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Abstract

This paper investigates the origin and propagation of balance sheet recessions in a general equi-
librium model with financial frictions. I first show that in standard models driven by TFP
shocks, the balance sheet channel completely disappears when agents are allowed to write con-
tracts on the aggregate state of the economy. Optimal contracts sever the link between leverage
and aggregate risk sharing, eliminating the concentration of aggregate risk that drives balance
sheet recessions. I then show how the type of aggregate shock that hits the economy can help
explain the concentration of aggregate risk. In particular, I show that uncertainty shocks can
drive balance sheet recessions and "flight to quality" events, even when contracts can be written
on the aggregate state of the economy. Finally, I explore implications for financial regulation.
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1 Introduction

The recent financial crisis has underscored the importance of the financial system in the transmission
and amplification of aggregate shocks. During normal times, the financial system helps allocate
resources to their most productive use, and provides liquidity and risk sharing services to the
economy. During crises, however, excessive exposure to aggregate risk by leveraged agents can lead
to balance sheet recessions.1 Small shocks will be amplified when these leveraged agents lose net
worth and become less willing or able to hold assets, depressing asset prices and growth. And since
it takes time for balance sheets to be rebuilt, transitory shocks can become persistent slumps. While
we have a good understanding of why balance sheets matter in an economy with financial frictions,
we don’t have a good explanation for why agents are so exposed to aggregate risk in the first place.2

The answer to this question is important not only for understanding the balance sheet channel, but
also for the design of effective financial regulation. In this paper I show that uncertainty shocks can
help explain the apparently excessive exposure to aggregate risk that drives balance sheet recessions.

In order to understand agents’ aggregate risk-sharing decisions, I derive financial frictions from
a standard moral hazard problem. I allow them to write contracts on all observable variables, and
I find that the type of aggregate shock hitting the economy takes on a prominent role. The first
contribution of this paper is to show that in standard models of balance sheet recessions driven
by TFP shocks, the balance sheet channel completely disappears when agents are allowed to write
contracts contingent on the observable aggregate state of the economy. Optimal contracts break the
link between leverage and aggregate risk sharing, and eliminate the excessive exposure to aggregate
risk that drives balance sheet recessions. As a result, balance sheets play no role in the transmission
and amplification of aggregate shocks. Furthermore, these contracts are simple to implement using
standard financial instruments such as equity and a market index. In fact, the balance sheet channel
vanishes as long as agents can trade a simple market index. The intuition behind this result goes
beyond the particular environment in this model.

The second contribution is to show that, in contrast to standard TFP shocks, uncertainty shocks
can create balance sheet recessions, even when contracts can be written on the aggregate state of
the economy. I introduce an aggregate uncertainty shock that increases idiosyncratic risk in the
economy. With financial frictions, an increase in idiosyncratic risk depresses asset prices and growth,
and generates an endogenous hedging motive that induces more productive (leveraged) agents to
take on aggregate risk ex-ante. Weak balance sheets therefore amplify the effects of the uncertainty
shock, further depressing asset prices and growth. This balance sheet channel in turn amplifies the
hedging motive, inducing agents to take even more aggregate risk ex-ante, in a two-way feedback

1The idea of balance sheet recessions goes back to Fisher (1933) and, more recently, Bernanke and Gertler (1989)
and Kiyotaki and Moore (1997). Several papers make the empirical case for balance sheet effects, such as Sraer et al.
(2011), Adrian et al. (2011) and Gabaix et al. (2007).

2In standard models of balance sheet recessions such as Bernanke and Gertler (1989) and Kiyotaki and Moore
(1997), or more recently Brunnermeier and Sannikov (2012), He and Krishnamurthy (2011), or Kiyotaki et al. (2011)
agents face ad-hoc constraints on their ability to share aggregate risk. However, Begenau et al. (2013) show banks,
for example, have large trading positions on derivatives that allow them to insure against the aggregate risk in their
traditional business, but use them instead to amplify their exposure to aggregate risk.
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loop. In addition, an increase in idiosyncratic risk leads to an endogenous increase in aggregate risk,
and triggers a “flight to quality” event with low interest rates and high risk premia.3

I use a continuous-time growth model similar to the Brunnermeier and Sannikov (2012) and
He and Krishnamurthy (2011) models of financial crises (BS and HK respectively). I derive finan-
cial frictions from a moral hazard problem, and allow agents to write contracts on all observable
variables.4 There are two types of agents: experts who can trade and use capital to produce, and
consumers who finance them. Experts can continuously trade capital, which is exposed to both
aggregate and (expert-specific) idiosyncratic Brownian TFP shocks. They want to raise funds from
consumers and share risk with them, but they face a moral hazard problem that imposes a “skin
in the game” constraint: experts must keep a fraction of their equity to deter them from diverting
funds to a private account. This limits their ability to share idiosyncratic risk, and makes leverage
costly. The more capital an expert buys, the more idiosyncratic risk he must carry on his balance
sheet. Experts will therefore require a higher excess return on capital when idiosyncratic risk is
high and their balance sheets are weak.

When contracts cannot be written on the aggregate state of the economy, experts are mechani-
cally exposed to aggregate risk through the capital they hold, and any aggregate shock that depresses
the value of assets will have a large impact on their leveraged balance sheets. In contrast, when
contracts can be written on the aggregate state of the economy, the decision of how much capital to
buy (leverage) is separated from aggregate risk sharing, and optimal contracts hedge the (endoge-
nously) stochastic investment possibility sets provided by the market. In equilibrium, aggregate risk
sharing is governed by the hedging motive of experts relative to consumers. Brownian TFP shocks
don’t affect the investment possibility sets of experts and consumers, so they share this aggregate
risk proportionally to their wealth. In equilibrium, TFP shocks have only a direct impact on output,
but are not amplified through balance sheets and do not affect the price of capital, growth rate of
the economy, or the financial market.

In contrast to Brownian TFP shocks, aggregate uncertainty shocks that increase idiosyncratic
risk for all experts create an endogenous hedging motive that induces experts to choose a large
exposure to aggregate risk. The intuition is as follows. Downturns are periods of high uncertainty,
with endogenously depressed asset prices and high risk premia. Experts who invest in these assets
and receive the risk premia have relatively better investment opportunities during downturns, and
get more utility per dollar compared to consumers. On the one hand, this creates a substitution
effect : if experts are risk-neutral, they will prefer to have more net worth during downturns in
order to get more “bang for the buck”. This effect works against the balance sheet channel, since
it induces experts to insure against aggregate risk. On the other hand, experts require more net

3Empirically, idiosyncratic risk rises sharply during downturns as Bloom et al. (2012) document: during the
financial crisis in 2008-2009, plant level TFP shocks increased in variance by 76%, while output growth dispersion
increased by 152%. An increase in idiosyncratic risk could also reflect greater disagreement over the value of assets
(Simsek (2013)) or an increased interest in acquiring information about assets (Gorton and Ordoñez (2013)).

4Brunnermeier and Sannikov (2012) and He and Krishnamurthy (2011) also derive financial frictions from a similar
contracting problem, but they impose constraints on the contract space that limit agents ability to share aggregate
risk.
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worth during booms in order to achieve any given level of utility. This creates a wealth effect : risk
averse experts will prefer to have more net worth during booms. I argue the empirically relevant
case is the one in which the wealth effect dominates5 the substitution effect, and drives the balance
sheet amplification channel.

Investment opportunities, however, are endogenous and depend on the health of experts’ balance
sheets. After an uncertainty shock, experts’ balance sheets are weak, which reduces their willingness
to hold capital and further depresses asset prices and growth. This amplifies the hedging motive,
inducing experts to take even more aggregate risk ex-ante. The equilibrium is a fixed point of this
two-way feedback between aggregate risk sharing and endogenous hedging motives. The continuous-
time setup allows me to characterize it as the solution to a system of partial differential equations,
and analyze the full equilibrium dynamics instead of linearizing around a steady state. It also makes
results comparable to the asset pricing literature.

These results suggest that the type of aggregate shock hitting the economy can play an important
role explaining the concentration of aggregate risk that drives balance sheet recessions. When
the wealth effect dominates, experts will choose to face large loses after an aggregate shock that
(endogenously) widens the gap in investment opportunities between them and consumers. The same
tools presented here can be used to study the effects of other aggregate shocks. In particular, I show
that uncertainty shocks are equivalent to an exogenous shock to the degree of moral hazard (how
efficient experts are at stealing capital) that translates into an exogenous tightening of financial
constraints. The intuition for this result is as follows. In an economy without financial frictions
idiosyncratic risk shouldn’t matter, since it can be aggregated away. Moral hazard, however, forces
agents to keep a fraction of the idiosyncratic risk in their capital. It is immaterial to them whether
they must keep a constant fraction of more idiosyncratic risk, or a larger fraction of a constant
idiosyncratic risk.

A possible concern with an optimal contracts approach is that they might require very complex
and unrealistic financial arrangements. I show this is not the case. Optimal contracts can be
implemented in a complete financial market with minimal informational requirements. Experts can
be allowed to invest, consume, and manage their portfolios, subject only to an equity constraint. In
fact, the TFP-neutrality result does not require the financial market to be complete. It is enough
that it spans the aggregate return to capital. A market index of experts’ equity accomplishes this.
Empirically, Begenau et al. (2013) show banks have access to and actively trade derivatives (interest
rate swaps) that allow them to hedge the aggregate risk in their traditional business. Instead of
offloading this risk on the market, however, they use them to increase their exposure to aggregate
risk. This is difficult to reconcile with a theory of incomplete markets, but is consistent with the
mechanism in this paper.

Understanding why aggregate risk is concentrated on some agents’ balance sheets is important
for the design of financial regulation. If markets are incomplete and agents are not able to share

5The wealth effect dominates when the coefficient of relative risk aversion is larger than 1 (agents are more risk
averse than log).
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aggregate risk, it is optimal to facilitate this risk-sharing and eliminate the balance sheet channel,
for example through fiscal policy. This is the case in the setting in Brunnermeier and Sannikov
(2012) for example. But if agents are able but choose not to share aggregate risk, two issues arise.
First, agents might undo policy interventions by taking more aggregate risk.6 Second, even if it is
possible to control their exposure to aggregate risk, they may actually have good reasons to take on
so much risk. I show that, while the competitive equilibrium is not constrained efficient, a policy
that aims to eliminate the balance sheet channel is not optimal either, and can even be worse than
the competitive equilibrium. Optimal financial regulation must take into account the underlying
reasons for the concentration of aggregate risk.

Literature Review. This paper fits within the literature on the balance sheet channel going back
to the seminal works of Bernanke and Gertler (1989), Kiyotaki and Moore (1997), and Bernanke
et al. (1999). It is most closely related to the more recent Brunnermeier and Sannikov (2012) and
He and Krishnamurthy (2011). The main difference with these papers is that I allow agents to write
contracts on all observable variables, including the aggregate state of the economy.

Krishnamurthy (2003) was the first to explore the concentration of aggregate risk and its role
in balance sheet recessions when contracts can be written on the aggregate state of the economy.
He finds that when agents are able to trade state-contingent assets, the feedback from asset prices
to balance sheets disappears. He then shows this feedback reappears when limited commitment
on consumers’ side is introduced: if consumers also need collateral to credibly promise to make
payments during downturns, they might be constrained in their ability to share aggregate risk with
experts. This mechanism also appears in Holmstrom and Tirole (1996). The limited commitment
on the consumers’ side is only binding, however, when experts as a whole need fresh cash infusions
from consumers. Typically, debt reductions are enough to provide the necessary aggregate risk
sharing, and evade consumers’ limited commitment (experts’ debt can play the role of collateral for
consumers). Rampini and Viswanathan (2010) and Rampini and Viswanathan (2013) also study the
concentration of aggregate risk, focusing on the tradeoff between financing and risk-sharing. They
show that firms that are severely collateral constrained might forgo insurance in order to have more
funds up front for investment. Cooley et al. (2004) show how limited contract enforceability can
prevent full aggregate risk sharing. After a positive shock raises entrepreneurs’ outside option, their
continuation utility must also go up to keep them from walking away. This relaxes the contractual
problem going forward and propagates even transitory aggregate shocks. In contrast to these papers,
in the setting here agents are able to leverage and share aggregate risk freely, which highlights their
incentives for sharing different types of aggregate shocks.

Kiyotaki et al. (2011) also tackle the question of why banks’ balance sheets are so highly exposed
to aggregate risk, and focus on the debt vs. equity tradeoff for banks, while Adrian and Boyarchenko
(2012) build a model of financial crises where experts use long-term debt and face a time-varying
leverage constraint. Here, instead, I don’t impose an asset structure on agents. Geanakoplos (2009)

6This is not due to moral hazard, but rather an attempt to obtain their desired exposure to aggregate risk, similar
to the ineffectiveness of mandatory savings on unconstrained agents.
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emphasizes the role of heterogeneous beliefs. More optimistic agents place a higher value on assets
and are naturally more exposed to aggregate risk. The balance sheet channel in my model, in
contrast, does not rely on heterogenous beliefs.7 Experts take on more aggregate risk in order
to take advantage of endogenous investment possibility sets. Myerson (2012), on the other hand,
builds a model of credit cycles allowing long-term contracts with a similar moral hazard problem to
the one in this paper. In his model the interaction of different generations of bankers can generate
endogenous credit cycles, even without aggregate shocks. Shleifer and Vishny (1992) and Diamond
and Rajan (2011) look at the liquidation value of assets during fire sales, and Brunnermeier and
Pedersen (2009) focus on the endogenous determination of margin constraints.

Several papers make the empirical case for the balance sheet amplification channel. Sraer et al.
(2011), for example, use local variation in real estate prices to identify the impact of firm collateral
on investment. They find each extra dollar of collateral increases investment by $0.06. Gabaix et al.
(2007) provide evidence for balance sheet effects in asset pricing. They show that the marginal
investor in mortgage-backed securities is a specialized intermediary, instead of a diversified rep-
resentative agent. Adrian et al. (2011) use shocks to the leverage of securities broker-dealers to
construct an “intermediary SDF” and use it to explain asset returns.

The role of uncertainty in business cycles is explored in Bloom (2009) and, more recently, Bloom
et al. (2012), who build a model where higher volatility leads to the postponement of investment and
hiring decisions.8 More closely related to the model in this paper, Christiano et al. (2012) introduce
shocks to idiosyncratic risk in a model with financial frictions and incomplete contracts. They fit the
model to U.S. data and find this uncertainty shock to be the most important factor driving business
cycles9. Angeletos (2006) studies the effects of uninsurable idiosyncratic capital risk on aggregate
savings. In the asset pricing literature, Campbell et al. (2012) introduce a volatility factor into
an ICAPM asset pricing model. They find this volatility factor can help explain the growth-value
spread in expected returns. Bansal and Yaron (2004) study aggregate shocks to the growth rate and
volatility of the economy, and Bansal et al. (2012) study a dynamic asset pricing model with cash
flow, discount rate and volatility shocks. Idiosyncratic risk, in particular, is studied by Campbell
et al. (2001). Eggertsson and Krugman (2010), Guerrieri and Lorenzoni (2011) and Buera and Moll
(2012) also consider exogenous shocks to financial frictions.

Layout. The rest of the paper is organized as follows. In Section 2 I introduce the setup of
the model and the contractual environment. In Section 3 I characterize the equilibrium using a
recursive formulation, and study the effects of different types of structural shocks. Section 4 looks
at financial regulation. Section 5 concludes.

7A related explanation could be built on heterogenous preferences for risk. Less risk averse agents value risky
assets more, and also take on more aggregate risk. The mechanism in this paper does not depend on heterogenous
preferences either.

8On the other hand, Bachmann and Moscarini (2011) argue that causation may run in the opposite direction,
with downturns inducing higher risk.

9Fernández-Villaverde and Rubio-Ramírez (2010) study the impact of uncertainty shocks in standard macroeco-
nomic models, and Fernández-Villaverde et al. (2011) look at the impact of volatility of international interest rates
on small open economies.
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2 The model

The model purposefully builds on Brunnermeier and Sannikov (2012) and He and Krishnamurthy
(2011), adding idiosyncratic risk and general EZ preferences to their framework. As in those papers,
I derive financial frictions endogenously from a moral hazard problem. In contrast to those papers,
however, contracts can be written on all observable variables.

Technology. Consider an economy populated by two types of agents: “experts” and “consumers”,
identical in every respect except that experts are able to use capital.10 There are two goods,
consumption and capital. Denote by kt the aggregate “efficiency units” of capital in the economy,
and by ki,t the individual holdings of an expert i ∈ [0, 1], where t ∈ [0,∞) is time. An expert can
use capital to produce a flow of consumption goods

yi,t = (a− ι (gi,t)) ki,t

The function ι with ι′ > 0, ι′′ > 0 represents a standard investment technology with adjustment
costs: in order to achieve a growth rate g for his capital stock, the expert must invest a flow of ι (g)

consumption goods. The capital he holds evolves11

dki,t
ki,t

= gi,tdt+ σdZt + νtdWi,t (1)

where Z =
{
Zt ∈ Rd;Ft, t ≥ 0

}
is an aggregate brownian motion, and Wi = {Wi,t;Ft, t ≥ 0} an

idiosyncratic brownian motion for expert i,12 in a probability space (Ω, P,F) equipped with a
filtration {Ft} with the usual conditions.13 The aggregate shock can be multidimensional, d ≥ 1,
so the economy could be hit by many aggregate shocks. For most results, however, there is no
loss from taking d = 1 and focusing on a single aggregate shock.14 While the exposure of capital
to aggregate risk σ ≥ 0 ∈ Rd is constant,15 its exposure to idiosyncratic risk νt > 0 follows an

10We could allow consumers to use capital less productively, as in Brunnermeier and Sannikov (2012) or Kiyotaki
and Moore (1997). This doesn’t change the main results.

11This formulation where capital is exposed to aggregate risk is equivalent to a standard growth model where TFP
at follows a geometric Brownian Motion. Then if κi,t is physical capital, ki,t = atκi,t is “effective capital” in the
hands of expert i, so aggregate shocks to ki,t can be interpreted as persistent shocks to TFP at, i.e. dat = atσdZt.
To preserve scale invariance we must also have investment costs proportional to at, which makes sense if we think
investment requires diverting capital from consumption to investment (or in a richer model with labor).

12Idiosyncratic shocks Wi,t represent shocks to the capital held by expert i over a short period, not to the pro-
ductivity of the expert i. All experts are always equally good at using all capital. An increase in idiosyncratic risk
could also reflect greater disagreement over the value of assets (Simsek (2013)) or an increased interest in acquiring
information about assets (Gorton and Ordoñez (2013)).

13I will use an exact law of large numbers, which requires that we actually work with an extension of the Lebesgue
interval ([0, 1], I,M) and a Fubini extension of the product space, ([0, 1]×Ω, I�F ,M �P ), such that the {Wi}i∈[0,1]

and Z are essentially pairwise independent, and such that for any i,
´

[0,1]
Wi,tdM =

´
[0,1]

Wi,tdP = 0 P -almost surely.
I will abuse notation however and write

´
[0,1]

Wi,tdi instead of
´

[0,1]
Wi,tdM to keep notation simple. See Sun and

Zhang (2009) for details.
14This is in fact the approach I take when computing numerical solutions.
15I will use the convention that σ is a row vector, while Zt a column vector. Throughout the paper I will not point

this out unless it’s necessary for clarity.

7



exogenous stochastic process
dνt = λ (ν̄ − νt) dt+ σν

√
νtdZt (2)

where ν̄ is the long-run mean and λ the mean reversion parameter.16 The loading of the idiosyncratic
volatility of capital on aggregate risk σν ≤ 0 so that we may think of Z as a “good” aggregate shock
that increases the effective capital stock and reduces idiosyncratic risk. This is just a naming
convention. With multiple aggregate shocks, d > 1, we may take some shocks to be pure TFP
shocks with σ(i)

ν = 0, other pure uncertainty shocks with σ(i) = 0, and yet other mixed shocks.
The law of motion for the aggregate capital stock kt =

´
[0,1] ki,tdi is not affected by the idiosyn-

cratic shocks Wi,t

dkt =
(ˆ

[0,1]
gi,tki,tdi

)
dt+ σktdZt

Preferences. Both experts and consumers have Epstein-Zin preferences with the same discount
rate ρ, risk aversion γ and elasticity of intertemporal substitution (EIS) ψ−1. If we let γ = ψ we
get the standard CRRA utility case as a special case.

Ut = Et

[ˆ ∞
t

e−ρu
c1−γ
u

1− γ
du

]

Epstein-Zin preferences separate risk-aversion from the EIS, which play different roles in the balance
sheet amplification channel. They are defined recursively (see Duffie and Epstein (1992)):

Ut = Et
[ˆ ∞

t
f (cu, Uu) du

]
(3)

where

f (c, U) =
1

1− ψ

{
ρc1−ψ

[(1− γ)U ]
γ−ψ
1−γ
− ρ (1− γ)U

}
I will later also introduce turnover among experts in order to obtain a non-degenerate stationary
distribution for the economy. Experts will retire with independent Poisson arrival rate τ and become
consumers. There is no loss in intuition from taking τ = 0 for most of the results, however.

Markets. Experts can trade capital continuously at a competitive price pt > 0, which we conjec-
ture follows an Ito process:

dpt
pt

= µp,tdt+ σp,tdZt

The price of capital depends on the aggregate shock Z but not on the idiosyncratic shocks {Wi}i∈[0,1],
and is determined endogenously in equilibrium. The total value of the aggregate capital stock is
ptkt and it constitutes the total wealth of the economy.

16If 2λν̄ ≥ σ2
ν , this Cox-Ingersoll-Ross process is always strictly positive and has a long-run distribution with mean

ν̄.

8



There is also a complete financial market17 with SDF ηt:

dηt
ηt

= −rtdt− πtdZt

Here rt is the risk-free interest rate and πt the price of aggregate risk Z. Both are determined
endogenously in equilibrium. I am already using the fact that idiosyncratic risks {Wi}i∈[0,1] have
price zero in equilibrium because they can be aggregated away.

Consumers’ problem. Consumers face a standard portfolio problem. They cannot hold capital
but they have access to a complete financial market. They start with wealth w0 derived from
ownership of a fraction of aggregate capital (which they immediately sell to experts). Taking the
aggregate process η as given, they solve the following problem.

U0 = max
(c,σw)

E
[ˆ ∞

0
f (ct, Ut) dt

]
st :

dwt
wt

= (rt + σw,tπt − ĉt) dt+ σw,tdZt

and a solvency constraint wt ≥ 0, where Ut is defined recursively as in (3), and the hat on ĉ

denotes the variable is normalized by wealth. I use w for the wealth of consumers, and reserve n for
experts’, which I will call “net worth”. Consumers get the risk free interest rate on their wealth, plus
a premium πt for the exposure to aggregate risk σw,t they chose to take. Since the price of expert-
specific idiosyncratic risks {Wi} is zero in equilibrium, consumers will never buy idiosyncratic risk.
This is already baked into consumers’ dynamic budget constraint.

Experts’ problem. Experts face a more complex problem. An expert can continuously trade
and use capital for production, as well as participate in the financial market. The cumulative return
from investing a dollar in capital for expert i is Rki = {Rki,t; t ≥ 0} with

dRki,t =
(a− ι(gi,t)

pt
+ gi,t + µp,t + σσ′p,t

)
︸ ︷︷ ︸

Et
[
dRki,t

] dt+
(
σ + σp,t

)
dZt + νtdWi,t

He would like to share risk with the market, but he faces a “skin in the game” constraint that forces
him to keep an exposure to his own return φ̃ ≥ φ ∈ (0, 1). In Appendix A I derive this financial
friction from a moral hazard problem, similar to Brunnermeier and Sannikov (2012) and He and
Krishnamurthy (2011). The expert can secretly divert capital to a private account, but can only
keep a fraction φ ∈ (0, 1) of what he steals. In order to provide incentives to not steal, the expert
must keep an exposure φ̃t ≥ φ to the return of his capital, so that he loses more from stealing than

17A complete financial market could be implemented with different asset structures. For example, a natural asset
structure would include risk-free debt, equity in each expert’s investments and d market indices to span Z. If d = 1
we can do with only one market index.
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what he wins. Importantly, I allow contracts to be written on the aggregate state of the economy.
The expert’s net worth therefore follows

dni,t
ni,t

= µ̃i,n,tdt+ φ̃i,tptk̂i,tdR
k
i,t + θi,tdZt (4)

where µ̃i,n,t = rt(1− ptk̂i,t) + ptk̂i,t(1− φ̃i,t)
(
Et
[
dRki,t

]
−
(
σ+ σp,t

)
πt

)
+ θi,tπt− êi,t. As before, the

hatted variables denote they are divided by the net worth ni,t.
The expert keeps an exposure φ̃i,t ≥ φ to his own return and sells the rest 1 − φ̃i,t on the

market.18 This “skin in the game” constraint limits the expert’s ability to share the idiosyncratic
risk. Crucially, however, it does not limit his ability to share aggregate risk, which does not interact
with the moral hazard problem. This is captured in (4) by the term θi,t. This is the main difference
with the contractual setup in Brunnermeier and Sannikov (2012) and He and Krishnamurthy (2011),
where the additional constraint θi,t = 0 is imposed (contracts cannot be written on the aggregate
state of the economy). We can think of θi,t as the fraction of the expert’s wealth invested in a set of
aggregate securities that span Z (normalized to have an identity loading on Z). In the special case
with only one aggregate shock, d = 1, we can think of this security as a normalized market index.

Given that the expert can use θi,t to adjust his exposure to aggregate risk, the “skin in the game”
constraint will always be binding, i.e. φ̃ = φ.19 Re-writing the dynamic budget constraint (4) in
terms of the structural shocks Z and Wi, the expert’s problem is to maximize his expected utility

V0 = max
(ê,g,k̂,θ)

E
[ˆ ∞

0
f (et, Vt) dt

]

subject to a solvency constraint nt ≥ 0 and the dynamic budget constraint

dni,t
ni,t

= [µi,n,t − êi,t] dt+ σi,n,tdZt + σ̃i,n,tdWi,t (5)

µi,n,t = rt + ptk̂i,t

(
Et
[
dRki,t

]
− rt

)
− (1− φ) ptk̂i,t (σ + σp,t)πt + θi,tπt

σi,n,t = φptk̂i,t (σ + σp,t) + θi,t

σ̃i,n,t = φptk̂i,tνt

where Vt is defined recursively as in (3).
Notice that θi,t separates the decision of how much capital to buy, k̂i,t, from the decision of how

much aggregate risk to carry, σi,n,t. When contracts cannot be written on the aggregate state of
the economy we are restricted to θi,t = 0, and the two decisions become entangled. The separation

18The market doesn’t price the idiosyncratic risk νtdWi,t contained in dRki,t, but it does price the aggregate risk(
σ + σp,t

)
dZt with πt.

19Any desired exposure to aggregate risk can be handled with θi,t, so φ̃i,t should be minimized to reduce exposure
to idiosyncratic risk, which is not rewarded by the market.
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between investment in capital (or leverage) and aggregate risk-sharing is at the core of the TFP
neutrality result. More generally, we can consider the intermediate case where contracts may only be
written on a linear combination of aggregate shocks Z̃t = BZt for some full rank matrix B ∈ Rd′×d

with d′ < d.20 In this case we will be restricted to choosing θi,t = θ̃i,tB.21,22

The optimal contract is easy to implement. The expert creates a firm with ptkt assets, keeps a
fraction φ of the equity, and sells the rest and borrows to raise funds (if ni,t > φptki,t he doesn’t
need to borrow, and he invests ni,t − φptki,t outside the firm). In addition, he trades aggregate
securities (possibly indices of other firms’ equity), and he receives a payment as CEO of the firm,
which compensates him for the idiosyncratic risk he takes by keeping a fraction φ of his firm’s
equity).

Assets 

Liabilities 

Inside 
equity 

Outside 
equity 

 1-  

Balance sheet 

Equilibrium Denote the set of experts I = [0, 1] and the set of consumers J = (1, 2]. We take
the initial capital stock k0 and its distribution among agents {k0

i }i∈I, {k0
j }j∈J as given23, with´

I k
0
i di +

´
J k

0
jdj = k0. Let k0

i > 0 and k0
j > 0 so that all agents start with strictly positive net

worth.

Definition 1. An equilibrium is a set of aggregate stochastic processes adapted to the filtration
generated by Z: the price of capital {pt}, the state price density {ηt}, and the aggregate capital
stock {kt}, and a set of stochastic processes24 for each expert i ∈ I and each consumer j ∈ J :
net worth and wealth {ni,t, wj,t}, consumption {ei,t ≥ 0, cj,t ≥ 0}, capital holdings {ki,t}, investment
{gi,t}, and aggregate risk sharing, {σi,n,t, σj,w,t}, such that:

i. Initial net worth satisfies ni,0 = p0k
0
i and wealth wj,0 = p0k

0
j .

ii. Each expert and consumer solves his problem taking aggregate conditions as given.

iii. Market Clearing: ˆ
I
ei,tdi+

ˆ
J
ci,tdj +

ˆ
I
ι (gi,t) ki,tdi =

ˆ
I
aki,tdi

20In terms of θi,t as a set of aggregate securities, this corresponds to an incomplete financial market.
21In particular, with B = 0 contracts cannot be written on Z.
22In this case, the “skin in the game” constraint may not be always binding.
23Consumers start holding capital and will immediately sell it to experts.
24(each adapted to the filtation generated by Z and the {Wi}i∈I)
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ˆ
I
ki,tdi = kt

ˆ
I
σi,n,tni,tdi+

ˆ
J
σj,w,twj,tdj =

ˆ
I
ptki,t (σ + σp,t) di

iv. Law of motion of aggregate capital:

dkt =

(ˆ
I
gi,tki,tdi

)
dt+ ktσdZt

The market clearing conditions for the consumer goods and capital market are standard. The
condition for market clearing in the financial market is derived as follows: we already know each
expert keeps a fraction φ of his own equity. If we aggregate the equity sold on the market into
indices with identity loading on Z, there is a total supply of these indices (1− φ) ptkt (σ + σt,p).
Consumers absorb

´
J σj,w,twj,tdj and experts

´
I θi,tni,tdi of these indices. Rearranging we obtain

the expression above. By Walras’ law, the market for risk-free debt clears automatically.

3 Solving the model

Experts and consumers face a dynamic problem, where their optimal decisions depend on the
stochastic investment possibility sets they face, captured by the price of capital p and the SDF
η. The equilibrium is driven by the exogenous stochastic process for νt and by the endogenous
distribution of wealth between experts and consumers. The recursive EZ preferences generate
optimal strategies that are linear in net worth, and allow us to simplify the state-space: we only
need to keep track of the net worth of experts relative to the total value of assets that they must
hold in equilibrium, xt = nt

ptkt
. The distribution of net worth across experts, and of wealth across

consumers, is not important. The strategy is to use a recursive formulation of the problem and
look for a Markov equilibrium in (νt, xt), taking advantage of the scale invariance property of the
economy which allows us to abstract from the level of the capital stock.

The layout of this section is as follows. First I solve a first best benchmark without moral
hazard, and show the economy follows a stable growth path. Then back to the moral hazard case,
I recast the equilibrium in recursive form and characterize agents’ optimal plans. I study the effect
of Brownian TFP shocks under different contractual environments. I then show how uncertainty
shocks can create balance sheet recessions as a result of agents’ optimal aggregate risk sharing
decisions. Finally, I consider general aggregate shocks.

3.1 Benchmark without moral hazard

Without any financial frictions this is a standard AK growth model where balance sheets don’t
play any role. Because there is no moral hazard, experts share all of their idiosyncratic risk, so the
dynamics of idiosyncratic shocks νt are irrelevant. Without financial frictions, the price of capital
and the growth rate of the economy do not depend on experts’ net worth: balance sheets are only
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relevant to determine consumption of experts and consumers. The economy follows a stable growth
path.

Proposition 1 (First best benchmark). If ρ−(1−ψ)g∗+(1− ψ) γ2σ
2 > 0 and without any financial

frictions, there is a stable growth equilibrium, where the price of capital is p∗ and the growth rate
g∗, given by:

ι′ (g∗) = p∗ (6)

p∗ =
a− ι(g∗)

ρ− (1− ψ)g∗ + (1− ψ) γ2σ
2

(7)

3.2 Back to moral hazard

First, from homothetic preferences we know that the value function for an expert with net worth n
takes the following power form:

V (ξt, n) =
(ξtn)1−γ

1− γ

for some stochastic process ξ = {ξt > 0; t ≥ 0}. I call ξ the “net worth multiplier”. It captures the
stochastic, general equilibrium investment possibility set the expert faces (it does not depend on
his own net worth nt). When ξt is high the expert is able to obtain a large amount of utility from
a given net worth nt, as if his actual net worth was ξtnt. Conjecture that it follows an Ito process

dξt
ξt

= µξ,tdt+ σξ,tdZt

where µξ,t and σξ,t must be determined in equilibrium. For consumers, the utility function takes
the same form, U (ζt, n) = (ζtn)1−γ

1−γ but instead of ξt, we have ζt as the “wealth multiplier” which
follows dζt

ζt
= µζ,tdt+ σζ,tdZt, also determined in equilibrium.

I use a dynamic programming approach to solve agents’ problem. For experts, we have the
Hamilton-Jacobi-Bellman equation after some algebra:

ρ

1− ψ
= max

ê,g,k̂,θ

{
ê1−ψ

1− ψ
ρξψ−1
t + µn − ê+ µξ −

γ

2

(
σ2
n + σ2

ξ − 2(1− γ)σnσξ + σ̃2
n

)}
(8)

subject to the dynamic budget constraint (5), and a transversality condition. Consumers have an
analogous HJB equation.

Proposition 2. [Linearity] All experts chose the same êt, gt, k̂t and θt, and all consumers the same
ĉt and σw,t. In addition, growth is determined by a static FOC

ι′ (gt) = pt

Proposition 2 tells us two things. The first is that the growth rate of the economy is linked to
asset prices in a straightforward way. Anything that depresses asset prices will have a real effect on
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the growth rate of the economy. For example, with a quadratic adjustment cost function ι (g) = Ag2,
the growth rate of the economy is simply gt = pt

2A .
Proposition 2 also tells us that policy functions are linear in net worth. This is a useful property

of homothetic preferences and allows us to abstract from the distribution of wealth across experts
and across consumers, and simplifies the state space of the equilibrium. We only need to keep track
of the fraction of aggregate wealth that belongs to experts: xt = nt

ptkt
∈ [0, 1]. I look for a Markov

equilibrium with two state variables: the volatility of idiosyncratic shocks νt, and xt:

pt = p (νt, xt) , ξt = ξ (νt, xt) , ζt = ζ (νt, xt) , rt = r (νt, xt) , πt = π (νt, xt)

where p, ξ and ζ are conjectured to be twice continuously differentiable. The first state variable νt
evolves exogenously according to (2). The state variable xt is endogenous, and has an interpretation
in terms of experts’ balance sheets. Since experts must hold all the capital in the economy, the
denominator captures their assets while the numerator is the net worth of the expert sector as a
whole. I will sometimes refer to xt as “experts’ balance sheets”.

We know from Proposition 1 that without moral hazard, experts would be able to offload all
of their idiosyncratic risk onto the market and hence neither νt nor xt would play any role in
equilibrium. In contrast, in an economy with financial frictions, φ > 0, experts’ balance sheets will
play an important role. We say balance sheets matter if equilibrium objects depend on xt. In order
for balance sheets to play a role in the transmission and amplification of aggregate shocks, we also
need them to be exposed to aggregate shocks. In principle, xt could be exposed to aggregate risk Zt
through its volatility term σx,t, or through a stochastic drift µx,t. In practice, what we usually mean
when we talk about a balance sheet channel is that experts’ balance sheets are disproportionally hit
by aggregate shocks, so we want to focus on σx,t > 0.25 We say there is a balance sheet amplification
channel if balance sheets matter and, in addition, σx,t > 0.

We can now give a definition for a Markov equilibrium..

Definition 2. A Markov Equilibrium in (ν, x) is a set of aggregate functions p, ξ, ζ, r, π and policy
functions ê, g, k̂, θ for experts and ĉ, σw,t for consumers, and a law of motion for the endogenous
aggregate state variable dxt = µx (ν, x) dt+ σx (ν, x) dZt such that:

i. ξ and ζ solve the experts’ and consumers’ HJB equations (8), and ê, g, k̂, θand ĉ, σw,t are the
corresponding policy functions, taking p, r, π and the laws of motion of νt and xt as given.

ii. Market clearing:
êpx+ ĉp (1− x) = a− ι (g)

pk̂x = 1

σnx+ σw (1− x) = σ + σp

25As it turns out, this distinction won’t be important, since in the TFP shocks case both σx,t = 0 and the drift
µx,t is non-stochastic, while with uncertainty shocks both σx,t > 0 and µx,t is stochastic.
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iii. x follows the law of motion (9) derived using Ito’s lemma:

µx(ν, x) = x
(
µn − ê− g − µp − σσ′p +

(
σ + σp

)2 − σn(σ + σp
)′) (9)

σx(ν, x) = x (σn − σ − σp)

This recursive definition abstracts from the absolute level of the aggregate capital stock, which
we can recover using dkt

kt
= gtdt+ σdZt.

Capital holdings. Experts demand for capital is pinned down by the FOC from the HJB equa-
tion. After some algebra we obtain an expression that pins down the demand for capital k̂:

a− ιt
pt

+ gt + µp,t + σσ′p,t − rt ≤ (σ + σp,t)πt + γptk̂t (φνt)
2

Idiosyncratic risk is not priced in the financial market, because it can be aggregated away. However,
because experts face an equity constraint that forces them to keep an exposure φ to the return of
their capital, they know that the more capital they hold, the more idiosyncratic risk they must
bear on their balance sheets σ̃n,t = φptk̂tνt. They consequently demand a premium on capital for
that idiosyncratic risk. Using the equilibrium condition pk̂x = 1 we obtain an equilibrium pricing
equation for capital:

a− ιt
pt

+ gt + µp,t + σσ′p,t − rt︸ ︷︷ ︸
excess return

= (σ + σp,t)πt︸ ︷︷ ︸
agg. risk premium

+ γ
1

xt
(φνt)

2︸ ︷︷ ︸
id. risk premium

(10)

The left hand side is the excess return of capital. The right hand side is made up of the risk premium
corresponding to the aggregate risk capital carries, and a risk premium for the idiosyncratic risk
it carries. When experts balance sheets are weak (low xt) and idiosyncratic risk νt high, experts
demand a high premium on capital. This is how xt and νt affect the economy, and we can see that
without moral hazard, φ = 0, neither xt nor νt would play any role, and experts would be indifferent
about how much capital to hold as long as it was properly priced. With moral hazard, instead, they
have a well defined demand for capital, proportional to their net worth.

It is useful to reformulate experts’ problem with a “fictitious” price of idiosyncratic risk

αt = γ
φνt
xt

Under this formulation, each expert faces a complete financial market without the equity constraint,
but where his own idiosyncratic risk Wi pays a premium αt. Capital is priced as an asset with
exposure φνt to this idiosyncratic risk, and can be abstracted from.26 We can verify that the expert

26We can use (10) to rewrite experts’ dynamic budget constraint

dnt
nt

= (rt + πtσn,t + αtσ̃n,t) dt+ σn,tdZt + σ̃n,tdWi,t
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will chose an exposure to his own idiosyncratic risk σ̃n,t = αt
γ = φ 1

xt
νt as required in equilibrium. In

this sense the fictitious price of idiosyncratic risk αt is “right”. An advantage of the fictitious price
formulation is that the only difference between experts’ and consumers’ problem is that experts
perceive a positive price for idiosyncratic risk αt > 0, while consumers perceive a price of zero.

Aggregate risk sharing. Optimal contracts allow experts to share aggregate risk freely. The
optimal contract effectively separates the decision of how much capital to hold ki,t from the decision
of how much aggregate risk to hold σn,t. The FOC for aggregate risk sharing for experts are:

σn,t =
π′t
γ︸︷︷︸

myopic

− γ − 1

γ
σξ,t︸ ︷︷ ︸

hedging motive

(11)

Experts’ optimal aggregate risk exposure depends on a myopic risk-taking motive given by the price
of risk27 and the risk-aversion parameter, π

′
t
γ , and a hedging motive driven by the stochastic invest-

ment possibility sets, γ−1
γ σξ,t. This hedging motive is standard in Intertemporal CAPM models,

going back to Merton (1973), and it will play a crucial role in the amplification and propagation of
aggregate shocks through experts’ balance sheets. Recall the “net worth multiplier” ξt captures the
stochastic general equilibrium conditions the expert faces

Vt (n) =
(ξtn)1−γ

1− γ

If the expert is risk neutral, he will prefer to have more net worth when ξt is high, since he can
obtain a lot of long-term utility out of each unit of net worth. This is a “substitution effect”. On
the other hand, when ξt is low he requires more net worth to achieve any given level of utility. If
the expert is risk averse, he will prefer to have more net worth when ξt is low. This is a “wealth
effect”. Which effect dominates depends on the risk aversion parameter.28 When γ < 1, equation
(11) tells us the expert wants his net worth to be positively correlated with ξt: the substitution
effect dominates. When γ > 1, instead, the wealth effect dominates. I focus on the case where the
wealth effect dominates, γ > 1.

where the expert can freely choose σn,t and σ̃n,t. Experts problem then is to maximize their objective function,
subject to an intertemporal budget constraint

E
[ˆ ∞

0

η̃ueudu

]
= n0

where the fictitious SPD η̃ follows: dη̃t
η̃t

= −rtdt− πtdZt − αtdWi,t for expert i.
27πt is a column vector and must be transposed, hence π′t.
28EZ preferences separate risk aversion γ from the EIS ψ−1. Below I explore the role of each parameter in the

model.
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Consumers have analogous FOC conditions for aggregate risk sharing

σw,t =
π′t
γ︸︷︷︸

myopic

− γ − 1

γ
σζ,t︸ ︷︷ ︸

hedging motive

(12)

where the only difference is that consumers’ investment possibility sets are captured by ζt instead
of ξt. Since consumers cannot buy capital, its price and idiosyncratic risk-premium does not affect
them, but they still face a stochastic investment possibility set from interest rates rt and the price
of aggregate risk πt.

The volatility of balance sheets σx,t arises from the interaction of experts’ and consumers’ risk-
taking decisions. Using the equilibrium condition σnx + σw (1− x) = (σ + σp) we obtain the fol-
lowing aggregate risk-sharing equation

σx,t = (1− xt)xt
1− γ
γ

(
σξ,t − σζ,t

)︸ ︷︷ ︸
relative

(13)

hedging motive

The term (1−xt)xt arises because experts are able to hedge their investment possibility sets only
to the extent that consumers as a whole are willing to take the other side of the hedge. The 1−γ

γ term
captures the “substitution” and “wealth” effects, while σζ,t − σξ,t captures experts’ and consumers’
relative hedging motive. Since experts and consumers cannot both hedge in the same direction in
equilibrium, it is the difference in their hedging motives which will cause experts’ balance sheets to
be overexposed to aggregate risk.

To understand aggregate risk-sharing better, notice that because experts have the option of
investing in capital, they always get more utility per dollar of net worth than consumers, i.e. ξt > ζt.
Call

Ωt = log ξt − log ζt > 0

the investment opportunity gap between experts and consumers. This gap is not constant, however:
it depends on the aggregate state of the economy. The relative hedging motive is the loading of the
investment opportunity gap Ωt on the aggregate shock dZt. Equation (13) says that if the wealth
effect dominates (γ > 1) agents will share aggregate risk so that experts have a smaller share of
aggregate wealth when the gap is large (because they are already relatively better off in this state,
compared to consumers), and a larger share when the gap is small

σx,t = (1− xt)xt
1− γ
γ

vol(Ωt)

Experts’ and consumers’ investment possibility sets, and hence the log gap, depends on balance
sheets xt, and so are endogenously determined in equilibrium in a two way feedback: experts’
balance sheets are exposed to aggregate risk to hedge stochastic investment possibility sets, but the
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volatility of investment possibility sets actually depends on the exposure of experts’ balance sheets
to aggregate risk. We can use Ito’s lemma to obtain a simple expression for the volatility of the
investment opportunity gap Ωt:

vol(Ωt) = Ωνσν
√
νt︸ ︷︷ ︸

exogenous

+ Ωxσx,t︸ ︷︷ ︸
endogenous

(14)

where the function Ω is evaluated at (νt, xt). The locally linear representation allows a neat decom-
position into an exogenous source, driven by the uncertainty shock to νt, and an endogenous source
from optimal contracts’ aggregate risk sharing σx,t. We can solve for the fixed point of this two-way
feedback:

σx,t =
(1− xt)xt 1−γ

γ Ων

1− (1− xt)xt 1−γ
γ Ωx

√
νtσν (15)

Notice that even though the presence of moral hazard does not directly restrict experts’ ability to
share aggregate risk, it introduces hedging motives through the general equilibrium which would
not be present without moral hazard, as shown by Proposition 1.

3.3 Brownian TFP shocks

When aggregate shocks come only in the form of Brownian TFP shocks (σν = 0) and we allow
agents to write contracts on all observable variables, there is no balance sheet channel. After a
negative TFP shock, the value of all assets ptkt falls and everyone, experts and consumers alike,
looses net worth proportionally, so σx,t = 0. Experts then have lower net worth, but the value of
capital they must hold in equilibrium is also lower, so the idiosyncratic risk they must carry as a
proportion of their net worth is not affected by TFP shocks. Investment possibility sets then are not
affected by aggregate shocks, and consequently the investment opportunity gap Ωt is not affected
by aggregate shocks and there is no relative hedging motive, vol(Ωt) = σζ,t − σξ,t = 0. Balance
sheets xt may still affect the economy, due to the presence of financial frictions derived from the
moral hazard problem, but they won’t be exposed to aggregate risk and hence won’t play any role
in the amplification of aggregate TFP shocks. In fact, the equilibrium is completely deterministic,
up to the direct effect of TFP shocks on the aggregate capital stock.

Proposition 3. With only Brownian TFP shocks (σν = 0) if agents can write contracts on the
aggregate state of the economy, the balance sheet channel disappears: the state variable xt, the price
of capital pt, the growth rate of the economy gt, the interest rate rt, and the price of risk πt all follow
deterministic paths and are not affected by aggregate shocks.
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Assets 
 
 

ptkt 
 
 
 
 
 
 

Liabilities 
 
 

Inside 
equity 

 
 

Outside 
equity 

 
 

Balance sheet 

The negative result of Proposition 3 has two ingredients: 1) optimal contracts separate the
decision of how much capital to buy (leverage) from the decision of how much aggregate risk to hold
(risk sharing).29 Risk sharing between experts and consumers will depend only on their relative
hedging motives. The difference in hedging motives is ultimately traced to the fact that experts can
trade and use capital, and the gap in investment opportunities Ωt that this creates. This gives us
expression (13):

σx,t = (1− xt)xt
1− γ
γ

vol(Ωt)

And 2) aggregate Brownian TFP shocks don’t affect investment possibility sets directly and so don’t
create a relative hedging motive by themselves. The exogenous source of relative hedging motive
disappears, so we are left with only the endogenous component in expression (14):

vol(Ωt) = Ωνσν
√
νt︸ ︷︷ ︸

exogenous = 0

+ Ωxσx,t︸ ︷︷ ︸
endogenous

With no exogenous source, however, the unique Markov equilibrium has deterministic investment
possibility sets, no relative hedging motive, and hence no overexposure to aggregate risk which could
endogenously affect investment possibility sets. The continuous-time setting provides a locally linear
relationship that guarantees this is the unique Markov equilibrium, given by equation (15). Without
any source of aggregate volatility, the economy then follows a deterministic path.

Implementation and constrained contracts. The optimal contract can be implemented with
simple financial instruments: an expert buys capital ptkt and sells a fraction 1 − φ of his equity.
He then buys a market index, or shorts it, to obtain the right exposure to aggregate risk. Even
though the ability to short the market index is important for deriving Proposition 3 in general,
experts might typically be going long on the market index. We can compute their investment in

29In Di Tella (2012) I explore under what conditions moral hazard can distort aggregate risk-sharing for incentive
provision reasons. This can happen if the expert’s private action affects the exposure to aggregate risk of his private
benefit. Optimal contracts will overexpose experts to aggregate risk in order to deter them from taking a private
action that further exposes them to it, creating a tradeoff between aggregate and idiosyncratic risk-sharing. However,
this requires control over the expert’s portfolio investments beyond his equity stake in the project he runs.
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the normalized market index θt explicitly:

θt = (σ + σp,t)
xt − φ
xt︸ ︷︷ ︸
≷0

+
σx,t
xt︸︷︷︸
=0

=
xt − φ
xt︸ ︷︷ ︸
≷0

σ

Their portfolio position on the market indices will be positive or negative depending on whether
xt ≷ φ. With aggregate shocks don’t affect the investment opportunity gap, vol(Ωt) = 0, experts
and consumers will hold a fraction of aggregate wealth proportional to their net worth or wealth,
respectively: σn,t = σw,t = σ + σp,t = σ. Experts are required to hold a fraction φ of their equity,
which already exposes them to a fraction φ of aggregate risk. If their net worth represents more
than fraction φ of aggregate wealth xt > φ, they will want to buy more aggregate risk by going long
on a market index, or their competitors’ equity. On the other hand, if xt < φ, they will short the
market index to get rid of some of the aggregate risk contained in their equity.

In general, the economy may be hit by a large number of orthogonal aggregate shocks, i.e.
d > 1. The negative result in Proposition 3 doesn’t require complete markets, only that leverage
and aggregate risk-sharing be separated. In terms of implementation in a financial market, we need
the financial market to span the exposure to aggregate risk of the return to capital σdZ. In this case,
an expert can buy capital and immediately get rid of the aggregate risk using financial instruments.
He can then share aggregate risk with consumers using any available financial instruments. Without
any endogenous hedging motives both experts and consumers will choose the same exposure to
aggregate risk and eliminate the balance sheet channel.

Proposition 4. Even if the financial market spans only a linear combination of aggregate shocks
Z̃t = BZt, for a matrix B with full rank d′ < d, then as long as the exposure of capital to aggregate
risk σ is in the row space of B, the result of Proposition 3 holds.

If experts can short the equity of their competitors, who have a similar exposure to aggregate
risk as they do, they can get rid of the aggregate risk in their capital. In a competitive market,
there is a large number of competitors so their idiosyncratic risks can be aggregated away. In other
words, an index made up competitors’ equity is exactly the instrument required to separate leverage
from risk sharing and obtain the negative result.

Corollary 1. As long as a market index of experts’ equity can be traded, the balance sheet channel
disappears.

In contrast to Proposition 3, when we rule out contracts on aggregate shocks, i.e. B = 0, experts’
leverage and aggregate risk sharing become entangled. In the simplest case with φ = 1 as in the
baseline setting in BS, if experts are leveraged ptkt > nt, then when a negative aggregate shock
reduces the value of capital experts will lose net worth more than proportionally:

σx,t = xt (σn − σ − σp,t) = xt

(
ptk̂t − 1

)
︸ ︷︷ ︸

>0

(σ + σp,t) > 0
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This reduces their ability to hold capital and lowers asset prices, further hurting their balance sheets,
and amplifying and propagating the initial shock. This is precisely the mechanism behind the
balance sheet channel in Brunnermeier and Sannikov (2012) and He and Krishnamurthy (2011).30

3.4 Uncertainty shocks

In this section I show that, in contrast to Brownian TFP shocks, uncertainty shocks that increase
idiosyncratic risk depress asset prices and growth, and lead to balance sheet recessions. The “skin in
the game” constraint forces experts to keep a fraction of their idiosyncratic risk, so during periods
of high idiosyncratic risk and weak balance sheets, the price of capital and growth are low. Even
though experts can share aggregate risk freely, they choose to be highly exposed to this aggregate
risk ex-ante in order to take advantage of ex-post investment opportunity sets. Weak balance sheets
further depress the price of capital and growth and create a balance sheet recession, which in turn
amplifies experts’ incentives to take even more aggregate risk ex-ante in a two-way feedback loop.
In addition, an increase in idiosyncratic risk leads to an endogenous increase in aggregate risk, and
can trigger a “flight to quality” event with low interest rate and high risk premiums.

The strategy to solve for the equilibrium with uncertainty shocks is to map it into a set of three
partial differential equations for the price of capital p (ν, x) and the multipliers ξ (ν, x) and ζ (ν, x).
The pricing equation for capital (10), experts’ HJB (8) and market clearing for consumption goods
provide three functional equations.31 In the interest of simplicity, I consider a one dimensional
exogenous Brownian shock, i.e. d = 1. This shock will affect both capital directly through σ > 0

and the volatility of idiosyncratic risk νt through
√
σννt < 0.32 I also add turnover among experts

as described in Section 2 to keep them from asymptotically accumulating all the wealth in the
economy.33 I show the procedure for solving the equilibrium in detail in Appendix C.

Balance sheet channel. An uncertainty shock increases idiosyncratic risk νt in the economy
and endogenously reduces the fraction of aggregate wealth that belongs to experts xt. Both effects
increase the idiosyncratic risk premium on capital and drive its price pt down34

gt + µp,t + σσ′p,t +
a− ιt
pt
− rt︸ ︷︷ ︸

excess return

= (σ + σp,t)πt︸ ︷︷ ︸
agg. risk premium

+ γ
1

xt
(φνt)

2 ↑︸ ︷︷ ︸
id. risk premium

In addition, the fall in the price of capital drives growth down, given by the FOC ι′(gt) = pt. An
uncertainty shock therefore produces a downturn in the economy, with depressed asset values and

30In He and Krishnamurthy (2011) a similar mechanism underlies the volatility of experts’ net worth (specialists
in their model), but the price of capital falls because consumers are more impatient and interest rates must rise for
consumption-goods markets to clear.

31Two second order partial differential equations and an algebraic constraint.
32Additional TFP shocks will only have a direct impact on the level of the effective capital stock, but will have no

further effects on the economy.
33Even in that case the financial constraints will never stop binding.
34I focus on the case with relative risk aversion γ > 1 and elasticity of intertemporal substitution ψ > 1, for which

EZ preferences are necessary. I explore the role of both parameters below.
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Figure 1: The price of capital p, volatility of x, σx, and the gap Ω = log ξ − log ζ, as functions of ν (above)
for x = 0.25 (solid), x = 0.5 (dotted), and x = 0.75 (dashed), and as a function of x (below) for ν = 0.25

(solid), ν = 0.5 (dotted), and ν = 0.75 (dashed). For parameter values see Numerical Solution below.

growth, amplified through a balance sheet channel. Figure 1 shows the price of capital is decreasing
in idiosyncratic risk νt and increasing in the experts’ share of aggregate wealth xt. The growth rate
has the same shape (I use ι(g) = Ag2, so gt = 1

2Apt).
35

Figure 1 also shows σx,t is positive throughout, so experts’ share of aggregate wealth xt falls after
an uncertainty shock raises νt, amplifying its effects through a balance sheet channel. The intuition
is the following: an uncertainty shock endogenously increases the premium on idiosyncratic risk αt,
and this benefits experts compared to consumers because only experts perceive this premium. If
the wealth effect dominates (γ > 1) agents want to stabilize their relative utility across states, so
experts must have a smaller fraction of aggregate wealth (low xt) after an uncertainty shock. This
in turn makes αt even larger, amplifying the effects of the uncertainty shock and inducing experts
to take even more aggregate risk in a two-way feedback loop.

To see this in more detail, recall that aggregate risk sharing is given by

σx,t = (1− xt)xt
1− γ
γ

vol(Ωt) (16)

where Ωt = log ξt − log ζt is the investment opportunity gap between experts and consumers which
depends on the aggregate shock dZt through both νt and xt. When the wealth effect dominates
(γ > 1) agents want to stabilize their relative utility across states, so they will share aggregate
risk to give experts a smaller share of aggregate wealth when the gap Ωt is large (because they are
already relatively better off in this state, compared to consumers).

Figure 1 shows the investment opportunity gap Ωt = log ξt − log ζt is large when idiosyncratic
35Since this is an AK model, only TFP shocks can have effects on the current output level. I call periods of

depressed growth recessions, although they have relatively high consumption. The model can be easily extended to
allow consumers to use capital with a lower productivity ac < a as in Kiyotaki and Moore (1997) or Brunnermeier
and Sannikov (2012). Under this variant, after an uncertainty shock experts will offload capital onto consumers, and
output will go down since average productivity will be lower. Downturns will then have lower growth, output, and
consumption.
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volatility νt is high and experts’ balance sheets xt are weak. That is, experts are relatively better
off than consumers during downturns, conditional on net worth. To grasp the intuition behind this,
recall that in the fictitious price formulation, the only difference between experts’ and consumers’
problems is that experts perceive a positive price αt for their own idiosyncratic risk (whereas con-
sumers do not). In equilibrium experts go long on their own idiosyncratic risk (σ̃n,t = φ

xt
νt > 0) so

they benefit when αt goes up. From equation (17) we see αt is increasing in νt and decreasing in xt.

↑↑ αt = γ
φ νt
xt

↑
↓

(17)

Therefore, experts are better off (compared to consumers) during downturns, after an uncertainty
shock raises νt and endogenously depresses xt. Both effects work together to increase the investment
opportunity gap Ωt after an uncertainty shock36 (dZt < 0)

vol(Ωt) = σξ,t − σζ,t =

>0︷︸︸︷
Ων

<0︷ ︸︸ ︷
σν
√
νt︸ ︷︷ ︸

exogen. < 0

+

<0︷︸︸︷
Ωx

>0︷︸︸︷
σx,t︸ ︷︷ ︸

endogen. < 0

< 0

In line with equation (16), this induces experts to take a disproportionate share of aggregate
risk, σx > 0, so xt falls after an uncertainty shock. The more aggregate risk experts take (larger
σx,t), the more xt falls after an uncertainty shock and the bigger the gap in investment opportunities
Ωt in that state (through the endogenous component), which in turn induces them to take even
more aggregate risk ex-ante, in a two-way feedback loop37

Uncertainty shocks 
 
t 

ptkt 
 
t 

xt 

Hedging motive 

Balance sheet channel 

Experts are not necessarily better off during downturns. First, because they (endogenously) face
large loses of net worth. But even conditional on net worth, experts might be worse-off after an

36The net worth multipliers ξt and ζt are forward looking and capture the expected present value of investment
possibility sets, but we can get intuition about how the gap Ωt behaves by studying αt.

37Notice that the endogenous response of asset prices amplifies the effect of the exogenous shock on the balance
sheets of experts, as in Kiyotaki and Moore (1997). In that paper, however, this happens ex-post because experts
cannot hedge this risk. Here, instead, it happens ex-ante because they can hedge, and choose to increase their
exposure to aggregate risk in anticipation of the response of asset prices to the exogenous shock.
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Figure 2: Aggregate risk σ + σp, the price of risk π, and risk free interest rate r as functions of ν (above)
x = 0.25 (solid), x = 0.5 (dotted), and x = 0.75 (dashed), and as a function of x (below) for ν = 0.25 (solid),
ν = 0.5 (dotted), and ν = 0.75 (dashed). For parameter values see Numerical Solution below.

uncertainty shock because interest rates rt and the risk premia πt are also affected. It might very
well be the case then that both experts and consumers are worse off after an uncertainty shock, even
conditional on net worth (that is, both ξt and ζt lower). What matters for aggregate risk-sharing,
however, is that the gap Ωt between them rises after an uncertainty shock, because experts at least
get higher premiums αt on idiosyncratic risk. As a result, for a given price of aggregate risk πt

experts find taking aggregate risk more attractive than consumers, and in equilibrium the market
concentrates a disproportionate share of aggregate risk on the balance sheets of experts.

Aggregate risk and flight to quality. After an uncertainty shock exogenously raises idiosyn-
cratic risk νt in the economy, the economy experiences also endogenously high aggregate risk σ+σp,t

and a flight to quality event with low interest rates rt and high risk premia πt. Figure 2 shows ag-
gregate risk rising when idiosyncratic risk νt is high and balance sheets xt are weak. The model
then provides an explanation for the observation that idiosyncratic and aggregate volatility seems
to move together.38

The demand for aggregate risk from agents for hedging purposes also falls during downturns

πt
γ︸︷︷︸

myopic ↑

+
1− γ
γ

(σξ,txt + σζ,t(1− xt))︸ ︷︷ ︸
hedging ↓

= σ + σp︸ ︷︷ ︸
supply ↑

This combination of reduced appetite for aggregate risk just when assets become more risky drives
the price of aggregate risk πt up and create a flight to the safety of risk free bonds that depresses
the interest rate rt. In fact, uncertainty shocks may drive the risk-free interest rate below zero, as
Figure 2 shows. In a richer model with sticky prices this could lead to a “liquidity trap”.

Stochastic risk premia have been extensively studied in the asset pricing literature. Campbell
38See Bloom et al. (2012).
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Figure 3: Experts’ investment in the market index, θ, the drift of x, µx, and experts’ consumption relative
to their networth e/c

x/(1−x) , as functions of ν (above) for x = 0.25 (solid), x = 0.5 (dotted), and x = 0.75

(dashed), and as functions of x (below) for ν = 0.25 (solid), ν = 0.5 (dotted), and ν = 0.75 (dashed). For
parameter values see Numerical Solution below.

and Cochrane (1999), for example, introduce habit and obtain stochastic risk-premia. Here, instead,
risk premia respond to aggregate shocks due to the presence of financial frictions. In the benchmark
without moral hazard, risk premia are constant. He and Krishnamurthy (2011) obtain stochastic
risk premia in a similar model where balance sheets play an important role. In their model, agents
cannot write contracts on the aggregate state of the economy, so risk premia must rise after a
negative shock to induce experts with weak balance sheets to take on aggregate risk. Here instead,
agents can share aggregate risk freely, since optimal contracts separate leverage from aggregate risk
sharing.

Implementation. Recall that optimal contracts can be implemented using standard financial
instruments such as equity and a market index. The expert must keep a fraction φ of his own equity
and this forces him to keep a fraction φ of his idiosyncratic risk, but he can adjust his exposure to
aggregate risk using a market index. θt can be interpreted as his portfolio investment in a market
index normalized with identity loading on the aggregate risk

θt = (σ + σp,t)

(
xt − φ
xt

)
︸ ︷︷ ︸
myopic risk-sharing

+
σx,t
xt︸︷︷︸

hedging

The first term corresponds to the myopic risk sharing motive. Since aggregate risk pays a
premium, both experts and consumers want to buy some of it. They face the same price of risk
πt, so they have the same myopic incentives and they should share aggregate risk proportionally
to their wealth. Experts must keep a fraction φ of their equity, which already exposes them to a
fraction φ of aggregate risk. The first use of the market index is to adjust experts’ exposure to
aggregate risk to achieve proportional risk sharing. The second term captures the hedging motive
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σx,t
x > 0. Experts want to increase their exposure to aggregate risk in order to take advantage of

investment possibility sets. When the economy is hit only by a Brownian TFP shock, the hedging
motive disappears and we are left with only the first term.

Figure 3 shows experts portfolio investment in a normalized market index θ as a function of
ν and x. Its most striking feature is that θ is positive for most values of (ν, x). Not only are
experts not getting insurance against aggregate risk, they are using the financial instruments at
their disposal to buy even more aggregate risk than what the equity constraint forces them to. This
is consistent with the empirical evidence on bank’s balance sheets in Begenau et al. (2013), who
show that banks do have large trading positions in derivatives (interest rate swaps) that could allow
them to insure against the aggregate risk in their underlying traditional business (lending long and
borrowing short), but instead use them to amplify their exposure to aggregate risk.

Short-run, medium-run, and long-run dynamics. In the short-run, an uncertainty shock
that increases idiosyncratic risk weakens the balance sheets of experts, who are highly exposed to
it (σx > 0). In the medium-run, however, higher idiosyncratic risk leads to stronger balance sheets.
This is the result of two effects. First, after an uncertainty shock the premium on idiosyncratic
risk αt is high, so experts have large returns on their net worth compared to consumers. Second,
with elasticity of intertemporal substitution greater than 1, ψ−1 > 1, since the value of net worth
is higher for experts relative to consumers after an uncertainty shock (Ωt = log ξt − log ζt is large),
experts postpone consumption more than consumers: ê/ĉ = (ξ/ζ)

ψ−1
ψ . Figure 3 shows the fraction

of aggregate consumption that corresponds to experts relative to the fraction of aggregate wealth
that belongs to them, decreasing in ν and increasing in x. Both effects lead to faster accumulation
of wealth for experts relative to consumers, and therefore to a gradual strengthening of their balance
sheets as captured by xt. Figure 3 also shows the drift of balance sheets µx is increasing in ν and
decreasing in x. In fact, in the medium run it is possible for xt to surpass the level it would have
had if idiosyncratic risk had not increased, especially if the increase in idiosyncratic risk is very
persistent.

In the long-run, however, both idiosyncratic risk ν and balance sheets x return to their long-run
means. The fraction of aggregate wealth that belongs to experts xt never reaches the boundaries 0

or 1 (i.e. 0 < xt < 1) because neither experts nor consumers ever want to have zero wealth. Figure
3 also shows the drift of balance sheets µx is positive and diverging to∞ when x→ 0, and becomes
negative as x→ 1 (so µx

σ2
x
diverges to +∞ and −∞ respectively).39

The role of elasticity of intertemporal substitution ψ−1 and relative risk aversion γ. EZ
preferences separate agents’ relative risk aversion γ from their elasticity of intertemporal substitution
ψ−1. Each plays a different role in the model.

Relative risk aversion controls aggregate risk sharing. If γ < 1 the substitution effect dominates,
and experts have a larger share of aggregate wealth after an uncertainty shock, when the gap in

39Without turnover, τ = 0, even though x never reaches the boundaries, the long-run distribution for x will be
degenerate, accumulating around 1 if EIS = ψ−1 > 1.
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Figure 4: RRA and EIS. The price of capital p, the volatility of x, σx, and the gap Ω = log ξ − log ζ

as function of ν for x = 0.2 (above) and as functions of x for v = 0.24 (below). The solid line is the baseline
parametrization with γ = 5 and EIS = 1.5; the dashed line has γ = 0.8 and EIS = 1.5; the dotted line has
γ = 3 and EIS = 1

3 .

investment opportunities Ωt is large and they prefer to get more “bang for the buck”. If γ > 1,
instead, the wealth effect dominates and experts have a smaller fraction of aggregate wealth after
an uncertainty shock, since they are already relatively better off compared to consumers (gap Ωt is
large), and they prefer to stabilize utility. For the special log case with γ = 1 both effects cancel out
and the balance sheet channel disappears: σn = σw = σ + σp and σx = 0. A balance sheet channel
where aggregate risk is concentrated on the balance sheets of experts (σx > 0) therefore requires
γ > 1, which is in line with empirical evidence on risk aversion.

The elasticity of intertemporal substitution is important for growth and asset pricing. After an
uncertainty shock idiosyncratic risk ν is high and experts’ balance sheets x are endogenously weak.
Both drive the idiosyncratic risk premium α = γ φνtxt up. When the EIS ψ−1 > 1, the price of capital
will fall, creating a downturn with low asset prices and growth. This is because agents are quickly
convinced by changes in interest rates to adjust their consumption, so r does not move much in
equilibrium. This results in the price of capital falling to raise its excess return. When EIS ψ−1 < 1

instead, interest rates adjust and the price of capital actually goes up after an uncertainty shock
(even though ν is high and x low).40 For the special log case with ψ = 1, the price of capital does
not depend on ν and x at all: agents consume a constant flow of their net worth ĉ = ê = ρ, and the
interest rate adjusts to keep p at a level consistent with market clearing for consumption goods41:

40In terms of wealth and substitution effects, when ψ−1 > 1 the substitution effect dominates intertemporally:
since it’s a bad time to invest, invest less now and more in the future. When ψ−1 < 1 the wealth effect dominates:
since investment became less attractive we are poorer in certainty equivalence terms, so consume less (invest more)
both today and in the future.

41This stark characterization is a result of the setup where only experts can use capital. If consumers are also allowed
to use capital to produce with lower productivity, as in Brunnermeier and Sannikov (2012) or Kiyotaki and Moore
(1997), the price of capital would fall after an uncertainty shock even in the EIS = 1 case, as experts offload capital
onto consumers. This reduces aggregate output, so the price of capital must fall in order to reduce consumption and
investment. He and Krishnamurthy (2011) instead assume experts are more patient than consumers, so investment
falls when xt falls, and so does the price of capital.
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p = a−ι(g)
ρ . A balance sheet recession (in the sense of depressed asset prices and growth amplified

by weak balance sheets) therefore requires an EIS ψ−1 > 1, which is also in line with empirical
evidence.42

Figure 4 shows the price of capital, σx, and the gap in investment opportunities Ω = log ξ− log ζ

for three different parameter values which illustrate these effects. The solid line is the baseline
parametrization used above, with γ = 5 and ψ−1 = 1.5. As described above, the price of capital is
decreasing in ν and increasing in x, and there is a balance sheet channel with σx > 0 everywhere.
The dashed line is the second parametrization, with γ = 0.8 ≤ 1 so the substitution effect dominates
aggregate risk sharing. The balance sheet channel inverts, σx < 0. Aggregate risk is concentrated on
the balance sheets of consumers, so experts’ balance sheets strengthen after an uncertainty shock.
Since EIS = 1.5 is still larger than one, the price of capital is still decreasing in ν and increasing
in x, but the balance sheet channel dampens the effects of the uncertainty shock. Notice that the
gap Ω is still increasing in ν and decreasing in x, since this reflects the behavior of α = γ φνtxt .
The inversion of σx is caused by the substitution effect dominating the wealth effect in aggregate
risk-sharing when γ < 1. In the third parametrization (dotted line), γ = 3 and EIS = ψ−1 = 1/3.
Now σx > 0 as in the baseline case, since with γ > 1 the wealth effect dominates and the gap Ω

is still increasing in ν and decreasing in x. However, with the EIS less than 1, the price of capital
actually goes up with ν and falls with x.

Numerical solution. I use the following parameter values for illustration purposes. Preferences:
The discount rate is ρ = 0.05, the risk aversion is γ = 5, while the EIS is set at 1.5 (i.e.: ψ = 0.66).
Experts retire with Poisson arrival rate τ = 0.4. Technology : capital productivity is normalized to
a = 1. Capital exposure to aggregate risk is σ = 0.03. Moral Hazard : Hedge funds typically keep
20% of returns above a threshold, so following He and Krishnamurthy (2011), I set φ = 0.2. The
investment function takes the simple form ι (g) = 200g2, so g (p) = p

400 and ι (p) = p2

800 . Idiosyncratic
volatility is set with a long-run mean of ν̄ = 0.24, mean reversion parameter λ = 0.22, and a loading
on the aggregate shock σν = −0.13. I use data on idiosyncratic volatility from Campbell et al.
(2001), and fit the monthly idiosyncratic standard deviation to a discretized version of (2):

νt+1 − νt = λ (ν̄ − νt) + σν
√
νtεt+1

where the error terms εt are i.i.d. I then obtain the OLS estimators for the parameters λ, ν̄, and
σν .

3.5 General aggregate shocks

When contracts cannot be written on the aggregate state of the economy, the type of aggregate
shock hitting the economy is not relevant for the purposes of the balance sheet channel. As long
as the aggregate shock depresses asset values and experts are leveraged, their balance sheets will

42Campbell and Beeler (2009) use an EIS of 1.5. Gruber (2006) estimates an EIS of 2 based on variation across
individuals in the capital income tax rate.
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Figure 5: [Financial Shocks] The price of capital p, volatility of x, σx, and the total aggregate risk σ+ σp,
as functions of φ (above) for x = 0.25 (solid), x = 0.5 (dotted), and x = 0.75 (dashed), and as a function of
x (below) for φ = 0.25 (solid), φ = 0.5 (dotted), and φ = 0.75 (dashed).

be disproportionately affected and create a balance sheet recession. When we allow agents to write
contracts on the aggregate state of the economy, on the other hand, the type of aggregate shock
that hits the economy takes on a prominent role. Agents will share aggregate risk in order to take
advantage of the endogenous investment possibility sets. When the wealth effect dominates, experts
will have a smaller share of aggregate wealth after shocks that increase the investment opportunity
gap between them and consumers Ωt = log ξt − log ζt

σx,t = (1− xt)xt
1− γ
γ

vol(Ωt)

The gap Ωt is endogenous, but we can use this equation to understand how different types of
aggregate shocks will be shared. As I’ve shown above, uncertainty shocks will create balance sheet
recessions, while Brownian TFP shocks won’t. Other aggregate shocks can be studied with the
same tools developed above. Here I mention some possibilities. First, aggregate shocks to the
long-run growth rate of the economy seem like a natural possibility. After financial crises, growth
expectations are often said to have been unduly optimistic before the crash, and the economy to
have been “living beyond its means”, or in an irrational bubble. However, this could also be the
result of negative aggregate shocks to the growth rate of the economy, possibly as a consequence of
structural change, and maybe amplified by the balance sheet recession that follows.

Second, demand shocks play a prominent role in business cycle theory. In particular, during
liquidity traps, the central bank is unable to stabilize the economy. Liquidity traps seem to occur
after big financial crises, so it is natural to ask if the two phenomena are related. On the one hand,
the balance sheet channel can help explain how small shocks get amplified and drive the natural
rate of interest into negative territory (as it happens in this model). On the other hand, liquidity
traps might help explain why the balance sheets of experts are so exposed to aggregate risk in the
first place.

29



Shocks to financial frictions. Since big balance sheet recessions are usually times of financial
distress, it makes sense to also explore whether they might be driven by shocks to the financial
system itself. Several papers explore the effects of shocks to financial frictions, such as Eggertsson
and Krugman (2010), Guerrieri and Lorenzoni (2011) and Buera and Moll (2012).

In the economy I study in this paper, shocks to idiosyncratic risk and shocks to financial frictions
turn out to be equivalent. To see why, notice that due to a moral hazard problem, only a fraction
1 − φ of idiosyncratic risk is shared and aggregated away, as if idiosyncratic risk was actually
φνt. We may then take φνt as the exogenous state variable. Intuitively, it makes no difference to
experts whether they must keep a fixed fraction of more idiosyncratic risk, or they must hold a
larger fraction of the same underlying amount of idiosyncratic risk. A mathematically equivalent
setup for the model takes ν fixed and lets the parameter φt follow a stochastic process.43 The only
variable affected is θt, experts’ portfolio share in the market index. Otherwise, the equilibrium is
characterized by the same set of equations.

However, it is natural to assume φt and νt follow different stochastic processes. For one thing,
φ ∈ [0, 1] is an important constraint. This will in general change the equilibrium. As an example,
Figure 5 shows the equilibrium when ν = 0.2 and the financial friction follows44

dφt = λ(φ̄− φt) + σφφt(1− φt)dZt

This process guarantees φt ∈ [0, 1] always, and implies aggregate “financial” volatility vanishes when
φt → 1; intuitively, at some point things can’t really get any worse. The main features of the
equilibrium are unchanged. A bad “financial shock” that increases φt is amplified by a balance sheet
channel (σx > 0 always) and drives asset prices and growth down. However, as φ approaches its
upper bound, the volatility of φ vanishes, and therefore σx vanishes too. Aggregate volatility is then
non-monotonic in φ. This illustrates how different assumptions on the stochastic process driving
the model can modify some features of the equilibrium.45

4 Financial Regulation

The model has several lessons for optimal policy. In standard models of balance sheet recessions
driven by TFP shocks, where contracts cannot be written on the aggregate state of the economy,
providing aggregate insurance to experts in order to eliminate the balance sheet channel is a Pareto
improving policy. Brunnermeier and Sannikov (2012), for example, show how a social planner can
achieve first best allocations in this way.

43He and Krishnamurthy (2011) consider a stochastic moral hazard setting in the model. Because they restrict
agents’ ability to share aggregate risk and assume log preferences, the stochastic moral hazard does not change
agents’ choices nor does it create a balance sheet channel (which already exists in their model due to the contracting
constraints they assume).

44I use the same parameter values as in the baseline case, for ease of comparison. So for example, σφ = σν .
45An alternative specification would have φt follow an arithmetic Brownian motion with reflective boundaries at

φt = 0 and φt = 1. I also solved this case, which has similar features to the solution in Figure 5.
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Figure 6: [Financial regulation] Left panels: Equivalent change in consumption for experts as a
function of ν, for x = 1

5 (above) and as a function of x for ν = 0.24 (below). Middle and right
panels: the price of capital p and the price of aggregate risk π in the unregulated equilibrium (solid)
and under regulation (dashed) as a function of ν for x = 1

5 (above) and as a function of x for
ν = 0.24 (below).

When we allow agents to write contracts on the aggregate state of the economy, two new issues
arise. First, experts may react to the policy intervention by taking more risk. They were sharing
aggregate risk optimally from an individual point of view, so if government policy somehow changes
their underlying exposure to aggregate risk, they will simply try to undo its effects and achieve
the same target exposure. Second, even if a regulatory agency could control agents’ aggregate risk-
sharing, understanding agents’ incentives for taking aggregate risk is important for the design of
optimal financial regulation. Experts may actually have good reasons to take aggregate risk. In
constrast to the incomplete contracts case, eliminating the balance sheet may not be optimal at all.

To illustrate this, consider a policy aimed at eliminating the balance sheet channel by controlling
experts’ exposure to aggregate risk. The social planner forces experts to buy insurance against
aggregate risk in the financial market, so they they end up with aggregate risk proportional to their
wealth, i.e. force θt = xt−φ

xt
(σ + σp,t) so that

σn,t = σ + σp,t

=⇒ σx,t = 0

The government also carries out a one time wealth transfer between experts and consumers in
order to keep consumers indifferent. Normalize the capital stock to k0 = 1, and let U reg (ν, x) =
(ζreg(1−x)p)1−γ

1−γ be the present value of utility for consumers under this policy of financial regulation,
and U eq (ν, x) their value in the unregulated equilibrium. Likewise, V reg (ν, x) and V eq (ν, x) are the
corresponding value functions for experts. Then the government changes the distribution of wealth
from x0 to x1 such that:
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U reg (ν, x1) = U eq (ν, x0)

We can then look at the utility of experts after the policy intervention. The left panels of Figure
6 show the change in the utility of experts, measured in equivalent percentage change in their
consumption. This policy is Pareto improving if enacted when νt is low, but is counterproductive
if enacted when νt is high. This allows us to draw two conclusions: 1) the competitive equilibrium
is not efficient and can be improved upon by financial regulation, and 2) in contrast to the setting
with incomplete contracts, a policy of eliminating the balance sheet channel is not only not optimal:
it may even be worse than the unregulated equilibrium.

To understand why the competitive equilibrium is not efficient, notice that there’s a pecuniary
externality because the price of capital appears in the “skin in the game” constraint. The higher
the price of capital, the more idiosyncratic risk an expert with a given ki,t units of capital must be
exposed to: σ̃n,i,t = φptki,tνt. If a social planner could set the price of capital to pt = 0 always46,
the moral hazard problem would disappear, and the first best benchmark of Proposition 1 could be
implemented with full idiosyncratic insurance and a balanced growth g∗.47 Intuitively, there is no
private benefit for the expert from stealing something that is worthless.

The competitive equilibrium is inefficient because experts don’t internalize the fact that by
competing for capital and bidding up its price, they create a moral hazard problem that hampers
idiosyncratic risk sharing. When it comes to aggregate risk sharing, they don’t internalize that by
taking on aggregate risk, they relax or tighten the idiosyncratic risk-sharing problem across states
of the world. A social planner that can control θt (but not the price of capital) must internalize this
effect.48

5 Conclusions

In this paper I have shown how the type of aggregate shock hitting the economy can help explain
the concentration of aggregate risk that drives balance sheet recessions and financial crises. While
we have a good understanding of why the balance sheets of more productive agents matter in an
economy with financial frictions, we don’t have a good explanation for why these agents are so
exposed to aggregate risk. Even if agents face a moral hazard problem that limits their ability to
issue equity, this does not prevent them from sharing aggregate risk, which can we accomplished by
trading a simple market index. In fact, I show that in standard models of balance sheet recessions
driven by Brownian TFP shocks, the balance sheet channel completely vanishes when agents are

46for example by taxing away output net of investment costs: τ = a− ι(gt)
47This assumes the planner can directly control gt, so that the price of capital doesn’t play any allocational role.

If it cannot, then an interesting tradeoff appears, but this extreme case illustrates the pecuniary externality very
starkly. I study optimal financial regulation in a similar setting in new work in progress.

48However, notice that in the first best with no moral hazard aggregate risk is shared proportionally, so it may seem
surprising that the financial regulation policy that forces proportional aggregate risk sharing (θt = xt−φ

xt
(σ + σp,t))

can be worse than the competitive equilibrium, as shown above. The reason for this is that in this experiment the
planner is not allowed to control the price of capital pt to eliminate the moral hazard problem.
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allowed to write contracts contingent on the aggregate state of the economy.
In contrast to TFP shocks, uncertainty shocks can generate an endogenous relative hedging

motive that induces more productive agents to take on aggregate risk. Uncertainty shocks are then
amplified through a balance sheet channel, depressing asset prices and growth, and triggering a
“flight to quality” event with low interest rates and high risk premia. I also show that uncertainty
shocks are isomorphic to financial shocks that tighten financial constraints. Finally, the model
has lessons for the design of financial regulation. Most importantly, once we understand agents’
aggregate risk sharing behavior, we realize they might have good reasons to be highly exposed
to aggregate risk. I show how a naive policy of regulating agents’ exposure to aggregate risk to
eliminate the balance sheet channel can be counterproductive, even if the competitive equilibrium
is not constrained efficient.

These results suggest three avenues for future research. The first is to think about optimal
financial regulation more carefully. While completely eliminating the balance sheet channel is not
optimal, neither is the competitive equilibrium. This suggests the question: how much concentration
of aggregate risk is “right”? The second is to consider alternative aggregate shocks. While I have
focused on uncertainty (and financial) shocks, the same tools developed in this paper can be used
to study other kind of aggregate shocks. For example, shocks to the long-run growth possibilities
of the economy can capture some features of financial crises. Indeed, pre-crisis growth projections
are often judged unduly optimistic with hindsight. This could be the result of negative aggregate
shocks to the growth rate of the economy. Liquidity traps seem to happen after big financial crisis.
During liquidity traps, monetary policy is unable to stabilize the economy, so balance sheet problems
become more severe. Integrating monetary phenomena into models of balance sheet recessions would
allow us to study the interaction of balance sheet recessions and liquidity traps.
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6 Appendix A: Contracting environment

In this Appendix I derive the “skin in the game” financial friction from a moral hazard problem.
To make the contractual setting clear, I use a discrete time approximation to continuous-time. I
introduce a moral hazard problem where the expert can divert capital and obtain a pecuniary private
benefit. Notice that because experts are risk averse and the market does not price idiosyncratic risk,
in the first best without moral hazard there is full insurance against idiosyncratic risk. In fact, if
the expert could commit to long-term contracts that control his consumption, the first best would
be implementable, even with unobservable capital diversion. The intuition is that the expert cannot
do anything with his stolen funds, and his continuation utility does not depend on the observed
return in the first best, so there is no incentive for the expert to steal. In order to obtain a binding
moral hazard problem, I restrict agents to short-term contracts as in Brunnermeier and Sannikov
(2012) or He and Krishnamurthy (2011). This has the advantage of yielding a tractable solution
and making comparisons with the literature straightforward.49 The same optimal contract arises if
long-term contracts are allowed, but experts can offer new contracts to the principal at any time.

Time is discrete, with time interval ∆ and infinite horizon: t ∈ T = {0,∆, 2∆, ...}. I will later
take the limit to continuous-time ∆→ 0. A risk averse expert can use capital to produce, and wants
to raise funds from and share risk with a principal who is risk-neutral with respect to idiosyncratic
risk. At the beginning of period t, the agent consumes et∆, buys capital kt and uses it to produce
akt∆ and invest ι(gt)kt∆ in order to make his capital grow at an expected rate gt∆. The agent’s

49An alternative would be to make consumption not observable. The form of the contract would change, but the
main message would remain, i.e. incentive compatibility does not put constraints on aggregate risk sharing.
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consumption et, capital kt and growth gt are observable and contractible. The expert then observes
an aggregate shock50 zt ∈ {−1, 1} and an idiosyncratic shock wt ∈ {−1, 1}, independent and both
i.i.d. with binomial distribution with equal probability of each node.51 After observing these shocks,
he decides how much capital to divert or steal st ≥ 0.52 As a result, capital at the end of the period
is

k̃t = kt(1 + gt∆ + σzt
√

∆ + νtwt
√

∆− st) ≥ 0

where σ ∈ Rd and the idiosyncratic volatility νt ∈ R+ follows a stochastic process I will introduce
below. The consumption et, capital stock kt, the growth gt, and the resulting capital stock k̃t are
observed by the principal, as well as the aggregate shock zt. Since we will always want to implement
no stealing, st = 0, the agent can effectively steal st ∈ {0, 2νtwt

√
∆} only if wt = 1, and cannot

steal if wt = −1. In addition, to ensure k̃t ≥ 0, I restrict gt such that 1 + g∆− σ
√

∆− νt
√

∆ ≥ 0.
Stealing works in the following way: for each unit of capital stolen, the agent gets only φ ∈ (0, 1)

units, which he must immediately sell at price pt+∆. The parameter φ captures the severity of the
moral hazard problem. With φ = 0, for example, there is no moral hazard. Because φ < 1, stealing
is inefficient: in the first best where st is observable there is no stealing (st = 0 always). In fact, no
stealing will always be optimal.53

There is a complete financial market with state price density ηt. The financial market does not
price idiosyncratic risk (ηt does not depend on the history of idiosyncratic shocks wt), although
cash flows contingent on wt can be traded and priced. The price of capital is pt, and idiosyncratic
volatility νt also follows a stochastic process. I take the price of capital pt, the state price density
ηt, and the idiosyncratic volatility νt as exogenous functions of the history of aggregate shocks
zt = (z0, z∆, ..., zt−∆), with z0 = ∅, e.g. pt = p(zt). To simplify notation, I will typically suppress
their dependence on zt. The particular process they follow is not important, but it can be chosen so
that when we take the limit to continuous time, ∆→∞ they converge to the processes in Section
2.

The history for the expert ht = (zt, wt, st) includes the history of aggregate shocks zt, the history
of idiosyncratic shocks wt = {w0, w∆, ...wt−∆} and the history of stealing st = {s0, s∆, ..., st−∆}.
At the beginning of each period t, after history ht, the expert has a bank account with nt funds.
He sells a contract Ct(ht) = (ct, kt, gt, Ft+∆)(ht), where Ft+∆(ht; zt, k̃t) is a cash payment from the
expert to the principal at the end of the period. After the contract is executed, the agent and the
principal separate and never meet again. Assume his net worth is observable when he writes the
contract, but this is wlog.

50I will focus on the case with only one aggregate shock, zt = {−1, 1}. In general if we want d shocks we will have
d+ 1 nodes for zt, i.e. zt ∈ Z with #Z = d+ 1.

51The fact that wt has binomial distribution is not essential for the results. We could have wt ∈ [L,H] and a
distribution with full support.

52This timing convention, used also in Edmans and Gabaix (2011), simplifies the analysis.
53The argument is standard, see DeMarzo and Fishman (2007)
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We can replace k̃t by the return of capital

Rt(z
t; zt, k̃t) =

pt+∆(zt, zt)

pt(zt)

k̃t
kt(ht)

=
pt+∆

pt
(1 + gt∆ + σzt

√
∆ + νtwt

√
∆− st)

which carries the same information, and write Ft+∆(ht; zt, Rt).
The market prices the contract Ct(ht)

Jt(ht) = E
[
ηt+∆

ηt
Ft+∆(ht; zt, Rt)|ht

]
Under this contract, the net worth of the expert satisfies the budget constraints

nt(ht) + Jt(ht) = ptkt(ht) + et(ht)∆ (18)

nt+∆(ht+∆) = ptkt(ht)Rt + kt(ht)(a− ι(gt(ht)))∆− Ft+∆(ht; zt, Rt) (19)

+φpt+∆kt(ht)st(ht, zt, wt) (20)

We can write wlog

Ft+∆(ht; zt, Rt) = F̄t+∆(ht) + σF,t(ht)zt
√

∆ + σ̃F,t(ht; zt)(Rt − 1)

To make the problem well defined, we impose a solvency constraint: nt(ht) ≥ 0 always.
The expert has recursive preferences

Ut =

{
ρe1−ψ
t ∆ + (1− ρ∆)Et

[
U1−γ
t+∆

] 1−ψ
1−γ
} 1

1−ψ

(21)

His value function Ut(ht) = V (zt, nt(ht)) depends on aggregate conditions captured by the history
zt, and his net worth nt(ht) (i.e. it does not depend on his previous history). A contract C is feasible
at ht with net worth nt(ht) if it satisfies the solvency constraint nt+∆(ht; zt, Rt) ≥ 0 for all zt, wt, st.
A feasible contract Ct is incentive compatible if it’s optimal for the agent to not steal for all zt and
wt.

0 ∈ arg max
s(ht;zt,wt)

{
V (zt+∆, nt+∆(ht; zt, Rt))

}
where Rt depends on st(ht; zt, wt), and s = 0 denotes st(ht; zt, wt) = 0 ∀zt, wt. Since the expert can
only steal when wt = 1, we have for all zt

ptkt(ht)
pt+∆

pt
(1 + gt(ht)∆ + σzt

√
∆− νt

√
∆)− F̄t+∆(ht)− σF,t(ht)zt

√
∆

−σ̃F,t(ht; zt)(
pt+∆

pt
(1 + gt(ht)∆ + σzt

√
∆− νt

√
∆)− 1) + φpt+∆kt(ht)2νt

√
∆ ≤
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ptkt(ht)
pt+∆

pt
(1 + gt(ht)∆ + σzt

√
∆ + νt

√
∆)− F̄t+∆(ht)− σF,t(ht)zt

√
∆

−σ̃F,t(ht; zt)(
pt+∆

pt
(1 + gt(ht)∆ + σzt

√
∆ + νt

√
∆)− 1)

which rearranging yields

σ̃F,t(ht; zt) ≤ ptkt(ht)(1− φ)

This is the “skin in the game” constraint: the expert can’t offload all of his return on the market.
He must keep a fraction φ, so that stealing costs him more than what it earns him. Notice, however,
that it imposes no constraints on σF,t(ht). Moral hazard does not restrict the expert’s ability to
share aggregate risk.

Defining θt(ht) = −σF,t(ht)
nt(ht)

and φ̃t(ht; zt) = 1− σ̃F,t(ht;zt)
ptkt(ht)

, the IC constraints says that φ̃t(ht; zt) ≥
φ for all ht and zt. Now write the budget constraints in terms of z and w (under s = 0) as follows

nt+∆(ht+∆) = pkt(ht) + kt(ht)(a− ι(gt(ht)))∆ +X(ht, zt) + Yt(ht, zt)wt
√

∆ (22)

and
n(ht) + Jt(ht) = pkt(ht) + et(ht)∆ (23)

with

Xt(ht, z) = nt(ht)θt(ht)zt
√

∆ + ptkt(ht)φ̃t(ht, zt)(
pt+∆

pt
(1 + gt∆ + σzt

√
∆)− 1)− F̄t+∆(ht)

Yt(ht, zt) = ptkt(ht)φ̃t(ht, zt)
pt+∆

pt
νt

and

Jt(ht) = E
[
ηt+∆

ηt
ptkt(ht)(R− 1)

]
− E

[
ηt+∆

ηt
Xt(ht, zt)

]
− E

[
ηt+∆

ηt
Yt(ht, zt)wt

√
∆

]
︸ ︷︷ ︸

=0

where the last term is 0 because ηt+∆

ηt
is a function of ht and zt only (does not involve wt).

An incentive compatible contract et(ht), kt(ht), gt(ht), F̄t+∆(ht), θt(ht) and φ̃t(ht, zt) is optimal
at ht with net worth nt(ht) if it maximizes

V (zt, nt(ht)) = max

{
ρet(ht)

1−ψ∆ + (1− ρ∆)Et
[
V (zt+∆, nt+∆(ht+∆)

] 1−ψ
1−γ

} 1
1−ψ

(24)

subject to the budget constraints (22) and (23), the solvency constraint nt+∆(ht+∆) ≥ 0 and the
IC constraint φ̃(ht, zt) ≥ φ. The expert can therefore use φ̃t(ht, zt) to control Yt(ht, zt) without
affecting either Jt or Xt(ht, zt), which he completely controls with θt(ht) and F̄t+∆(ht). Since he is
risk averse he will want to make Yt(ht, zt) as small as possible, and since pt+∆kt(ht)νt ≥ 0, this is
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accomplished by setting
φ̃t(ht, zt) = φ ∀ht, zt

This makes sense: because the market does not price idiosyncratic risk and the agent is risk averse,
he wants to get rid of as much of it as possible. Without moral hazard this would mean offloading
all of his return Rt on the market. With moral hazard, the “skin in the game” IC constraint is
binding in all states.

We assumed that his net worth is observable when writing the contract, but this is wlog. Notice
that since the IC constraint does not depend on the expert’s net worth, the expert will always
choose to fully reveal his net worth if he had the chance to hide it, because it relaxes the solvency
constraint.

The budget constraints actually eliminate F̄t+∆(ht), so the Bellman equation (24) characterizes
the solution to the sequential portfolio problem of choosing et(ht), kt(ht), gt(ht), θt(ht), and φ̃(ht, zt)

to maximize U0, defined recursively according to (21), subject to the budget constraints (22) and
(23), the solvency constraint nt(ht) ≥ 0 (this is included in the definition of feasible), and the IC
constraint φ̃t(ht; zt) ≥ φ for all ht and zt.

Finally, using φ̃(ht, zt) = φ always, we can take the limit to continuous-time ∆→ 0, eliminating
terms smaller than ∆, to obtain the experts’ problem in Section 254

7 Appendix B: omitted proofs

7.1 Proof of Proposition 1

Proof. Without any financial frictions, idiosyncratic risk can be perfectly shared and has zero price
in equilibrium. Capital then must be priced by arbitrage

gi,t + µp,t + σσ′p,t +
a− ι (gi,t)

pt
− rt = πt (σ + σp,t) (25)

and experts face the same portfolio problem as consumers, with the exception of the choice of the
growth rate g, pinned down by the static FOC

ι′ (gt) = pt

We have, in effect, a standard representative agent model with a stationary growth path with
risk-free interest rate:

rt = ρ+ ψgt −
1

2
(1 + ψ) γσ2

and price of aggregate risk
πt = γσ

54Of course, for this we need to chose the stochastic process for ηt, pt and νt so that they converge to the continuous-
time processes of Section 2.

40



In a stationary equilibrium the price of capital is constant so we have µp,t = σp,t = 0, and replacing
all of this in (25) gives (7). For the agents’ problem to be well defined we need ρ − (1 − ψ)g∗ +

(1− ψ) γ2σ
2 > 0.

7.2 Proof of Proposition 2

Proof. Standard from homothetic preferences and taking first order conditions in the HJB equations.

7.3 Proof of Proposition 3

Proof. From (15) we see that if σν = 0 then σx,t = 0. Furthermore, the idiosyncratic volatility of
capital, νt is then deterministic because it is the solution to an ODE (2). We can replace νt with t
in the Markov equilibrium (and obtain a time-dependent equilibrium). The only possibly stochastic
state variable is xt, but we have seen that it can only have a stochastic drift. However, since all
equilibrium objects are functions of x and time t, then by (9) we see that xt is the deterministic
solution to a time-dependent ODE.

7.4 Proof of Proposition 4

Proof. We solve the experts’ problem with the added constraint that θt = θ̃tB. The FOC for θ̃t
yields:

Bσ′n,t = B
πt
γ
− γ − 1

γ
Bσ′ξ,t

with an analogous condition for consumers. Using as before σx,t = xt(1− xt)(σn,t− σw,t) we obtain

Bσ′x,t = 0

In addition, recall the formula

σn,t = φ
1

xt
(σ + σp,t) + θ̃tB = φ

1

xt
(σ +

px
p
σx,t) + θ̃tB

Because σ is in the row space of B, we can write σ = κB for some κ ∈ Rd′ , and using σx,t =

xt(σn,t − σ − σp,t) we obtain

σx,t = xt

φ
xt
κ+ θ̃t − κ

(1− px
p (φ− x))

B = mtB

So we get
Bσ′x,t = BB′m′t = 0

and because B is of full rank this implies σx,t = 0. By the same argument as in Proposition 3, xt
is deterministic.
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Corollary: Experts’ equity has a loading on aggregate risk σ + σp,t = σ, since σp,t = 0 in this
equilibrium. If agents can trade a market index, σ is in the row space of B.

8 Appendix C: solving for the equilibrium

The strategy to solve for the equilibrium when uncertainty shocks hit the economy is to first use
optimality and market clearing conditions to obtain expressions for equilibrium objects in terms of
the stochastic processes for p, ξ, ζ, and then use Ito’s lemma to map the problem into a system of
partial differential equations. In order to obtain a non-degenerate stationary long-run distribution
for x, I also introduce turnover among experts: they retire with independent Poisson arrival rate
τ > 0. When they retire they don’t consume their wealth right away, they simply become consumers.
Without turnover, experts want to postpone consumption and approach xt → 1 as t→∞. Turnover
modifies experts’ HJB slightly:

ρ

1− ψ
= max

ĉ,g,k̂,θ

ê1−ψ

1− ψ
ρξψ−1
t +

τ

1− γ

((
ζ

ξ

)1−γ
− 1

)
+µn− ê+µξ−

γ

2

(
σ2
n + σ2

ξ − 2(1− γ)σnσξ + σ̃2
n

)
(26)

With Poisson intensity τ the expert retires and becomes a consumer, losing the continuation utility
of an expert, but gaining that of a consumer. For this reason, consumers’ wealth multiplier ζ
appears in experts’ HJB equation. Consumers have the same HJB equation as before. The FOC
for consumption for experts and consumers are:

ê = ρ
1
ψ ξ

ψ−1
ψ

ĉ = ρ
1
ψ ζ

ψ−1
ψ

So market clearing in the consumption goods market requires:

ρ
1
ψ

(
ξ
ψ−1
ψ x+ ζ

ψ−1
ψ (1− x)

)
=
a− ι
p

(27)

Equation (15) provides a formula for σx using Ων = ξν
ξ −

ζν
ζ and Ωx = ξx

ξ −
ζx
ζ :

σx =
(1− x)x1−γ

γ

(
ξν
ξ −

ζν
ζ

)
1− (1− x)x1−γ

γ

(
ξx
ξ −

ζx
ζ

)σν√νt
We can use Ito’s lemma to obtain expressions for

σp =
pν
p
σν
√
νt +

px
p
σx, σξ =

ξν
ξ
σν
√
νt +

ξx
ξ
σx σζ =

ζν
ζ
σν
√
νt +

ζx
ζ
σx
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and the definition of σx from (9) to obtain and expression for

σn = σ + σp +
σx
x

Then we use experts FOC for aggregate risk sharing (11) to obtain an expression for the price of
aggregate risk

π = γσn + (γ − 1)σξ

Consumers’ exposure to aggregate risk is taken from (12):

σw =
π

γ
− γ − 1

γ
σζ

Experts’ exposure to idiosyncratic risk is given by σ̃n = φ
xν. We can now use consumers’ budget

constraint to obtain the drift of their wealth (before consumption)

µw = r + πσw

and plugging into their HJB equation we obtain an expression for the risk-free interest rate

r =
ρ

1− ψ
− ψ

1− ψ
ρ

1
ψ ζ

ψ−1
ψ − πσw − µζ +

γ

2

(
σ2
w + σ2

ζ − 2(1− γ)σwσζ
)

where the only term which hasn’t been solved for yet is µζ . We use the FOC for capital (10) and
the expression for the risk-free interest rate and plug into the formula for µn from equation (5) to
get

µn = r + γ
1

x2
(φν)2︸ ︷︷ ︸

αtpk̂(φν)

+πσn

In equilibrium experts receive the risk-free interest on their net worth, plus a premium for the
idiosyncratic risk they carry through capital, γ 1

x2 (φν)2, and a risk premium for the aggregate risk
they carry, πσn. This allows us to compute the drift of the endogenous state variable x in terms of
known objects, from (9) (appropriately modified for turnover) and (10)

µx = µn − ê− τ +
a− ι
p
− r − π (σ + σp)−

γ

x
(φν)2 + (σ + σp)

2 − σn (σ + σp)

Turnover works to reduce the fraction of aggregate wealth that belongs to experts through the term
−τ . Using Ito’s lemma we get expressions for the drift of p, ξ, and ζ:

µp =
pν
p
µνν +

px
p
µx +

1

2

(
pνν
p
σ2
νν + 2

pνx
p
σν
√
νtσx +

pxx
p
σ2
x

)
µξ =

ξν
ξ
µνν +

ξx
ξ
µx +

1

2

(
ξνν
ξ
σ2
νν + 2

ξνx
ξ
σν
√
νtσx +

ξxx
ξ
σ2
x

)
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µζ =
ζν
ζ
µνν +

ζx
ζ
µx +

1

2

(
ζνν
ζ
σ2
νν + 2

ζνx
ζ
σν
√
νtσxx+

ζxx
ζ
σ2
x

)
Finally, experts’ HJB (26) and their FOC for capital (10) provide two second order partial differential
equations in p, ξ, and ζ. Together with the market clearing condition for consumption (27) they
characterize the Markov equilibrium. The idiosyncratic volatility νt moves exogenously in (0,∞)

and x ∈ (0, 1). The system never reaches any of its boundaries.

Numerical Algorithm. The system of partial differential equations can be solved in several
ways. I use a finite difference scheme. I start with a finite horizon problem which modifies the HJB
equations and FOC for capital by adding a time derivative when computing the drifts. Now we
must look for p, ξ, and ζ as functions of (ν, x, t). Notice, however, that if we find a stationary point
such that the time derivatives vanish, we have found a solution for the infinite horizon equilibrium.

Starting from some terminal values for p, ξ, and ζ at t = T , we can solve the system backwards
using any standard integrator such as Runge-Kutta 4. Because the market clearing condition for
consumption is an algebraic constraint, it is easier to differentiate with respect to time and obtain
a differential equation. Terminal values at t = T are not particularly important as long as they
satisfy the market clearing condition.

As we move backwards in time, the solution should approach the solution for the time-homogenous
system that characterizes the infinite horizon equilibrium. This suggests that the algorithm will con-
verge to the desired solution for a wide variety of terminal conditions. In any case, as long as it
converges to the stationary solution, we have found the infinite horizon equilibrium, and this can
be verified.
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