which also implies (B.27).

If c =∞, we must have ω∞ = 0 because c is the limit of σζn/ωPζn and σζn ≤ 1. And

PrPζn,∗(|T̂ζn | ≥ zα/2|σ̂ζn = σζn)

= PrPζn,∗

∣∣∣∣∣∣
√
ζn(L̂Rζn − LRPζn )/σζn +

√
ζnLRPζn /σζn + U√

ω̂2
ζn
/σ2

ζn
+ 1

∣∣∣∣∣∣ ≥ zα/2
∣∣∣σ̂ζn = σζn


→ Pr

(
|h1/σ∞ + U | ≥ zα/2

)
≥ Pr(|h1 + U | > zα/2)

= 1− Φ(zα/2 − h1/
√
ω2
∞ + 1) + Φ(−zα/2 − h1/

√
ω2
∞ + 1), (B.30)

which also implies (B.27).

Therefore, in case 2, the desired result holds as well.�

C Proof of Auxiliary Lemmas

Proof of Lemma A.1: Lemma A.1 is the same as in Shi (2009a).�

Proof of Lemma A.2: Let En abbreviate EPn . For s = 1 and 2, define new pseudo-metrics %s0 and %s1 on

Φs × L as:

%s0((φs1, `1), (φs2, `2))

= sup
n≥1

[En
[
κ(γ′s1ms,(W, θs1)g`1(X))− κ(γ′s2ms,(W, θs2)g`2(X))

]2
]1/2, (C.1)

31



%s1((φs1, `1), (φs2, `2))

= sup
n≥1

[En‖∂κ(γ′s1ms(W, θs1)g`1(X))/∂γs − ∂κ(γ′s2ms(W, θs2)g`2(X)))/∂γs‖2]1/2, (C.2)

where (φs1, `1), (φs2, `2) ∈ Φs × L.

For (a), it is sufficient to show that the empirical process is stochastically equicontinuous w.r.t. %s0 because

ρs dominates %s0. Note that

%s0((φs1, `1), (φs2, `2))

= sup
n≥1

[En
(
κ(γ′s1ms(W, θs1)g`1(X))− κ(γ′s2ms(W, θs2)g`2(X))

)2
]1/2

≤ sup
n≥1

{
En2[κ(γ′s1ms(W, θs1)g`1(X))− κ(γ′s2ms(W, θs2)g`1(X))]2

+ 2[κ(γ′s2ms(W, θs2)g`1(X))− κ(γ′s2ms,`2(W, θs2)g`2(X))]2
}1/2

≤
√

2 sup
n≥1

{
En[κ(γ′s1ms(W, θs1)g`1(X))− κ(γ′s2ms(W, θs2)g`1(X))]2

}1/2

+
√

2 sup
n≥1

{
En[κ(γ′s2ms(W, θs2)g`1(X))− κ(γ′s2ms(W, θs2)g`2(X))]2

}1/2

. (C.3)

The first inequality holds because (a + b)2 ≤ 2(a2 + b2). The second inequality follows because (a + b) ≤
(
√
a+
√
b)2 when a, b ≥ 0, and supn≥1(an + bn) ≤ supn≥1 an + supn≥1 bn for any two sequences. Note that

sup
n≥1

{
En[κ(γ′s1ms(W, θs1)g`1(X))− κ(γ′s2ms(W, θs2)g`1(X))]2

}1/2

= sup
n≥1

{
Eng`1(X)[κ(γ′s1ms(W, θs1))− κ(γ′s2ms(W, θs2))]2

}1/2

≤ sup
n≥1

{
En[κ(γ′s1ms(W, θs1))− κ(γ′s2ms(W, θs2))]2

}1/2

= sup
n≥1

{
En
(
(φs1 − φs2)(∂κ(γ̃′sms(W, θ̃s))/∂φs)

)2}1/2

≤ ‖φs1 − φs2‖ · sup
n≥1

{
En
∥∥∂κ(γ̃′sms(W, θ̃s))/∂φs

∥∥2
}1/2

≤M1/2‖φs1 − φs2‖, (C.4)

where (γ̃′s, θ̃
′
s) lies on the line segment joining φs1 and φs2. Note that g`(X) is an indicator function and

κ(0) = 0, so κ(γ′sms(W, θs)g`(X)) = g`(X)κ(γ′sms(W, θs)) and the first equality holds. The second equality

holds by a mean-value expansion. The second inequality holds by the Cauchy-Schwartz inequality and the last

inequality holds by Assumption 5.2(vi). Note that (C.4) holds uniformly over `1 ∈ L. Also,

sup
n≥1

{
[κ(γ′s2ms(W, θs2)g`1(X))− κ(γ′s2ms(W, θs2)g`2(X))]2

}1/2

= sup
n≥1

{
En

[
(g`1(X)− g`2(X))2κ(γ′s2ms(W, θs2))2

]}1/2

≤ sup
n≥1

{
En

[
(g`1(X)− g`2(X))2 sup

φs∈Φs

κ(γ′sms(W, θs))
2
]}1/2

= sup
n≥1

{
En

[
(g`1(X)− g`2(X))2En

[
sup
φs∈Φs

κ(γ′sms(W, θs))
2
∣∣X]
]}1/2
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≤M1/2 sup
n≥1

{
En(g`1(X)− g`2(X))2

}1/2

= M1/2 sup
n≥1

{
En|g`1(X)− g`2(X)|

}1/2

≤Mρ`(`1, `2). (C.5)

The first inequality follows by taking supremum over φs ∈ Φs. The third equality holds by law of iterated

expectations. The second inequality holds by Assumption 5.2(vii). The last equality holds by the fact that

g`1 and g`2 are indicator functions. The last inequality holds because

En[|g`1(X)− g`2(X)|] =

∫
X
|g`1(x)− g`2(x)|fn(x)dx

=

∫
C`14C`2

fn(x)dx ≤Mλ(C`14C`2) = Mρ`(`1, `2)2, (C.6)

where the first equality follows from the fact that Px has density fn(x), the second equality holds by the fact

that |g`1(x) − g`2(x)| = 1(C`14C`2), the first inequality holds by Assumption 5.2(viii), and the last equality

holds by the definition of ρ`. Also, (C.5) holds uniformly over φs ∈ Φs. Therefore, (C.3), (C.4) and (C.5)

together imply that

%s0((φs1, `1), (φs2, `2)) ≤ KM1/2‖φs1 − φs2‖+KMρ`(`1, `2)

≤ C(‖φs1 − φs2‖+ ρ`(`1, `2)) = C · ρs((φs1, `1), (φs2, `2)), (C.7)

for some C > 0.

To show the stochastic equicontinuity w.r.t. %s0, we apply the results in Andrews (1994). Recall that

κ(γ′sms(W, θs)g`(X)) = g`(X)κ(γ′sms(W, θs)). Because G = {g`(·) : ` ∈ L} is a class of functions of Vapnik-

C̆ervonenkis sets, then G is a type I classes of functions with envelope function 1. {κ(γ′sms(·, θs)) : φs ∈ Φs}
is a type II class because Φs is a bounded subset of the Euclidean space and κ(γ′sms(·, θs)) is Lipschitz in φs:

|κ(γ′s1ms(·, θs1))− κ(γs2
′ms(·, θs2))| ≤ B(·)‖φs1 − φs2‖, (C.8)

where B(·) = supφs∈Φs ‖∂κ(γ′sm(·, θs))/∂φs‖. Hence, by Theorem 2 of Andrews (1994), {κ(γ′sms(·, θs)) : φs ∈
Φs} satisfies Pollard’s entropy condition with envelope F (·) ≡ 1 ∨ supφs∈Φs |κ(γ′sms(·, θs))| ∨ B(·). Hence,

by Theorem 3 of Andrews (1994), {κ(γ′sms(W, θs)g`(X)) = g`(Xi) · κ(ms(W, θs)) : φs ∈ Φs, ` ∈ L} satisfies

Pollard’s entropy conditional with envelope function F (·). Note that

lim sup
n→∞

En[1 ∨ sup
φs∈Φs

|κ(γ′sms(W, θs))| ∨B(X)]2+δ

≤ lim sup
n→∞

En[1 + sup
φs∈Φs

|κ(γ′sms(W, θs))|+B(X)]2+δ,

≤C · En[1 + sup
φs∈Φs

|κ(γ′sms(W, θs))|2+δ] + En[ sup
φs∈Φs

‖∂κ(γ′sm(W, θs))/∂φs‖2+δ] <∞ (C.9)

for some C > 0. The second inequality holds by the convexity of the function f(x) = x2+δ and the last in-

equality holds by Assumption 5.2(vi). Therefore, by Theorem 1 in Andrews (1994), ν0
s,n(φs, `) is stochastically

equicontinuous w.r.t. %s0.

For (b), it is sufficient to show that the metric space (Φs×L, ρs) is totally bounded and ν0
s,n(φs, `) is op(1)

for all (φs, `) ∈ Φs×L. To show that (Φs×L, ρs) is totally bounded, it suffices to show that both (Φs, ‖·‖) and
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(L, ρ`) are totally bounded. (Φs, ‖ · ‖) is totally bounded because Φs is compact set with Euclidean metric. To

see that (L, ρ`) is totally bounded, let {Xi : i = 1, . . .} be a sequence of i.i.d. uniform random variables over

X . Then the triangular array {fni(ω, `) = g`(Xi)/
√
n} satisfies the conditions of Functional Central Limit

Theorem of Pollard (1990, Theorem 10.6) and pseudo-metric on L is

[E(g`1(X)− g`2(X))2]1/2 =

[
λ(C`14C`2)

λ(X )

]1/2

= K · ρ`(`1, `2) (C.10)

for K = λ(X )1/2. That is, [E(g`1(X)− g`2(X))2]1/2 is equivalent to ρ`(`1, `2). By Theorem 10.6 (a) of Pollard

(1990), (L, [E(g`1(X)− g`2(X))2]1/2) is totally bounded and this implies that (L, ρ`) is totally bounded.

ν0
s,n(φs, `) = Op(1) for each (φs, `) ∈ Φs × L because

Enν
0
s,n(φs, `)

2 = En
[ 1√

n

n∑
i=1

[κ(γ′sms(Wi, θs)g`(Xi))− Enκ(γ′sms(W, θs)g`(X))]
]

(C.11)

=En(κ(γ′sms(W, θs)g`(X))− Enκ(γ′sms(W, θs)g`(X))2 (C.12)

≤Enκ(γ′sms(W, θs))
2 <∞, (C.13)

where the second equality holds by the i.i.d. assumption and the last inequality holds by Assumption 5.2(vi).

The proofs for (c) and (d) are similar to (a) and (b) respectively, and we omit them for brevity.

For (e), we show that sup`∈L |M̂s,`,n(φ
(1)
s,n(`)) −Ms,`,Pn(φ

(2)
s,n(`))| →p 0 and the proofs for other three

convergence results are similar. The proof is done by showing that

sup
φs∈Φs,`∈L

|M̂s,`,n(φs)−Ms,`,Pn(φs)| →p 0 (C.14)

sup
`∈L
|Ms,`,Pn(φ(1)

s,n(`))−Ms,`,Pn(φ(2)
s,n(`))| →p 0. (C.15)

To show (C.14), we use the uniform weak law of large number in Andrews and Shi (2011, Lemma E2).

Consider the triangular array of processes {g`(X)κ(γ′sms(·, θs)) : φs ∈ Φs, ` ∈ L, i ≤ n, n ≥ 1}. From

part (a), it is manageable w.r.t. the envelope functions F (·) = 1 ∨ supφs∈Φs κ(γ′sms(·, θs)) ∨ B(·) such that

supn≥1 n
−1
∑n
i=1EnF

1+δ
n,i <∞. Therefore, by Lemma E2 of Andrews and Shi (2011), (C.14) holds.

To show (C.15), note that

|Ms,`,Pn(φs1)−Ms,`,Pn(φs2)| = |En[g`(X)κ(γ′s1ms(W, θs1))− g`(X)κ(γ′s2ms(W, θs2))]|

≤ En|g`(X)κ(γ′s1ms(W, θs1))− g`(X)κ(γ′s2ms(W, θs2))|

= En|g`(X)[κ(γ′s1ms(W, θs1))− κ(γ′s2ms(W, θs2))]|

≤ En|κ(γ′s1ms(W, θs1))− κ(γ′s2ms(W, θs2)|

= En|(∂κ(γ̃′sms(W, θ̃s))/∂φs)(φs1 − φs2)|

≤ ‖φs1 − φs2‖ · En‖(∂κ(γ̃′sms(W, θ̃s))/∂φs)‖

≤ ‖φs1 − φs2‖ · En sup
φs∈Φs

‖(∂κ(γ′sms(W, θs))/∂φs)‖

≤ C · ‖φs1 − φs2‖, (C.16)
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for some 0 < C < ∞. The first equality holds by the definition of Ms,`,Pn , the second equality holds by the

fact that |EnY | ≤ En|Y | for any random variable Y , the second inequality holds because g` is an indicator

function, the third equality holds by a mean-value expansion, the third inequality holds by the Cauchy-Schwartz

inequality and the last inequality holds by Assumption 5.2(vi). (C.16) holds uniformly over ` ∈ L, so (C.15)

follows.�

Proof of Lemma A.3: Let γ̂Ms,`,n(θs) = arg maxγs∈ΓsM
M̂s,`,n(γs, θs). For Lemma A.3(a), it is sufficient

to show that supθs∈Θs,`∈Lrn ‖γ̂
M
s,`,n(θs)− γ∗s,`,Pn(θs)‖ = op(1) because by Assumption 5.2(vi) M̂s,`,n(γs, θs) is

strictly concave in γs and by Assumption 5.2(v) ‖γ∗s,`,Pn(θs)‖ ≤M−δ . Also, define φ̂Ms,`,n(θs) = (γ̂Ms,`,n(θs), θs)

First, for all ` ∈ L,

Ms,`,Pn(φ̂Ms,`,n(θs))−Ms,`,Pn(φ∗s,`,Pn(θs))

=
(∂Ms,`,Pn(φ∗s,`,Pn(θs))

∂γs

)
(γ̂Ms,`,n(θs)− γ∗s,`,Pn(θs))

+ 2−1(γ̂Ms,`,n(θs)− γ∗s,`,Pn(θs))
′
(∂2Ms,`,Pn(γ̃n, θs)

∂γs∂γ
′
s

)
(γ̂Ms,`,n(θs)− γ∗s,`,Pn(θs))

≤ 2−1(γ̂Ms,`,n(θs)− γ∗s,`,Pn(θs))
′
(∂2Ms,`,Pn(γ̃n, θs)

∂γs∂γ
′
s

)
(γ̂Ms,`,n(θs)− γ∗s,`,Pn(θs))

≤ −2−1pP0,` · δ · ‖γ̂Ms,`,n(θs)− γ∗s,`,Pn(θs)‖2, (C.17)

where γ̃n lies between γ̂Ms,`,n(θs) and γ∗s,`,Pn(θs) and δ is in condition Assumption 5.2(vi). The first inequality

holds by By Lemmas A.9 and A.11, which apply because γ∗s,`,Pn(θs) is the solution to maxγs∈Γs(θs)Ms,`,Pn(γs, θs).

The second inequality holds by Lemma A.5 and the fact that

∂2Ms,`,Pn(γ̃n, θs)

∂γs∂γ
′
s

= EP0

[
κ′′(γ̃

′

nms(W, θs))ms(W, θs)ms(W, θs)
′
g`(X)

]
. (C.18)

For any ε > 0,

Pn

(
sup

θs∈Θs,`∈Lrn
‖γ̂Ms,`,n(θs)− γ∗s,`,Pn(θs)‖ > ε

)
≤Pn

(
‖γ̂Ms,`n,n(θs,n)− γ∗s,`n,Pn(θs)‖ > ε

)
≤Pn

(
Ms,`n,Pn(φ̂Ms,`n,n(θs,n))−Ms,`n,Pn(φ∗s,`n,Pn(θs,n)) ≤ −2−1pP0,n,`nδε

2
)

=Pn

(
Ms,`n,Pn(φ̂Ms,`n,n(θs,n))− M̂s,`n,n(φ̂Ms,`n,n(θs,n))

+ M̂s,`n,n(φ̂Ms,`n,n(θs,n))− M̂s,`n,n(φ∗s,`n,Pn(θs,n))

+ M̂s,`n,n(φ∗s,`n,Pn(θs,n))−Ms,`n,Pn(φ∗s,`n,Pn(θs,n)) ≤ −2−1pP0,n,`nδε
2
)

≤Pn
(√

n
(
Ms,`n,Pn(φ̂Ms,`n,n(θs,n))− M̂s,`n,n(φ̂Ms,`n,n(θs,n))

)
+
√
n
(
M̂s,`n,n(φ∗s,`n,Pn(θs,n))−Ms,`n,Pn(φ∗s,`n,Pn(θs,n))

)
≤ −2−1

√
npP0,n,`n · δ · ε2

)
→0. (C.19)

The first inequality holds after we pick a sequence {`n ∈ Lrn , θs,n ∈ Θs}∞n=1 such that ‖γ̂Ms,`n,n(θs,n) −
γ∗s,`n,Pn(θs,n)‖ ≥ supθs∈Θs,`∈Lrn ‖γ̂

M
s,`,n(θs) − γ∗s,`(θs)‖ − 2−n. The second inequality holds by (C.17) and
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the third inequality holds by the definition of γ̂Ms,`n,n(θs,n).The convergence holds by the fact that the l.h.s.

term in the last Pn(·) is Op(1) by Lemma A.2(b) and the r.h.s. term diverges to negative infinity by Assumption

5.4 and
√
npP0,n,`n ≥

√
nCrdxn .

For Lemma A.3(b), let {`n ∈ Lrn , θs,n ∈ Θs}∞n=1 be a random sequence such that pP0,n,`n‖γ̂s,`n,n(θs,n) −
γ∗s,`n,Pn(θs,n)‖ ≥ supθs∈Θs,`∈Lrn pP0,n,`‖γ̂s,`,n(θs)− γ∗s,`,n,n(θs)‖ − 2−n. Then,

0 ≤
(
M̂s,`n,n(φ̂s,`n,n(θs,n))− M̂s,`n,n(φ∗s,`n,Pn(θs,n))

)
≤
(∂M̂s,`n,n(φ∗s,`n,Pn(θs,n))

∂γ′s

)
(γ̂s,`n,n(θs,n)− γ∗s,`n,Pn(θs,n))

+ (γ̂s,`n,n(θs,n)− γ∗s,`n,Pn(θs,n))
′
(∂2M̂s,`n,n(γ̃n, θs,n)

∂γs∂γ
′
s

)
(γ̂s,`n,n(θs,n)− γ∗s,`n,Pn(θs,n))

≤

(
∂M̂s,`n,n(φ∗s,`n,Pn(θs,n))

∂γ′s
−
∂Ms,`n,n(φ∗s,`n,Pn(θs,n))

∂γ′s

)
(γ̂s,`n,n(θs,n)− γ∗s,`n,Pn(θs,n))

+ (γ̂s,`n,n(θs,n)− γ∗s,`n,Pn(θs,n))
′
(∂2M̂s,`n,n(γ̃n, θs,n)

∂γs∂γ
′
s

)
(γ̂s,`n,n(θs,n)− γ∗s,`n,Pn(θs,n))

≤Op(n−1/2)‖γ̂s,`n,n(θs,n)− γ∗s,`n,Pn(θs,n)‖ − pP0,n,`n · δ · ‖γ̂s,`n,n(θs,n)− γ∗s,`n,Pn(θs,n)‖2

+ op(pP0,n,`n · δ · ‖γ̂s,`n,n(θs,n)− γ∗s,`n,Pn(θs,n)‖2). (C.20)

where the first inequality holds by the definition of γ̂s,`n,n(θs,n) and the second inequality holds by a second

order Taylor expansion. The third inequality holds by applying Lemmas A.9 and A.11 to the problems

maxγs∈Γs(θs,n)Ms,`n,n(γs, θs,n) and maxγs∈Γs(θs) M̂s,`n,n(γs, θs,n). For the last inequality, the Op(n
−1/2) term

follows from Lemma A.2(d). Also, by Lemma A.2(e),

1

pP0,`n

∂2M̂s,`n,n(γ̃n, θs,n)

∂γs∂γ
′
s

=
1

pP0,`n

(∂2Ms,`n,Pn(γ̃n, θs,n)

∂γs∂γ
′
s

+Op(n
−1/2)

)
= EP0

[
κ′′(γ̃′nms(W, θs,n))ms(W, θs,n)ms(W, θs,n)′

∣∣X ∈ C`n]+ op(1), (C.21)

where the op(1) follows from the fact that
√
npP0,`n diverges to infinity by the same argument for (C.19).

Finally, by Lemma A.5 and (C.29), the last inequality follows. Then, pP0,n,`n‖γ̂s,`n,n(θs,n)− γ∗s,`n,Pn(θs,n)‖ =

Op(n
−1/2) and this completes the proof. For the second part, note that it is straightforward to see that

rdxn sup`∈Lrn p
−1
P0,n,`

≤ δ−1
x where δx is defined in Assumption 5.2(viii). Therefore,

rdxn sup
θs∈Θs,`∈Lrn

‖γ̂s,`,n(θs)− γ∗s,`,Pn(θs)‖ (C.22)

≤ sup
θs∈Θs,`∈Lrn

pP0,n,`‖γ̂s,`,n(θs)− γ∗s,`,Pn(θs)‖ = Op(n
−1/2), (C.23)

and this shows the second part.

For Lemma A.3(c), let {`n ∈ L}∞i=1 be such that
∥∥γ∗s,`n,Pn(θ

(1)
s,n)−γ∗s,`n,Pn(θ

(2)
s,n)
∥∥ ≥ sup`∈Lrn

∥∥γ∗s,`n,Pn(θ
(1)
s,n)−

γ∗s,`n,Pn(θ
(2)
s,n)
∥∥− 2−n. Then, similar to (A.19) of Shi (2009a), we have

0 ≤− pP0,`n · δ ·
∥∥γ∗s,`n,Pn(θ(1)

s,n)− γ∗s,`n,Pn(θ(2)
s,n)
∥∥2

+ pP0,`n ·Op
(∥∥γ∗s,`n,Pn(θ(1)

s,n)− γ∗s,`n,Pn(θ(2)
s,n)
∥∥ · ∥∥θ(1)

s,n − θ(2)
s,n

∥∥). (C.24)
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(C.24) implies that sup`∈L
∥∥γ∗s,`,Pn(θ

(1)
s,n)− γ∗s,`,Pn(θ

(2)
s,n)
∥∥ = Op

(∥∥θ(1)
s,n − θ(2)

s,n

∥∥).
Lemma A.3(d) is implied by Lemma A.3(a) and Lemma A.3(b).�

Proof of Lemma A.4: The following proof holds uniformly over P ∈ F and we simplify the notation by

deleting the dependence on P . For example, we have Ms,` = Ms,`,P and γ∗s,`(θs) = γ∗s,`,P (θs). Recall that

Ms,`(γs, θs) = EP0 [g`(X)κ(γ′sms(W, θs))]. As a result,

Ms,`(φ
∗
s,`(θs)) = pP0,`E

[
κ(γ∗s,`(θs)

′ms(W, θs))|X ∈ C`
]
. (C.25)

By a mean-value expansion, we have

0 ≤ Ψ
[
Ms,`(φ

∗
s,`(θs))

]
= Ψ′(M̈s,`) · Ms,`(φ

∗
s,`(θs))

= Ψ′(M̈s,`) · pP0,` · E[κ
(
γ∗s,`(θs)

′ms(W, θs)
)
|X ∈ C`] ≤ Crdx , (C.26)

where M̈s,` is a value between 0 andMs,`(φ
∗
s,`(θs)), and M̈s,` is bounded uniformly over ` ∈ L by Assumptions

5.2(iv) and (vi), and the second inequality holds due to this, the continuity of Ψ′(·), and Assumptions (viii).

This implies that

0 ≤ r−dx−1
n

∫
Lcrn

Ψ
[
Ms,`(φ

∗
s,`(θs))

]
dF (`) ≤ C, (C.27)

where C is a positive number not dependent on θs and P0. Note that the extra rn comes from the fact that

the total weight of F (`) over Lcrn is of order rn. �

Proof of Lemma A.5: Note that

EP0
[κ′′(γ′sms(W, θs)g`(X))ms(W, θs)ms(W, θs)

′]

=EP0 [g`(X)κ′′(γ′sms(W, θs))ms(W, θs)ms(W, θs)
′]

=pP0,` · EP0

[
κ′′(γ′sms(W, θs))ms(W, θs)ms(W, θs)

′∣∣X ∈ C`], (C.28)

where the second equality holds by the law of iterated expectations and the last equality follows from the

definition of the conditional expectation. Hence, it suffices to show that

eigmax

(
EP0

[
κ′′(γ′sms(W, θs))ms(W, θs)ms(W, θs)

′∣∣X ∈ C`]) ≤ −δ, (C.29)

because for all a > 0, eigmax(a ·A) = a · eigmax(A).

Suppose not, i.e., eigmax(EP0 [κ′′(γ′sms(W, θs))ms(W, θs)ms(W, θs)
′|X ∈ C`]) > −δ. Let λ be the eigenvec-

tor associated with the maximum eigenvalue and ‖λ‖ > 0, then

λ′EP0

[
κ′′(γ′sms(W, θs))ms(W, θs)ms(W, θs)

′∣∣X ∈ C`]λ > −δ‖λ‖2. (C.30)

However, this contradicts to the following:

λ′EP0 [κ′′(γ′sms(W, θs))ms(W, θs)ms(W, θs)
′|X ∈ C`]λ

=EP0
[λ′κ′′(γ′sms(W, θs))ms(W, θs)ms(W, θs)

′λ|X ∈ C`]
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=EP0

[
λ′E

[
κ′′(γ′sms(W, θs))ms(W, θs)ms(W, θs)

′|X
]
λ
∣∣X ∈ C`]

≤EP0

[
δ‖λ‖2

∣∣X ∈ C`] ≤ −δ‖λ‖2. (C.31)

The second equality holds by law of iterated expectations and the inequity holds because of Assumption 5.2(v).

Lemma A.5 follows.�

Proof of Lemma A.6: We first claim that P0 ∈ Ps,θs,` iff d(Ps,θs,`, P0) defined in (3.5) is equal to 0. Note that

EP0

[
κ
(
γ′sms(X, θs)g`(X)

)]
= 0 when γs = 0. Therefore, it is straightforward to see that d(Ps,θs,`, P0) ≥ 0.

Also, by Lemma A.5, EP0

[
κ
(
γ′sms(X, θs)g`(X)

)]
is strictly concave on ΓMs and by definition, Γs(Θs) is convex,

so the solution to (3.5) is unique. As a result, to show that P0 ∈ Ps,θs,` iff d(Ps,θs,`, P0) = 0, it is equivalent

to show that P0 ∈ Ps,θs,` iff γs = 0 is the solution to (3.5).

First, we show that if γs = 0 is the solution to (3.5), then P0 ∈ Ps,θs,`. Note that for j = 1 . . . , ks,

∂EP0

[
κ
(
γ′sms(X, θs)g`(X)

)]
∂γs,j

∣∣∣
γs=0

= −EP0
[ms,j(X, θs)g`(X)]. (C.32)

It is obvious that γs = 0 is a regular point. By Lemma A.9, if γs = 0 is the solution to (3.5), then there exists

µ∗ ∈ Rks−ps+ such that

∂EP0

[
κ
(
γ′sms(X, θs)g`(X)

)]
∂γs,j

∣∣∣
γs=0

= 0, for j = 1, . . . , ps, (C.33)

∂EP0

[
κ
(
γ′sms(X, θs)g`(X)

)]
∂γs,j

∣∣∣
γs=0

+ µ∗j−ps = 0, for j = ps + 1, . . . , ks. (C.34)

This implies that

EP0 [ms,j(X, θs)g`(X)] = 0, for j = 1, . . . , ps, (C.35)

EP0
[ms,j(X, θs)g`(X)] = µ∗j−ps ≥ 0, for j = ps + 1, . . . , ks, (C.36)

i.e., P0 ∈ Ps,θs,`.

We show the other direction. We apply Lemma A.10 to show that if P0 ∈ Ps,θs,`, then γs = 0 is the

solution to (3.5). Let µ∗j = EP0 [ms,ps+j(W, θs)] which is greater than or equal to 0 because P0 ∈ Ps,θs,`.
Therefore, we have

−EP0
[ms,j(W, θs)] =

∂EP0

[
κ
(
γ′sms(X, θs)g`(X)

)]
∂γs,j

∣∣∣
γs=0

= 0, for j = 1, . . . , ps, (C.37)

−EP0
[ms,j(W, θs)] + µ∗j−ps =

∂EP0

[
κ
(
γ′sms(X, θs)g`(X)

)]
∂γs,j

∣∣∣
γs=0

+ µ∗j−ps = 0, forj ≥ ps. (C.38)

On the other hand, the L(λs, µ) for our case is

L(γs, µ) = EP0

[∂2κ
(
γ′sms(X, θs)g`(X)

)
∂γs∂γs′

]
= EP0 [κ′′

(
γ′sms(X, θs)g`(X)

)
ms(X, θs)ms(X, θs)

′]. (C.39)

Therefore, L(0, µ∗) = EP0
[−g`(X)ms(X, θs)ms(X, θs)

′)] and eigmax(L(0, µ∗)) < 0 by Lemma A.5. As a result,

the condition 2 of Lemma A.10 holds. This implies that γs = 0 is the solution to (3.5) and d(Ps,θs,`, P0) = 0.
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Next we show P0 ∈ Ps iff dL(Ps, P0) = 0. First, if P0 ∈ Ps, then there exists θ∗s ∈ Θs such that

P0 ∈ Ps,θ∗s . This is equivalent to that P0 ∈ Ps,θ∗s ,` for all ` ∈ L and it follows that d(Ps,θ∗s ,`, P0) = 0.

Therefore, dL(Ps,θ∗s , P0) = 0. This implies that dL(Ps, P0) = infθs∈Θs dL(Ps,θs , P0) = 0.

We show the other direction. Suppose dL(Ps, P0) = 0, then there exists a sequence {θs,n ∈ Θs}∞n=1 such

that dL(Ps,θs,n , P0) < 1/n. Since Θs is a compact set, there exists a subsequence kn of n such that θs,kn → θ∗s ∈
Θs as n→∞. We first claim that dL(Ps,θ∗s , P0) = 0 and it is sufficient to show that dL(Ps,θs , P0) is continuous

in θs. Note thatMs,`,P0(γs, θs) = EP0 [κ(γ′sms(W, θs)g`(X))] is uniformly continuous on ΓsM ×Θs. By Lemma

A.3(c), γ∗s,`(θs) is uniformly continuous in θs ∈ Θs. These imply that for each ` ∈ L, Ms,`,P0
(γ∗s,`(θs), θs)

and d(Ps,θs,`, P0) = Ψ[Ms,`,P0
(γ∗s,`(θs), θs)] is continuous in θs. Hence, for any sequence θs,n that converges

θs, d(Ps,θs,n,`, P0) converges to d(Ps,θs,`, P0) for each ` ∈ L. By Assumptions 5.2(iv) and (vi), d(Ps,θs,`, P0) is

bounded above uniformly in ` and θs. Finally, by the dominated convergence theorem, it follows that for any

sequence θs,n → θs, dL(Ps,θs,n , P0)→ dL(Ps,θs , P0). This shows the continuity of dL(Ps,θs , P0) in θs.

Next, we show that P0 ∈ Ps,θ∗s . Suppose not, then there exists `∗ such that P0 6∈ Ps,θ∗s ,`∗ and d(Ps,θ∗s ,`∗ , P0) >

0. Next, by the same argument for Theorem 3 of AS, there exists τ̄ > 0 such that for all ` ∈ Nτ̄ (`∗), P0 6∈ Ps,θ∗s ,`∗
and d(Ps,θ∗s ,`∗ , P0) > 0. Finally, it follows that dL(Ps,θ∗s , P0) ≥

∫
Nτ̄ (`∗)

dF (`)(Ps,θ∗s ,`, P0)dF (`) > 0. This com-

pletes Lemma A.6.�

Proof of Lemma A.7: Let Prn abbreviate PrPn . For simplicity, ignore the subscript s.

We first show the consistency, that is for arbitrary sequence {θ̂n ∈ Θ̂n}∞n=1 and arbitrary ε > 0, we have

Prn(ρlh(θ̂n,Θ
∗(Pn)) > ε)→ 0. Note that Assumption 5.2(ii) implies that for all ε > 0, there exists δε > 0 not

dependent on Pn such that

inf
θ∈Θ\Nε(Θ∗(Pn))

dL(Pθ, Pn) > dL(P, Pn) + δε. (C.40)

Let θ∗n be the point in Θ∗(Pn) that is (approximately) closest to θ̂n, that is to say ‖θ̂n−θ∗n‖2 ≤ ρ2
lh(θ̂n,Θ

∗
n)+2−n.

Then, the consistency is proved by the following derivation:

Prn(ρlh(θ̂n,Θ
∗(Pn)) > ε)

≤Prn(dL(Pθ̂n , Pn)− dL(Pθ∗n , Pn) > δε)

= Prn

([
dL(Pθ̂n , Pn)− dLrn (Pθ̂n , Pn)

]
+
[
dLrn (Pθ̂n , Pn)− d̂Lrn (Pθ̂n , Pn))

]
+
[
d̂Lrn (Pθ̂n , Pn))− d̂Lrn (Pθ∗n , Pn))

]
+
[
d̂Lrn (Pθ∗n , Pn))− dLrn (Pθ∗n , Pn))

]
+
[
dLrn (Pθ∗n , Pn))− dL(Pθ∗n , Pn)

]
> δε

)
= Prn

(
op(1) + op(1) +

[
d̂Lrn (Pθ̂n , Pn))− d̂Lrn (Pθ∗n , Pn))

]
+ op(1) + op(1) > δε

)
≤Prn

(
op(1) + op(1) + op(1) + op(1) > δε

)
→ 0, (C.41)

where the first inequality holds by (C.40), the second equality holds by Lemma A.4 and Lemma A.2(b) and

the second inequality holds by the definition of Θ̂n.

Next, we show the convergence rate. Let θ̂n and θ∗n be the same as above. And for any measurable subset

A of L, let d̂A(Pθ, Pn) =
∫
A

Ψ(M̂`,n(γ̂`,n(θ), θ))dF (`). Let M̂A,n(φ∗(θ)) =
∫
A

Ψ(M̂`,n(γ∗`,Pn(θ), θ))dF (`) and
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MA,n(φ̂(θ)) =
∫
A

Ψ(M`,n(γ̂`,n(θ), θ))dF (`). Below, we show that

(1a) [d̂Lrn (Pθ̂n , Pn)− M̂Lrn ,n(φ∗(θ∗n))]− [MLrn ,n(φ̂(θ̂n))− dLrn (Pθ∗n , Pn)]

= Op(n
−1r−dxn ) +Op(n

−1/2)‖θ̂n − θ∗n‖+ op(1) · ‖θ̂n − θ∗n‖2

(1b) [d̂Lrn (Pθ̂n , Pn)− M̂Lrn ,n(φ∗(θ∗n))] ≤ Op(n−1r−dxn ) (C.42)

(1c) [MLrn ,n(φ̂(θ̂n))− dLrn (Pθ∗n , Pn)] ≥ Op(n−1r−dxn ) + δ ·
(
(‖θ̂n − θ∗n‖2 − 2−n) ∧ δ

)
,

where δ is the positive number in Assumption 5.2. The three conditions in (C.42) imply that

Op(n
−1r−dxn ) ≥Op(n−1/2) · ‖θ̂n − θ∗n‖+ op(1)(‖θ̂n − θ∗n‖)

+ δ ·
(
(‖θ̂n − θ∗n‖2 − 2−n) ∧ δ)

)
, (C.43)

and this further implies that ‖θ̂n − θ∗n‖ = Op(n
−1/2r

−dx/2
n ).

We first show that (1a) holds. First, we have the l.h.s. of (1a) equals∫
Lrn

{[
Ψ
(
M̂`,n(φ̂`,n(θ̂n))

)
−Ψ

(
M̂`,n(φ∗`,Pn(θ∗n))

)]
−
[
Ψ
(
M`,n(φ̂`,n(θ̂n))

)
−Ψ

(
M`,Pn(φ∗`,Pn(θ∗n))

)]}
d`

=

∫
Lrn

{(
φ̂`,n(θ̂n)− φ∗`,Pn(θ∗n)

)′
×[

Ψ′
(
M̂`,n(φ∗`,Pn(θ∗n))

)(∂M̂`,n(φ∗`,Pn(θ∗n))

∂φ′

)
−Ψ′

(
M`,Pn(φ∗`,Pn(θ∗n))

)(∂M`,Pn(φ∗`,Pn(θ∗n))

∂φ′

)]
+

(
φ̂`,n(θ̂n)− φ∗`,Pn(θ∗n)

)′(∂2Ψ(M̂`,Pn(φ̄`,n))

∂φ∂φ′
− ∂2Ψ(M`,Pn(φ̄`,n))

∂φ∂φ′

)(
φ̂`,n(θ̂n)− φ∗`,Pn(θ∗n)

)}
dF (`)

(C.44)

by a second order Taylor expansion, where φ̄`,n is some values lying on the line segment joining φ̂`,n(θ̂) and

φ∗`,n(θ∗n). Together, the first summand of the expression inside the integral in the r.h.s. of (C.44) is

Op(n
−1/2)‖φ̂`,n(θ̂n)− φ∗`,Pn(θ∗n)‖ (C.45)

due to a combination of Lemma A.2(b) and (d), twice-continuously differentiability of Ψ(·) and Assumptions

5.2(vii)-(viii). Now note that

‖φ̂`,n(θ̂n)− φ∗`,Pn(θ∗n)‖ ≤‖γ̂`,n(θ̂n)− γ∗`,Pn(θ∗n)‖+ ‖θ̂n − θ∗n‖

≤‖γ̂`,n(θ̂n)− γ∗`,Pn(θ̂n)‖+ ‖γ∗`,Pn(θ̂n)− γ∗`,Pn(θ∗n)‖+ ‖θ̂n − θ∗n‖

=‖γ̂`,n(θ̂n)− γ∗`,Pn(θ̂n)‖+Op(‖θ̂n − θ∗n‖) + ‖θ̂n − θ∗n‖

=Op(n
−1/2r−dxn ) +Op(‖θ̂n − θ∗n‖) + ‖θ̂n − θ∗n‖

=Op(n
−1/2r−dxn ) +Op(‖θ̂n − θ∗n‖), (C.46)

where the first two inequalities hold by triangular inequalities, the first equality follows by Lemma A.3(c) and

the second equality follows by Lemma A.3(b).
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Now we study the second summand of the expression inside the integral in the r.h.s. of (C.44). Using the

first three lines of (C.46), we have that the absolute value of this second summand is bounded by

K̄ · ‖φ̂`,n(θ̂n)− φ∗`,Pn(θ∗`,n)‖2 ·

∥∥∥∥∥∂2Ψ(M̂`,n(φ̄`,n))

∂φ∂φ′
− ∂2Ψ(M`,Pn(φ̄`,n))

∂φ∂φ′

∥∥∥∥∥
= (Op(n

−1r−2dx
n ) +Op(‖θ̂n − θ∗n‖2))Op(n

−1/2)

= op(n
−1r−dxn ) +Op(n

−1/2)Op(‖θ̂n − θ∗n‖2), (C.47)

where K̄ is a positive constant, the first equality holds by (C.46) and Lemma A.2(d) and the twice continuous

differentiability of Ψ(·), and the second equality holds by Assumption 5.4.

The Op and op terms in the above three displays are uniform over ` ∈ Lrn . Thus, together, they imply

that condition (1a) in C.42 holds.

For (1b) in (C.42), we have that the l.h.s. of the condition equals∫
Lrn

{
Ψ
(
M̂`,n(φ̂`,n(θ̂n))

)
−Ψ

(
M̂`,n(φ∗`,Pn(θ∗n))

)}
dF (`)

≤
∫
Lrn

{
Ψ
(
M̂`,n(φ̂`,n(θ∗n))

)
−Ψ

(
M̂`,n(φ∗`,Pn(θ∗n))

)}
dF (`)

=

∫
Lrn

{
Ψ′(M̈`,n)

(
M̂`,n(φ̂`,n(θ∗n))

)
− M̂`,n(φ∗`,Pn(θ∗n))

)}
dF (`), (C.48)

where the first inequality holds because θ̂s,n is a minimizer of the problem and the second equality holds by

mean-expansions. Note that

M̂`,n(φ̂`,n(θ∗n))− M̂`,n(φ∗`,Pn(θ∗n))

=
[∂M̂`,n(φ∗`,Pn(θ∗n))

∂γ′

]
[γ̂`,n(θ∗n)− γ∗`,Pn(θ∗n)]

+ [γ̂`,n(θ∗n)− γ∗`,Pn(θ∗n)]′
[∂2M̂s,`,n(φ̈`)

∂γ∂γ′

]
[γ̂`,n(θ∗n)− γ∗`,Pn(θ∗n)]

=
[∂M̂`,n(φ∗` (θ

∗
n))

∂γ′

]
[γ̂`,n(θ∗n)− γ∗`,Pn(θ∗n)] +Op(n

−1r−dxn )

≤
[∂M̂`,n(φ∗`,Pn(θ∗n))

∂γ′
−
∂M`,Pn(φ∗`,Pn(θ∗n))

∂γ′

]
[γ̂`,n(θ∗n)− γ∗`,Pn(θ∗s,n)] +Op(n

−1r−dxn )

= Op(n
−1r−dxn ) +Op(n

−1r−dxn ) = Op(n
−1r−dxn ). (C.49)

Given that Ψ′(M̈`) = Op(1), (C.49) is sufficient for (1b).

For (1c) in (C.42), we first have that the l.h.s. of this condition equals

[MLrn ,n(φ̂(θ̂n))− dLrn (Pθ̂n , Pn)]− [dLrn (Pθ̂n , Pn)− dLrn (Pθ∗n , Pn)]

= [MLrn ,n(φ̂(θ̂n))− dLrn (Pθ̂n , Pn)]− [dL(Pθ̂n , Pn)− dL(Pθ∗n , Pn)]

+ [dLcrn (Pθ̂n , Pn)− dLcrn (Pθ∗n , Pn)]

≥ [MLrn ,n(φ̂(θ̂n))− dLrn (Pθ̂n , Pn)] + δ · [(‖θ̂n − θ∗n‖2 + 2−n) ∧ δ]

+ [MLcrn ,n(φ∗(θ̂n))− dLcrn (Pθ∗n , Pn)]

41



= Op(n
−1r−dxn ) + δ · [(‖θ̂n − θ∗n‖2 + 2−n) ∧ δ] + [MLcrn ,n(φ∗(θ̂n))− dLcrn (Pθ∗n , Pn)], (C.50)

where the first inequality holds by Assumption 5.2(iii) and the second equality holds by similar arguments as

those for condition (1b) in (C.42). Also,

[dLcrn (Pθ̂n , Pn)− dLcrn (Pθ∗n , Pn)] =

∫
Lcrn

{
Ψ
(
M`,Pn(φ∗`,Pn(θ̂n))

)
−Ψ

(
M`,Pn(φ∗`,Pn(θ∗n))

)}
dF (`)

=

∫
Lcrn

Ψ′
(
M̈`,n

)
[M`,Pn(φ∗`,Pn(θ̂n))−M`,Pn(φ∗`,Pn(θ∗n))]dF (`)

=

∫
Lcrn

O(rdxn )Op(‖θ̂n − θ∗n‖)dF (`)

=O(rdx+1
n ) ·Op(‖θ̂n − θ∗n‖)

=o(n−1/2) ·Op(‖θ̂n − θ∗n‖), (C.51)

where the second equality holds by a mean value expansion. The third equality in (C.51) holds because for

each ` ∈ Lcrn

[M`,Pn(φ∗`,Pn(θ̂n))−M`,Pn(φ∗`,Pn(θ∗n))] =
[∂M`,Pn(φ̈)

∂φ′

]
[φ∗`,Pn(θ̂n)− φ∗`,Pn(θ∗n)]

= p−1
`,n

[∂M`,Pn(φ̈`)

∂φ′

]
p`,n[φ∗`,Pn(θ̂n)− φ∗`,Pn(θ∗n)]

= Op(1) ·O(rdxn ) ·Op(‖θ̂n − θ∗n‖), (C.52)

where the first equality holds by a mean-value expansion, the Op(1) in the last equality holds by Assumption

5.2(viii), p`,n = O(rdxn ) for all ` ∈ Lcrn and

‖φ∗`,Pn(θ̂n)− φ∗`,Pn(θ∗n)‖ ≤ ‖γ∗`,Pn(θ̂`,n)− γ∗`,Pn(θ∗n)‖+ ‖θ̂n − θ∗n‖

= Op(‖θ̂n − θ∗n‖) + ‖θ̂n − θ∗s‖ = Op(‖θ̂n − θ∗n‖) (C.53)

where the last line holds by Lemma A.3(c). The fourth equality in (C.51) holds because the total weight of

F (`) over Lcrn is O(rn) by Assumption 5.4 and the last equality in (C.51) holds by Assumption 5.4. Therefore,

(1c) holds.�

Proof of Lemma A.8: Rewrite
√
n(L̂Rn − LRPn) as

√
n(L̂Rn − LRPn)

=
√
n
(∫
Lrn

[
Ψ
(
M̂1,`,n

(
φ̂1,`,n(θ̂1,n)

))
−Ψ

(
M̂2,`,n

(
φ̂2,`,n(θ̂2,n)

)]
dF (`)− LRPn

)
=
√
n

∫
L

[
Ψ
(
M̂1,`,n

(
φ∗1,`,Pn(θ∗1,n)

))
−Ψ

(
M∗1,`,Pn

)
−Ψ

(
M̂2,`,n

(
φ∗2,`,Pn(θ∗2,n)

))
+ Ψ

(
M∗2,`,Pn

)]
dF (`)

−
√
n

∫
Lcrn

[
Ψ
(
M̂1,`,n

(
φ∗1,`,Pn(θ∗1,n)

))
−Ψ

(
M̂2,`,n

(
φ∗2,`,Pn(θ∗2,n)

))]
dF (`)

+
√
n

∫
Lrn

[
Ψ
(
M̂1,`,n

(
φ̂1,`,n(θ̂1,n)

))
−Ψ

(
M̂1,`,n

(
φ∗1,`,Pn(θ∗1,n)

))]
dF (`)
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+
√
n

∫
Lrn

[
Ψ
(
M̂2,`,n

(
φ∗2,`,Pn(θ∗2,n)

))
−Ψ

(
M̂2.`,n

(
φ̂2,`,n(θ̂2,n)

))]
dF (`)

= Λ̃n −Acn +An,1 +An,2. (C.54)

Re-write Acn as

Acn =
√
n

∫
Lcrn

[
Ψ
(
M̂1,`,n

(
φ∗1,`,Pn(θ∗1,n)

))
−Ψ

(
M̂2,`,n

(
φ∗2,`,Pn(θ∗2,n)

))]
dF (`)

=
√
n

∫
Lcrn

[
Ψ
(
M̂1,`,n

(
φ∗1,`,Pn(θ∗1,n)

))
−Ψ

(
M1,`,Pn

(
φ∗1,`,Pn(θ∗1,n)

))]
dF (`)

−
√
n

∫
Lcrn

[
Ψ
(
M̂2,`,n

(
φ∗2,`,Pn(θ∗2,n)

))
−Ψ

(
M2,`,Pn

(
φ∗2,`,Pn(θ∗2,n)

))]
dF (`)

+
√
n

∫
Lcrn

[
Ψ
(
M1,`,Pn

(
φ∗1,`,Pn(θ∗1,n)

))
−Ψ

(
M2,`,Pn

(
φ∗2,`,Pn(θ∗2,n)

))]
dF (`)

=Acn,1 −Acn,2 +Acn,3. (C.55)

By Lemma A.4, Acn,3 = Op(n
1/2rdx+1

n ). For Acn,1, by mean-value expansions,

|Acn,1| =
∣∣∣ ∫
Lcrn

Ψ′(M̃1,`,n)
√
n
(
M̂1,`,n

(
φ∗1,`,Pn(θ∗1,n)

)
−M1,`,Pn

(
φ∗1,`,Pn(θ∗1,n)

))
dF (`)

∣∣∣
≤C

∫
Lcrn

√
n
∣∣∣M̂1,`,n

(
φ∗1,`,Pn(θ∗1,n)

)
−M1,`,Pn

(
φ∗1,`,Pn(θ∗1,n)

)∣∣∣ dF (`)

=Op(rn) = op(n
1/2rdx+1

n ), (C.56)

where M̃1,`,n is between M̂1,`,n

(
φ∗1,`,Pn(θ∗1,n)

)
andM1,`,Pn

(
φ∗1,`,Pn(θ∗1,n)

)
. The first inequality holds by the fact

that Ψ′(M̃1,`,n) is uniformly bounded with probability approaching 1, the quantity
√
n
∣∣M̂1,`,n

(
φ∗1,`,Pn(θ∗1,n)

)
−

M1,`,Pn

(
φ∗1,`,Pn(θ∗1,n)

)∣∣ is Op(1) uniformly over ` by A.2(b), and the total weight of F (`) over Lcrn is O(rn)

by Assumption 5.4. The last equality holds because n1/2rdxn → ∞. Similarly, Acn,2 = op(n
1/2rdx+1

n ). These

together imply that

Acn = Op(n
1/2rdx+1

n ). (C.57)

For An,1 and An,2, observe that they are n1/2 times the l.h.s. of (1b) in equation (C.42) specialized to

model P1 and model P2 respectively. The three conditions in (C.42) combined with Lemma A.7 show that

An,1 = Op(n
−1/2r−dxn ), and An,2 = Op(n

−1/2r−dxn ). (C.58)

It is left to discuss Λ̃n. Recall that

Λ̃n =
√
n

∫
L

[
Ψ
(
M̂1,`,n

(
φ∗1,`,Pn(θ∗1,n)

))
−Ψ

(
M∗1,`,Pn

)]
dF (`)

−
√
n

∫
L

[
Ψ
(
M̂2,`,n

(
φ∗2,`,Pn(θ∗2,n)

)
−Ψ

(
M∗2,`,Pn

)]
dF (`)

=

∫
L

Ψ′(M∗1,`,Pn)
√
n
(
M̂1,`,n

(
φ∗1,`,Pn(θ∗1,n)

)
−M∗1,`,Pn

)
dF (`) +Op(n

−1/2)

+

∫
L

Ψ′(M∗2,`,Pn)
√
n
(
M̂2,`,n

(
φ∗2,`,Pn(θ∗2,n)

)
−M∗2,`,Pn

)
dF (`) +Op(n

−1/2)
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=
1√
n

n∑
i=1

∫
L

{
Ψ′(M∗1,`,Pn)

[
κ
(
γ∗1,`,Pn(θ∗1,n)′m1(Wi, θ

∗
1,n)g`(Xi)

)
−Ψ

(
M∗1,`,Pn

)]
−Ψ′(M∗2,`,Pn)

[
κ
(
γ∗2,`,n(θ∗2,n)′m2(Wi, θ

∗
2,n)g`(Xi)

)
+ Ψ

(
M∗2,`,Pn

)]}
dF (`) +Op(n

−1/2)

=
1√
n

n∑
i=1

Λ∗Pn,i +Op(n
−1/2). (C.59)

The second equality holds because P0,n ∈ F0. The third equality holds by Taylor expansions and the last

equality holds by expressing M̂1,`,n

(
φ∗1,`,Pn(θ∗1,n)

)
and M̂2,`,n

(
φ∗2,`,Pn(θ∗2,n)

)
and by changing the order of

summation and integration.

The lemma is proved by combining (C.54), (C.57), (C.58) and (C.59).

Proof of Lemma A.9: This is identical to Theorem 20.1 of Chong and Żak (2001).�

Proof of Lemma A.10: This is identical to Theorem 20.3 of Chong and Żak (2001).�

Proof of Lemma A.11: By assumption, µ∗j = 0 if gj(x
∗) > 0 for j = 1, . . . ,m, we just need to consider

those j’s such that gj(x
∗) = 0. Note that gj is concave and gj(x

∗) = 0, so

0 ≤ gj(x) ≤ gj(x∗) +
∂gj(x

∗)

∂x
· (x− x∗) =

∂gj(x
∗)

∂x
· (x− x∗). (C.60)

This implies that

∂f(x∗)

∂x
· (x− x∗) = −

m∑
j=1

µ∗j ·
∂gj(x

∗)

∂x
· (x− x∗) ≤ 0. (C.61)

This shows Lemma A.11.�
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