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Abstract

In this paper we connect the discrepancy between two estimates of Fisher information, one

based on the quadratic variation of the score and the other based on the negative Hessian of the

log-likelihood, to weak identification. Classical asymptotic approximations assume that these two

estimates are asymptotically equivalent but we show that this equivalence fails in many weakly

identified models, which can distort the behavior of the MLE. Using a stylized DSGE model we

show that the discrepancy between information estimates is large when identification is weak.

1 Introduction

Weak identification commonly refers to the failure of classical asymptotics to provide a

good approximation to the finite sample distribution of estimates and t- and Wald statistics

in point-identified models where the data contains little information. There are several

commonly accepted ways of modeling this situation, which include the drifting objective

function approach of Stock and Wright (2000) and the drifting parameter approach used

in Andrews and Cheng (2012). Unfortunately there are empirically relevant contexts, for

example many Dynamic Stochastic General Equilibrium (DSGE) models, where simulation

evidence strongly suggests weak identification but it is unclear how to cast the model into

either of these frameworks. Concerns about weak identification in DSGE models were raised
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in a number of papers (see for example Canova and Sala (2009) and Schorfheide (2010)).

At the same time, due in part to the analytical intractability of these models, the sources

and nature of weak identification and the routes through which weak identification distorts

non-robust approaches to inference are not yet clear.

Here we highlight a previously overlooked feature common to many weakly identified

models which plays an important role in the behavior of the maximum likelihood estimator

(MLE). The usual approximations for the MLE rely critically on the assumption that two

approaches to estimating Fisher information, through the quadratic variation of the score

and the negative Hessian, provide nearly identical answers. We show that in many weakly

identified contexts the appropriately normalized quadratic variation of the score converges to

the normalized Fisher information, but that the normalized negative Hessian remains volatile

even in large samples. To capture this effect, we introduce a measure of the disparity between

the two estimators of information, which will converge to zero in strongly identified contexts

but can otherwise distort the distribution of the MLE. Using simulations in a stylized DSGE

model we show that this discrepancy between information measures becomes large precisely

when the classical asymptotic approximations are especially unreliable.

This paper is closely related to Andrews and Mikusheva (2013) (henceforth AM), where

we provide additional examples and discuss tests which are insensitive to the disparity be-

tween the two estimates of information and are robust to weak identification.

2 Likelihood Theory

Let XT = (x1, ..., xT ) be the data available at time T , and let FT be the sigma-algebra gener-

ated by XT . We consider parametric models where the log likelihood ℓ(XT ; θ) = log f(XT ; θ)
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is known up to the k-dimensional parameter θ which has true value θ0. We further assume

that ℓ(XT ; θ) is twice continuously differentiable with respect to θ. If we have correctly

specified the model the score ST (θ) =
∂
∂θ′

ℓ(XT , θ), evaluated at the true parameter value θ0,

is a martingale with respect to filtration Ft under mild conditions.

We consider two measures of information based on observed quantities. The first one, ob-

served information, equals the negative Hessian of the log-likelihood IT (θ) = − ∂2

∂θ∂θ′
ℓ(XT ; θ).

The second, incremental observed information, equals the quadratic variation of the score,

JT (θ) = [S(θ)]T =
T∑
t=1

st(θ)s
′
t(θ),

where st(θ) = St(θ) − St−1(θ). In what follows we will take IT and JT , written without

arguments, to denote IT (θ0) and JT (θ0). If the model is correctly specified both IT and JT

may serve as estimates of the (theoretical) Fisher information for the whole sample, and by

the second informational equality E (IT ) = E (JT ) .

In the classical context IT and JT are asymptotically equivalent, which plays a key role in

the asymptotics of maximum likelihood. The asymptotic normality of the MLE is driven by

two key assumptions: (i) that the log-likelihood is asymptotically locally quadratic and (ii)

that the difference between the two measures of information IT and JT is small asymptoti-

cally. Specifically, using the first order condition for likelihood maximization one can show

that for θ̂ the MLE,

J
1/2
T (θ̂ − θ0) = J

1/2
T ST (θ0) + J

−1/2
T (IT − IT (θ

∗))J
−1/2
T J

1/2
T (θ̂ − θ0)+

+J
−1/2
T (JT − IT )J

−1/2
T J

1/2
T (θ̂ − θ0), (1)

where θ∗ is a point in between θ̂ and θ0 which may differ across rows of IT (θ
∗). The first term,

J
1/2
T ST (θ0), is asymptotically standard normal under quite general conditions as discussed in
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AM. Provided J
1/2
T (θ̂−θ0) is stochastically bounded the second term in (1) is small so long as

the log-likelihood is close to quadratic on a neighborhood containing both θ0 and θ̂. In this

paper we will focus on the third term in (1), and in particular on the standardized difference

between information measures J
−1/2
T (JT − IT )J

−1/2
T , which can render the usual asymptotic

approximations to the behavior of the MLE quite poor if it is large. We argue that in weakly

identified models the difference between the two observed measures of information may not

be negligible compared to observed incremental information JT and that the third term in

(1) thus plays an important role in the behavior of the MLE under weak identification.

3 Two Estimates of Information

Here we highlight the importance of the standardized difference between information mea-

sures, J
−1/2
T (JT − IT )J

−1/2
T , under weak identification. We begin by noting that this term

is asymptotically non-trivial in a number of weakly identified examples, including a simple

linear instrumental variables model.

Example. Consider a homoskedastic linear instrumental variables model
Y = βZπ + U

X = Zπ + V

,

where Y and X are endogenous variables while Z is a T×k matrix of exogenous instruments.

We assume that 1
T
Z ′Z converges in probability to Q and 1√

T
Z ′[U, V ] converges in distribution

to N(0,Σ⊗Q) as the sample size T increases, for Q a full rank matrix and Σ the covariance

matrix of the reduced form errors. We consider a Gaussian likelihood as a function of the

structural parameters θ = (π′, β)′. Weak instruments are usually modeled by considering a

sequence of models in which the correlation between the instruments and the endogenous
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regressor drifts towards zero as the sample size increases, π = πT = C√
T
, with the consequence

that information about the value of β does not increase with the sample size. Under such

weak sequences, for KT a (k + 1)× (k + 1) normalization matrix KT = diag( 1√
T
, ..., 1√

T
, 1),

KTJTKT converges in probability to a non-random positive definite matrix J , whileKT ITKT

converges in distribution to a random Gaussian matrix with mean J . To characterize the

asymptotic disparity between the two estimators of the Fisher information we can consider

M = J
−1/2
T (IT − JT ) J

−1/2
T . Under weak instrument asymptotics the trace of M converges

in distribution to a mean zero Gaussian random variable with variance equal to the inverse

of the concentration parameter (which measures the informativeness of the instruments, see

Staiger and Stock (1997)) multiplied by a measure of the degree of endogeneity. In particular,

when the instruments are nearly irrelevant M will be (stochastically) large. �

This asymptotic disparity between the two estimates of the Fisher information also ap-

pears in a number of other weakly identified models. In AM we showed that this issue arises

in an ARMA(1,1) model with nearly canceling roots, VAR models with weakly identified

dynamics, weakly identified exponential family models, and weakly identified mixture mod-

els. In all of these models, JT is positive-definite with probability one and, appropriately

normalized, converges in probability to a non-random positive definite matrix. If one applies

the same normalization to IT then in the strongly identified case it converges to the same

limit as JT but in the weakly identified case it converges in distribution to a random matrix.

This random matrix has mean equal to the limit of the normalized JT , as suggested by the

second informational equality, but has non-trivial variance.

We emphasize four important points. First, the question of how to define, model, and

measure weak identification is still open in many contexts. There are some models, like
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homoskedastic weak IV, in which we know how to directly measure identification strength

(the concentration parameter). There are other models, like those studied by Stock and

Wright (2000), where we have theoretical approaches to model weak identification but have

no way to measure whether weak identification is a problem in a given empirical application.

Finally there are many contexts, like DSGE models (see Canova and Sala (2009)), in which

we strongly suspect that weak identification is a problem but still largely lack tools to

model or measure it. We suggest that the size of matrix M = J
−1/2
T (IT − JT ) J

−1/2
T is an

important reflection of identification strength in parametric models. As already discussed

M is asymptotically nontrivial in a number of weakly identified examples and, as we can

see from expansion (1), large values of M can introduce distortions in the classical MLE

asymptotics.

Second, while it is common to associate weak identification with the Fisher information

EJT = EIT being nearly degenerate or the likelihood being nearly flat along some directions,

we argue that these are misleading characterizations as neither the Fisher information nor

the Hessian of the likelihood are invariant to re-parametrization. In particular, if we linearly

re-parameterize a model in terms of τ = θ
k
then both measures of information scale by a factor

k2. Hence, by linear re-parametrization one can produce a model whose Fisher information is

arbitrarily small (or large) without changing the quality of the classical ML approximation.

Consequently, any approach which detects weak identification by assessing how close the

information is to degeneracy, for example Iskrev (2009), is misleading. In our examples weak

identification is associated with the curvature of the objective function (the negative Hessian

IT ) being different from JT even in very large samples, so we think it is potentially more

fruitful to associate weak identification with a low signal-to-noise ratio, treating JT as the
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signal and IT − JT as noise, suggesting the measure M = J
−1/2
T (IT − JT ) J

−1/2
T .

Third, this disparity between two estimates of the Fisher information is not a sign of

mis-specification, as even in correctly specified models these two measures may differ sub-

stantially if identification is weak. Correct specification implies that EJT = EIT , and it

is this restriction that is tested by White’s (1982) Information Matrix Test. In contrast,

weak identification is related to IT − JT being volatile relative to JT , but the restriction

EJT = EIT continues to hold under correct specification.

Fourth, the classical asymptotic approximations for the MLE and Wald statistic require

that the disparity measure M be small. By contrast, the distribution of the robust score

(LM) tests discussed in AM is insensitive to the behavior of M , and these tests remain

well-behaved in weakly identified settings.

4 A Small DSGE Model

In this section we examine the effects of weak identification on estimation and inference in

a simple DSGE model. Most DSGE models must be solved numerically, and it is typically

difficult to say which parameters are weakly identified and what aspects of the model give rise

to weak identification. To overcome these difficulties, here we study a highly stylized DSGE

model which can be solved analytically, allowing us to explicitly model weak identification.

Assume we observe inflation πt and a measure of real activity xt which obey

bEtπt+1 + κxt − πt = 0,

−[rt − Etπt+1 − rr∗t ] + Etxt+1 − xt = 0,

1
b
πt + ut = rt,

rr∗t = ρ∆at.
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where Et[·] = E[·|Ft]. The first equation is a linearized Euler equation while the second is

a Phillips curve. We assume that the interest rate rt and the target interest rate rr∗t are

unobserved, and that the exogenous shocks ∆at and ut are generated by:

∆at = ρ∆at−1 + εa,t; ut = δut−1 + εu,t;

(εa,t, εu,t)
′ ∼ iidN(0,Σ); Σ = diag(σ2

a, σ
2
u).

The model has six unknown scalar parameters: the discount fact b, the Calvo parameter

κ, the persistence parameters ρ and δ, and the standard deviations σa and σu. AM show

that the model is point identified for κ > 0, σ2
a > 0, σ2

u > 0, and −1 < δ < ρ < 1. By

contrast, when ρ = δ the model is not point identified. We can think of ρ− δ as controlling

identification strength: the model is weakly identified when this difference is small.

To explore the effects of weak identification in this context, we simulate data from the

model for different values of ρ− δ. In particular we calibrate the parameters (b, κ, δ, σa, σu)

to their values in the simulation section of AM, (.99, .1, .1, .325, .265), and consider a range of

values for ρ− δ, where for each value of this difference we simulate samples of size 200 from

the model. To avoid issues arising from the fact that b is close to its upper bound (b = 1),

we fix this parameter at its true value and take θ = (κ, ρ, δ, σu, σv) to be the unknown

structural parameter. In each sample we calculate the maximum likelihood estimator θ̂,

the (non-robust) Wald statistic (θ̂ − θ0)
′I(θ̂)(θ̂ − θ0), and the (robust) score statistic LMe

discussed by AM. The corresponding tests reject when the appropriate statistic exceeds a χ2
5

critical value. We assess the normality of the MLE by considering the normalized statistic

T = J
1/2
T (θ̂ − θ0), which converges to a 5-dimensional standard normal vector under strong

identification. We calculate the simulation mean and variance of T and report the deviation

of these quantities from zero and the identity matrix, respectively, which should be small if
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ρ− δ 0.05 0.1 0.2 0.3 0.5 0.7∥∥∥Ê (T )
∥∥∥ 2,015 309 4.25 1.43 0.57 0.49∥∥∥V̂ ar (T )− Id5

∥∥∥ 1.7·1010 8.5·108 23.3 3.14 0.43 0.78

Ŝtd (tr (M)) 212 57.8 11.9 3.14 0.85 0.60

Median of ∥M∥ 129 35.4 7.17 2.10 0.82 0.70

Size of 5% Wald Test 88.9% 79.8% 52.5% 28.1% 12.1% 9.8%

Size of 5% LMeTest 5.3% 5.4% 5.1% 5.5% 5.2% 5.9%

Table 1: Behavior of tests and information estimators as a function of ρ − δ in DSGE model with 200

observations. All quantities based on 10,000 simulation replications, and Ê (·), Ŝtd(·) V̂ ar (·) are simulation

mean, standard deviation, and variance, respectively. For X a vector ∥X∥ denotes the Euclidean norm,

while for X a square matrix ∥X∥ denotes the largest eigenvalue of X in absolute value.

this term is approximately standard normal.2 Finally, we report some summary statistics for

the disparity measure M , in particular the standard deviation of trace(M) and the median of

the largest eigenvalue of M in absolute value, both of which should be small if identification

is strong. All results are reported in Table 1.

As we can see in Table 1, the standard normal approximation to T = J
1/2
T (θ̂− θ0) breaks

down for small values of ρ − δ, as does size control for Wald tests. The behavior of M

is similarly sensitive to identification strength, and this term is large precisely when the

conventional strong-identification approximations break down. The range of values ρ − δ

which qualify as “small” is surprisingly large: even for ρ − δ equal to 0.3 the Wald test

exhibits substantial size distortions, with rejection probability exceeding 25%. By contrast,

2Note that while the population mean and variance of T need not exist, its sample mean and variance in

our simulations are always well-defined.
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the LMe test is largely insensitive to identification strength. Thus, we can again see that

the scaled difference between the two measures of information is (stochastically) large when

identification is weak, and that even in this very simple DSGE model weak identification

leads to poor behavior for classical inference procedures over much of the parameter space.
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