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Abstract

We propose an empirical criterion for evaluating systemic risk measures
based on their ability to predict quantiles of future macroeconomic shocks. We
construct 17 measures of systemic risk in the US and Europe spanning several
decades. We propose dimension reduction estimators for constructing systemic
risk indexes from the cross section of measures and prove their consistency in
a factor model setting. Empirically, systemic risk indexes provide significant
predictive information for the lower tail of future macroeconomic shocks, even
out-of-sample.
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1 Introduction

Many systemic risk measures have been proposed in the aftermath of the 2007-2009
financial crisis. While individual measures are explored in separate papers, there has
been little empirical analysis of them as a group. In this paper we have three comple-
mentary objectives for establishing an empirical understanding of the compendium
of systemic risk measures and for guiding future research.!

Our first goal is to provide a basic quantitative description of existing systemic
risk measures. We examine 17 previously proposed measures of systemic risk in the
US and 10 measures for the UK and Europe. In building these measures, we use
the longest possible data history, which in some cases allows us to use the entire
postwar sample in the US. To the extent that systemically risky episodes are rarely
observed phenomena, our longer time series and international panel provide robust
empirical insights over several business cycles, in contrast to much of the systemic
risk literature’s emphasis on the last five years in the US.

The absence of a clear criterion to judge the performance of systemic risk measures
has made it difficult to establish empirical patterns among the many papers in this
area. Our second objective is to fill this gap by proposing a new criterion for evaluating
systemic risk measures. While there are many potential criteria to consider, such
as their usefulness for risk management by financial institutions or their ability to
forecast asset price fluctuations, we take a take a macroeconomic policy stance in
defining our criterion. We argue that to be included as an input for macroprudential
regulation or policy-making, a systemic risk measure should be informative about
future economic welfare. In particular, policy-makers should only rely on a systemic
risk measure insofar as it predicts real macroeconomic activity such as production,
employment or consumption.?

To operationalize this criterion we propose the use of predictive quantile regres-
sion, which estimates how the distribution of future macroeconomic variables responds

to systemic risk. We argue that a quantile approach is appropriate for evaluating the

!Bisias et al. (2012) provide an excellent survey of systemic risk measures. Their overview is
qualitative in nature — they collect detailed definitions of measures but do not analyze data. Our
analysis is quantitative.

2 A systemic risk measure that does not possess explanatory power for real macroeconomic aggre-
gates is still a potentially valid tool for other endeavors, such as understanding the degree of risk in
financial markets. But if such a measure does not ultimately correlate with real outcomes, we argue
that it need not enter the decision rule of a policy-maker.



potentially non-linear association between systemic risk and the macroeconomy that
has been emphasized in the theoretical literature.®> These theories predict that distress
in the financial system can amplify adverse fundamental shocks and result in severe
downturns or crises. Quantile regression is a flexible tool for investigating differential
impacts of systemic risk on the central tendency and tail behavior of macroeconomic
shocks.

Our third goal is to determine whether statistical dimension reduction techniques
can detect a robust relationship between systemic risk measures and the macroecon-
omy, above and beyond the information in potentially noise-ridden individual mea-
sures. While dimension reduction techniques have been widely studied in the least
squares macro-forecasting literature, we focus on dimension reduction techniques for
quantile regression. We pose the following statistical problem. Suppose all systemic
risk measures are imperfectly measured versions of an unobservable systemic risk fac-
tor. Furthermore, suppose that the conditional quantiles of macroeconomic variables
also depend on the unobserved factor. How may we identify this latent factor that
drives both measured systemic risk and the distribution of future macroeconomic
shocks? We propose two dimension reduction estimators to solve this problem.

The first estimator is principal components quantile regression (PCQR). This
two step procedure first extracts principal components from the panel of systemic risk
measures and then uses these factors in predictive quantile regressions. We prove that
this approach consistently estimates conditional quantiles of macroeconomic shocks
under mild conditions.* We then propose an alternative estimator called partial
quantile regression (PQR) that is an adaptation of partial least squares to the quantile
setting. We prove the new result that PQR produces consistent quantile forecasts,

and often achieves consistency with fewer extracted factors than PCQR.?

3See, for example, Bernanke and Gertler (1989), Kiyotaki and Moore (1997), Bernanke, Gertler
and Gilchrist (1999), Brunnermeier and Sannikov (2010), Gertler and Kiyotaki (2010), Mendoza
(2010), and He and Krishnamurthy (2012).

4The use of principal components to aggregate information among a large number of predictor
variables is well-understood for least squares forecasting — see Stock and Watson (2002) and Bai and
Ng (2006). The use of principal components in quantile regression has been proposed by Ando and
Tsay (2011).

°The key difference between PQR and PCQR is their method of dimension reduction. PQR
condenses the cross section according to each predictor’s quantile covariation with the forecast
target, choosing a linear combination of predictors that is optimal for quantile forecasting. On
the other hand, PCQR condenses the cross section according to covariance within the predictors,
disregarding how closely each predictor relates to the target. Dodge and Whittaker (2009) discuss
a version of PQR but do not analyze its sampling properties.



A set of new stylized facts emerge from our empirical investigation. First, we find
that few systemic risk measures possess significant predictive content for the down-
side quantiles of macroeconomic shocks (such as innovations in industrial production
and the Chicago Fed National Activity Index). Notable exceptions are measures of
financial sector equity volatility, which do capture changes in downside risk. This
result highlights that systemic risk is a multifaceted phenomenon. While all the mea-
sures used in this paper have been shown to successfully capture different aspects
of financial sector stress, they individually they have a hard time identifying the ef-
fect of distress on macroeconomic outcomes. We proceed to test the macroeconomic
predictive power of our dimension reduction estimators that use the cross section of
systemic risk variables to construct a parsimonious set of systemic risk indexes. PQR
achieves significant forecast improvements across macroeconomic variables in a wide
range of specifications, and PCQR is competitive in a subset of our analyses.

Overall, our empirical results reach a positive conclusion regarding the empir-
ical systemic risk literature. We demonstrate that, when taken as a whole, the
compendium of systemic risk measures indeed contains useful predictive informa-
tion about future macroeconomic outcomes, despite the individual failure of many
measures on this account. This conclusion is based on out-of-sample tests and is
robust across a range of lower quantiles, across macroeconomic variables, and across
the US, UK and Europe. We also find that the relationship between systemic risk and
future macroeconomic shocks is much stronger in the lower tail than in the center of
the distribution. Systemic risk indexes predict movements in the lower tail (the 10"
and 20" percentile) of macroeconomic outcomes, but not the mean or median.

We also find that financial sector equity volatility exhibits strong univariate pre-
dictive power for the quantiles of future real outcomes. In contrast, equity volatility in
non-financial sectors appears to have little, if any, predictive power. We demonstrate
that financial sector volatility plays a special role in explaining macro fluctuations
not only in our quantile regression setting, but also in the least squares VAR anal-
ysis of Bloom (2009). This suggests that economic mechanisms connecting stock
market volatility to the real economy, such as the uncertainty shocks mechanism in
Bloom (2009), may blur an important distinction between financial uncertainty and
uncertainty in other industries.

Finally, systemic risk indicators predict policy decisions. When systemic risk

rises, governments may respond with intervention that averts negative macro shocks.



Indeed, we find that high levels of systemic risk indexes predict decreases in the
Federal Funds rate. If policy is effective, however, we would find no association
between systemic risk measures and future outcomes in the real economy. While the
Federal Funds rate responds to systemic risk, it does not fully counteract downside
macroeconomic risk, since we also find a strong association between systemic risk and
the low quantiles of macroeconomic outcomes. This implies that there may be scope
for expanded policy actions that explicitly respond to systemic risk identified from
financial markets.

The remainder of the paper proceeds as follows. Section 2 defines and provides
a quantitative description of a set of systemic risk measures in the US and Europe.
In Section 3, we examine the power of these measures for predicting quantiles of
macroeconomic shocks using univariate quantile regressions. In Section 4, we define
PCQR and PQR, prove their consistency and use them to form predictive systemic
risk indexes with robust predictive power for the future distribution of macroeconomic
shocks. Section 5 discusses stylized facts based on our empirical results. Section 6

concludes. The appendices collect proofs and supporting material.

2 A Quantitative Survey of Systemic Risk Measures

2.1 Data Sources for Systemic Risk Measures

This section outlines our construction of systemic risk measures and provides a brief
summary of comovement among measures. US measures are based on data for finan-
cial institutions identified by 2-digit SIC codes 60 through 67 (finance, insurance and
real estate).® We obtain equity returns for US financial institutions from CRSP and
we obtain book data from Compustat.

We also construct measures for the UK and Europe. Our “EU” measures pool
data on financial institution equity returns from France, Germany, Italy and Spain,
the largest continental European Union economies. UK and EU returns data are

obtained from Datastream.” We do not construct measures that require book data

6This definition of financial sector corresponds to that commonly used in the literature (see, e.g.,
Acharya et al. (2010)).

"Datastream data requires cleaning. We apply the following filters. 1) When a firm’s data series
ends with a string of zeros, the zeros are converted to missing, since this likely corresponds to a
firm exiting the dataset. 2) To ensure that we use liquid securities, we require firms to have non-
zero returns for at least one third of the days that they are in the sample, and we require at least



for the UK and EU, nor do we have data for some other counterparts to US measures

such as the default spread.

2.2 Overview of Measures

Bisias et al. (2012) categorize and collect definitions of more than 30 systemic risk
measures. We build measures from that survey to the extent that we have access
to requisite data. Below we provide a brief overview of the measures that we build
grouped by their defining features. We refer readers to Appendix B.1 and to Bisias
et al. (2012) for additional details.

We are interested in capturing systemic risk stemming from the core of the finan-
cial system, and thus construct our measures using data for the 20 largest financial
institutions in each region (US, UK, and EU) in each period.® Whenever the systemic
risk measure is constructed from an aggregation of individual measures (for exam-
ple in the case of CoVaR, which is defined at the individual firm level), we compute
the measure for each of the 20 largest institutions in each period and take an equal
weighted average. The only exception is the size concentration of the financial sector
for which we use the largest 100 institutions (or all institutions if they number fewer

than 100). Table 1 shows the available sample for each measure by region.

2.2.1 Institution-Specific Risk

Institution-specific measures are designed to capture an individual bank’s contribution
or sensitivity to economy-wide systemic risk. These measures include CoVaR and
ACoVaR from Adrian and Brunnermeier (2011), marginal expected shortfall (MES)
from Acharya, Pedersen, Philippon and Richardson (2010), and MES-BE, a version
of marginal expected shortfall proposed by Brownlees and Engle (2011).

2.2.2 Comovement and Contagion

Comovement and contagion measures quantify dependence among financial institu-
tion equity returns. We construct the Absorption Ratio described by Kritzman et

al. (2010), which measures the fraction of the financial system variance explained

three years of non-zero returns in total. 3) We winsorize positive returns at 100% to eliminate large
outliers that are likely to be recording errors.

81f less than 20 institutions are available, we construct measures from all available institutions,
and if data for fewer than ten financial institutions are available the measure is treated as missing.



by the first K principal components (we use K = 3). We also construct the Dy-
namic Causality Index (DCI) from Billio et al. (2012) which counts the number of
significant Granger-causal relationships among bank equity returns, and the Interna-
tional Spillover Index from Diebold and Yilmaz (2009) which measures comovement

in macroeconomic variables across countries.’

2.2.3 Volatility or Instability

To quantify system instability, we compute the average equity volatility of the largest
20 financial institutions. We also compute their aggregate book leverage and market
leverage, size concentration in the financial industry (the market equity Herfindal
index), and financial sector turbulence, a measure that is conceptually similar to

volatility.

2.2.4 Liquidity and Credit

Liquidity and credit conditions in financial markets are measured by Amihud’s (2002)
illiquidity measure (AIM) aggregated across financial firms, the TED spread (LIBOR
minus the T-bill rate), the default spread (BAA bond yield minus AAA bond yield),
and the term spread (the slope of the Treasury yield curve).

2.2.5 Measures Not Covered

Due to data constraints, particularly in terms of time series length, we do not in-
clude measures of linkages between financial institutions (such as interbank loans or

derivative positions), stress tests, or credit default swap spreads.

2.3 Macroeconomic Data

Our analysis focuses on real macroeconomic shocks measured by industrial production
(IP) growth in the US, UK and EU. These data come from the Federal Reserve Board
for the US and OECD for the UK and EU.!® Our sample for the US is the entire

9We do not include the volatility connectedness measure of Diebold and Yilmaz (forthcoming).
Arsov et al. (2013) shows that this is a dominant leading indicator of financial sector stress in the
recent crisis. Unfortunately, the Diebold-Yilmaz index is only available beginning in 1999 and thus
does not cover a long enough time series to be included in our tests.

0For the EU, we use the OECD series for the 17 country Euro zone.



postwar era 1946-2011.!* For the UK, data begin in 1978. Our EU sample begins in
1994.

In robustness checks, we consider US macroeconomic shocks measured by the
Chicago Fed National Activity Index (CFNAI) and its subcomponents: production
and income (PI), employment, unemployment and hours (EUH), personal consump-
tion and housing (PH) and sales, and orders and inventory (SOI). These data come
from the Federal Reserve Bank of Chicago and are available beginning in 1967.

Our focus is on how systemic risk affects the distribution of future macroeco-
nomic shocks. We define macro shocks as innovations to an autoregression in the
underlying macroeconomic series.'? This strips out variation in the target variable
that is forecastable using its own history, following the forecasting literature such as
Bai and Ng (2008b) and Stock and Watson (2012). We choose the autoregressive or-
der based on the Akaike Information Criterion (AIC) for each series — typical orders
are between 3 and 6 in our monthly data — and perform the autoregression estima-
tion (including the AIC-based model selection) recursively out-of-sample.’® Finally,
we aggregate monthly shocks into a quarterly shock by summing monthly innovations
in order to put the targets on a forecast horizon that is relevant for policy-makers.
Further details are available in Appendix B.2.

Preliminary autoregressions absorb much of the standard business-cycle varia-
tion in our forecast targets, and thus allow us to focus attention on macroeconomic
downturns whose origins reside in financial markets and financial distress when we
conduct our main quantile tests. We also performed our analysis with more thorough
pre-whitening in the form of autoregressions augmented to include lagged principal
components from Stock and Watson’s (2012) data. This produces minor quantitative

changes to our results and does not alter any of our conclusions.

HTndustrial production begins in the 1910’s, but following the bulk of macroeconomic literature
we focus on the US macroeconomy following World War II.

12An alternative to pre-whitening is to conduct Granger causality tests that control for lags of
the dependent variable. Appendix B.3 shows that Granger causality tests broadly agree with our
findings based on autoregression residuals.

13Using the full-sample AR estimate in out-of-sample quantile forecasts has little effect on our
results, as the recursively-estimated AR projection is stable after only a few years of observations.



2.4 Summary of Comovement Among Systemic Risk Mea-

sures

Figure 1 plots the monthly time series of select measures in the US.!* All measures
spiked during the recent financial crisis, which is not surprising given that many
of these measures were proposed post hoc. In earlier episodes, many systemic risk
measures reached similar levels to those experienced during the recent crisis. During
the oil crisis and high uncertainty of the early and mid 1970’s, financial sector market
leverage and return turbulence spike. All the measures display substantial variability
and several experience high levels in non-recessionary climates. One interpretation
of the plot is that these measures are simply noisy. Many of the spikes that do not
seem to correspond to a financial crisis might be considered “false positives.” Another
interpretation is that these measures sometimes capture stress in the financial system
that does not result in full-blown financial crises, either because policy and regulatory
responses diffused the instability or the system stabilized itself (we discuss this further
in Section 5.3). Yet another interpretation is that crises develop only when many
systemic risk measures are simultaneously elevated, as during the recent crisis.

Table 2 shows correlations among different measures for the US, UK and EU.
Most correlations are quite low. Only small groups of measures comove strongly. For
example, turbulence, volatility, and the TED spread are relatively highly correlated.
Similarly, CoVaR, ACoVaR, MES and Absorption tend to comove. The other mea-
sures display low or even negative correlations with each other, suggesting that many
measures capture different aspects of financial system stress or are subject to sub-
stantial noise. If low correlations are due to the former, then our tests for association
between systemic risk measures and macroeconomic outcomes can help distinguish
which aspects of systemic risk are most relevant from a policy standpoint.

Finally, some measures of systemic risk may be interpreted as contemporaneous
stress indicators and others as leading indicators of systemic risk. We describe lead-
lag relations between these variables by conducting two-way Granger causality tests.
Table 3 reports the number of variables that each measure Granger causes (left col-
umn) or is Granger caused by (right column). AAbsorption, turbulence, ACoVaR
and volatility appear to behave as leading indicators in that they frequently Granger

MFor readability, the plotted measures are standardized to have the same variance (hence no
y-axis labels are shown) and we only a show a subset of the series we study.



cause other variables and not the reverse. The term spread, the international spillover
index, MES, MES-BE and DCI tend to lag other measures and thus may be viewed
as coincident indicators of a systemic shock. These associations appear consistent

across countries.

3 Systemic Risk Measures and the Macroeconomy

The previous section documents heterogeneity in the behavior of systemic risk mea-
sures. Without a clear criterion it is difficult to judge their relative merits. Our
criterion seeks to quantify the relevance of each of these risk measures for forecasting
real economic outcomes. In particular, we investigate which systemic risk measures
give policy-makers significant information about the distribution of future macroe-
conomic shocks. We believe this criterion improves our understanding of systemic
risk in two dimensions. It highlights the field’s need for an empirical description of
linkages between the array of proposed financial sector stress indicators and macroe-
conomic outcomes, and it provides a new tool for evaluating policy relevance when
selecting among a pool of candidate systemic risk measures.

The basic econometric tool for our analysis is predictive quantile regression, which
we use to judge the relationship of a systemic risk measure to future economic activity.
We view quantile regression as a flexible statistical tool for investigating potentially
non-linear dynamics between systemic risk and economic outcomes. Such a reduced-
form statistical approach has benefits and limitations. Benefits include potentially
less severe specification error and, most importantly, the provision of new empirical
descriptions to inform future theory. A disadvantage is the inability to identify “fun-
damental” shocks or specific mechanisms as in a structural model. Hansen (2013)
provides an insightful overview of advantages to systemic risk modeling with and

without the structure of theory.

3.1 Quantile Regression

Before describing our empirical results we offer a brief overview of the econometric
tools and notation that we use. Denote the target variable as y;,5, a scalar real
macroeconomic shock whose conditional quantiles we wish to capture with systemic

risk measures. Let h be some positive integer. The 7" quantile of 3, is its inverse



probability distribution function, denoted

Q7 (Yrn) = inf{y : P(yrsn <y) > 7}

The quantile function may also be represented as the solution to an optimization

problem

Qr (Yeqn) = arg irqlf Elp:(Yrn — q)]

where p,(z) = x(7 — I,<0) is the quantile loss function.

Previous literature shows that this expectation-based quantile representation is
convenient for handling conditioning information sets and deriving a plug-in M-
estimator. In the seminal quantile regression specification of Koenker and Bassett

(1978), the conditional quantiles of v, are affine functions of observables @,

Qr (Yesn|Zt) = Bro + Bra:. (1)

An advantage of quantile regression is that the coefficients 3, B, are allowed to dif-
fer across quantiles.’> Thus quantile models can provide a richer picture of the target
distribution when conditioning information shifts more than just the distribution’s
location. As Equation 1 suggests, we focus on quantile forecasts rather than con-
temporaneous regression since leading indicators are most useful from a policy and
regulatory standpoint.

Fits can be evaluated via a quantile R? based on the loss function p;,

%Zt[ﬁr(?/tﬂ —a— BXt)]

R*=1- -
% Zt[pT(yt-H - qT)]

This expression captures the typical loss using conditioning information (the numer-
ator) relative to the loss using the historical unconditional quantile estimate (the
denominator). The in-sample R? lies between zero and one. Out-of-sample, the R?
can go negative if the historical unconditional quantile offers a better forecast than
the conditioning variable. In sample, we report the statistical significance of the pre-

dictive coefficients as found by Wald tests (or t-statistics for univariate regressions)

15Chernozhukov, Fernandez-Val and Galichon (2010) propose a monotone rearranging of quantile
curve estimates using a bootstrap-like procedure to impose that they do not cross in sample. We
focus attention on only the 10,20 and 50" percentiles and these estimates never cross in our
sample.

10



using standard errors from the residual block bootstrapped using block lengths of six
months and 1,000 replications. Out of sample, we arrive at a description of statistical
significance for estimates by comparing the sequences of quantile forecast losses based
on conditioning information, p, (Y11 — & — BX,:), to the quantile loss based on the
historical unconditional quantile, p.(y:+1 —¢-), following Diebold and Mariano (1995)
and West (1996).

Our benchmark results focus attention on the 20** percentile, or 7 = 0.2. This
choice represents a compromise between the conceptual benefit of emphasizing ex-
treme regions of the distribution and the efficiency cost of using too few effective
observations. In robustness checks we show that results for the 10" percentile are
similar. In addition to tail quantiles, we also estimate median regressions (7 = 0.5)

to study systemic risk impacts on the central tendency of macroeconomic shocks.

3.2 Empirical Evaluation of Systemic Risk Measures

Table 4 Panel A reports the quantile R? from in-sample 20" percentile forecasts of IP
growth shocks in the US, UK and EU using the collection of systemic risk measures.
Our main analysis uses data from 1946-2011 for the US, 1978-2011 for the UK, and
1994-2011 for the EU.

In sample, a wide variety of systemic risk measures demonstrate large predictive
power for the conditional quantiles for IP growth shocks in various countries. Look-
ing across countries, CoVaR, ACoVaR, MES, default spread and volatility provide
substantial predictive information across all regions. This picture changes when we
look out-of-sample.

Table 5 Panel A reports recursive out-of-sample predictive statistics. The earliest
out-of-sample start dates are 1950 for the US, 1990 for the UK, and 2000 for the EU
(due to the shorter data samples outside the US). We take advantage of the longer
US time series to perform subsample analysis, and report results for out-of-sample
start dates of 1970 and 1990 for robustness.

Most measures do not significantly outperform the historical quantile (which is
also calculated recursively out-of-sample) in forecasting downside macroeconomic risk.
No measure is significant for every region and start date. Volatility in the financial
sector shows the best overall performance. It has a positive R? in all samples, but is

statistically insignificant for the EU.

11



Focusing on the US, Table 5 Panel A shows that AIM, volatility and turbulence
are informative out-of-sample for any split date. Table 6 Panel A investigates the
robustness of this observation to different measures of macroeconomic shocks coming
from the CFNAI series. There we see that only turbulence provides significant out-
of-sample predictive content for the total CFNAI index and each of its component
series, although market leverage is broadly significant as well.*

Table 7 Panel A reports that US results are broadly similar if we study the 10"
rather than the 20" percentile of IP growth. AIM, volatility and turbulence continue
to show significant predictive power. Table 8 Panel A reports that volatility and
turbulence also demonstrate predictive power for the 10 percentile across shocks
measured by the CFNAI, and that market leverage is broadly significant as well. Our
benchmark findings based on the 20" percentile are thus broadly consistent with
more extreme quantiles.

Turning to the central tendency of macroeconomic shocks, Table 9 Panel A shows
that no systemic risk measure consistently demonstrates forecast power for the median
shock across samples. Volatility and turbulence possess some predictive power for the
median, but substantially more power for the 10"* and 20" percentiles.

In summary, we find that few systemic risk measures possess robust power to
forecast downside macroeconomic quantiles. The exceptions are measures of financial
sector volatility, especially turbulence. To the extent that we find any forecasting
power, it is stronger for the lower quantiles of macroeconomic shocks than for their

central tendency.

4 Systemic Risk Indexes and the Macroeconomy

Individually, most systemic risk measures lack a strong statistical association with
macroeconomic downside risk. This could be because measurement noise obscures
the useful content of these series, or because different measures capture different
aspects of systemic risk. Is it possible, then, to combine these measures into a more
informative systemic risk index?

In this section we propose a statistical model in which the conditional quantiles of
Yern, depend on a low-dimension unobservable factor f;, and each individual systemic

risk variable is a noisy measurement of f;. This structure suggests that dimension

16The CFNALI is available 1967-2011 and we set the out-of-sample start date to 1975.

12



reduction techniques may be helpful in extracting information about future macroeco-
nomic shocks from the cross section of individual systemic risk measures. The factor
structure is similar to well-known conditional mean factor models (e.g. Sargent and
Sims (1977), Geweke (1977), Stock and Watson (2002)). The interesting feature of
our model, as in Ando and Tsay (2011), is that it links multiple observables to latent
factors that drive the conditional quantile of the forecast target.

We present two related procedures for constructing systemic risk indexes: prin-
cipal components quantile regression and partial quantile regression. We show that
they consistently estimate the latent conditional quantile driven by f;. We also show
that they are empirically successful, demonstrating robust out-of-sample forecasting

power for downside macroeconomic risk.

4.1 A Latent Factor Model for Quantiles

We assume that the 7" quantile of v,,,, conditional on an information set 7, is a

linear function of an unobservable univariate factor f;:'7

Q- (Yesn ’It) = af;.

This formulation is identical to a standard quantile regression specification, except
that f; is latent. Realizations of y;,, can be written as af; + 1., where 7,,; is the
quantile forecast error. The cross section of predictors (systemic risk measures) is

defined as the vector x;, where
xy=AF,+¢e, =¢f +¥g, + ;.

Idiosyncratic measurement errors are denoted by ;. We follow Kelly and Pruitt
(2012, 2013) and allow @; to depend on the vector g,, which is an additional factor
that drives the risk measures but does not drive the conditional quantile of ;.8
Thus, common variation among the elements of x; has a portion that depends on
f+ and is therefore relevant for forecasting the conditional distribution of v, as

well as a forecast-irrelevant portion driven by g,. For example, g, may include factors

1"We omit intercept terms to ease notation in the main text; our proofs and empirical implemen-
tations include them.

18We assume a factor normalization such that f; is orthogonal to g,. For simplicity, we treat f;
as scalar, but this is trivially relaxed.

13



associated with stress in financial markets that never metastasizes to the real economy
or that is effectively remedied by government intervention. Not only does g, serve as
a source of noise when forecasting of .5, but it is particularly insidious because it

is pervasive among predictors.

4.2 Estimators

The most direct approach to quantile forecasting with several predictors is multiple
quantile regression. As in OLS with a large number of regressors, this approach is
likely to lead to overfitting and poor out-of-sample performance. Therefore we pro-
pose two dimension reduction approaches that consistently estimate the conditional
quantiles of y;,, as the numbers of predictors and time series length simultaneously
become large. We first prove each estimator’s consistency and then test their empir-
ical performance.

One can view our latent factor model as being explicit about the measurement
error that contaminates each predictor’s reading of f;. The econometrics literature
has proposed instrumental variables solutions and bias corrections for the quantile
regression errors-in-variables problem.!® We instead exploit the large N nature of the
predictor set to deal with errors-in-variables. Dimension reduction techniques aggre-
gate large numbers of individual predictors to isolate forecast-relevant information
while averaging out measurement noise.

For the sake of exposition, we place all assumptions in Appendix A.1. They in-
clude restrictions on the degree of dependence between factors, idiosyncracies, and
quantile forecast errors in the factor model just outlined. They also impose regu-
larity conditions on the quantile forecast error density and the distribution of factor

loadings.

4.2.1 Principal Components Quantile Regression (PCQR)

The first estimator is principal component quantile regression (PCQR). In this method,
we extract common factors from ax; via principal components and then use them in

an otherwise standard quantile regression (the algorithm is summarized in Table 10).

YExamples of instrumental variables approaches include Abadie, Angrist and Imbens (2002),
Chernozhukov and Hansen (2008), and Schennach (2008). Examples of bias correction methods
include He and Liang (2000), Chesher (2001), and Wei and Carroll (2009).

14



PCQR produces consistent quantile forecasts when both the time series dimension
and the number of predictors become large, as long as we extract as many principal

components as there are elements of F; = (f;, g¢')".

Theorem 1 (Consistency of PCQR). Under assumptions 1-3, the principal com-
ponents quantile regression predictor of Qr(yirn|Zy) = &' Fy = afy is given by &'F,,
where F represents the first K principal components of X'X/(TN), K = dim(f:,g,),
and & is the quantile regression coefficient on those components. For each t, the
PCQR quantile forecast satisfies
Al T / p
F, — —— 0.
@S aft N, T—o0 0
The proof of Theorem 1 is in Appendix A.2. The theorem states that our es-
timator is consistent not for a particular regression coefficient but for the condi-
tional quantile of y,,,. As a key to our result, we adapt Angrist, Chernozhukov and

Fernandez-Val’s (2006) mis-specified quantile regression approach to the latent factor

setting. From this we show that measurement error vanishes for large N, T.%

4.2.2 Partial Quantile Regression (PQR)

For simplicity, our factor model assumes that a scalar f; comprises all information
relevant for the conditional quantile of interest. But PCQR and Theorem 1 use
the vector F'; because PCQR is only consistent if the entire factor space (ft,g¢)
is estimated. This is analogous to the distinction between principal components
least squares regression and partial least squares. The former produces an consistent
forecast when the entire factor space is spanned, whereas the latter is consistent as
long as the subspace of relevant factors is spanned (see Kelly and Pruitt (2012)).
Our second estimator is called partial quantile regression (PQR) and extends the
method of partial least squares to the quantile regression setting. PQR condenses the
cross section of predictors according to their quantile covariation with the forecast
target, in contrast to PCQR which condenses the cross section according to covariance
within the predictors. By weighting predictors based on their predictive strength,

PQR chooses a linear combination that is optimal for quantile forecasting.

20Tt is possible to expand the consistency result and derive the limiting distribution of quantile
forecasts, which can then be used to conduct in-sample inference. In-sample inference is not relevant
for our empirical analysis, which focuses on out-of-sample forecasting.
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PQR forecasts are constructed in three stages as follows (the algorithm is sum-
marized in Table 10). In the first pass we calculate the quantile slope coefficient of
Ye+n, on each individual predictor z; (i = 1, ..., N) using univariate quantile regression
(denote these estimates as 4;).2! The second pass consists of T' covariance estimates.
In each period t, we calculate the cross-sectional covariance of x; with 4’s first stage
slope estimate. This covariance estimate is denoted ft. These serve as estimates of
the latent factor realizations, f;, by forming a weighted average of individual predic-
tors with weights determined by first-stage slopes. The third and final pass estimates
a predictive quantile regression of y,., on the time series of second-stage cross section
factor estimates. Denote this final stage quantile regression coefficient as .

PQR uses quantile regression in the factor estimation stage. Similar to Kelly and
Pruitt’s (2012) argument for partial least squares, this is done in order to extract
only the relevant information f; from cross section a;, while omitting the irrelevant
factor g,. Factor latency produces an errors-in-variables problem in the first stage
quantile regression, and the resulting bias introduces an additional layer of complex-
ity in establishing PQR’s consistency. To overcome this, we require the additional
Assumption 4. This assumption includes finiteness of higher moments for the factors
and measurement errors f;, g,, and ¢;, and symmetric distributions for the target-

irrelevant factor g, and its loadings, 1,. Importantly, we do not require additional

i

assumptions on the quantile forecast error, 1.

Theorem 2 (Consistency of PQR). Under Assumptions 1-4, the PQR predictor of
Qr(ye1|Zy) = afy is given by af,, where f, is the second stage factor estimate and &
is the third stage quantile regression coefficient. For each t, the PQR quantile forecast
satisfies

«a ft —afy ﬁ 0.

The proof of Theorem 2 is in Appendix A.3. Simulation evidence in Appendix
A.4 demonstrates that both consistency results are accurate approximations of finite
sample behavior. In the next section, we refer to PCQR and PQR factor estimates ( ft)
as “systemic risk indexes” and evaluate their forecast performance versus individual

systemic risk measures.

21Tn a preliminary step all predictors are standardized to have equal variance, as is typically done
in other dimension reduction techniques such as principal components regression and partial least
squares.

16



4.3 Empirical Evaluation of Systemic Risk Indexes

To make sure that we have a large enough cross section of systemic risk measures for
the UK and EU, we construct their Multiple QR, PCQR and PQR forecasts using US
systemic risk measures that are missing for these countries (for example, the default
spread). Given the interconnectedness of global financial markets, these measures
will be at least partly informative about financial distress in the UK and the EU as
well.

Panel B of Table 4 shows that joint use of many systemic risk measures produces a
high in-sample R? when predicting the 20" percentile of future IP growth shocks in the
US, UK and EU. The table shows that Multiple QR (that simultaneously includes all
the systemic risk variables) works best by this metric. But Table 5 Panel B illustrates
the severe overfit problem with Multiple QR. In contrast, PCQR and PQR provide
significant out-of-sample performance for the lower tail of future IP growth shocks
in every region and every sample split. The forecast improvement over the historical
quantile is 4-10% in the UK and EU. In the US, the forecast improvement for the out-
of-sample window starting in 1990 is 12-17%. When the US out-of-sample window
begins in 1950 — which includes more than 240 nonoverlapping quarterly observations
in the test sample — PCQR2 and PQR produce significant forecast improvements of
almost 7%.2? These results demonstrate that PCQR and PQR are powerful tools for
extracting information about future macroeconomic shocks from a cross section of
systemic risk measures.??

Figure 2 plots fitted quantiles for the sample beginning in 1970. The thin red line
is the in-sample historical 20" percentile. The actual shocks are plotted alongside
their forecasted values based on information three months earlier (i.e., the PQR data
point plotted for January 2008 is the forecast constructed using information known
at the end of October 2007). NBER recessions are shown in the shaded regions. The
PQR predicted quantile (the solid black line) exhibits significant variation over the

last four decades, but much more so prior to the 1990’s. It is interesting to note that

22Tn appendix Table A3 we drop data after 2007 and continue to find significant out-of-sample
forecasts, suggesting that our results are not driven solely by the most recent financial crisis.

23The TED spread is only available starting in 1984. Since multiple quantile regression and PCQR
require balanced panels for estimation, we drop the TED spread from the estimation of those two
procedures in order to use the longer time series provided by the panel of remaining predictors. PQR
is implementable with an unbalanced panel, and therefore we include the TED spread as an input
to PQR.
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the PQR systemic risk index predicted a large downshift in the 20" percentile of IP
growth after the oil price shock of the 1970’s and the recessions of the early 1980’s.
While the 2007-2009 financial crisis led to a downward shift in the lower quantile of
IP growth, this rise in downside risk is not without historical precedent.

Table 6 Panel B shows that the PQR index possesses forecasting power for the
CFNALI and its subcomponents. It is significant in several cases, including for the
total index where the R? is 7%. Table 7 Panel B shows that the PCQR2 and PQR
indexes successfully forecast the 10" percentile IP growth shocks out-of-sample with
R? ranging from 5-20%. For the 10" percentile of CFNAI shocks in Table 8 Panel B,
the PCQR2 and PQR indexes again provide positive results, and these are significant
in three out of five cases for PQR. The PQR forecast of the total CFNAI index
achieves an R? of 9%.

Finally, we evaluate the ability of systemic risk indexes to forecast the central
tendency of macro shocks. Table 9 Panel B shows that neither PCQR nor PQR
provides significant out-of-sample information for the median of future IP growth.

In summary, the compendium of systemic risk measures, when taken together in
PCQR and PQR algorithms, demonstrates robust predictive power for the lower tail
of macroeconomic shocks. In the US, this relationship is significant when evaluated
over the entire postwar period, as well as in more recent subsamples. And while
systemic risk is strongly related to lower tail risk, it does not appear to affect the
center of the distribution of future macroeconomic activity. This fact highlights the
value of quantile regression methods, which naturally allow for asymmetric impacts

of systemic risk on economic outcomes.?*

5 Stylized Facts

Our main question in this paper is whether systemic risk measures are informative
about the future distribution of macroeconomic shocks. Three central facts emerge

from our analysis.

24We also analyze the upper tails (80" percentile forecasts) of macroeconomic shocks and find no

significant association with systemic risk (results untabulated).
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5.1 Systemic Risk and Downside Macroeconomic Risk

First, systemic risk indexes are significantly related to macroeconomic lower tail risk,
but not to the central tendency of macroeconomic variables. The preceding tables
report significant predictability for the 20" percentile, but find no evidence of pre-
dictability for the median. In Table 11, we formally test the hypothesis that the
20" percentile and median regression coefficients are equal.?® If the difference in
coefficients (20" percentile minus median) is negative, then the variable predicts a
downward shift in lower tail relative to the median.?¢

Of the 19 systemic risk measures and indexes in the table, 15 are stronger pre-
dictors of downside risk than central tendency. Eleven of these differences are statis-
tically significant at the 5% level. These results support macroeconomic models of
systemic risk that feature an especially strong link between financial sector stress and
the probability of a large negative shock to the real economy, as opposed to a simple

downward shift in the mean.

5.2 Financial Volatility is Informative

The second stylized fact is that financial sector equity return volatility variables are
the most informative individual predictors of downside macroeconomic risk.

The macroeconomic literature on uncertainty shocks, most notably Bloom (2009),
argues that macroeconomic “uncertainty” (often measured by aggregate equity market
volatility) is an important driver of the business cycle. Bloom shows that rises in ag-
gregate volatility predict economic downturns.?” Is our finding that financial sector
volatility predicts downside macroeconomic risks merely picking up the macroeco-
nomic uncertainty effects documented by Bloom’s analysis of aggregate volatility?
Or, instead, is the volatility of the financial sector special for understanding future
macroeconomic conditions?

To explore this question, we construct two volatility variables. These are the

standard deviations of value-weighted equity portfolio returns for the set of either all

25We sign each predictor so that it is increasing in systemic risk and normalize it to have unit
variance.

26The t-statistics for differences in coefficients are calculated with a residual block bootstrap using
block lengths of six months and 1,000 replications.

2TRecent papers such as Baker, Bloom and Davis (2012) and Orlik and Veldkamp (2013) expand
this line of research in a variety of dimensions.
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2 We then compare quantile

financial institution stocks or all non-financial stocks.
forecasts of IP growth shocks based on each volatility variable.

Table 12 shows that non-financial volatility possesses no significant out-of-sample
predictive power for either the 20" percentile or median of future macroeconomic
shocks. Financial volatility is a significant predictor of both central tendency and
lower tail risk, but is relatively more informative about the tail, as documented in
Table 11.

We next compare the predictive content of financial and non-financial volatility
for business cycle fluctuations in the statistical setting originally analyzed by Bloom
(2009). That paper identifies structural shocks in a vector autoregression (VAR) via
Choleski decomposition. We initially follow Bloom’s variable ordering so that the
role of financial volatility is not conflated with a difference in structural identification
assumptions. Total market value is ordered first and controls for first-moment shocks.
Bloom’s aggregate market volatility measure is second and controls for economy-wide
second-moment shocks. Financial volatility is ordered third and allows us to evaluate
the effects of financial sector second-moment shocks above and beyond the first two
variables. Additional details regarding the VAR closely follow Bloom (2009) and are
available in Appendix B.5.

Figure 3 reports the impulse response function of IP growth to the structural
volatility shocks.?” Financial volatility shocks have significant effects on future indus-
trial production even after controlling for aggregate volatility. Panel A shows that a
one standard deviation shock to aggregate volatility produces a drop in log IP growth
of 15-20 basis points from its HP-trend in the 3 to 6 months after impact. It rebounds
to rise above trend by nearly 10 basis points within 18 months of impact. Panel B
shows that a one standard deviation shock to financial volatility also causes IP to
fall by more than 15 basis points in the same time frame. These estimates suggest

a contractionary effect of financial volatility beyond the effect of aggregate volatility

shocks.?°

28The volatility variable studied in preceding quantile regressions is the average equity volatility
across financial firms, an aggregation approach that is consistent with our aggregation of other firm-
level measures of systemic risk. The variable described here is volatility of returns on a portfolio of
stocks, which is directly comparable to the market volatility variable studied in Bloom (2009).

29The figure also reports bootstrapped 68% confidence bands, as in Bloom (2009).

30Bloom (2009) constructs an indicator variable from the volatility of aggregate stock market
returns that equals one when market volatility rises by more than 1.65 standard deviations. This
indicator is designed to select only extreme jumps in volatility, while we focus on the more commonly
used one standard deviation impulse to the continuous volatility series. This leads us to estimate
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We also find that the ordering of variables in the VAR has an important effect on
estimates. We re-estimate the VAR after reversing the order of financial and aggregate
volatility. This specification addresses the question: Once we have controlled for
shocks to financial sector volatility, what is the effect of an aggregate volatility shock
on the real economy? Figure 4, Panel A shows that after controlling for financial
volatility, aggregate volatility has a small and insignificant effect on production (trend
deviation of —5 basis points). In Panel B, a financial volatility shock produces a drop
in IP of 20 basis points without a significant rebound thereafter. These estimates
suggest that financial volatility shocks crowd out broader measures of uncertainty

when forecasting real economic outcomes.

5.3 Federal Funds Policy and Systemic Risk

The third stylized fact we identify is that systemic risk indicators predict an increased
probability of monetary policy easing. To show this, we examine how the government
responds to fluctuations in various systemic risk measures. Historically, monetary
policy is the primary tool at the disposal of policy-makers for regulating financial
sector stress. We therefore test whether systemic risk indicators predict changes in the
Federal Funds rate. As in our earlier analysis, we use quantile regression to forecast
the median and 20" percentile of rate changes. For brevity, we restrict our analysis
to the three strongest predictor variables that we have studied so far: financial sector
volatility, turbulence, and the PQR index of all systemic risk measures.

Results, reported in Table 13, show that in-sample forecasts of both the median
and 20" percentile of rate changes are highly significant. Out-of-sample, all three
measures have significant predictive power for the 20" percentile of rate changes.
Furthermore, the out-of-sample 20" percentile predictive coefficient is significantly
larger than the median coefficient, indicating that these predictors are especially
powerful for forecasting large policy moves.

If the government’s rate reductions are effective in diffusing systemically risky
conditions before they affect the real economy, then we would fail to detect a re-
lationship between systemic risk measures and downside macroeconomic risk. But
our earlier analysis shows that the lower tail of future macroeconomic shocks shifts

downward amid high systemic risk, which implies that monetary policy response is

somewhat smaller impulse responses than those estimated in Bloom (2009). Using the extreme
volatility indicator studied by Bloom has no qualitative effect on our results for financial volatility.
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insufficient to stave off adverse macroeconomic consequences, at least in the most
severe episodes.

We also use the VAR framework studied in Section 5.2 to evaluate the response of
the Federal Funds rate to volatility shocks. In untabulated results, we find that a one
standard deviation shock to financial volatility (with aggregate volatility preceding
financial volatility in the VAR ordering) is followed by a decrease in the Federal Fund
rates of around 15bp in the following year. The effect is slightly larger in magnitude
than the effect of an aggregate volatility shock, and holds when the ordering of the

two variables is reversed.

6 Conclusion

In this paper we quantitatively examine a large collection of recently proposed sys-
temic risk measures. We argue that systemic risk measures should be demonstrably
associated with real macroeconomic outcomes if they are to be relied upon for regula-
tion and policy decisions. We evaluate the importance of each candidate measure by
testing its ability to predict quantiles of future macroeconomic shocks. This approach
is motivated by macroeconomic theories of financial frictions and a desire to flexibly
model the way distributions of economic outcomes respond to shifts in systemic risk.
We find that most individual measures fail to capture shifts in macroeconomic down-
side risk.

We then propose two procedures for aggregating information in the cross section
of systemic risk measures. We motivate this approach with a factor model for the
conditional quantiles of macroeconomic activity. We prove that PCQR and PQR
produce consistent forecasts for the true conditional quantiles of a macroeconomic
target variable. Empirically, systemic risk indexes estimated via PQR underscore the
informativeness of the compendium of systemic risk measures as a whole. Our results
show that, when appropriately aggregated, these measures contain robust predictive
power for the distribution of macroeconomic shocks.

We present three new stylized facts. First, systemic risk measures have an espe-
cially strong association with the downside risk, as opposed to central tendency, of
future macroeconomic shocks. The second is that financial sector equity volatility is
particularly informative about future real activity, much more so than non-financial

volatility. The third is that financial market distress tends to precede a strong mone-
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tary policy response, though this response is insufficient to fully dispel increased down-
side macroeconomic risk. These empirical findings can potentially serve as guideposts

for macroeconomic models of systemic risk going forward.
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Panel A: Response to Aggregate Volatility Shock
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Figure 3: Impulse Responses: Market Volatility Preceding Financial Volatility in
VAR

Notes: ITmpulse responses estimated from Bloom’s (2009) VAR where total market volatility precedes
financial volatility in the VAR ordering. The shaded area represents bootstrapped 68% confidence
bands.
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Figure 4: Impulse Responses: Financial Volatility Preceding Market Volatility in

VAR

Notes: Tmpulse responses estimated from Bloom’s (2009) VAR where financial volatility precedes to-
tal market volatility in the VAR ordering. The shaded area represents bootstrapped 68% confidence

bands.
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Table 1: Sample Start Dates

US UK EU
Absorption 1927 1973 1973
AIM 1926 - -
CoVaR 1927 1974 1974
ACoVaR 1927 1974 1974
MES 1927 1973 1973
MES-BE 1926 1973 1973
Book Lvg. 1969 - -
DCI 1928 1975 1975
Def. Spr. 1926 - -
AAbsorption 1927 1973 1973
Intl. Spillover 1963 - -
Size Conc. 1926 1973 1973
Mkt Lvg. 1969 - -
Real Vol. 1926 1973 1973
TED Spr. 1984 - -
Term Spr. 1926 - -
Turbulence 1932 1978 1978

Notes: Measures begin in the stated year and are available through 2011 with the exception of Intl.
Spillover, which runs through 2009.
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Table 2: Correlations Among Systemic Risk Measures

1n @ G @ 6y (B (7 (®) (9 @10 (A1) (12) (13) (14) (15) (16) (17)

Panel A: US

Absorption (1) 1.00

AIM (2) -0.03 1.00

CoVaR (3) 0.60 0.19 1.00

ACoVaR (4) 0.69 0.04 0.95 1.00

MES (5) 0.64 0.13 0.93 0.93 1.00

MES-BE (6) 0.35 -0.09 0.38 0.41 0.47 1.00

Book Lvg. (7) -0.01 0.03 0.11 0.02 0.03 -0.20 1.00

DCI (8) 0.13 -0.07 0.35 0.36 0.39 0.28 0.17 1.00

Def. Spr. (9) 0.25 0.33 0.67 0.53 0.55 0.34 -0.09 0.24 1.00

AAbsorption (10) -0.53 -0.01 -0.26 -0.30 -0.32 -0.15 0.06 -0.03 -0.06 1.00

Intl. Spillover (11) 0.42 -0.13 0.40 0.45 0.45 0.25 0.14 0.17 0.34 -0.15 1.00

Size Conc. (12) 0.01 0.29 0.32 0.15 0.25 -0.01 0.41 0.13 0.36 -0.03 -0.07 1.00

Mkt Lvg. (13) -0.17 0.15 0.22 0.17 0.14 -0.12 0.50 0.49 0.47 0.11 0.26 0.04 1.00

Real Vol. (14) 0.35 0.25 0.70 0.57 0.63 0.43 0.11 0.28 0.61 0.08 0.19 0.29 0.17 1.00

TED Spr. (15) 0.10 0.05 0.19 0.20 0.20 0.34 -0.32 0.12 0.38 0.02 -0.16 -0.20 0.12 0.49 1.00

Term Spr. (16) 0.29 0.01 0.35 0.37 0.33 0.34 -0.24 0.20 0.40 -0.12 0.31 0.09 -0.08 0.14 -0.07 1.00

Turbulence (17) 0.11 -0.04 0.19 0.16 0.17 0.21 0.12 0.12 0.16 0.03 0.06 0.02 0.16 0.49 0.54 -0.06 1.00
Panel B: UK

Absorption (1) 1.00

CoVaR (2) 0.57 1.00

ACoVaR (3) 0.69 0.97 1.00

MES (4) 0.62 0.92 0.93 1.00

MES-BE (5) 0.45 0.49 0.54 0.66 1.00

DCI (6) 0.40 0.34 0.37 0.45 0.39 1.00

AAbsorption (7) -0.50 -0.31 -0.37 -0.35 -0.14 -0.23 1.00

Size Conc. (8) 0.05 0.26 0.25 0.42 0.52 0.28 -0.01 1.00

Real Vol. (9) 0.34 0.69 0.65 0.66 0.67 0.21 0.12 0.35 1.00

Turbulence (10) 0.10 0.40 0.35 0.36 0.47 0.03 0.06 0.14 0.69 1.00
Panel C: EU

Absorption (1) 1.00

CoVaR (2) 0.68 1.00

ACoVaR (3) 0.77 0.96 1.00

MES (4) 0.78 0.94 0.96 1.00

MES-BE (5) 0.53 0.50 0.63 0.62 1.00

DCI (6) 0.39 0.51 0.53 0.54 0.39 1.00

AAbsorption (7) -0.51 -0.34 -0.38 -0.41 -0.26 -0.20 1.00

Size Conc. (8) -0.02 0.19 0.17 0.08 -0.01 0.20 -0.10 1.00

Real Vol. (9) 0.33 0.57 0.51 0.51 0.33 0.33 0.18 -0.05 1.00

Turbulence (10) 0.02 0.11 0.09 0.08 0.15 0.14 0.09 -0.07 0.42 1.00

Notes: Correlation is calculated using the longest available coinciding sample for each pair.
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Table 3: Pairwise Granger Causality Tests

UsSs UK EU
Causes Caused by | Causes Caused by | Causes Caused by
Absorption 6 3 1 1 1 6
AIM 1 2 - - - -
CoVaR 8 3 4 3 3 3
ACoVaR 6 5 3 3 4 3
MES 5 8 3 6 2 5
MES-BE 2 10 2 8 1 6
Book Lvg. 2 2 - - - -
DCI 1 7 0 6 3 0
Def. Spr. 8 3 - - - -
AAbsorption 4 0 5 0 4 0
Intl. Spillover 0 7 - - - -
Size Conc. 2 0 1 0 0 0
Mkt Lvg. 2 0 - - - -
Real Vol. 9 5 6 3 6 5
TED Spr. 4 1 - - - -
Term Spr. 1 8 - - -
Turbulence 6 3 6 1 5 1

Notes: For each pair of variables, we conduct two-way Granger causality tests. The table reports
the number of other variables that each measure significantly Granger causes (left column) or is
caused by (right column) at the 2.5% one-sided significance level (tests are for positive causation
only). Tests are based on the longest available coinciding sample for each pair.
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Table 4: In-Sample 20*" Percentile IP Growth Forecasts
US UK EU

Panel A: Individual Systemic Risk Measures

Absorption 0.10 1.94** 7.30%**
AIM 3.75%** 0.56 0.63
CoVaR 3.07*** 4.81%** 6.04***
ACoVaR 1.27%* 4.09*** 6.30***
MES 1.53*** 3.09*** 5.25%**
MES-BE 0.14 2.22%* 5.26***
Book Lvg. 2.11** 0.83 2.12
DCI 0.14* 0.37 6.93***
Def. Spr. 2.11%** 9.90*** 14.84***
AAbsorption 0.18** 0.08 0.40
Intl. Spillover 0.55** 1.58%* 2.36*
Size Conc. 0.04 6.54*** 12.01%**
Mkt. Lvg. 10.52%** 0.76™* 2.77*
Volatility 3.81%** 8.73*** 11.71%**
TED Spr. 7.73%* 3.31** 8.19***
Term Spr. 1.65** 0.07 3.07***
Turbulence 3.85%** 2.42%** 5.55***

Panel B: Systemic Risk Indexes

Multiple QR 32.30%** 22.26% 37.26**
PCQR1 9.59*** 9.25%** 13.89%
PCQR2 20.15%* 9.21%** 1727+
PQR 14.59*"* 10.55%"* 8.83%**

Notes: The table reports in-sample quantile forecast R? (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***,
respectively. Sample is 1946-2011 for US data, 1978-2011 for UK data, and 1994-2011 for EU data.
Rows “Absorption” through “Turbulence” use each systemic risk measure in a univariate quantile
forecast regression for the IP growth shock of the region in each column. “Multiple QR” uses all
systemic risk measures jointly in a multiple quantile regression. Rows “PCQR1” through “PQR”
use dimension reduction techniques on all the systemic risk measures. PCQR1 and PCQR2 use one
and two principal components, respectively, in the PCQR forecasting procedure, while PQR uses a
single factor. Owing to its late availability, TED Spr. is excluded from Multiple QR and PCQR
calculations in the US and UK.
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Table 5: Out-of-Sample 20" Percentile IP Growth Forecasts
UsS UK EU

Out-of-sample start: 1950 1970 1990 1990 2000

Panel A: Individual Systemic Risk Measures

Absorption —2.80 —4.38 —3.96 0.39 5.36*
AIM 2.99** 4.01** 4.07* —0.28 0.50*
CoVaR 1.71 2.11 1.85 6.45** 4.86**
ACoVaR —0.45 —0.86 —-0.97 5.42** 4.86*
MES —0.10 0.21 0.97 2.24 2.44
MES-BE —1.24 —0.78 —6.70 —1.59 2.84
Book Lvg. — — 3.87 —2.98 0.80
DCI —1.61 —-1.75 —2.92 —5.15 5.34**
Def. Spr. —0.29 0.69 8.60*** 15.87*** 11.41*
AAbsorption —-0.83 —0.10 —0.27 0.11 0.05
Intl. Spillover — 0.34 1.41 —0.15 —-1.32
Size Conc. —2.48 —7.37 -3.59 7.06** 10.93***
Mkt. Lvg. — — 12.70*** —3.63 —0.57
Volatility 3.27 6.19** 8.03* 8.35** 6.83
TED Spr. — — 10.18*** —1.06 1.06
Term Spr. 0.32 2.13 1.14 —2.70 1.23
Turbulence 3.50%** 6.93*** 12.78*** —3.62 —0.38

Panel B: Systemic Risk Indexes

Multiple QR —23.66 —18.52 15.21%** —14.39 -3.25
PCQR1 0.68 0.13 1.61 6.01** 12.03**
PCQR2 6.477% 10.52%** 16.67** 3.38 9.33*
PQR 6.58"** 10.82*** 12.39*** 4.49* 5.14*

Notes: The table reports out-of-sample quantile forecast R? (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***
respectively. Sample is 1946-2011 for US data, 1978-2011 for UK data and 1994-2011 for EU data.
Out-of-sample start date is noted for each column. Rows “Absorption” through “Turbulence” use each
systemic risk measure in a univariate quantile forecast regression for IP growth rate shocks. “Multiple
QR uses all systemic risk measures jointly in a multiple quantile regression. Rows “PCQR1” through
“PQR” use dimension reduction techniques on all the systemic risk measures. PCQR1 and PCQR2
use one and two principal components, respectively, in the PCQR forecasting procedure, while PQR
uses a single factor. Owing to its late availability, TED Spr. is excluded from Multiple QR and
PCQR calculations in the US and UK. “—” indicates insufficient data for estimation in a given
sample.
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Table 6: Out-of-Sample 20" Percentile CFNAI Shock Forecasts

Total

PH

PI

SOl

EUH

Absorption
AIM

CoVaR
ACoVaR
MES
MES-BE
Book Lvg.
DCI

Def. Spr.
AAbsorption
Intl. Spillover
Size Conc.
Mkt. Lvg.
Volatility
Term Spr.

Turbulence

Multiple QR
PCQR1
PCQR2
PQR

Panel A: Individual Systemic Risk Measures

—4.58
—3.42
—1.82
—4.55
—3.62
—2.25
0.49
—2.14
—0.38
—-0.37
—2.52
—1.84
4.26*
1.65
3.03
737

—36.74
—1.07
0.89
7.09**

—1.85
—2.60
—2.98
—2.59
—2.51
—1.68
—-2.19
-0.67
—3.88
—-1.92
—3.62
—1.66
—0.78
—0.07
0.64

4.82%*

Panel B: Systemic Risk Indexes
—52.06

—47.07
—0.73
—2.44
2.16

—2.66
—2.69
—2.83
—4.11
—4.81
—0.60
1.36
—2.28
—0.84
1.16
—-0.94
—0.60
4.14*
1.00
3.32

7.97F*

—1.96
0.20
5.36™

-3.11
—3.44
-3.27
—4.49
—3.64
—2.70
—-0.47
-3.50
-3.15
—0.53
—1.78
—2.77
5.70*
2.97

2.64

8.40%**

—20.00

—2.06
—0.65

9.72%**

-3.00
—1.67
—-0.94
—4.31
-3.09
—2.50
1.19
—2.42
-3.19
0.59
—2.38
-0.17
4.14*
2.14
2.36
4.46*

—54.18
—-0.24
0.28
2.15

Notes: The table reports out-of-sample quantile forecast R? (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***
respectively. Sample is 1967-2011. Out-of-sample start date is 1975. Rows “Absorption” through
“Turbulence” use each systemic risk measure in a univariate quantile forecast regression for the
CFNALI index or sub-index in each column. “Multiple QR” uses all systemic risk measures jointly in
a multiple quantile regression. Rows “PCQR1” through “PQR” use dimension reduction techniques
on all the systemic risk measures. PCQR1 and PCQR2 use one and two principal components,
respectively, in the PCQR forecasting procedure, while PQR uses a single factor. Owing to its late

availability, TED Spr. is excluded.
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Table 7: 10" Percentile IP Growth Forecasts
In-Sample Out-of-Sample
Out-of-sample start: 1950 1970 1990

Panel A: Individual Systemic Risk Measures

Absorption 0.14 —2.81 —5.08 —9.54
AIM 6.97* 6.30%** 7.32*%* 6.70*
CoVaR 247 —0.02 1.59 —0.91
ACoVaR 1.42 —0.80 0.50 —1.44
MES 1.51* —1.50 1.53 0.39
MES-BE 0.07 —2.52 —3.60 —16.31
Book Lvg. 4.07%** — — 7.30%**
DCI 1.45 0.56 0.48 4.63*
Def. Spr. 1.78* 0.66 1.00 6.82%**
AAbsorption 0.16 —1.89 —0.51 —0.35
Intl. Spillover 2.15%* — 4.51 8.73***
Size Conc. 0.79 —2.26 —8.23 —3.50
Mkt. Lvg. 17.87*** — — 20.93***
Volatility 3.63** 2.95* 5.49** 4.98
TED Spr. 12.88*** — — 12.23***
Term Spr. 2.26** 1.11 2.46 —2.02
Turbulence 3.7+ 2.27 4.17* 12.50**

Panel B: Systemic Risk Indexes

Multiple QR 38.86*** —54.86 —33.99 17.14*
PCQR1 7.7 —-0.41 3.60* —0.81
PCQR2 27.28"** 7.19*** 16.20*** 19.38***
PQR 12.96*** 5.19* 11.36*** 10.28**

Notes: The table reports quantile forecast R? (in percentage) relative to the historical quantile model.
Statistical significance at the 10%, 5% and 1% levels are denoted by *  ** and ***, respectively.
Sample is 1946-2011. In-sample statistics are in column one. The out-of-sample start is noted for
columns two through four. Rows “Absorption” through “Turbulence” use each systemic risk measure
in a univariate quantile forecast regression for US IP growth rate shocks. “Multiple QR” uses all
systemic risk measures jointly in a multiple quantile regression. Rows “PCQR1” through “PQR”
use dimension reduction techniques on all the systemic risk measures. PCQR1 and PCQR2 use one
and two principal components, respectively, in the PCQR forecasting procedure, while PQR uses a
single factor. Owing to its late availability, TED Spr. is excluded from Multiple QR and PCQR
calculations. “—” indicates insufficient data for estimation in a given sample.
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Table 8: Out-of-Sample 10" Percentile CFNAI Shock Forecasts
Total PH PI SOI EUH

Panel A: Individual Systemic Risk Measures

Absorption —3.64 —17.62 —6.04 —4.90 —4.92
AIM —0.93 —7.86 —3.29 1.26 —4.48
CoVaR —1.58 —4.93 —1.57 2.20 —1.05
ACoVaR —2.99 —4.52 —4.42 —1.47 —4.38
MES —3.78 —5.54 —6.81 —2.89 —4.02
MES-BE —4.29 —2.83 —3.40 —3.29 —3.64
Book Lvg. 2.74* —4.35 0.60 2.62 4.31%**
DCI —7.13 —5.47 —3.85 —6.72 —4.31
Def. Spr. —2.99 —4.79 —2.53 —4.51 —1.47
AAbsorption 1.11 —1.77 —0.89 0.95 0.20

Intl. Spillover —5.42 —5.63 —4.09 —3.68 —2.18
Size Conc. -3.50 —1.86 —2.46 —3.32 —0.44
Mkt. Lvg. 11.48*** —-1.71 7.58* 13.85*** 8.83**
Volatility 6.65 0.78 3.68 6.11* 4.35

Term Spr. 1.31 —2.18 1.61 1.52 —0.82
Turbulence 11.76%** 4.07 12.77** 9.48*** 8.77*

Panel B: Systemic Risk Indexes

Multiple QR —68.49 —85.59 -95.11 —41.80 —61.78
PCQRI1 —3.84 —0.70 —4.45 0.35 0.37
PCQR2 0.03 0.07 1.70 3.21 0.30
PQR 9.07** 2.20 9.50** 8.84* 6.55

Notes: The table reports out-of-sample quantile forecast R? (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***
respectively. Sample is 1967-2011. Out-of-sample start date is 1975. Rows “Absorption” through
“Turbulence” use each systemic risk measure in a univariate quantile forecast regression for the
CFNALI index or sub-index in each column. “Multiple QR” uses all systemic risk measures jointly in
a multiple quantile regression. Rows “PCQR1” through “PQR” use dimension reduction techniques
on all the systemic risk measures. PCQR1 and PCQR2 use one and two principal components,
respectively, in the PCQR forecasting procedure, while PQR uses a single factor. Owing to its late
availability, TED Spr. is excluded.
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Table 9: Out-of-Sample Median IP Growth Shock Forecasts
US UK EU
Out-of-sample start: 1950 1970 1990 1990 2000

Panel A: Individual Systemic Risk Measures

Absorption —0.58 1.63* 1.55 —1.17 1.44

AIM 0.07 —1.68 0.15* —0.30 —0.01
CoVaR 0.33 —1.26 0.72 —1.60 1.52

ACoVaR —0.26 —1.59 —0.03 —0.97 0.69

MES —0.23 —1.46 —0.80 —-1.70 —0.05
MES-BE —1.17 —0.44 —0.39 3.63** —0.41
Book Lvg. — — 1.19 3.05%** —2.05
DCI —-1.41 —1.09 —1.00 —1.00 0.54

Def. Spr. —0.59 0.48 4.83"** 0.80 —2.47
AAbsorption —0.72 —0.44 —0.30 —0.22 —0.08
Intl. Spillover — —1.46 —0.65 —2.15 —0.27
Size Conc. —2.61 —1.60 —3.43 3.54** 3.35%*
Mkt. Lvg. — — 2.77* —-1.72 —4.69
Volatility 1.21 2.46 4.49* 1.76* —1.34
TED Spr. — — 2.03** —2.44 —1.77
Term Spr. 0.08 0.21 —0.35 —0.37 —1.68
Turbulence 1.37** 2.60** 4.49** 0.23 —0.47

Panel B: Systemic Risk Indexes

Multiple QR ~19.78  —19.17  —0.35 ~11.30  —15.92
PCQR1 —0.36 ~1.99 1.36 1.24 —0.66
PCQR2 1.00 —0.80 2.31 1.00 —2.54
PQR —1.64 —4.39 3.64* ~1.76 —9.73

Notes: The table reports out-of-sample quantile forecast R? (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***
respectively. Sample is 1946-2011 for US data, 1978-2011 for UK data and 1994-2011 for EU data.
Out-of-sample start date is noted for each column. Rows “Absorption” through “Turbulence” use each
systemic risk measure in a univariate quantile forecast regression for IP growth rate shocks. “Multiple
QR uses all systemic risk measures jointly in a multiple quantile regression. Rows “PCQR1” through
“PQR” use dimension reduction techniques on all the systemic risk measures. PCQR1 and PCQR2
use one and two principal components, respectively, in the PCQR forecasting procedure, while PQR
uses a single factor. Owing to its late availability, TED Spr. is excluded from Multiple QR and
PCQR calculations in the US and UK. “—” indicates insufficient data for estimation in a given
sample.
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Table 10: Estimators

Principal Components Quantile Regression (PCQR)

Factor Stage: Estimate F, by (A'A)~'A'x; for A the K eigenvectors associated
with the K largest eigenvalues of Zle T,

Predictor Stage: Time series quantile regression of y;,; on a constant and F,

Partial Quantile Regression (PQR)

Factor Stage: 1. Time series quantile regression of y;,; on a constant and z;; to
get slope estimate ¢;
2. Cross-section covariance of x;; and ¢; for each t to get factor

estimate ft

Predictor Stage: Time series quantile regression of y;., on a constant and ft

Notes: The predictors x; are each time-series standardized. All quantile regressions
and orthogonal quantile regressions are run for quantile 7.
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Table 11: Difference in Coefficients, Median versus 20" Percentile

Median 20" Pctl. Difference t
Absorption —0.0021 —0.0010 0.0012 1.88
AIM 0.0003 —0.0072 —0.0075 —11.84
CoVaR —0.0030 —0.0048 —0.0019 —2.89
ACoVaR —0.0024 —0.0031 —0.0007 —1.02
MES —0.0024 —0.0040 —0.0016 —2.54
MES-BE —0.0003 0.0016 0.0019 3.01
Book Lvg. —0.0014 —0.0023 —0.0009 —1.36
DCI 0.0001 —0.0014 —0.0016 —2.47
Def. Spr. —0.0036 —0.0033 0.0003 0.52
AAbsorption 0.0004 —0.0018 —0.0023 —3.57
Intl. Spillover 0.0000 —0.0019 —0.0019 —2.87
Size Conc. 0.0007 0.0004 —0.0002 —0.33
Mkt. Lvg. —0.0028 —0.0071 —0.0042 —6.48
Volatility —0.0041 —0.0054 —0.0014 —2.13
TED Spr. —0.0026 —0.0057 —0.0031 —4.65
Term Spr. 0.0017 0.0038 0.0021 3.34
Turbulence —0.0040 —0.0060 —0.0020 —-3.16
PCQRI1 —0.0038 —0.0046 —0.0008 —1.28
PQR —0.0037 —0.0052 —0.0015 —2.32

Notes: In the first two columns, the table reports quarterly quantile regression coefficients for IP
growth shocks at the 50" and 20*" percentiles. In each case, the predictor variable has been
standardized to have unit variance. The third column is the difference between the 20t* and 50"
percentile coefficients. The last column reports t-statistics for the difference in coefficients. Sample
is 1946-2011, or the longest span for which the predictor is available.
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Table 12: TP Growth Quantile Forecasts: Financial versus Non-financial Volatility

In-Sample Out-of-Sample
Out-of-sample start: 1950 1970 1990

Panel A: 20" Percentile
Financial Volatility 3.43%** 2.64** 5.77*** 12.18***
Non-financial Volatility 1.37 —-0.94 0.02 1.56

Panel B: Median
Financial Volatility 2.43*** 1.73* 3.78** 8.00**
Non-financial Volatility 1.26** 0.37 1.09 2.55%

Notes: The table reports out-of-sample quantile forecast R? (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***
respectively. Sample is 1946-2011. Rows use either financial or non-financial volatility (calculated
as the average individual equity return volatility for stocks in each sector) in a quantile forecasting
regression for IP growth. Panel A reports 20" percentile forecasts and Panel B reports median

forecasts.

Table 13: Federal Funds Rate Forecasts
Median 20" Pctl.

Panel A: In-Sample

Volatility 2.60*** 5.55***
Turbulence 2.33%** 4.20%**
PQR 2.29%** 14.45%**

Panel B: Out-of-Sample

Volatility 0.43 4.46*
Turbulence 1.33** 3.08*
PQR —8.97 6.60*

Notes: The table reports out-of-sample quantile forecast R? (in percentage) relative to the historical
quantile model. Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***,
respectively. Sample is 1955-2011. Out-of-sample begins 1960. Rows “Volatility” and “Turbulence”
report univariate quantile forecast regressions on quarterly shocks to the Federal Funds rate. Row
“PQR” uses a single factor estimated from all systemic risk measures.
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Appendices

A Theoretical Appendix

A.1 Assumptions

Assumption 1. Let Z; denote the information set at time t and Q,(y,1n|Z;) denote
the time-t conditional T—quantile of yup. Let f be 1 x 1 and g, be K, x 1 with
K=1+K, F,=(f,g,), andx; be N x 1, fort =1,...,T. Then

1o Qr (Y40 Te) = Qr (yesnl f1) = a0 + a(7) Fy = ag + a(7) [
2. Yrn = o + (T) fr + M (7)
3 xi=X+ofi + Vg, +e, =X+ AF, +¢

where A = (Aq,...,An).

Assumption 2. Let ||A|| = (tr(A’A))'/? denote the norm of matriz A, and M be
some positive finite scalar.

1. The variables {\;}, {F:}, {eu} and {ni} are independent groups.

2. E||F||' <M < o0 and £, F,F, — Sy or some K x K positive definite

o ¥ o0
matrix Xp = 0 s, |
3N < X < 0o and ||[AA/N — Zi|| — 0 for some K x K positive definite
. _[X%s o0
matriz 2\ = 0 =, |

4. For all (i,t), E(g;) = 0,E|eq|® < M

5. There exist B(eitejs) = 04j1s and |0yjes] < 045 for all (t,s), and |0y;s] < 715 for all
(Z,j) such that % Zgjzl 52‘]’ S M; %Z:s:l Tis S M; and ﬁ Zi,j,s,tzl |Uij,ts| S
M

6. For every (t, s), E]\/LN Zf\il[éiseit —E(eien)]|* <M

Assumption 3. Let m, M be positive finite scalars. For each 7 € (0,1) the shock
Neen(T) has conditional density 7, (-|Z;) = 7y and is such that

1. w4 18 everywhere continuous
2. m <7y <M forallt

3. m satisfies the Lipschitz condition |mr(Kk1) — mre(K2)| < M|ky — ko| for all t
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Assumption 4. Let M be a positive finite scalar.

1. In addition to Assumption 2.1, {fi} is independent of {g,} and {¢;} is inde-
pendent of {1}

2. {eu} are i.i.d.

3. iy oo 0, £ < M.

E(f), E(g}) and E(e}) exist and are finite for all n.

AR

{g,} and {¢;} have symmetric distributions.

Proof Outline Assumptions 1 and 2 are the same as those in Bai and Ng’s (2006)
work on principal components factor estimates in OLS regressions. Assumption 3
is sufficient to show that quantile regression is consistent in a time series setting.
Assumption 4 strengthens some moment and independence conditions of Assumption
2 and additionally imposes conditions on the distributions of ¢;, ¥, and g,,.

Our approach views the latent factor structure among systemic risk measures as
an errors-in-variables quantile regression problem. To address this, we rely heavily on
mis-specified quantile regression results from Angrist, Chernozhukov and Fernandez-
Val (2006, ACF hereafter) to express biases that arise in various stages of the PCQR
and PQR procedures.?!

For PCQR, Bai (2003) tells us that the principal component factor estimates
converge to a rotation of the true factor space at rate min(\/ﬁ ,T) under Assumptions
1 and 2. We write an infeasible second stage quantile regression of ;. on the factor
estimate and its deviation from the true factor. The probability limit of this infeasible
quantile regression follows by Assumption 3 and allows for an ACF bias representation
of the feasible quantile regression of 1, on the factor estimate alone. This allows us
to show that the fitted conditional quantile from the second stage quantile regression
is consistent for the true conditional quantile for N, T large.

The proof for PQR looks similar. The main difference is PQR’s latent factor
estimator, which is not based on PCA. PQR’s first stage quantile regressions of ;5
on x; involves an errors-in-variables bias that remains in the large N and T’ limit.
We write an infeasible first stage quantile regression of y,,, on x; and the two com-
ponents of its measurement error (g,,e;). For each i, the probability limit of this
infeasible quantile regression follows by Assumptions 1-3 and allows for an ACF bias
representation of the feasible quantile regression regression of 3, on x; alone. For
each t, the factor estimate comes from cross-sectional covariance of x; with the mis-
measured first-stage coefficients. This converges to a scalar times the true factor at

31The results of Bai (2003) and Bai and Ng (2008a) can be used to establish the consistency of the
PCQR. We provide an alternative derivation in order to closely connect the proofs of both PCQR
and PQR.
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rate min(v/N, vT) under Assumption 4. This results makes use of a fact about the
covariance of a symmetrically-distributed random variable with a rational function
of its square, which is proved in Lemma 1. The third stage quantile regression using
this factor is consistent for the true conditional quantile in the joint N, 7T limit.

A.2 Proof of Theorem 1

Proof. Let F, be given by the first K principal components of ;. Bai (2003) Theorem
1 1mphes that for each t, F, — HFt is at least O, (dyh), where Sy = min(v/'N,V/T),
H=V (F F/T)(A'A/N), F = (F, ..., Fy)is the matrix of K eigenvectors (mul-
tiplied by v/T') associated with the K largest eigenvalues of X X’/(TN) in decreasing
order, and V is the K x K diagonal matrix of the K largest eigenvalues.??

The second stage quantile regression coefficient is given by

(60,8) = argmin £ 3" (g — o0 - o' ).

o,
’ tl

Consider an infeasible regression of 3., on the PCA factor estimate Ft as well as
the factor estimation error Fy — HF, (for given N and T). Because F linearly
depends on (ﬁ’t,ﬁ’t — HF,), this regression nests the correctly specified quantile
forecast regression. By White (1994) Corollary 5.12% and the equivariance properties
of quantile regression we have that the infeasible regression coefficients

(do,d,dl) =arg min — ZPT Yt+h — Oy — & Ft al(Ft HFt))

ag,a1,a T’ —

are such that c satisfies

VT(&— o/H™ ") —2 N(0,34).

T—00

Next, ACF (2006) Theorem 1 implies that
T / -1/
&=a+ (Z quuFu> (Z w, F e (F, — HFu)> (A1)

where they derive the weight function w, = 3 fol T <U [d’f?t — ftD dv

32Bai (2003) shows that F; — HF; is O,(min(v/N,T)™"), which is at least as fast a rate of
convergence as O, (min(v'N,vT)™1).

33Note that our assumptions satisfy Engle and Manganelli’s (2004) assumptions C0-C7 and AN1-
AN4.
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Next, we rewrite the forecast error as
&F,—o'F,=&'(F,—HF,) + (& —o/H Y)HF,. (A2)
As stated above, the first term of (A2) is no bigger than O,(Jy). To evaluate the
second term, use (Al) to obtain
1 N (1
N rer—1\ _ (ot rer—1 T (T
(& —adH )=(&—ad'H ")+ (T ;quuFu> (T ;quual(FU — HFu)> :
(43)
The first term on the right-hand side is O,(T~'/?), as stated above. Use F, =

Fu — HF, + HF, to rewrite the numerator of the second term on the right-hand
side

T
_ 57VTT Z wdnr(Fy — HF )&, 0nr(F, — HF,) + 63 Z wHF ,&6yr(F, — HF,)
u:l

- 6]:1TOP( ) + 5NTOp( ).

Therefore the right—hand side of (AS) is O,(T7Y%) + 0,(1)O,(551) = O,(65r). This
implies that & — o’ H ™' is O,(05+). Putting this back into (A2), we see therefore
that &' F; — o' F; is 0,(1)0,(557) + O,(657)0,(1) = O,(5yy) which completes the
result. O

A.3 Proof of Theorem 2

Proof. For each i, the first stage quantile regression coefficient is given by

o 1
(o, 9:) = argmin — > prWern — 0 — Y- (Ad)

Consider the infeasible quantile regression of y,,, on (x4, g}, €)', yielding coefficient
estimates

T

(Foi s Yig» Yie)' = arg min o Z Pr(Yerh = Y0 = VTt — VyGy — VeCit)-
g’ €

Note that f; linearly depends on the vector (x;, g}, ;). By White (1994) Corol-
lary 5.12 and the equivariance properties of quantile regression, These coefficients
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satisfy

/
. ./ . / d Q !/ a
\/T(7277ig?728) m N ((sz ¢Z¢m ) 727)

ACF (2006) Theorem 1 implies that
T -1/
u=1 u=1

for the weight wy = & [1(1 — w)m, (u[za¥ — Q (Yern| f1)] | fr) du?* Expanding the
weight around z;; = 0, we have

(‘9nwz~t

oo 1
wa =Y malfeh o malf) = G
n=1 Z

(A)

zit=0

and can use this to rewrite (A5). Note that x,(f;) is a function only of f; and is
therefore independent of g,, ;. Also note that af, = 32" (¢ife)" 7 (¥'g, + €it) an 5,
where the a,, ;’s are polynomial expansion coefficients. Using the following notation

T -1 /7
I = (Z wzuquL) (Z Wiy L iy, {("Yig + %¢i)’gu + (e + %)&4) ,
u=1 7
o 1 T 0o n+l
FQ - _g <Tzwwx12u> (Zzan—‘rlj
v u=1

n=0 j=0

T
Z Kn(fu) (@i f)" T (g, + i)'t
=1

—E (kn(fu) ()" 7 (Wlg, + i) ™) ] ) :

oo n+l
FB T8 (Z Z an-i—l 2J /{n fu)(¢zfu)n+1 ](w Gu T €ZU)]+1)>

n=0 j=0

co n+2
DD ans2g

n=0 j=0
«

%7

34This weight comes from the fact that in our factor model the true conditional quantile Q(y;44|Z;)
is identical to the quantile conditioned only on f;. In addition, the conditioning of 7 on f; is a choice
of representation and consistent with our assumption that no other time ¢ information influences the
distribution of 7:+p. ACF provide a detailed derivation of this weight as a function of the quantile
forecast error density, which they denote as f rather than .

;

T
Hn(fu)(@fu)n—i_g J(%gu + i)’ Z (fu)(Difu) n+2_j(vvb;gu + Eiu)j

Ly=%—
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we can rewrite (A5) as

L >« > om0 Z?Jrol n 1 JE (K (fi) (0if)" ] ZHI ajt1kE [("Pégt)jﬂ_k] E [51‘3}

T O o S tneasE (K (F)(00fe) ] Sy 4B [(Wig,)H E []
+ T+ +T5+ 1. (AT)

Because of the probability limit noted above for ("yi,"y;g, Yie)', we know that I'y and
[y are O,(T~/?). Ty and I are also O,(T~/2) by Assumption 4, the continuous
mapping theorem, and the law of large numbers. By Assumption 4, for any ¢ and for
n odd we have E [(¢.g,)"] = 0. Therefore we can rewrite the above expression for 4
as

Go= o T 00 01

where T is a rational function given by the second term in A7.
The second stage factor estimate is®

N B}
Ji = N ; (’% - ’AY) (v — 7y)
N
=52 (ST £ O <3 (= DS+ W W+ e —20)

Because the irrelevant factor g, is multiplied by N7 >~ (5 — @)(zp —1p)’, g, vanishes

from ft for N large due to the independence of ¢;, ;. Sums involving cross products
of Y(v2, ¢;) and (ap; —p)’ vanish in probability as N becomes large by the symmetry
of ©; (Assumption 4) and Lemma 1. Sums involving ¢;; vanish as N becomes large
by the mdependence of £ and (¢, 7). Straightforward algebra shows that ft hf;
is at least O,(6y), where is h a finite nonzero constant.*® From here, Theorem 1’s
argument, starting in the second paragraph of that proof, goes through for & ft and
the result follows. []

Lemma 1. For any symmetrically-distributed random variable x, random vector y =
(Y1, ..., Y1) such that x L y, and rational function f : RT — R that is infinitely
differentiable at some number a € RY, it is the case that Cov(f (2, y),z) = 0.

Proof. Define the vector = (22,y’), so that z; = 2? and x; = y;_;. The Taylor

35Qverbar denotes a sample mean over 1.
36Tt can be shown that

N
Z( (¥7, i) — Zwiw) (¢: — 9)

converges to a finite constant that is different from one, which implies that h is nonzero.
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series for f(x) at a is

d d d
af CL17 ) 1 azf(alv SR ,de)
f(aq,. )+ Z 3% (v —ay) + B Z Z Oz, 0r (x; — aj)(zp — ap)+
J=1 j=1 k=1
d d
1 63 al, Lo, a )

Any cross products involving x; for j > 1 have zero covariance with z by indepen-
dence. By the symmetry of z, Cov(x},z) = 0 for any ¢ = 0,1, ..., which proves the
result. O

A.4 Simulation Evidence

Table A1 compares PCQR and PQR estimates with the true 0.1 conditional quantile.
We report the time series correlation between the true conditional quantile and the
fitted series as well as the time series mean absolute error (MAE) averaged over
simulations. The simulated model is

Y1 = —felp + (on + fils) megr
=ofi + g + e

We draw f ~ U(0,1), g ~ N(0,0.5%), ey ~ N(0,0.5%), n ~ N(0,0.5%), ¢; ~
N(0,0.5%), and ¥; ~ N(0,0.5%), all independent. We pick 1, = 1 for a location
model and 1, = 0 otherwise, 1g = 1 for a scale model and 1g = 0 otherwise, and
1, =15 =1 for a location and scale model. We vary T, set N =T, and run 1,000
simulations of each specification. The table reports performance of quantile forecasts
from PCQR using two principal component indexes and from PQR using a single
index. It shows that conditional quantile forecasts are increasingly accurate in the
size of the predictor panel. As N and T grow, the time series correlation between
fits and the true conditional quantile approaches one and the forecast error shrinks
toward zero.

B Empirical Appendix

B.1 Systemic Risk Measures
CoVaR and ACoVaR (Adrian and Brunnermeier 2011) CoVaR is defined as

the value-at-risk (VaR) of the financial system as a whole conditional on an institution
being in distress. The distress of the institution, in turn, is captured by the institution
being at its own individual VaR (computed at quantile q):
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Pr(X* < VaR') = ¢

CoVaR for institution 7 is then defined as:

Pr(X® < CoVaR|X* = VaR') = ¢

which we estimate using conditional linear quantile regression after estimating
VaR’. ACoVaR' is defined as the VaR of the financial system when institution i is
at quantile ¢ (in distress) relative to the VaR when institution i is at the median of
its distribution:
ACoVaR' = CoVaR'(q) — CoVaR'(0.5).

In estimating CoVaR, we set ¢ to the 5th percentile. Note that Adrian and Brun-
nermeier (2011) propose the use of a conditional version of CoVaR as well, called
forward CoVaR, in which the relation between the value-at-risk of the system and an
individual institution is allowed to depend on an additional set of covariates. Here we
use the alternative approach of rolling window CoVaR estimates with an estimation
window of 252 days. We construct individual CoVaR for each firm separately and
calculate the aggregate measure as an equal-weighted average among the largest 20
financial firms.

MES (Acharya, Pedersen, Philippon and Richardson (2010)) These mea-
sures capture the exposure of each individual firm to shocks to the aggregate system.
MES captures the expected return of a firm conditional on the system being in its
lower tail:

MES' = E[R'|R™ < ¢]

where ¢ is a low quantile of the distribution of R,, (we employ the 5th percentile).
We construct individual MES for each firm separately using a rolling window of 252
days and calculate the aggregate measure as an equal-weighted average among the
largest 20 financial firms.

MES-BE (Brownlees and Engle (2011)) This version of MES employs dynamic
volatility models (GARCH/DCC for 0.4, p;) to estimate the components of MES:

k k
MES-BE; ;1 = 05 p E [Em,tkm,t < —} + o/ 1 —piE {Gz‘,t|€m,t < —} :
g. g

m,t m,t

where €,,, are market return shocks, €;; is the individual firm return and k is set to
2 following Brownlees and Engle (2011). We construct the measure individually for
each firm and calculate the aggregate measure as an equal-weighted average among
the largest 20 financial firms.
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Absorption Ratio (Kritzman et al. (2010)) This measure computes the frac-
tion of return variance of a set of NV financial institutions explained by the first K < N
principal components:

_ Zfil Var(PCj)
SV Var(PCy)

Absorption(K)

A leading distress indicator is then constructed as the difference between absorp-
tion ratios calculated for long and short estimation windows

AAbsorption(K) = Absorption (K )short — Absorption (K )iong-

In our empirical analysis we construct the Absorption(3) measure using returns for the
largest 20 financial institutions at each point in time. We construct AAbsorption(3)
using 252 and 22 days for the long and short windows, respectively.

Dynamic Causality Index or DCI (Billio et al. 2012) The index aims to
capture how interconnected a set of financial institutions is by computing the fraction
of significant Granger-causality relationships among their returns:

# signi ficant GC relations

DCIL; =
! # relations
A Granger-causality relation is defined as significant if its p-value falls below 0.05.
We construct the measure using daily returns of the largest 20 financial institutions,
with a rolling window of 36 months.

International Spillover (Diebold and Yilmaz 2009) The index, downloaded
from http://economicresearchforum.org/en/bcspill, aggregates the contribu-
tion of each variable to the forecast error variance of other variables across multiple
return series. It captures the total extent of spillover across the series considered (a
measure of interdependence).

Volatility We construct individual volatility series of financial institutions by com-
puting the within-month standard deviation of daily returns. We construct the ag-
gregated series of volatility by averaging the individual volatility across the 20 largest
institutions.

Book and Market Leverage We construct a measure of aggregate book leverage
(debt/assets) and aggregate market leverage (debt/market equity) among the largest
20 financial institutions to capture the potential for instability and shock propagation
that occurs when large intermediaries are highly levered.
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Size Concentration We construct the Herfindal index of the size distribution
among financial firms:

S, ME?

(S, ME;)?
The concentration index captures potential instability due to the threat of default
of the largest firms. The index corrects for the changing number of firms in the
sample by multiplying the measure of dispersion by the number of firms, N. When
constructing this measure we use the market equity of the largest 100 firms.

Herfindahl, = N

Turbulence (Kritzman and Li (2010)) Turbulence is a measure of excess volatil-
ity that compares the realized squared returns of financial institutions with their
historical volatility:

Turbulence, = (1, — p)' 7 (ry — p)

where r; is the vector of returns of financial institutions, and p and ¥ are the historical
mean and variance-covariance matrix. We compute the moments using data for the
largest 20 financial institutions and a rolling window of 60 months.

AIM (Amihud 2002) AIM captures a weighted average of stock-level illiquidity
AIM;, defined as:

AIM! =
e Z turnoverz ’

We construct an aggregated measure by averaging the measure across the top 20
financial institutions.?”

TED Spread The difference between three-month LIBOR and three-month T-bill
interest rates.

Default Yield Spread The difference between yields on BAA and AAA corporate
bonds. The series is computed by Moody’s and is available from the Federal Reserve
Bank of St. Louis.

Term Spread The difference between yields on the ten year and the three month
US Treasury bond. The series is obtained from Global Financial Data.

370ur definition of AIM differs from that of Amihud (2002). We replace dollar volume with share
turnover to avoid complications due to non-stationarity.
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B.2 Macroeconomic Shocks

Let the monthly macroeconomic series (CFNAI or IP) be denoted Y;. We construct
shocks to these series as residuals in an autoregression of the form

p
Yi=c+ Y aYii=c,+a (L)Y,
=1

for a range of autoregressive orders, p, and select the p that minimizes the Akaike
Information Criterion. This approach purges each macroeconomic variable of pre-
dictable variation based on its own lags, and is a convention in the macro forecasting
literature (e.g. Bai and Ng (2008b) and Stock and Watson (2012)).

Shocks are estimated in a recursive out-of-sample scheme to avoid look-ahead
bias in our out-of-sample quantile forecasting tests. For each month 7, we estimate
the AR and AIC on data only known through 7, and construct the forecast residual
at time 7 + 1 based on these estimates. Finally, we construct quarterly shocks as a
moving three-month sum of the monthly residuals.

B.3 Quantile Granger Causality Tests

An alternative to the pre-whitening procedure described in Appendix B.2 is to control
for the history each dependent variable within the quantile regression specification, as
in an in-sample Granger causality test. This alternative procedure yields qualitatively
similar results to those reported in the main text.

To conduct a Granger causality test in our framework, consider the quantile
regression

p q
Q-\Y|T,) = Bo + Z BpYi—p + Z VeTi—k
=1 k=1

where Y is monthly IP growth and z is a systemic risk measure. We investigate
whether  Granger causes the quantiles of Y by testing the hypothesis: v, = - =
v, = 0. We estimate the standard error matrix of (3',4’)" using Politis and Romano’s
(1994) stationary block-bootstrap with 1,000 bootstrap replications and choose ¢ = 1.
Table A2 reports the resulting Wald statistics for the 20" percentile, median and 80"
percentile, each of which is asymptotically distributed as a x?(1).

B.4 Tests of Coefficient Equality

In Section 5.1 we test the hypothesis that the median quantile regression coefficient
equals the 20" percentile regression coefficient. The test statistics are formed via a
bootstrap algorithm for each predictor separately. These are calculated by resampling
the estimated residuals to create 1,000 bootstrapped data series, calculating the dif-
ference between the estimated 20" and 50" percentile regression coefficients for each
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bootstrap sample, and reporting the t-statistic as the mean of this difference divided
by the standard deviation of this difference across bootstrap samples.

B.5 VAR

We use Bloom’s (2009) data from June 1962 to June 2008. The vector process is
defined as Y; = (sp500,, aggvoly, finvol,, wagey, price, f fi, hours, emply, ip;), where
sp500 is the log of the S&P500 stock market index, agguvol is aggregate equity market
volatility, finvol is financial sector equity volatility, ff is the Federal Funds rate,
wage is the log of average hourly earnings, price is the log of the consumer price
index, hours is average hours worked, empl is the log of employment, and ip is
the log of industrial production. Equity volatility is measured as the volatility of
daily returns within each month for the portfolio of all firms (aggvol) or all financial
firms (finvol) in CRSP. Following Bloom (2009), all variables are Hodrick-Prescott
detrended with a smoothing parameter of 129,600, including the volatility variables.
This differs slightly from Bloom’s (2009) specification, in which aggvol takes a value
of 1 in the 17 months when stock market volatility spikes 1.65 standard deviations
above mean and zero otherwise. We use a continuous specification to directly compare
impulse response functions for shocks to aggregate and financial volatility.
The VAR then takes the form

12
Yt = ZAth_j -+ Uy

j=1

Our use of twelve monthly lags follows Bloom (2009). We assume wu; is serially
uncorrelated. The recursive identification scheme (see Sims 1980) assumes that

Uy = CEt

where E(e;) = 0, E(es€;) = I, and C is a lower triangular matrix. The structural
shocks are found from a Cholesky factorization of the sample covariance matrix of
the estimated residuals u;, and then the impulse responses follow from the estimated
dynamics {Ay,..., A;,}. We present bootstrapped confidence intervals with 68%
coverage, which are the finite-sample analogues of the one-standard-deviation asymp-
totic standard-error bands studied by Bloom (2009). We follow Efron and Tibshirani
(1993) in bootstrapping confidence bands for the impulse response functions. These
are calculated by resampling the estimated residuals to create 1,000 bootstrapped
data series, estimating the impulse response functions on each bootstrap sample, and
reporting the 68% coverage intervals of these estimates in each period.
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Table Al: Simulation Evidence

Location Scale Loc. and Scale
T N Corr. MAE Corr. MAE Corr. MAE

Panel A: PCQR
T,N =50 0.87 0.61 0.76  2.77 0.89 0.50
T,N =100 0.94 0.33 0.85 6.39 0.95 0.28
T,N =500 0.99 0.12 0.98 0.16 0.99 0.11
T,N =1,000 0.99 0.08 0.99 0.11 1.00 0.07

Panel B: PQR
T,N =50 0.74  0.80 0.56  3.07 0.72 0.90
T,N =100 0.84 0.51 0.70 1.06 0.84 0.54
T,N =500 0.96 0.22 091 0.33 0.96 0.21
T,N=1,000 098 0.15 0.95 0.22 0.98 0.15

Notes: Simulation evidence using the model described in the text. We consider dimensions for T, N
between 50 and 1,000. We report time series correlation and mean absolute pricing error between the
true and estimated 0.1 conditional quantiles. Panel A reports results for PCQR using two principal
component indexes, and Panel B reports results for PQR using a single index. The simulated model
is described in Appendix A.
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Table A2: Quantile Forecasts of US IP Growth Using Granger Causality Tests

20t Median 80"
Absorption 0.04 2.74* 9.86***
AIM 73.32%** 0.00 27.33***
CoVaR 10.86*** 12.99*** 11.38***
ACoVaR 8.70*** 4.81** 7.04%**
MES 6.29** 4.41** 5.21**
MES-BE 0.03 0.00 0.42
Book Lvg. 0.35 1.35 0.17
DCI 0.13 0.13 1.07
Def. Spr. 7.53%** 19.16*** 11.84***
AAbsorption 0.03 0.08 0.50
Intl. Spillover 0.21 1.70 1.37
Size Conc. 0.01 0.00 0.01
Mkt. Lvg. 12.47*** 7.29%** 0.00
Volatility 12.62*** 21.15%** 5.34**
TED Spr. 3.80* 0.03 0.43
Term Spr. 0.90 1.09 0.91
Turbulence 13.56*** 7.7 0.04

Notes: The table reports Wald statistics of the test that the systemic risk measure (by row) does not
Granger cause (in the quantile sense) IP growth in the regression at a particular quantile (by column).
Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***, respectively.
Sample period is 1946-2011. Rows “Absorption” through “Turbulence” use each systemic risk measure
(by row) singly in a quantile regression. “Multiple QR” uses the systemic risk measures “Absorption”
through “Turbulence” jointly in a quantile regression.
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Table A3: 20"" Percentile US IP Growth Forecasts, Excluding the Recent Crisis

In-Sample Out-of-Sample
Out-of-sample start: 1950 1970 1990
Panel A: Individual Systemic Risk Measures
Absorption 0.03 —2.82 —4.71 —4.65
AIM 4.68*** 3.96** 6.17* 9.92***
CoVaR 2.03** 0.54 —0.19 —4.52
ACoVaR 0.42 —-1.25 —2.55 —5.61
MES 0.45 —-1.21 -1.99 —4.58
MES-BE 2.47** 1.78*** 5.45%** 7.19%**
Book Lvg. 1.47* — — 5.00%**
DCI 0.03 —1.23 —1.01 —1.51
Def. Spr. 0.55 —-2.11 —2.85 2.97***
AAbsorption 0.17 —0.88 —0.09 —0.30
Intl. Spillover 0.02 — 1.99 6.34***
Size Conc. 0.02 —2.72 —8.77 —5.47
Mkt. Lvg. 7.68*** — — 9.10**
Volatility 1.45* 0.64 1.38 —4.06
TED Spr. 0.89*** — — 9.61**
Term Spr. 2.23** 0.87 3.58** 4.57*
Turbulence 1.40* 0.88 2.24** 3.04
Panel B: Systemic Risk Indexes
Multiple QR 19.32%** —28.51 —27.56 5.29
PCQR1 —0.71 —0.80 —2.96 —6.01
PCQR2 11.90*** 4.93** 8.12%** 13.25%**
PQR 11.93*** 6.28** 10.89*** 13.26***

Notes: The table reports quantile forecast R? (in percentage) relative to the historical quantile model.
Statistical significance at the 10%, 5% and 1% levels are denoted by *, ** and ***, respectively.
Sample is 1946-2007. In-sample statistics are in column one. The out-of-sample start is noted for
columns two through four. Rows “Absorption” through “Turbulence” use each systemic risk measure
in a univariate quantile forecast regression for IP growth rate shocks in the US. “Multiple QR” uses
all systemic risk measures jointly in a multiple quantile regression. Rows “PCQR1” through “PQR”
use dimension reduction techniques on all the systemic risk measures. PCQR1 and PCQR2 use one
and two principal components, respectively, in the PCQR forecasting procedure, while PQR uses a
single factor. Owing to its late availability, TED Spr. is excluded from Multiple QR and PCQR
calculations. “—” indicates insufficient data for estimation in a given sample.
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