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Abstract  
How should one evaluate investment projects whose CCAPM betas are uncertain? This question is 
particularly crucial for projects yielding long-lasting impacts on the economy, as is the case for 
example for many green investments. We show that the term structure of the efficient discount 
rates is not constant and that the uncertainty affecting beta has no effect for short maturities. The 
term structure of the discount rate is in general increasing and tends to its largest plausible value. 
This comes from the fact that more promising scenarii (large beta) are also riskier, and are 
therefore more heavily discounted for long maturities.  If current beliefs concerning the asset’s beta 
are represented by a normal distribution, the efficient discount rate becomes infinite for finite 
maturities. This can justify some forms of short-termism relative to projects with an uncertain beta. 
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1. Introduction 

How should we evaluate our efforts in favor of future generations? This question is central in 

many current public policy debates, from fighting climate change to investing in biotechnologies, 

and depleting non-renewable resources, for example. Economic theory provides strong normative 

arguments in favor of using the Net Present Value criterion as a decision tool, with a discount 

rate that reflects both the opportunity cost of capital and the citizens’ propensity to invest for the 

future. Under the standard assumptions of the Consumption-based Capital Asset Pricing Model 

(CCAPM, Lucas (1978)), this discount rate fr r    is the sum of a risk-free rate fr  and a risk 

premium  . Since Weitzman (1998), various authors have recommended using a decreasing 

term structure for the risk-free discount rate, thereby placing more weight on long-term riskless 

impacts in the evaluation process.2  

The development of this literature has mostly been devoted to the evaluation of safe projects. 

This focus on the risk free discount rate is quite surprising, because most actions involving the 

distant future have highly uncertain impacts. For example, in spite of intense research efforts 

around the world over the last two decades, the socioeconomic impacts of climate change are still 

highly uncertain. We have learned from the normative version of the CCAPM that what matters 

to evaluate risky projects is their impact on the aggregate risk in the economy. This is evaluated 

by their parameter  , which measures the elasticity of the logarithm of their net benefits with 

respect to changes in the logarithm of aggregate consumption tc . It is in general assumed that this 

elasticity is constant. Projects with a larger beta will have a larger positive impact on the 

aggregate risk in the economy if they are implemented. They should therefore be penalized by 

being discounted at a larger rate. On the contrary, a project with a negative beta reduces the 

aggregate risk, which implies that it should be discounted at a rate smaller than the risk free rate. 

More generally, if two projects yield the same flow of expected benefits, the one with the smaller 

beta has a larger social value.  

An important problem is that socioeconomic betas are difficult to estimate.  As a consequence, 

even large companies tend to use them with parsimony. For example, Krueger, Landier and 

                                                            
2 See for example Weitzman (2001, 2007, 2009), Gollier (2002, 2008, 2012a),  Newell and Pizer (2003), and Groom, 
Koundouri, Panopoulou and Pantelidis, (2007). 



3 
 

Thesmar (2012) demonstrate that conglomerates generally use a unique discount rate to evaluate 

different projects rather than project-specific ones. This may be due to the complexity of 

estimating project-specific betas. Whatever the reason, it tends low-beta conglomerates to 

overvalue high-beta projects, and to undervalue low-beta projects. An even more upsetting 

example is related to public policy evaluations in the western world. Up to our knowledge, except 

in France (Gollier (2011)) and in Norway (Hagen (2012)), all countries evaluate their actions 

using a unique discount rate independent of the uncertainty affecting their impacts. For example, 

a unique rate of 7% is used in the United States since 1992. It was argued at that occasion that the 

“7% is an estimate of the average before-tax rate of return to private capital in the U.S. 

economy” (OMB (2003)). In 2003, the OMB also recommended the use of a discount rate of 3%, 

in addition to the 7% mentioned above as a sensitivity. This new rate of 3% was justified as 

follows: “This simply means the rate at which society discounts future consumption flows to their 

present value. […]the real rate of return on long-term government debt may provide a fair 

approximation” (OMB, (2003)). In short, the OMB does not recommend evaluators to estimate 

the beta of the policy under scrutiny. Rather, it recommends estimating the policy’s NPV using 

two discount rates, corresponding to a beta of zero or one, respectively.  From our experience of 

advising public institutions in their evaluation of environmental policies, we believe that this is 

due to the complexity of estimating the beta of flows of (non-traded) socioeconomic benefits, 

often disseminated over a long period of time.  

For an investment project whose cash flows share characteristics of those of some traded asset, 

one should use deleveraged market betas of these assets to compute the NPV of the project. This 

method is not without deficiencies. It is for example often the case that the resemblance between 

the cash flows of the project and those of the traded asset is weak, and that it is limited to a short 

period of time. We should also add to this picture the well-known failure of the CCAPM to 

predict market prices from the assets’ betas. Finally, markets do not price the typical global, long-

term externalities that motivate this paper, as those associated to climate change or genetic 

manipulations for example. For these reasons, the potential errors in the estimation of the 

project’s beta should be taken into account when evaluating its social value. 

In this paper, we propose to reconsider the CCAPM by explicitly recognizing that betas are 

uncertain. We consider any project whose beta is constant but unknown to the evaluator. Our 
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beliefs about the true value of the project’s beta is given by some distribution function for  . We 

maintain the other classical assumption of the model. In particular, we assume that the 

representative agent has a constant relative risk aversion, and that log consumption follows an 

arithmetic Brownian motion. In this context, we show that the classical asset pricing formula of 

the CCAPM is robust to the introduction of this parametric uncertainty. More precisely, it does 

not affect the basic message of the CCAPM contained in the pricing formula fr r   . 

However, the uncertainty affecting the beta of the project necessitates replacing the uncertain 

in this formula by the “Certainty Equivalent Beta” (CEB). This paper is about the 

characterization of the CEB.  

Two interpretations of existing pricing theories are shown to be fallacious in this paper. The first 

fallacy is based on the assumption that the beta is not correlated to the growth of aggregate 

consumption, i.e., the “beta of the  ” is zero. In spite of this fact, it is not true that the risk on the 

project’s beta should not be priced. This fallacy is due to the fact that the risk on  does not come 

in additively in the final wealth of the investors. However, we show in this paper that the CEB 

tends to the expected beta of the project for short maturities. In other words, the risk on beta is 

not priced for small maturities. This is not true for longer maturities.  

The second fallacy is based on the potential use of the ideas around “Gamma discounting” 

developed by Weitzman (1998, 2001, 2010). Roughly speaking, because the discount factor 

exp ( )fr t   is decreasing and convex in  , taking the expectation of the discount factor to 

compute the present value of a unit future benefit in t years would be equivalent to using a CEB 

which is smaller than the mean beta, and which tends to the smallest plausible beta for large 

maturities. The idea is that, contrary to shocks on the growth rate of consumption, the risk on beta 

is permanent. Compounding returns over many periods implies that, in the long run, the smallest 

plausible beta will drive the level of the discount factor. In this paper, we call this the “Weitzman 

effect”, which tends to raise the present value of the benefit. Although it brings some insights to 

the term structure of the CEB, this line of reasoning is also misleading, or at least incomplete. 

This is because the expected benefit of the project which has to be discounted is also sensitive to 

the beta. In general, if the beta is not too negative, a larger beta yields a larger expected benefit. 

In other words, more promising scenarii are also riskier. This implies that there is a negative 
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correlation between the discount factor and the expected benefit to be discounted. This negative 

correlation reduces the present value of the cash flow, in particular for the longest maturities. We 

call this the “correlated-risk-trend effect”. We show in Section 3 of this paper that this effect 

dominates the Weitzman effect in most circumstances. In other words, the term structure of the 

CEB is in general increasing, and it tends to the largest plausible beta for very large maturities. 

The term structure of the discount rates of risky assets inherits this upward-sloping property of 

the CEB. 

In Section 4, we show that an analytical solution exists if our current beliefs about the project’s 

beta are normally distributed. In that case, the CEB and the associated discount rate using the 

CCAPM formula exist and are bounded only for relatively short maturities. The critical maturity 

is equal to the inverse of the product of the variance of the economic growth rate and of the beta. 

For example, if we assume that the volatility of the economic growth rate is 4% per annum and 

that the standard deviation of the beta equals 1, this critical maturity above which the project’s 

discount rate becomes infinite is equal to T=625 years.  Whether this is plus or minus infinity 

depends upon whether the correlated-risk-trend effect dominates the Weitzman effect. When the 

correlated-risk-trend effect dominates, the CEB tends to infinity when the maturity tends to T. 

This means that all benefits occurring at or after T are completely irrelevant for the decision. This 

would be true independent of the potentially fabulous size of these benefits.  Suppose 

alternatively that the Weitzman effect dominates. Then, the CEB and the discount rate tend to 

minus infinity for maturities tending to T. This means that the existence of any plausible positive 

net benefit occurring at or after T should trigger the decision to invest, whatever the cost. 

In Section 5, we apply these theoretical results to different contexts. We first show that the long-

term beta of an environmental asset is equal to the inverse of the elasticity of substitution 

between this asset and consumption. We use time series data to estimate the elasticity of the 

demand for residential land in the United States. We show that the beta to be used for projects 

whose social benefit is to expand residential land should be increasing with maturity. We also 

measure the degree of uncertainty affecting socioeconomic and financial betas of different 

industries in France and in the United States.  

We show in Section 6 that our model can be reinterpreted by assuming that the project is a 

portfolio of various projects or assets with different (sure) betas. We also present a class of 
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projects for which the correlated-risk-trend effect is switched off by a dynamic rebalancing 

strategy for this portfolio, so that the CEB has a downward-sloping term structure. 

We are not aware of any paper dealing with valuing assets with an uncertain beta. However, our 

paper is related to Pastor and Veronesi (2003, 2009) who consider the case of an asset whose 

growth rate of dividends is uncertain. They show that the risk-neutral market price of this asset is 

increased by this uncertainty. By the power of compounding returns, the plausibility of the firm 

to be the next Facebook more than compensates the firm’s risk of failing miserably. Our paper 

differs from Pastor and Veronesi’s analysis about the source of the parametric uncertainty (beta 

versus growth rate of dividends), and about the question under scrutiny (price versus discount 

rate). In Section 7, we show that the price-to-dividend ratio of an asset is unambiguously 

increased by the uncertainty affecting its beta. This P/D ratio is infinite if we assume that current 

beliefs about the true beta are normally distributed. 

 

2. The model 

We determine the present value PV today (date 0) of a marginal project that yields a single net 

benefit tF occurring in a specific year t. To do this, we examine how this project affects the 

standard utilitarian social welfare function 
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 is the flow of consumption of 

the representative agent. The PV is the sure increase in consumption today that has the same 

effect on W as the single net benefit tF at date t. Because the project is marginal, this present 

value must be equal to 
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It is standard to rewrite this equation as follows: 

 tr t
tPV e EF  (3) 
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with 
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Equation (3) identifies the value of the project to the present value of the flow of expected future 

benefits, using tr  as the rate at which net benefit tEF  is discounted. This discount rate is defined 

in equation (4). It depends upon the risk characteristics of the net benefit at date t. We assume 

that 

 ,t t t tF f c  (5) 

where t has a unit mean and is independent of tc . Parameter tf  is free and normalized to 

unity in the next two sections. We assume that 0 1   with probability one, i.e., 0 0F c . 

Parameter   measures the sensitiveness of the net benefit of the project to changes in 

macroeconomic conditions. When 0  , the project has just an idiosyncratic risk component 

that will not be priced because of the second-order nature of risk aversion. When 1  , the 

project duplicates a stake in the economy as a whole. As suggested by Campbell (1986), a project 

with 1   can be seen as a leveraged claim on the economy. On the contrary, a project with 

0  offers a hedge for macroeconomic shocks. As we will see later on, parameter   can also 

be interpreted as the CCAPM beta of the project. 

In this paper, we generalize the CCAPM framework by allowing the beta of the asset to be 

uncertain. Let Q  denote the cumulative distribution of  that characterizes the representative 

agent’s beliefs about the beta of the project under scrutiny. We assume that  is independent of 

the growth process. 

Except for the uncertainty of the beta, our model duplicates the classical CCAPM model. We 

assume that relative risk aversion is a constant 0  , so that the utility function of the 

representative agent is 1( ) / (1 )u c c    . We also assume that the growth of log consumption 

defined as 1ln /t t tg c c  follows a random walk, so that 1 2( , ,...)g g  is an i.i.d. process. Finally, 
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we assume that the growth tg of log consumption is normally distributed with mean g  and 

volatility g . This implies that we can rewrite equation (4) as follows: 
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where ( , ) ln exp( )a x E ax  is the Cumulant-Generating Function (CGF) associated to random 

variable x  evaluated at .a  The CGF, if it exists, is the log of the better known moment-

generating function. In expected utility theory, ( , )a x is the certainty equivalent of ax  under 

constant absolute risk aversion equaling –1. CGF has recently been used by Martin (2013) to 

explore asset prices under non Gaussian economic growth processes. Equation (6) is equivalent 

to: 

 1 1( ) ( , ( , )) ( , ( , )).tr t t g t t g              (7) 

The expression ( , ( , ))t g    contains a sequence of two CGFs. The first CGF, ( , )g  , 

computes the certainty equivalent of g conditional to  . The second CGF computes the 

certainty equivalent of ( , )t g  using the distribution of  . A similar process appears also in the 

last term ( , ( , ))t g    of this equation. 

In this paper as in Gollier (2012b), we use the following properties of CGF (see Billingsley 

(1995)). 

Lemma 1 : If it exists, the CGF function ( , ) ln exp( )a x E ax  has the following properties:  

i. 
1

( , ) ( ) / !n
nn

a x x a n 


  where ( )n x is the nth cumulant of random variable x. If x

nm

denotes the centered moment of x, we have that 1 ( )x Ex  , 2 2( ) xx m  , 3 3( ) xx m  , 

2
4 4 2( ) 3( )x xx m m   ,… 

ii. The most well-known special case is when x is 2( , )N   , so that 2 2( , ) 0.5a x a a     . 
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iii. ( , ) ( , ) ( , )a x y a x a y     when x and y are independent random variables. 

iv. (0, ) 0x  and ( , )a x is infinitely differentiable and convex in a .  

v. 1 ( , )a a x is increasing in a, from Ex to the supremum of the support of x when a goes 

from zero to infinity. 

 Property ii of this Lemma directly implies 

 2 2 2 2( , ) 0.5    and   ( , ) ( ) 0.5( ) .g g g gg g                     (8) 

Using property i and iii of Lemma 1, this yields the following pricing formula examined in this 

paper: 

 1 2 2 1 2 2( ) ( , 0.5 ) ( , 0.5 ),t f g g g gr r t t t t                 (9) 

where 2 20.5f g gr        is the CCAPM risk free rate and 2
g  is the CCAPM macro risk 

premium. In the benchmark CCAPM model, parameter  is a known constant, so this equation 

implies that 

 2 2 2 2( ) ( 0.5 ) ( 0.5 ) .t f g g g g fr r r                 (10) 

Equation (10) reminds us three important features of the benchmark model. First, this equation 

also confirms that parameter  can be interpreted as the CCAPM beta of the project. Second, the 

term structures of the risk free rate and of the risk premium is flat. This is a consequence of the 

assumption that the growth process is i.i.d.. Third, the project-specific risk premium is 

proportional to the project’s beta. This is the consequence of the assumed Gaussian distribution 

of changes in log consumption (Martin (2013)).   

In the remainder of this paper, we generalize equation (10) to the case of an uncertain beta. When 

the beta of the project is ambiguous, one can define a “Certainty Equivalent Beta” (CEB) ˆ ( )t 

so that the rate to be used to discount today a cash flow occurring at date t is ˆ ( ) ,f tr    by 

analogy to the CCAPM equation (10). Equation (9) tells us that this CEB is defined as follows:  

  2 2 2 21ˆ ( ) ( , 0.5 ) ( , 0.5 ) .t g g g gt t
t

          


      (11) 
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Keep in mind that 2 20.5g g    is the growth rate of the expected net benefit, whereas 

2 20.5g g      is the growth rate of the risk-neutral expectation of the net benefit. Equation 

(11) means that the certainty equivalent risk premium is the annualized difference between the 

CGFs of these two uncertain growth rates.  

 

3. General results 

In this section, we characterize the certainty equivalent beta without making any assumption 

about the distribution of  . Equation (11) defines the CEB essentially as the annualized 

difference between two CGFs. One can use the properties described in Lemma 1 to derive 

various properties of the CEB. Let us first exploit property v. Because 1 ( , )t t x tends to Ex  

when t  tends to zero, equation (11) implies that 

     2 2 2 2
0

1ˆlim ( ) 0.5 0.5 .t t g g g gE E E           
         (12) 

It yields the following proposition. 

Proposition 1: The CEB ˆ ( )t  tends to the mean beta  when the maturity t tends to zero.  

Thus, the parametric uncertainty affecting the beta has no effect on the discount rate for short 

maturities. For short maturities, in a fashion similar to additive diversifiable risks, this uncertainty 

should not be priced.  Proposition 1 also tells us that, for short maturities, the following two 

assets should have exactly the same value: Asset A has an uncertain beta of mean 0.5. Asset B 

duplicates a portfolio that contains 50% of the risk free asset and 50% of the market portfolio (an 

asset with 1  ). 

Lemma 1 is also useful to explore the term structure of the CEB. Property v tells us that the CEB 

is the difference of two increasing functions of t. We can also infer from property i that 

  2 2 2 2
0

1ˆlim ( ) ( 0.5 ) ( 0.5 ) .
2t t g g g gVar Var

t
        




    


 (13) 
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This observation shows that the slope of the term structure of the CEB is determined by the 

relative uncertainty affecting the growth rates of respectively the objective expectations of the net 

benefit and the risk-neutral one. We can rearrange the RHS of equation (13) to obtain 

 2 2
0

1ˆlim ( ) ( ) ( 0.5 , ).
2t t g gVar Cov

t

      



   


 (14) 

Rearranging the covariance term yields the following proposition.  

Proposition 2: The CEB satisfies the following property: 

 
2

2
0

ˆlim ( ) ( ) ( ).
2 2

g
t t g g E Var Skew

t

      

        
 (15) 

It is easier to extract the intuition of this result from equation (14). The two terms in the right side 

of this equation are hereafter referred to as respectively the “Weitzman effect” and the 

“correlated-risk-trend effect”. The Weitzman effect is best understood by observing that if the 

beta of the project is uncertain, the CCAPM rate fr r   at which future net benefits should 

be discounted is also uncertain. Following Weitzman (1998, 2001), the discount factor to be used 

in that case is the expectation of the conditional discount factor exp( ( ) )fr t  , which is 

decreasing and convex in  . In other words, the CEB should be equal to 1( ) ( , )t t    . By 

Lemma 1v, this is decreasing, with a slope at t=0 equaling 0.5 ( )Var  . This Weitzman effect 

corresponds to the first term in the right side of (14). It tends to make the term structure of the 

CEB decreasing. However, this interpretation is incomplete because the net benefit to be 

discounted is itself a function of the beta of the project. Conditional to  , the net benefit at date t 

is equal to 2 2exp( 0.5 )g g t   . This means that there is a correlation between the trend and the 

riskiness of tF . Thus, if 2 20.5g g    and   are positively correlated, as can be reasonably 

assumed,3 the above analysis overestimates the present value of the project, so that it 

underestimates the CEB. This effect is increasing in maturity, which means that it tends to make 

the term structure of the CEB increasing.  The existence of this correlation between the 

                                                            
3 Because it is generally assumed that 2%

g
  is much larger than 2 2(4%) 0.16%

g
   , this positive correlation 

comes from the fact that  
g

 and  have the same sign. 
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conditional discount rate and the conditional future benefit explains the second term in the right 

side of equation (14). This is the correlated-risk-trend effect. 

Proposition 2 implies that, under a symmetric distribution for  , the term structure is increasing 

if and only if the correlated-risk-trend effect ( 2
g g E   ) dominates the Weitzman effect (

/ 2 ). This proposition also tells us how the asymmetry in the distribution of beta affects the 

term structure for small maturities. Namely, a negative skewness in the distribution of beta tends 

to reduce the slope of term structure of the CEB. 

One can also use property i of Lemma 1 to characterize the subsequent derivatives of the CEB 

and of the discount rate with respect to the maturity. It yields 

  2 2 2 2
0 1 1

1ˆlim ( ) ( 0.5 ) ( 0.5 ) ,
( 1)

n

t t n g g n g gnt n
          

  


    

 
 (16) 

where 1( )n x  is the ( 1)n th  cumulant of random variable x. For example, the curvature (n=2) of 

the CEB will involve in the right-hand side of this equation the centered moments of  up to the 

fifth order.  

One can finally use property v to determine the asymptotic value of the CEB. Suppose that the 

support of the distribution of   is bounded. We know that 1 ( , )t t x  converges to the supremum 

of the support of x. Applying this property to both CGFs that appear in equation (11) implies that 

 

  
2 2 * 2

min min2 2

2 2 * 2
max max

0.5 0
max supp 0.5

0.5 0,

g g g g

g g

g g g g

if

if

      
  

      

     
  

 (17) 

and 

  
2 2 * 2

min min2 2

2 2 * 2
max max

( ) 0.5
max supp ( ) 0.5

( ) 0.5 ,

g g g g

g g

g g g g

if

if

        
    

        

       
   

 (18) 

where *
min max0.5( )    is the center of the support of  . This yields the following 

proposition. 
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Proposition 3: If we suppose that the support of  is min max[ , ],  the CEB has the following 

property: 

  

* 2
min

* 2
* 2

min max min

* 2
max

                         0      

ˆlim ( ) 0

                               ,     

g g

g g
t t g g

g g

if

if

if

   

  
        



    



  


 
        
  
  

 (19) 

with *
min max0.5( )    . 

Remember that the sign of * 2
g g   tells us whether the expected growth rate of benefits is 

locally increasing in the beta of the project, evaluated at the center of its support. If it is negative, 

the CEB tends to the smallest plausible beta. On the contrary, if it is larger than the aggregate risk 

premium  , the CEB tends to the largest plausible beta. In between, the CEB converges toward a 

linear interpolation of the two bounds of the support of the plausible betas. An interesting feature 

is that it is the position of the center * of the support of   that determines the CEB for long 

maturities.  This should be compared to our result in Proposition 2 in which the slope of the CEB 

for short maturities is determined by the position of 2
g gE  relative to / 2 . The different 

possible cases are presented in Table 1.  
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g
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Table 1: Shape of the term structure of the CEB for different values of the mean E and of the 

center *  of the support of the project’s beta.  
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It is useful to compute the order of magnitude of these thresholds. A relative risk aversion of 

2   is usually considered as reasonable in the macro and finance literature. The average growth 

rate of consumption in the western world over the last two centuries has been around 2%g  , 

whereas its mean volatility can be approximated at 4%g   (see for example Maddison (1991)). 

Let us also assume that the distribution describing our beliefs about   is symmetric, so that 

*E   and ( ) 0Skew   . In that case, the CEB is increasing in t for low t if and only if E is 

larger than -11.5. Moreover, the CEB tends to max if and only if *E  is larger than -10.5. 

This South-East corner of Table 1 thus covers a vast majority of investment projects in the real 

world. Observe also that a negative skewness for   may help to reverse this conclusion.   

 

4. The Gaussian beta case 

In this section, we characterize the certainty equivalent beta ˆ ( )t  in the special case in which the 

distribution of  is normal with mean E   and variance 2( )Var   . As it clearly appeared 

in the previous section, an important difficulty comes from the fact that equation (11) contains 

two CGFs of a quadratic function of the random variable  . This is why we first describe the 

following technical result, which is proved in the Appendix. 

Lemma 2: Suppose that random variable z is normally distributed with mean z and standard 

deviation z . Consider any pair 2( , )a b  such that 21/ (2 )zb  . Then, we have that 

  
2 2 2

1/22 2
2

0.5
exp( ) 1 2 exp .

1 2
z z z

z
z

a a b
E az bz b

b

  


   
     

 (20) 

This lemma has a well-known special case corresponding to 0b  , which corresponds to 

property ii  of Lemma 1.  One can use this for z  , 2
gb t and respectively ga t  and 

( )ga t   in equation (11). It implies the following proposition, which describes the analytical 

solution for the CEB in the Gaussian case.  
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Proposition 4: Suppose that the beta of the project is normally distributed with mean   and 

variance 2
 . Then, for all maturities 2 21/ gt T    ,  the Certainty Equivalent Beta ˆ ( )t   of 

the project is defined as follows: 

 
2 2

2 2

( 0.5 )ˆ ( ) .
1

g g
t

g

t

t
 



   
 

 
 




 (21) 

Proof: Lemma 2 implies that if we assume that 2 20.5 1/ (2 )gt   , i.e., t T , both CGFs in 

equation (11) are finite. Applying this lemma twice allows us to rewrite equation (11) as follows: 
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   

    
   

      
 

 
2 2

2 2

0.5
.

1
g

g

t t

t
  



   
 





 




 (22) 

 This concludes the proof of Proposition 4.   

 

Observe first that Proposition 4 generalizes the CCAPM. Indeed, suppose that the distribution of 

 is degenerated, i.e.,   and 0  . Proposition 4 implies that ˆ ( )t   and 

( )t fr r   . In this case, the term structure of the discount rate is flat and well defined for all 

maturities, i.e., T   .  

When beta is normally distributed, the CEB defined by equation (21) has its own term structure, 

which is inherited by the term structure of the risky discount rate after multiplying by the 

constant aggregate risk premium  and adding the constant risk free rate fr . Observe that, as in 

the general case, the CEB tends to E when the maturity tends to zero. Observe also that the 
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term structure of the CEB is monotone. It is increasing if and only if the expected beta is larger 

than 20.5 /g g   , as suggested in Proposition 2. 

In the Gaussian case, the CEB is defined for maturities below an upper limit 2 21/ gT    . In 

fact, for maturities approaching this upper limit from below, the CEB and the associated discount 

rate become unbounded. This is due to the fact that, although there is no fat tails, the normality 

assumption allows for extremely large and extremely low plausible betas. For large maturities, 

the exponentially decreasing probability of these extreme events is compensated by the 

exponentially increasing nature of compounded returns. In fact, Lemma 2 tells us that both terms 

in the RHS of equation (11), i.e., tEF  and 0'( ) / '( )t tEFu c u c , tend to infinity when t tends to T. 

Under the plausible assumption 20.5 /g g     , the CEB and the associated discount rate 

tend to plus infinity. In that case, maturity T can be interpreted as a “bliss point”. One should be 

completely blind relative to all benefits of the project occurring above this maturity. Under the 

opposite assumption 20.5 /g g     , the CEB tends to minus infinity. In this alternative case, 

T  defines a critical maturity so that if some positive expected benefit are generated by the project 

above this maturity T , then the project should be implemented at any cost. This critical maturity 

is equal to the inverse of the product of the variances of the consumption growth and of the beta. 

If we retain the calibration with 4%g  per annum as above, it equals 625 times the precision of 

 . For a standard deviation of   between 0.01 and 2, we obtain a critical maturity between 

T=156 years and T=6 250 000 years. Thus, this critical maturity is well above the typical 

maturities for assets that are traded on financial markets. However, it is well in the range of some 

of the environmental projects currently debated around the world, as those associated to climate 

change or to the management of nuclear waste for example. 

Let us calibrate this model with 0.5%g  , 4%g  , and 2  . If we assume further that the 

beta of the project is normally distributed with mean 0.5  and standard deviation 2,   the 

CEB has an increasing term structure ( 20.5 ( / ) 2.125g g       ), and it tends to  for 

maturities tending to 156.25T   years. This term structure corresponds to the convex curve in 

Figure 1. We now show that this result is radically modified when we truncate the distribution of 

 . Suppose first that this truncation be symmetric around the mean, with  being the truncation 
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of 2( , )N     in the support ,k k          . In Figure 1, we draw the CEB for different 

values of k. Because the center of these supports is  , which is larger than 

2( / ) 1.125,g g      all these calibrations belong to the South-East corner of Table 1. Because 

the mean is not affected by the truncation, the CEB remains equal to  for small maturities, and 

it is locally increasing. However, the CEBs remain finite for all maturities. They diverge from the 

non-truncated CEB at relatively small maturities to converge asymptotically to  max k     . 

 

Figure 1: Term structure of the CEB with 0.5%g  , 4%g  , and 2  . The left convex 

curve corresponds to   being normally distributed with mean 0.5  and standard deviation 

2  . The other curves correspond to the truncated version of this normal distribution in 

support ,k k          . 

Let us alternatively assume that the normal distribution of  is asymmetrically truncated in 

interval min max[ , ]  , with max 3  . Figure 2 depicts the term structure of the CEB for 

min 6, 7,..., 10, 20,       thereby yielding increasingly negative skewness. This numerical 

exercise brings various interesting insights to this work. First, the CEB at low maturities is 

reduced by the truncation. This is due to the asymmetric cuts of the two tails, which reduces the 

expected beta from 0.5 to approximately 0.1. From Proposition 1, this reduces the CEB at low 

maturities. Second, the term structure of the CEB in the truncated cases is increasing because, 

from Proposition 2, the correlated-risk-trend effect dominates the Weitzman effect. Moreover, the 
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term structure of the CEB is almost linear for a wide range of maturities, which implies that 

equation (15) provides a good basis to determine the CEB within this range of maturities. Third, 

in spite of the fact that the truncations only affect the long tails of the distribution of the beta, 

they have radical effects on the CEB for long maturities. These results are in line with the 

observation by Martin (2012) that the value of long-term assets is mostly driven by the possibility 

of extreme events. In particular, the term structure of the CEB is decreasing at long maturities. 

Because 2/g g   is equal to -3.125, Proposition 3 tells us for example that the CEB tends 

asymptotically to min  for all calibrations with min 9.25   . The bifurcation from the linear term 

structure is particularly impressive for the most asymmetric truncations. In spite of the fact that 

the beta of the project is very unlikely to be negative and large in absolute value, the mere 

plausibility of this hypothesis drives the choice of the discount rate for long maturities.  

 

Figure 2: Term structure of the CEB with 0.5%g  , 4%g  , and 2  . The red curve 

corresponds to   being normally distributed with mean 0.5  and standard deviation 2  . 

The other curves correspond to the truncated version of this normal distribution with max 3   

and various min . 
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In this section, we show how our methodology can be used in different contexts. The applications 

that we examine here are about evaluating an asset, which yields a flow of net benefits   0t t
F


 

characterized by equation (5). Its social value 0V must be equal to the present value of this flow. 

In the absence of uncertainty about the beta of the benefits, we obtain  

    2 2 2 2 10.5 0.5

0 0 0 01 1
1 ,g g g g

r t rrt
tt t

V e EF F e F e kF
     

    
 

       (23) 

with fr r   . Similarly, 1 1V kF . This implies that the social rate of return of holding the 

asset in the first period is equal to 

 1 1 1
1 1

0 0

1
ln ln ln .

F V Fk
R a g

V k F
  

       (24) 

This confirms again that parameter   is the CCAPM beta of the asset. This section is about the 

measure of the uncertainty affecting the beta of various assets. 

 

5.1. The beta of environmental assets 

Guesnerie (2004), Hoel and Sterner (2007), Sterner and Persson (2008), Gollier (2010) and 

Traeger (2011) have shown that the evolution of relative prices and substitutability are crucial in 

the evaluation of environmental policies. Environmental assets that cannot be substituted by other  

goods in the economy and whose supply is constant over time have a social value which will be 

highly sensitive to economic growth. Their beta will thus be relatively large. Our objective in this 

subsection is to clarify the link between the beta of environmental assets and their degree of 

substitutability. It is in line with a recent paper by Barro and Misra (2012) who independently 

developed a similar idea to explain the price behaviour of gold in the presence of rare catastrophe 

events. 

Consider an economy with 2 goods, a numeraire good c, and an environmental asset that yields a 

net benefit x. The investment project under scrutiny is aimed at increasing the quantity of x . 

Following the authors mentioned above, the instantaneous utility function of the representative 

consumer is assumed to belong to the CES family, with 
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1

1 1 1 1
1

( , ) ,   with  (1 )
1

U x c y y x c    


        
 (25) 

where y is an aggregate good,  is the aversion to risk on this aggregate good, and 1   and 

   are two scalars.4 Parameter  is the inverse of the elasticity of substitution. Following 

Barro and Misra (2012), we assume that x  is small enough so that the marginal utility of 

consumption can be approximated by c  as assumed elsewhere in this paper. The marginal 

benefit of increasing the consumption of good x expressed in the numeraire is equal to 

  
1U

dc c
F

dx x



       

 (26) 

If we assume that the environmental asset yields a flow of x that is constant through time, 

equation (26) for the sensitivity of the cash flow to aggregate consumption is equivalent to 

equation (5), where the beta of the project is equal to the inverse of the elasticity of substitution 

between good x and the numeraire. 

In our model with a random walk for changes in log consumption, the value tV of the 

environmental asset is proportional to its current net benefit tF  expressed in the numeraire, as 

shown by equation (23). Thus, equation (26) implies that the underlying asset must have a social 

value that is proportional to ( / )c x  . The simplest method to estimate the beta in this context is 

thus to observe that the value V of the environmental asset must satisfy the following dynamic 

relationship: 

 ( ),V c xg g g   (27) 

where xg is the change in the log of x. In other words, the beta of the project under scrutiny is 

equal to the ratio of the growth rate of the relative price of good x to the difference between the 

growth rates of c and x. Inspired by Hoel and Sterner (2007), one can illustrate this method by 

applying to residential land. Suppose that the supply of residential land is fixed ( 0xg  ). Davis 

and Heathcote (2007) provide data on the real price of residential land in the United States over 

                                                            
4 When 1  , we get a Cobb-Douglas function with 1y c x   
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the period 1975Q1-2012Q1. Using the yearly version of their data, one can estimate the 

parameters of the following linear regression: 

 .V cg a g     (28) 

The OLS estimator of b equals 2.84  , with a large standard error 1.27  . This suggests a 

small elasticity of substitution of residential land and other goods in the economy. Observe also 

that the standard deviation of the beta is large. Under the normality assumption, there is a 1% 

probability that the true beta be in fact negative. Suppose also that 2%g  , 4%g   and 

2.    Because 22.87 11.5 0.5 ( / ),g g         Proposition 2 tells us that the term 

structure of the CEB is increasing. Moreover, under the assumption that 2( , )N     , the CEB 

tends to plus infinity for finite maturities ( 387T  years). The CEB equals 8 or 18 respectively 

for a maturity of 100 years or 200 years. 

 

5.2. The socioeconomic and financial betas in various economic sectors of the economy 

In this subsection, we examine the uncertainty of the OLS estimation of the beta in (28) when one 

uses the traditional method based on the time series of returns and growth rates. Let us 

contemplate an investment project that is aimed to contribute to the development of a specific 

industry. This could for example take the form of an expansion of the electricity sector by using 

the current technology mix observed in that sector. If we assume that the economies of scale are 

approximately constant, and in the absence of innovation, one can use macroeconomic data 

measuring the creation of social value of the electricity sector to estimate the social benefit of 

such an investment. The French INSEE provides yearly data about the real value added produced 

by different sectors of the French economy.5 The value added of a sector is defined as the value 

of production minus intermediate consumption. It must therefore be noticed that this data set does 

not take account of the externalities generated by these sectors, for example in the agricultural 

sector or in R&D.  Table 2 summarizes the OLS estimation of equation (28) for a subset of the 

                                                            
5 See data set « 6.202 Valeur ajoutée brute par branche en volume aux prix de l'année précédente chaînés » on the 
INSEE website http://www.insee.fr/fr/themes/comptes-nationaux/tableau.asp?sous_theme=5.2.2&xml=t_6202d. 
This approach is inspired from Pierre Fery’s appendix of Gollier (2011), which is a report to the French government 
on the economic evaluation of public policies under uncertainty.  
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sectors listed in this database for period 1975-2011, where Vg is the yearly growth rate of real 

value added of the sector under scrutiny.  

The standard error of the estimator of the beta lies between a low  =0.15 for the education 

sector and a relatively large   =0.81 for the agricultural sector. If we suppose as before that 

2%g  , 4%g   and 2,   we obtain that the OLS estimator   is always larger than the 

threshold 20.5 ( / ) 11.5g g     defined in Corollary 2, so that the term structure of the CEB to 

be used to evaluate such investment projects is increasing for all sectors listed in Table 2. This 

table also provides the sectoral CEB for the 0, 50, 100 and 200 maturities. 

The advantage of the value added approach is that it takes into account of the entire social value 

creation, with the exception of non-internalized externalities. Thus, the estimations described in 

Table 2 are about “socioeconomic” CCAPM betas. One could alternatively examine the 

“financial” CAPM betas, in which only the fraction of the value added accruing to investors is 

taken into account, and in which the factor is the market return rather than the rate of growth of 

consumption. In Table 3, we report OLS estimations of the CAPM betas for the two-digit Fama-

French industry (FF48) of the U.S. economy, using yearly data from 1927 to 2011. Observe that 

the average standard deviation of 0.12 is much smaller than in the case of the socio-economic 

beta. This implies that the slopes of the CEB term structures are also smaller. The industry with 

the most uncertain beta is sector 27 (precious metals) with a standard deviation of 0.282, so that 

the CEB goes from 0.42 for short maturities to 0.73 for maturity t=200 years, and to infinity for 

blind maturity T=7883 years. The other CEBs have a less upward-sloping term structure, and a 

later blind maturity. 

These examples are illustrative of the difficulty to estimate betas with enough accuracy. The 

problem is usually made more complex than described above because most investment projects 

have a risk profile that does not correspond to the risk profile of the industry in which these 

investments will be implemented. To illustrate, it would make little sense to use the beta of 

utilities in the U.S. to evaluate an investment project in photovoltaic solar panels. In the same 

vein, this sectoral beta would not be useful to evaluate the project to build a high-voltage 

connection between Canada and the U.S. to make the two national electricity networks more 

resilient to asymmetric demand shocks. The evaluation of such an investment project would 
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require estimating the elasticity of the demand for insurance against electricity outages to changes 

in GDP. The standard deviation associated to such estimations is likely to be larger than those 

described in Tables 2 and 3 of this subsection. 

 

6. Alternative interpretations of the model and extensions 

The assumption of our model is that there exists a linear relationship between the social return of 

the investment project and the growth rate of the economy, as expressed in equation (5). But the 

 of this linear relationship is initially unknown to the evaluator. There exist two other possible 

interpretations to this model which are alternative to the uncertainty affecting the project’s beta.  

 

6.1. Reinterpration 1: Valuation of payoffs that are a completely monotone function of 

consumption 

Equation (5) implies that 

  exp ln ( ) .t t t tE F c f c q d        (29) 

The integral in the right-hand-side of this equality can be interpreted as the Laplace transform of 

function q  evaluated at ln tc . Thus, our results can be used to evaluate any investment project 

whose cash flows are related to log consumption through a Laplace transform of a distribution 

function. When   has its support in  , this means that our results can be applied to any 

completely monotone function of log consumption, that is, to any function whose successive 

derivatives with respect to log consumption alternate in sign. The CCAPM is limited to the 

evaluation of cash flows that are linked to log consumption through an exponential function, as is 

implicitly stated in equation (5). 

 

6.2. Reinterpration2: Valuation of portfolios 

Under a discrete distribution 1 1( , ;...; , )n nq q  for ,  equation (5) implies that  
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1

.
n

t t t tE F c f q c 
 

      (30) 

Observe that tF can be reinterpreted as the cash flow of a portfolio of n  different assets indexed 

by 1,...,n  . Asset   has a sure constant beta equaling  , and has a share q in the portfolio. 

Thus, our results are useful to evaluate conglomerates composed of different investments, each 

with its own beta. Krueger, Landier and Thesmar (2012) have examined the investment strategy 

of such conglomerates in the US over the last three decades.  

 

6.3. Extension: Valuation of projects whose expected payoffs are independent of beta 

Up to now, we considered a benefit tF  whose expectation conditional to ( , )tc  is proportional to 

t tf c , where tf is independent of  . Without any uncertainty on the asset’s beta, it yields the 

traditional CCAPM pricing formula (10) in which  is the OLS estimator of equation (24). 

Under uncertainty, we have shown that this implies that tE F    is uncertain, a phenomenon 

which is at the origin of the complexity of this paper, due to the correlated-risk-trend effect.  Let 

us alternatively consider projects with the following risk structure:  

 ,t
t t t

t

c
F f

Ec



   (31) 

where t has a unit mean and is independent of tc , and tf
 . When   is certain, this 

alternative model is indistinguishable from the one that we examined earlier in this paper. But, 

under uncertainty, the crucial difference of this risk structure is that the expected benefit is 

independent of  . For this class of projects, a larger beta means a larger systematic risk for the 

payoff, but not a larger trend. This switches off the correlated-risk-trend effect. From equation (4)

, it implies the following characterization of the CEB for this class of projects: 
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This can be rewritten as follows: 

 1( ) ( , ),t fr r t t      (33) 

which implies the following definition of the CEB for this class of projects:  

 
1ˆ ( ) ( , ).t t
t

   


    (34) 

This confirms that only the Weitzman effect appears in the pricing of this class of projects. 

Lemma 1 applied to this result directly implies the following properties. First, as before the CEB 

is equal to the mean beta for small maturities. Second, the CEB has a decreasing term structure 

(Weitzman effect). Third, it tends to the smallest plausible beta for maturities tending to infinity. 

Finally, if we assume that our beliefs about the true beta are normally distributed, then the CEB 

ˆ ( )t   is equal to 20.5 t   , which decreases linearly with the maturity. 

Notice that Weitzman (2012) discusses the discount rate to evaluate a time-varying portfolio 

(1 )t t t tF c    that contains two assets with shares  2
( ,1 ) 0,1t t   , the first being safe (

1 0  ), and the other being the aggregate asset ( 2 1  ).6 If the share of the aggregate asset is 

constant, i.e., if  0t  for all t, the equivalence expressed in section 6.2 implies that the rate to 

be used to discount the cash flow of this portfolio is most often increasing. However, Weitzman 

assumes that the portfolio is rebalanced through time to maintain the expectation (conditional to 

t=0) of the value shares of the two assets, i.e.,  

                                                            
6 Because the first-order Taylor approximation of function c  around 1c  is (1 )c c   , the risk profile of this 

two-asset portfolio approximates the one of the asset whose beta equals  , when consumption does not move too far 

away from 1tc  . 
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assuming 0 1c  . This means that Weitzman (2012) considers investment projects that become 

completely safe in the distant future. Under this rebalancing specification, he shows that the 

discount rate for this portfolio should be decreasing, down to the risk free rate. Comparing this to 

our results in this paper, we conclude that Weitzman’s recommendation is mainly driven by this 

specific rebalancing of the portfolio.  The limited domain of applicability of this recommendation 

explains why I find it problematic that the official Norwegian Report by Hagen (2012) relies on it 

to justify using a decreasing term structure for the discount rate. In other words, the Norwegian 

authorities are considering using a decreasing term structure of the discount rate for all projects 

(whose on average should have a unit beta) by using an argument that applies only for projects 

whose beta tends to zero. 

 

7. The Price-to-Dividend ratio 

Up to now, we focused our attention on the rate at which a future expected cash flow should be 

discounted. Let us alternatively examine the price-to-dividend ratio P/D. We consider a perpetual 

asset that is assumed to deliver a flow   0t t
F


of dividends such that t t tF c for all 0t  , with 

1tE   for all 0t  , and 0 1  . Its market price 0P today must be equal to 

 0 0
0

'( )
.

'( )
t t t

t

EFu c
P e

u c
 


   (36) 

Under the standard assumptions about both the stochastic process governing consumption and the 

preferences of the representative agent, this can be rewritten as follows: 

  2 2, 0.50
0

0

.g gf
tr t

t

P
e e

F

      


   (37) 

In the absence of uncertainty, this simplifies to7 

                                                            
7 Martin (2013) generalizes this formula to the case of a non-Gaussian distribution for g. 
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  2 2 1
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0

1 .f g grP
e

F
   


      (38) 

Observe now that 

    2 2 2 2, 0.5 0.5g g g gt t
e Ee
           

  (39) 

is the expectation of a convex function of  . This implies that the P/D ratio is unambiguously 

increased by the uncertainty affecting the beta of future dividends. This is in line with a result by 

Pastor and Veronesi (2003) who examined the case of an uncertain growth rate of dividends. If 

we assume that the beta is normally distributed, Lemma 2 tells us that the RHS of equation (39) 

goes to   for finite maturities. This implies that the P/D should be infinite in that case.  

How can we reconcile the facts that the uncertainty about  raises at the same time the price of 

the asset and the rate at which expected future dividends are discounted? These results are 

compatible because the uncertainty about  also raises the expected future dividend, at a rate that 

increases with maturities faster than the rate at which the discount factor decreases. 

 

8. Conclusion 

The starting point of this research is that CCAPM betas are often difficult to estimate. This is 

likely to be the main reason why the standard toolbox for public investment and policy evaluation 

does not say much about how risk should be integrated in the benefit-cost analysis. In fact, 

believe it or not, three decades after the discovery of the normatively-appealing CCAPM, 

evaluators at U.S. Environmental Protection Agency or at the World Bank, to give two prominent 

examples, are still requested to use a single discount rate independent of the project-specific risk 

profile. This implies that we collectively invest too much in projects that raise the 

macroeconomic risk, and too little in projects that insure us against it. In this paper, we have 

taken seriously the origin of the problem by explaining how one should take into account of the 

potential errors in the estimation of the betas in cost-benefit analysis.  

We have shown that the uncertainty affecting the beta of a project implies that the rate at which 

its future expected benefits should be discounted has a non-flat term structure. For short 
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maturities, this uncertainty has no effect on the discount rate. For longer maturities, two opposite 

effects are at play to determine whether this term structure is decreasing or increasing. Following 

Weitzman (1998, 2001), the uncertainty affecting the CCAPM discount rate tends to make the 

certainty-equivalent discount rate decreasing in the maturity of the project. But the expected 

benefit conditional to the beta of the project is in general positively correlated with the CCAPM 

discount rate, so that the Weitzman’s argument (which relies on the independence between the 

two) tends to underestimate the efficient certainty-equivalent discount rate. Because this second 

effect is increasing in maturity, this second effect tends to make the term structure increasing. We 

have shown in this paper that this second effect usually dominates the Weitzman effect, so that 

the term structure of the rate at which expected benefit should be discounted is in general 

upward-sloping. The global effect of the uncertainty affecting the beta is particularly strong when 

we assume that our beliefs can be represented by a normal distribution, since the discount rate 

goes to infinity for finite maturities in that case.  

This research opens new paths for exploration. On the empirical dimension, it would be 

interesting to test the hypothesis that long-dated traded assets with a more uncertain beta have a 

smaller market value. On the theoretical dimension, we have often assumed in this paper that the 

growth rate of consumption follows an arithmetic Brownian motion. This implies that the risk 

free rate and the systematic risk premium have a flat term structure. It also implies that our results 

are subjects to the standard critiques of the risk free rate puzzle and of the equity premium 

puzzle. If we allow for parametric uncertainty about the stochastic process of economic growth, 

the risk free rate and the systematic risk premium will have respectively a decreasing and an 

increasing term structure, as shown by Gollier (2012b). It would be interesting to explore a model 

in which the parametric uncertainties about economic growth and about the project’s beta are 

combined.   
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Appendix: Proof of Lemma 2 

 We have that 
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After rearranging terms in the integrant, this is equivalent to 
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Notice that ̂ exists only if we assume that 21/ (2 )zb  . Notice also that the bracketed term in 

equation (41) is the integral of the density function of the normal distribution with mean ̂  and 

variance 2̂ . This must be equal to unity. This equation can thus be rewritten as 

 

 

 

222
2

2 2

2 2 2
1/22

2

( / )ˆ
exp( ) exp

2 4 (2 / )

0.5
1 2 exp .

1 2

z zz

z z z

z z z
z

z

a
E az bz

b

a a b
b

b

 
  

  




     
 
 

  
    

 (42) 

This concludes the proof of Lemma 2.   
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Table 2: OLS estimation of the  in equation (28), where Vg is the yearly growth rate of real 

added value of the sector, and cg is the growth rate of consumption. Data set: France, 1975-2011, 

INSEE 6.202. 

 

Sector   
Certainty equivalent beta for different maturities 

0
ˆ

   50̂  100̂  200̂  

Agriculture 0.81 0.67 1.34 2.10 3.90 
Electricity  0.49 1.93 2.19 2.47 3.05 
Water management 0.31 0.41 0.50 0.60 0.79 
Electronic equipment 0.56 1.93 2.28 2.64 3.42 
Electrical equipment 0.51 2.81 3.11 3.43 4.11 
Textiles 0.39 1.72 1.88 2.05 2.40 
Paper and printing 0.27 0.89 0.96 1.04 1.19 
Chemicals 0.61 0.93 1.31 1.72 2.61 
Pharmaceutics 0.54 1.35 1.66 1.98 2.67 
Steel works 0.32 1.25 1.36 1.46 1.68 
Construction 0.30 1.28 1.37 1.47 1.66 
Transportation 0.23 1.53 1.58 1.64 1.75 
Restaurants, hotels 0.25 0.73 0.79 0.85 0.98 
Communication 0.55 1.47 1.79 2.13 2.86 
Finance and insurance 0.37 0.10 0.23 0.36 0.63 
Real estate  0.19 0.64 0.68 0.71 0.78 
R&D 0.42 0.02 0.18 0.35 0.71 
Arts and entertainment 0.28 0.40 0.48 0.55 0.71 
Education 0.15 0.51 0.53 0.55 0.60 
Healthcare 0.21 0.14 0.18 0.22 0.31 
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Table 3: OLS estimation of the  in equation (28), where Vg is the yearly real rate of return of 

the industry, and cg  is the yearly market real rate of return. Data set: Kenneth French’s website 

for average annual rate of return of the two-digit Fama-French industry (FF48) from 1927 to 
2011. 

 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 

 

FF48 Description   
Certainty equivalent beta for different maturities

0
ˆ

   
50̂  100̂  200̂  

1 Agriculture  0.123 0.87 0.88 0.90 0.93 
2 Food Products  0.069 0.70 0.71 0.71 0.72 
3 Candy & Soda  0.184 0.80 0.83 0.87 0.94 
4 Beer & Liquor  0.131 1.20 1.22 1.24 1.27 
5 Tobacco Products  0.111 0.50 0.51 0.52 0.54 
6 Recreation  0.155 1.23 1.26 1.28 1.33 
7 Entertainment 0.121 1.32 1.34 1.35 1.38 
8 Printing and Publishing 0.119 1.13 1.15 1.16 1.19 
9 Consumer Goods 0.062 0.88 0.89 0.89 0.90 

10 Apparel  0.104 1.02 1.03 1.04 1.06 
11 Healthcare 0.275 1.11 1.18 1.26 1.42 
12 Medical Equipment  0.109 0.77 0.79 0.80 0.82 
13 Pharmaceutical Products  0.087 0.73 0.74 0.74 0.76 
14 Chemicals  0.072 1.04 1.05 1.06 1.07 
15 Rubber and Plastic Products  0.115 1.15 1.17 1.18 1.21 
16 Textiles  0.108 1.24 1.25 1.26 1.29 
17 Construction Materials 0.061 1.16 1.17 1.17 1.18 
18 Construction  0.142 1.27 1.29 1.31 1.35 
19 Steel Works Etc  0.095 1.28 1.29 1.30 1.32 
20 Fabricated Products  0.150 1.00 1.02 1.04 1.09 
21 Machinery  0.065 1.17 1.17 1.18 1.19 
22 Electrical Equipment  0.067 1.17 1.18 1.18 1.19 
23 Automobiles and Trucks  0.110 1.45 1.46 1.48 1.50 
24 Aircraft  0.171 1.42 1.45 1.48 1.54 
25 Shipbuilding, Railroad Equip 0.132 1.06 1.08 1.10 1.13 
26 Defense  0.182 0.44 0.48 0.51 0.57 
27 Precious Metals  0.282 0.42 0.49 0.57 0.73 
28 Non-Metallic and Metal Mining 0.111 1.07 1.08 1.09 1.12 
29 Coal 0.167 0.77 0.79 0.82 0.88 
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30 Petroleum and Natural Gas 0.075 0.84 0.85 0.85 0.86 
31 Utilities  0.089 0.72 0.72 0.73 0.75 
32 Communication 0.074 0.68 0.68 0.69 0.70 
33 Personal Services  0.195 0.80 0.83 0.87 0.95 
34 Business Services  0.104 1.32 1.34 1.35 1.37 
35 Computers 0.104 1.23 1.25 1.26 1.28 
36 Electronic Equipment  0.103 1.47 1.48 1.50 1.52 
37 Measuring and Control Equip 0.088 0.93 0.93 0.94 0.96 
38 Business Supplies  0.108 1.29 1.30 1.32 1.34 
39 Shipping Containers  0.078 0.87 0.88 0.88 0.89 
40 Transportation  0.069 1.03 1.03 1.04 1.05 
41 Wholesale 0.109 1.14 1.15 1.16 1.19 
42 Retail  0.075 1.01 1.02 1.02 1.03 
43 Restaurants, Hotels, Motels  0.127 1.17 1.18 1.20 1.23 
44 Banking  0.118 1.09 1.10 1.12 1.15 
45 Insurance  0.101 0.85 0.86 0.87 0.89 
46 Real Estate  0.149 1.45 1.48 1.50 1.55 
47 Trading 0.085 1.25 1.26 1.27 1.28 
48 Almost Nothing  0.124 1.12 1.14 1.16 1.19 

 


