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Abstract

Economies tend to diversify and then re-specialize as they develop. An economy

with many industries with di¤erent productivity growth rates may display these "stages

of diversi�cation" as a result of productivity-driven structural change if initially re-

sources are concentrated in industries other than those that dominate economic struc-

ture in the long run. A calibrated multi-industry growth model with many countries

replicates the main features of the "stages of diversi�cation". We also present evi-

dence that countries systematically shift resources towards manufacturing industries

with rapid productivity growth, and towards sectors with low productivity growth,

consistent with the model.
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1 Introduction

Economic development is a joint process of economic growth and economic restructuring.1

It is well known that economic development tends to involve a shift of resources away from

agriculture and towards services.2 In addition, Imbs and Wacziarg (2003, hereafter IW)

show that there exist "stages of diversi�cation": along the development path, countries be-

gin with employment concentrated in a few industries, diversifying until they reach a certain

threshold in income per capita beyond which they re-specialize. The �nding that industrial

specialization is U-shaped along the development path is more general than just the rise of

services and the decline of agriculture: IW document the "stages" across 9 broad sectors

and also across 28 manufacturing industries.3 Although this specialization pattern is ar-

guably the broadest stylized fact of structural transformation, the literature on structural

transformation and growth has not accounted for the "stages of diversi�cation."

This paper aims to �ll this gap in the literature. We show that persistent productivity

di¤erences across industries can account for the observed patterns of economic restructur-

ing along the development path. We study a multi-sector model economy that highlights

productivity growth di¤erences across sectors, and also across manufacturing industries. We

show that the pattern of diversi�cation followed by specialization can be accounted for sim-

ply by the dynamics of industry structure resulting from these di¤erences, and we present

empirical evidence that supports our hypothesis, underlining the importance of productivity

growth as a factor of structural transformation.

Consider the following intuition. Suppose that markets are competitive, and that there

are two goods that are substitutes in consumption. Then, persistent di¤erences in produc-

tivity growth rates lead to an increase in the GDP share of the industry with the most rapid

1The World Bank (2012) de�nes economic development as:

Qualitative change and restructuring in a country�s economy in connection with technolog-

ical and social progress. The main indicator of economic development is increasing GNP per

capita (or GDP per capita), re�ecting an increase in the economic productivity and average

material wellbeing of a country�s population. Economic development is closely linked with

economic growth.

2See Gollin, Parente and Rogerson (2007), Restuccia, Yang and Zhu (2008) and Duarte and Restuccia

(2010) for recent work documenting and analyzing the sources and consequences of these empirical regular-

ities.
3Koren and Tenreyro (2007) report a similar �nding across 19 manufacturing industries and across 19

sectors.
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productivity growth, as the good it produces registers a decline in its relative price. However,

if the economy starts out being specialized in the other industry, then the economy diversi�es

until half of resources are devoted to each industry, after which it begins to specialize again.

The economy exhibits a "U" shaped pattern of specialization along the development path.

Conversely, suppose the goods are complements. Then, persistent di¤erences in productivity

growth rates lead to an increase in the GDP share of the industry with the slowest produc-

tivity growth, also generating a "U" shape if the economy starts out specialized in the other

industry.4

First, we provide crucial evidence that, as they grow, countries indeed systematically shift

resources among industries with di¤erent total factor productivity (TFP) growth rates. The

literature suggests that goods are substitutes within manufacturing, whereas goods are com-

plements across broad sectors: we would then expect that resources shift towards high-TFP

growth industries within manufacturing, whereas resources shift towards low-TFP growth

sectors. This is exactly what we �nd in the data, providing strong evidence that structural

change along the development path is indeed related to productivity growth di¤erences, as

we hypothesize.5

Then, we develop a multi-industry growth model in which productivity growth rates di¤er

across industries. We calibrate initial productivity levels so as to reproduce the industry and

sectoral composition of each of the 51 countries in the IW dataset in 1963, and allow the

structure of the model economies to evolve over time based on persistent productivity growth

di¤erences across industries. Along the development path, the labor shares of di¤erent

industries evolve due to disparities between their TFP growth rates. Applying the same

non-parametric method as IW to the model-generated series of industrial specialization, the

calibrated model generates the U-shaped specialization pattern found in IW. Our results hold

both within manufacturing and across broad sectors, and are robust to a number of variations

in the calibration procedure. We conclude that di¤erences in TFP growth across industries

indeed contribute to the "stages of diversi�cation," and that an important characteristic of

the process of economic development is the reallocation of resources among industries with

4Understanding the initial conditions themselves is beyond the scope of the paper. However, we do not

impose that initial conditions are skewed one way or another: initial conditions are drawn from the data.

We also show that our ability to match the U shape is not driven simply by the fact that we match initial

conditions
5Koren and Tenreyro (2007) �nd that along the development path economies shift resources towards low-

volatility industries. We �nd that our industry productivity growth measures are not signi�cantly correlated

with their industry volatility measures, so our �ndings o¤er evidence for a distinct feature of structural

transformation.
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di¤erent rates of productivity growth.

Industry productivity growth rates are calibrated using US data. The use of common in-

dustry TFP growth rates across countries provides a clean experiment, as empirical country-

speci�c rates could be in�uenced by industrial structure.6 At the same time, this assump-

tion is consistent with the �nding in Rodrik (2012) that there is unconditional convergence

in labor productivity across countries among disaggregated manufacturing industries. We

perform several robustness checks, using di¤erent productivity measures and allowing for

productivity convergence dynamics, �nding that the results are robust to variation in pro-

ductivity growth rates across countries, as well as to di¤erent approaches to productivity

measurement.

Ngai and Pissarides (2007) and Acemoglu and Guerrieri (2008) develop growth mod-

els where industry TFP di¤erences generate structural change in the manner of our paper.

We build on their theoretical insights to provide quantitative evidence that productivity

change is not only an important factor of structural change across sectors but also within

manufacturing, and moreover this mechanism can account for the stages of diversi�cation.

The literature has suggested several mechanisms underlying structural transformation, and

we provide evidence supporting the importance of the productivity growth mechanism us-

ing industry and sector data from a broad set of countries, complementing the results of

Herrendorf, Herrington and Valentinyi (2013), who show that sectoral productivity growth

di¤erences are the main factor behind structural transformation in the US among broad

sectors.

We also make methodolgical contribution to the computation of growth models along

an unbalanced growth path. We follow Rogerson (2008), Duarte and Restuccia (2010) and

others in computing transition dynamics in multi-sector growth models without capital.7

This is for simplicity but also without loss of generality if capital shares are similar across

industries. We also show that, if we allow capital shares to vary across industries, then not

only do our results remain robust but also capital share di¤erences on their own are unable

6Industry size is viewed by some as a potential determinant of productivity-enhancing R&D and hence

possibly of productivity growth, although the evidence is mixed �see the survey of Cohen (2011). We wish

to isolate the impact of productivity growth on economic structure from any feedback that might occur.
7Duarte and Restuccia (2010) also assume that preferences over the agricultural good are di¤erent above

and below a subsistence threshold, in line with other papers that focus on agriculture such as Gollin, Parente

and Rogerson (2007) and Restuccia, Yang and Zhu (2008). We abstract from such non-homotheticity of

preferences to focus on the productivity mechanism: also, our industries and sectors are much more highly

disaggregated, so that patterns of structural change among them are unlikely to depend on a subsistence

requirement in one particular sector or industry.
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to account for the stages of diversi�cation. However, in a technical appendix, we develop a

growth model with capital, and show that our results are indeed similar in that context. We

do not include it in the main text because it turns out that there are important technical

complications involved in computing such a model. In particular, the conditions shown in

Ngai and Pissarides (2007) to be required for a balanced growth path do not hold empirically

(the elasticity of substitution among capital goods is not one). Our results in the model with

capital are important not only for robustness, but also because our simulation procedure for

computing a model economy with many sectors in transition is of independent interest, since

it can be used in many contexts where the model does not admit a balanced growth path

(for example, when production functions are not of Cobb-Douglas form as in Krusell et al

(2000) or He and Liu (2008)).

Our work also complements the literature on the link between trade and development

by establishing a benchmark characterizing the evolution of economic structure in a closed

economy. The literature tends to interpret the "stages of diversi�cation" as being related

to trade.8 However, before concluding that international trade is an important determinant

of the evolution of economic structure along the development path, we need to understand

how economic structure evolves under autarky. If a closed economy can generate the stages

of diversi�cation using well-understood and empirically supported mechanisms, Ockham�s

principle of parsimony indicates that a key role for trade in generating the "stages" should

not be assumed a priori. Indeed, we show that even in a closed economy persistent total

factor productivity (TFP) growth di¤erences across industries are su¢ cient to generate a

U-shaped pattern of specialization that is very close to the pattern in the data.

Recent work by Imbs, Montenegro and Wacziarg (2012) relates the stages of diversi�-

cation to, �rst, integration of markets within countries, followed by integration of markets

across countries. In fact, our account is complementary to theirs. Comparing their theory

with data, they �nd that their predicted patterns of integration and specialization are ob-

served more clearly among tradeables than among non-tradeables. In contrast, our model

accounts well for the "stages" both within manufacturing (often identi�ed with tradeables)

and also across broad sectors (including many non-tradeable services). Indeed our sector-

level results are the strongest, suggesting that growth-theoretic concerns might be most im-

portant for non-tradeables, whereas trade-theoretic mechanisms should have some traction

within manufacturing.

The rest of the paper is organized as follows. Section 2 provides evidence concerning

8See IW, and also Kalemli-Ozcan, Sorensen and Yosha (2003), Rodrik (2008) and Imbs et al (2012).
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the evolution of economic structure along the development path, including evidence linking

structural transformation to shifts in resources among industries with di¤erent rates of pro-

ductivity growth. Section 3 describes the model, and Section 4 delivers the main results.

Section 5 provides evidence supporting the predictions of the model regarding shifts in re-

sources among industries and sectors with di¤erent TFP growth rates. Section 6 concludes

with a discussion of possibilities for future work.

2 Diversi�cation and TFP Growth di¤erences

We begin by describing the stylized facts of how industrial structure evolves along the de-

velopment path. First, we summarize the methodology and results of IW. Then, we provide

new evidence that, along the development path, countries do indeed systematically shift re-

sources among industries and sectors based on industry rates of productivity growth. This

supports the theory of productivity-driven structural change in general, not just as it relates

to the stages of diversi�cation, so these results are important and of general interest.

2.1 Economic structure along the development path

IW use a nonparametric methodology to investigate the relationship between sectorial diver-

si�cation and income. Manufacturing industry data are drawn from the INDSTAT3 database

distributed by UNIDO, whereas sector-level data are provided by the ILO, and data on ag-

gregate income per capita are from the Penn World Tables. The industry (or sector) share

is de�ned as the share of manufacturing employment.

IW use the Gini coe¢ cient of industry shares GINIc;t to measure the degree of industrial

concentration in any country c at date t: the more equal the industry shares (i.e. the

lower the Gini), the more diversi�ed the economic structure.9 Then, they apply a procedure

related to robust locally weighted scatterplot smoothing (lowess) to uncover the link between

income per capita GDPc;t and specialization. Speci�cally, they regress the Gini coe¢ cients

of industrial specialization on income per capita with country �xed e¤ects, using rolling

income windows.

GINIc;t = �̂c (x) + �̂ (x)GDPc;t + "c;t, GDPc;t 2 [x��=2; x+�=2] : (1)

9Although IW focus on Gini coe¢ cients, they use several other measures of specialization for robustness.

We focus on Gini coe¢ cients too, but results for other measures are available upon request.
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The income interval size� is �xed at $5; 000 (in 1985 dollars) and the midpoint x of the inter-

val gradually moves away from the previous income range (the increment across regressions

is $25). Then, they plot the �tted Gini coe¢ cients estimated at the midpoint of the income

interval in each regression. They �nd a U-shaped relationship between Gini coe¢ cients and

income levels. Their U-shaped relationship is robust across sectors that account for the

entire private economy of the countries concerned10 (ILO data) and within manufacturing

(UNIDO data). Figure 1 reproduces their main results.
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Figure 1. IW results. Each point in the Figure is the �tted value �̂c (x) + �̂ (x)x

from equation (1) , where x is GDP per capita. Con�dence bands represent

two standard errors of the coe¢ cient �̂ (x) . The left panel is industry concentration

within manufacturing estimated using INDSTAT3 data provided by UNIDO. The

right panel is sectorial concentration across the entire economy estimated using ILO data.

The middle line is the point estimate, whereas the other lines re�ect the point estimate

plus or minus the standard error of �̂ (x) , as in IW.

10The 9 sectors are Agriculture, Hunting, Forestry and Fishing; Mining and Quarrying; Mining and

Quarrying; Electricity, Gas and Water; Construction; Wholesale and Retail Trade and Restaurants and

Hotels; Transport, Storage and Communication; Financing, Insurance, Real Estate and Business Services;

and Community, Social and Personal Services.
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2.2 Productivity and structural change

This paper will argue that these patterns can be related to systematic shifts of resources

between industries that experience di¤erent rates of productivity growth. Ngai and Pissarides

(2007) and Acemoglu and Guerrieri (2008) show that, if goods are substitutes, then in

equilibrium resources should shift towards industries with rapid productivity growth. If

goods are complements, then in equilibrium resources should shift towards industries with

low productivity growth. This productivity mechanism of structural change would then be

capable of generating the stages of diversi�cation, depending on initial conditions.

To see this, suppose that there are two industries, and that "specialization" is measured

using the Gini coe¢ cient. Let gi be the productivity growth factor of industry i 2 f1; 2g,
and let " be the elasticity of substitution between these goods. If sjt is the share of industry

j, then the Gini coe¢ cient equals 0:5�min fs1t; 1� s1tg.11 Now suppose that g1 < g2. Then,

if " > 1, for a su¢ ciently low initial share of industry 1 the economy will start o¤ specialized

in industry 1 whereas in all periods thereafter the share of 2 will increase and that of 1

will decrease. Thus, the minimum of the two industry shares (s2t) will grow until its share

reaches 0:5 and the Gini coe¢ cient has dropped to 0. After this, the minimum of the two

becomes s1t and, as its share continues to decrease, the Gini coe¢ cient rises again. Thus,

for a time, specialization decreases, until s1t drops below half �after which specialization

will begin increasing again. Alternatively, if " < 1, for su¢ ciently low initial productivity

in industry 2 the economy will start o¤ specialized in industry 2, whereas in all periods

thereafter the share of 1 will increase, and the same dynamics obtain.

Along the development path, do we indeed observe resources moving between industries

systematically based on their productivity growth rates? To see this, we require two further

pieces of information. First, we require estimates of the elasticities of substitution across

goods �to be precise, we require knowledge of whether these elasticities are greater or less

than unity. Second, we require measures of productivity growth for the industries and sectors

considered in IW.

Across broad sectors, it is generally thought that the elasticity of substitution is less

than one �see Ngai and Pissarides (2004) and Herrendorf, Rogerson and Valentinyi (2013).

However, within manufacturing, the elasticity of substitution is thought to be more than

one �see Anderson and Van Wincoop (2004) and Ilyina and Samaniego (2012). Thus, our

11To see this, note that the Lorenz curve of industry composition when there are 2 industries is a line

joining (0; 0) to (0:5;min fs1; s2g) and another line joining (0:5;min fs1; s2g) to (1; 1). The Gini coe¢ cient
is de�ned as the integral of the area above this line.
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theory has two strong predictions:

1. within manufacturing, as countries develop they shift resources towards high-TFP

growth industries;

2. in contrast, across broad sectors, as countries develop they shift resources towards

low-TFP growth sectors.

Indeed, if veri�ed, these predictions are of independent interest, as they constitute a

hitherto unknown pattern of structural transformation along the development path, and

as they substantiate the importance of productivity growth di¤erences as an important

mechanism underlying structural transformation.

To test whether the data support these predictions, we �rst need a measure of produc-

tivity growth gi for di¤erent sectors and di¤erent manufacturing industries. We obtain these

using US data in a manner described in detail in our quantitative experiments in Section 4.

Using these measures, we compute a time series for the weighted average value gi across

sectors and (separately) within manufacturing for each country and at each date.12 The

weights are the employment shares of each sector as reported in the ILO data, or of each

manufacturing industry as reported in the UNIDO data. Finally, we examine the empiri-

cal relationship between average TFP growth across sectors and GDP per capita (as well

as between average TFP growth across manufacturing industries and GDP per capita) by

applying the nonparametric method in IW to this measure instead of the Gini coe¢ cient

of industry shares. This tells us whether there are systematic shifts in resources among in-

dustries with di¤erent TFP growth rates along the development path. TFP growth rates gi
in this experiment are assumed constant in each industry across time and across countries,

so any observed patterns are solely due to patterns of specialization along the development

path.

Figure 2 shows the estimated curves of industry- and sector-weighted average TFP growth

rates. Within manufacturing, there is a mostly positive relationship with income, indicat-

ing that, behind the "stages of diversi�cation", economic structure shifts towards industries

with rapid TFP growth. In the ILO sector data, by contrast, there is a negative relation-

ship. These results strongly support the idea that TFP growth di¤erences are an important

factor or structural transformation along the development path, and it is striking that the

opposite is happening within manufacturing and across broad sectors, consistent with the

12For this exercise we normalize gi so that the mean measure is zero and the standard deviation is one.
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view in the literature that manufacturing goods are substitutes whereas sector-level goods

are complements.
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Figure 2 �Trends in average TFP growthwithin manufacturing and across sectors

along the development path. The middle line is the point estimate, whereas the other

lines re�ect the point estimate plus or minus the standard error of �̂ (x) , as in IW.

Another way of testing these predictions is to examine whether changes in the shares

of individual industries along the development path are systematically related to gi. For

example, within manufacturing, we should observe that the share of the highest-TFP growth

industry (Non-electrical machinery) rises with income per head, whereas the share of the

lowest-TFP growth industry (Tobacco) declines with income per head. Figure 3 shows that

this is exactly the case, where the curves are estimated by applying the IW method to the

share of each industry. More broadly, comparing across all industries in manufacturing, we

expect the slope of the relationship between the share of a given industry and GDP to be

positively related to its level of gi. Indeed, the correlation between the slopes and gi is 0:60.

On the other hand, across sectors, the slope of the relationship between sector shares and

GDP should be negatively related to gi. The correlation coe¢ cient is �0:65.
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Figure 3 �Trends in industry shares along the development path. The curves

represent the link between industry shares and income per head for the highest-

and lowest-TFP growth industries, Non-electrical Machinery and Tobacco,

computed using the IW methodology.

3 Model economy

We now present a simple model that can account for these shifts in employment among

industries and sectors, as well as accounting for the stages of diversi�cation.

Suppose there are N competitive industries, and C countries, with production functions

of the form:

ycit = ActAitncit (2)

where yict and nict are output and labor in industry i, country c at date t, productivity Ait
grows according to Ait = Ai0g

t
i and Act is arbitrary for now. The growth factor gi may vary

across industries. As is common in this literature we abstract for now from capital to focus

on the productivity mechanism, but discuss capital later in Section 5.13

Producers solve the problem

max
nit

fpcitycit � wctncitg (3)

where pict is the price of good i, and wct is the wage.

13We abstract from intermediate goods because it would not signi�cantly a¤ect results. See the Appendix

for details.
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Assume all these goods are consumed and that preferences display constant elasticity of

substitution, so that

u (yct) =

"
NX
i=1

�i � y
"�1
"

ict

# "
"�1

;
NX
i=1

�i = 1 (4)

where " is the elasticity of substitution among goods and yct= fy1ct; :::; yNctg.
Henceforth we suppress the country subscripts c except where needed. Let vit be value

added in industry i, so vit = pityit where pit is the price of good i. Then de�ne the growth

factor of value added Git as:

Git = vi;t+1=vit:

On the demand side, the consumer�s �rst order conditions imply pit
pjt
=
�
yj;t
yi;t

� 1
"s �i

�j
, so that

Git

Gjt

=

"
pi;t+1
pit

pj;t+1
pjt

#1�"
: (5)

On the supply side, it is straightforward to show that Ait
Ajt

=
pjt
pit
. Thus, in equilibrium

equation (5) becomes:
Git

Gjt

=

�
gi
gj

�"�1
: (6)

Let si;t be the share of manufacturing value added (or employment14) of industry i at

date t. Given shares si;t for one year t, we can compute shares for the next year t + 1 by

multiplying si;t by g"�1i , re-scaling so the shares add to one,15 and repeating this procedure

to get predicted shares for as many years as desired. Thus, given initial conditions, a value

of ", and productivity growth factors gi, we can compute model-generated industry shares

of manufacturing, and subject the resulting industry structure to the same nonparametric

methodology as in IW to study whether productivity di¤erences might be able to generate

a U-shaped specialization pattern.

14Notice that, while we de�ned Git = vi;t+1=vit, (6) would also hold if Git = ni;t+1=nit . to see this,

remember the household�s �rst order conditions imply that pit
pjt
=
�
yj;t
yi;t

� 1
"s �s;i

�s;j
. Plugging in the production

functions and recalling that capital labor ratios are constant across industries yields pit
pjt
=
�

Ajtnjt
Aitn

1��
it

� 1
"s �s;i

�s;j
.

Rearranging, we have that nit
njt

= pityit
pjtyjt

:
15Given si;t, let zi;t+1 = si;tg

"�1
i . Then si;t+1 = zi;t+1=

PN
j=1 zj;t+1:
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4 Quantitative Experiments

4.1 Calibration

We now examine whether the model presented above generates a U-shaped specialization

pattern for the 9 sectors in the ILO data, which cover the entire private economy. To do

this requires values of gi for each industry or sector, as well as the elasticity ", preference

parameters �i, initial productivity levels Ai;0 and a series for country productivity Ac;t.

To measure gi for di¤erent sectors, we �rst take the manufacturing sector value of gi to

equal the average value of total factor productivity derived from the NBER manufacturing

productivity database.16 Then, we calibrate gi for the other sectors using their inverse price

growth rates relative to manufacturing, using price data drawn from the US Bureau of

Economic Analysis. See Table 2 in the Appendix for the gi values.

We obtain an estimate of " by observing that equation (6) is equivalent to:

logGi = a+ ("� 1) log gi + �i (7)

where a = logGj � log gj for some arbitrary industry j and �i is any unmodeled noise in the
relationship. Thus, regressing value-added growth rates (or employment growth rates) on

TFP growth rates yields a coe¢ cient equal to "� 1.
Using US data, and also pooling across countries, we estimate that " is not signi�cantly

di¤erent from zero.17 This is consistent with Herrendorf, Rogerson and Valentinyi (2013),

who estimate that " = 0 across agriculture, manufacturing and services. Thus, we set " = 0

across sectors. Notice that the fact that we have an estimate of " that is signi�cantly di¤erent

from one is strong corroborative evidence that industry productivity growth rates are indeed

linked to structural change.

16We use total factor productivity rather than labor productivity because it is without loss of generality

if factor shares are the same across industries (so the same values of gi can be used in a model with capital,

such as the one in the technical appendix). To see this, suppose the production function includes capital.

In this case, yit = Aitk
�
itn

1��
it . The �rst order conditions can be written pit�yit=Kit = rt (where r is the

interest rate) and pit(1 � �)yit=nit = wt. Dividing one condition by the other we get that Kit

nit
= �wt

(1��)rt .

Then, dividing any of the �rst order conditions for industry i by that for j yields the result that pit
pjt
=

Ajt

Ait
,

as before. Later in the paper we explore the implications of allowing for di¤erences in capital shares.
17We estimated equation (7) using US time series from the ILO database, allowing for autocorrelated

errors and obtained an estimate of " � 1 = �0:84 with a standard error of 0:31. Thus, the estimate of " is
not signi�cantly di¤erent from zero. We repeated this procedure pooling the data for all countries and using

country �xed e¤ects, obtaining an estimate for " � 1 of �1:16, with a standard error 0:19 such that once
more " is not signi�cantly di¤erent from zero.
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As a benchmark we assume that the values of gi are constant across countries. The use of

common TFP growth rates across countries provides the cleanest experiment, since it is only

the initial conditions that vary across countries. For example, empirical country-speci�c TFP

growth rates could be in�uenced by industrial structure: as discussed in the survey of Cohen

(2011), industry size is viewed by some as a potential determinant of productivity-enhancing

R&D and hence possibly of productivity growth.18 Later we will check the robustness of our

results by allowing for convergence dynamics. We do not use country-speci�c measures of

industry TFP growth because they do not exist for a wide sample of countries.19

We set the utility weights �i = 1=N , where N is the number of sectors or industries in

the model. This is without loss of generality as it amounts to a normalization of the units

used to measure production in each industry.20 We set Ai0 to match the sector shares in the

initial year as reported in the ILO data.

Finally, we select Act to match GDP per person for each country in each year. Since

Act a¤ects all industries equally, it does not impact economic structure. We also develop

and calibrate a version of the model that has capital and also generates a series for real

GDP: that model is relegated to the Appendix because it turns out to entail considerable

computational complications that obscure the simplicity of our results.

Our simulation procedure is as follows. For each country, we match the initial industry

shares in 1969 drawn from the ILO database, and simulate a time series of future industry

shares from 1970 until 1992 using equation (6). We then include the same country-time pairs

as IW, so that we have a model-generated unbalanced panel of industry shares that is of the

same dimensions as that in the IW database. We apply the IW non-parametric procedure to

these pseudodata, and compare the �tted curves that link economic structure to GDP per

head.

We also perform this exercise independently for the 28 manufacturing industries examined

in IW �these are the industries in the ISIC revision 2 industry classi�cation used by the

UNIDO INDSTAT3 database. This requires an independent calibration of the model. The

procedure is exactly the same as above, except for some di¤erences in the data used to set

18At the same time it is worth noting that the evidence regarding this link is inconclusive, see Cohen

(2011) and Ngai and Samaniego (2011).
19While in principle we could compute country-industry speci�c TFP growth rates using the country-

speci�c UNIDO data, we found that in many cases the resulting rates were absurdly high or low. We

interpret this as indicating that the investment data in those countries are likely subject to signi�cant

measurement error.
20For example, suppose I measure apples in numbers of apples and �nd that �apples = 1 and Aapples;0 = 1.

I could choose to measure apples in units of "half an apple", then �apples = 0:5 and Aapples;0 = 2.
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up the calibration.21

For our manufacturing simulation, we estimate gi using the TFP values in the NBER

manufacturing productivity database. Note that the NBER industry classi�cation is 4-digit

SIC. We use Domar weights to convert NBER SIC industry TFP growth values into values

for the ISIC revision 2 classi�cation used by UNIDO. The value of gi is the industry average

over time.22 See Table 1 in the Appendix for the values of gi.

For manufacturing data we require a di¤erent value of ". We use the value " = 3:75, which

is estimated in Ilyina and Samaniego (2012) using equation (7) as above.23 Notice that by this

estimate " > 1, consistent with independent estimates from the literature on international

trade.24 Again, the fact that we have an estimate of " that is signi�cantly di¤erent from one

is strong corroborative evidence that industry productivity growth di¤erences are indeed

linked to structural transformation. Finally, as before, we use the initial industry shares

in 1963 from the UNIDO employment data, and simulate a time series of future industry

shares until 1992 using equation (6). To the subsample of these data that correspond to the

entries in the IW data, we apply the IW non-parametric procedure to extract the model link

between income and specialization.

4.2 Results

We follow the IW methodology and regress Gini coe¢ cients generated from our simula-

tion on income per capita. Our results display a similar U-shaped relation between sector

concentration and income levels: see Figure 4. In addition, the turning point is roughly

$9; 000, as found by IW. This is the same across broad sectors and within manufacturing

data, something that lends weight to the empirical relevance of the productivity mechanism.

21In the technical appendix we also develop a model with capital where there are broad sectors, one of

which is manufacturing which is further disaggregated into sub-industries. Results turn out to be very

similar.
22For robustness we also estimated gi in three other ways, all of which generate estimates that are highly

correlated with each other. First, we used the perpetual inventory method to derive productivity growth

measures for the US from the UNIDO data itself. Second, we used the growth gap between industry value

added and industry production indices in the UNIDO data as indicators of relative price changes in the US.

Third, we derived a measure of gi from the observed changes in employment patterms around the world:

this measure of gi provides an extremely tight �t to the data. Details are in the Appendix.
23Ilyina and Samaniego (2012) estimate this coe¢ cient using the industry TFP and value-added data

reported in Jorgenson et al (2007).
24See the survey of Anderson and Van Wincoop (2004).
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Figure 4. Industry structure along the development path in the simple model.

The left panel is the relationship between income and specialization within

manufacturing. The right panel is the same relationship across broad sectors.

While having constant values of gi across countries, it is interesting to examine how sensi-

tive the results are to this assumption. This requires imposing some structure on the manner

in which productivity growth might vary across countries. We draw on the �nding of Rodrik

(2012) that there is unconditional convergence in productivity levels across manufacturing

industries. This would suggest that, if a less developed economy c has productivity growth

factor gict at date t, then gict ! gi over time.25

Suppose that

gict = gctgif (xc;t)

where xc;t = Yc;t=YUS;t is the relative GDP gap between country c and the United States,

and gct = Ac;t+1=Ac;t is a country-speci�c productivity term. Thus, productivity convergence

is a function of relative income, as is typically assumed in the empirical growth literature

�see for example Barro and Sala-i-Martin (1992). In equilibrium, changes in the industry

25Unfortunately industry TFP data exist for only a small set of mostly developed countries. The �nding of

Rodrik (2012) relates to labor productivity: however it is hard to think of reasonable conditions under which

labor productivity would converge while TFP does not. Note also that Rodrik (2012) tests for convergence

in productivity levels, which is a stronger condition than convergence in productivity growth rates.
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shares of manufacturing Gict = si;c;t+1=sict follow

Gict

Gjct

=

�
gict
gjct

�"�1
=

�
gctgif (xc;t)

gctgjf (xc;t)

�"�1
=

�
gi
gj

�"�1
:

Thus the only way in which convergence could a¤ect the results is if the convergence function

f is di¤erent across industries. For example, suppose that

gict = gctgifi (xc;t) = gctg
x�c;t
i

If � < 0, poorer countries experience disproportionately rapid convergence in high-gi in-

dustries, capturing the idea that in high-gi industries there is greater room for catchup. If

� > 0, then the reverse is the case �catchup is relatively slow in high-gi industries, as in the

model of Ilyina and Samaniego (2012) where barriers to technology transfer in less-developed

economies limit the R&D that would be necessary for them to catch up in high-tech indus-

tries.26 Duarte and Restuccia (2010) �nd that labor productivity growth rates in agriculture

is 1:4 percent higher than in manufacturing in the US, and that this gap varies across the

29 countries in their data by between �0:8 percent and 3:5 percent and is correlated with
income, suggesting that empirically � > 0:

To explore the impact of industry-speci�c convergence, we solve the manufacturing model

with values � 2 f�0:3; 0:3g. A value of �0:3 implies that the di¤erence in log gi between
any two industries or sectors is doubled in a country with 10 percent of US GDP per head.

A value of 0:3 implies that the di¤erence in log gi between any two industries or sectors is

halved in a country with 10 percent of US GDP per head. In general, negative values of

� lower than �0:3 or �1 may imply huge industry productivity growth di¤erences across
industries that are not reasonable, whereas there is nothing a priori unreasonable about

positive values: even � !1 just means that TFP growth rates are roughly the same in all

industries.

The results show that, although the exact shape of the specialization curve is sensitive

to the value of �, the U-shape in manufacturing is preserved, see Figure 5. The results

with � = 0:3 are better in the sense that, when � = 0:3, the initial diversi�cation stage is

monotonic, whereas in the benchmark results the lowest income countries seemed to display

a little specialization at �rst. Thus, the results are robust to allowing for convergence

in industry productivity growth rates �particularly if convergence is slower in high-TFP

growth manufacturing industries, e.g. due to barriers to technology transfer.
26Note that in the calibrated model of Ilyina and Samaniego (2012) productivity growth in poor countries

is relatively fast and convergence does take place: it is in a relative sense that catchup is slower in high-gi
industries.
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Figure 5 - Industry structure along the development path allowing for

convergence in TFP growth rate across countries. Productivity growth

gict equals gctg
x�c;t
i where the output gap xc;t is de�ned as Yc;t=YUS;t.

4.3 Goodness of �t

Our aim is to see whether the calibrated model can generate a U-shaped pattern of special-

ization. At the same time, since we explore di¤erent versions of the model, it is useful to

have some measures to compare the relative �t of di¤erent specialization curves.

First, we adopt a broad criterion for whether or not the model is generating "stages of

diversi�cation." Recall that the IW procedure involves regressing specialization measures on

income within a window of income [x��; x+�], and then plotting the �tted value. We
now study in addition the link between income and the coe¢ cients generated in each of these

regressions.

The reason for doing so is as follows. Out of necessity, we set the initial economic structure

so as to match the data. As it happens, the initial conditions alone (ignoring data for future

years) display a downward slope with respect to income, similar to the �rst "stage" in IW.

If the model is itself generating the "stages" then not only should the �tted values in the

IW regression display a "U" shape but the coe¢ cients �̂ (x) in these regressions should be

increasing in income x, just as the slope of a "U" shape is monotonically increasing. The

best �t will be obtained if, in addition, there is a threshold level of income below which the

coe¢ cients are negative and above which they are positive. IW �nd that the data do indeed
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display such a threshold.

We also report two quantitative measures of �t. Let GINIIW (x) equal the predicted Gini

coe¢ cient from IW, and let GINIMODEL (x) be the model Gini, each evaluated at income

level x 2 [x; �x]. De�ne also GINIIW and GINIMODEL to be the respective means of each of

these measures. One measure of goodness of �t could be simply the average distance between

the IW curve and any curve generated from pseudodata. However, there are two reasons

why a given curve might fail to exactly �t the empirical IW curve. One is that the given

curve has a di¤erent shape from the IW curve. The other is that the given curve simply has

a di¤erent mean. We �nd it useful to distinguish between these two. The former tells us

about how well the model matches the pattern of specialization, whereas the second tells us

about whether the model matches the general level of specialization in the data. Thus, we

develop two measures of �t:

Dmean = GINIMODEL �GINIIW

Dshape =

"R �x
x
(GINIIW (x)�GINIMODEL (x) +Dmean)

2 dx

�x� x

#1=2
Dmean is simply the di¤erence in means, whereas Dshape is the average di¤erence between

the two lines minus each of their means.

To interpret these ginis (or their di¤erences) consider the following. Suppose all the

industries are exactly the same size, except for one industry, which is larger than all the

others. Then with su¢ ciently many industries, the Gini coe¢ cient is the share of the largest

industry.

First, we look at whether the model coe¢ cients �̂ (x) are increasing. This implies that

industry dynamics in the model economy are generating the U-shape, as opposed to having

the initial "diversi�cation" stage being driven by initial conditions.

Across broad sectors Figure 6 shows that, for the benchmark value of � = 0 (no con-

vergence, or symmetric industry convergence) the coe¢ cients show that the model itself is

indeed generating the "stages." The coe¢ cients are broadly increasing in income, starting

negative and ending positive. Thus it is not the initial conditions that create the "U" shape:

the model itself generates it. Indeed, the same holds for values of � that are positive, or

negative but not too large in magnitude. Thus we conclude that our sector-level results are

very robust to di¤erent convergence dynamics.
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Figure 6 �Coe¢ cients �̂ (x) in the Gini regressions over income according to the IW

procedure, where GINIc;t equals �̂c (x) + �̂ (x)GDPc;t + "c;t, for GDPc;t values in the window

[x��=2; x+�=2] , across broad sectors in the ILO data. The top left panel

is based on data from IW, the other panels are model-generated.

Figure 7 plots the regression coe¢ cients within manufacturing. In this case, when � = 0

the coe¢ cients are all positive and not upward-sloping below about $6000. Thus suggests

that the initial conditions play a part in matching the downward slope below this level of

income. The same is true when � < 0. However, when � = 0:3, we �nd that the coe¢ cients

are upward-sloping. When � = 1, we �nd that they are upward-sloping and negative below

about $5000. Thus, the best �t of the model is when � > 0, so that TFP growth di¤erences

among industries are compressed in developing countries (as found by Ilyina and Samaniego

(2012)).
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Figure 7 �Coe¢ cients �̂ (x) in the Gini regressions over income according to the IW

procedure, where GINIc;t equals �̂c (x) + �̂ (x)GDPc;t + "c;t, for GDPc;t values in the window

[x��=2; x+�=2] , across manufacturing industries in the UNIDO data. The top left panel

is based on data from IW, the other panels are model-generated.

Next, we investigate how the models compare in terms of Dmean (the di¤erence of the

means) and Dshape (the average distance between lines minus their means).

For the sector level results, we �nd that the �t of the model is U-shaped in �, see Figure

8. There is a little extra specialization when � = 0, a di¤erence in the average Gini coe¢ cient

of about 3.5. This is equivalent to comparing two countries where all of the industries except

one are the same size, but in one the largest industry has share 0.53, whereas in the other it

is 0.56 �not a large di¤erence. In terms of shape, again � = 0 seems to deliver the minimum,

with an average shape di¤erence again of about 3.5. We conclude that the benchmark model

�ts the sector results very well.

21



­1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25
Dmean ILO model

D
m

ea
n

η
­1 0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Dshape ILO model

D
sh

ap
e

η

Figure 8�Dmean (the di¤erence of the means) and Dshape (the average distance

between lines minus their means) against � in the calibration for sectors,

allowing for convergence in TFP growth rate across countries. gict equals gctg
x�c;t
i ;

where the output gap xc;t is de�ned as Yc;t=YUS;t:

For the manufacturing level results, we �nd that the best match in terms of means is

around � = 5, see Figure 9. In other words, the model best matches the level of specialization

in the data when industry TFP growth rates are compressed. At that point the match is

very close, with a di¤erence in mean Ginis of well under one. Interestingly there is no

monotonic relationship between Dshape and �. The global minimum is around � = 4, but

over the range considered there is little variation inDshape over this range of � values. In fact,

ignoring the fact that they have di¤erent means, the �tted curves for � 2 [0; 5] are visually
indistinguishable from each other. In addition, the detrended specialization curves are very

close to those of the data, especially for the sector level results (Figure 10). Thus, once

more, the manufacturing results point once more towards an environment where industry

TFP growth rates are compressed in less developed economies.
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between lines minus their means) against � in manufacturing calibration,

allowing for convergence in TFP growth rate across countries

(gict equals gctg
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i ;where the output gap xc;t is de�ned as Yc;t=YUS;t).
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Figure 10 �Fitted measures of industry concentration (Ginis) for the data in IW and

for model-generated pseudodata, each minus the mean value of the Gini

(GINI (x)�GINI for both model and the data). The left �gure is ILO data and simulations.

The right one is for manufacturing data and simulations.
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5 Factors of structural transformation

Our model focuses on productivity di¤erences as the motor of structural change. However,

there are other theories of long-run structural change that imply a shift in resources towards

particular industries in the long run. As long as countries begin specialized in industries

other than those that dominate in the long run, those models too might predict stages of

diversi�cation.

At least four general equilibrium frameworks have recently been developed to think about

long-term structural change:27

1. Ngai and Pissarides (2007, NP) emphasize persistent productivity di¤erences across

industries, as we do.

2. Ilyina and Samaniego (2012, IS) emphasize productivity di¤erences driven by di¤er-

ences in desired R&D intensity. This theory is not at odds with that of NP, but digs

deeper as to the underlying causes of TFP growth di¤erences.

3. Acemoglu and Guerrieri (2008, AG) consider both productivity di¤erences and di¤er-

ences in capital shares. Speci�cally they predict that TFP growth rates divided by

labor shares determine which industries tend to dominate in the long run. Di¤erences

in capital shares across industries could be a factor of structural change, since capital

deepening along the growth path could have a di¤erential impact on industries based

on this factor.

4. Buera and Kaboski (2012) argue that structural change is a¤ected by industry di¤er-

ences in �rm size, with poorer countries less able to a¤ord large-scale technologies.

Is there a way to see whether any of these mechanisms is related to the "stages"? To

answer this question, we try two approaches. First, we adapt our model to allow for di¤er-

ences in capital shares across industries. Second, we see whether measures of R&D intensity,

labor intensity and �rm size display any clear relationship to the stages of development.

27In addition, Kongsamut et al (2000) relate structural change to di¤erences in requirements for di¤erent

goods �so that, for example, instead of utility over consumption of good i being de�ned over ci, it is de�ned

over ci � �ci, where �ci > 0 is a constant. We do not think of this account of structural change as being

relevant for the "stages" because �ci is generally interpreted in terms of requirements for agricultural goods,

something that is not obviously relevant for disaggregated manufacturing industries. At the sector level, we

have 9 sectors, so again requirements would likely be relevant for at most one sector.
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5.1 Capital shares

So far we have assumed that there is no capital. First, if capital shares are the same

across industries then the pattern of structural change implied by the model would be the

same. Suppose the production function includes capital. In this case, yit = Aitk
�
itn

1��
it .

The �rst order conditions can be written pit�yit=Kit = rt (where r is the interest rate) and

pit(1� �)yit=nit = wt. Dividing one condition by the other we get that Kit
nit
= �wt

(1��)rt . Then,

dividing any of the �rst order conditions for industry i by that for j yields the result that
pit
pjt
=

Ajt
Ait
so, as before, structural change is driven by equation (6).

Thus, the question is whether industry di¤erences in capital shares might a¤ect our

results.

Consider the model presented earlier, except that the production structure allows capital

shares �i to vary across industries.

yit = AitK
�i
it n

1��i
it : (8)

It is no longer the case that pit
pjt
=

Ajt
Ait
in equilibrium. Instead, pit

pjt
becomes a function of the

capital shares �i, the wage wt and the interest rate rt. Letting Gi equal value added growth

in industry i, in equilibrium it can be shown that:

Gi

Gj

=

�
gi
gj

�"�1�
gw
gr

�(�i��j)("�1)
(9)

which reduces to the earlier expression (6) when the capital shares are the same. In expression

(9), gw
gr
is the growth factor of the wage rate divided by the growth factor of the interest

rate. Thus, we could perform a simple experiment to gauge the implications of di¤erences

in capital shares for our results, as long as we had data on capital shares and a reasonable

value for gw
gr
.

Notice that expression (9) is equivalent to

logGi = c+ ("� 1) log gi + ("� 1) log
�
gw
gr

�
�i (10)

where c = logGj � ("� 1) log gj � ("� 1)�j log
�
gw
gr

�
for some arbitrary industry j. Thus,

we can estimate whether di¤erences in capital shares are an important factor of structural

change by estimating equation (10) and seeing whether capital shares carry a signi�cant

coe¢ cient. Moreover, the coe¢ cient on capital shares equals ("� 1) log
�
gw
gr

�
so that esti-

mating this equation provides all the inputs necessary for us to simulate structural change in

the model using equation (9) and assuming gw
gr
is relatively constant across time and space.
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For manufacturing, we measure �i using the INDSTAT4 database 1977-1990, as one minus

the labor share of value added in each industry, as in Ilyina and Samaniego (2011). We do

not have comparable data for broad sectors.

When we estimate (10), we �nd several things. First, the estimate of " hardly changes,

from 3:75 to 3:77, and remains signi�cant at the 1% level. Second, the coe¢ cient on �i is

signi�cant at the 10% level only, and implies a value of gw
gr
of about 1:02 (although statistical

signi�cance improves to the 5% level if we allow for heteroskedasticity). This provides

weak evidence that capital shares matter for structural change within manufacturing, while

underlining the fact that productivity growth di¤erences are important.

We simulate the basic model in two ways. First we use (9) to generate model industry

shares. Second, we isolate the role of di¤erent capital shares by assuming that all industry

productivity growth rates are equal, but allowing capital shares to di¤er. In both cases we

impose the estimated value of gw
gr
.

We �nd that allowing for capital share di¤erences preserves the U shape. We do this with

� = 0 (when the U-shape was partly dependent on initial conditions) and with � = 1 (a value

of � which displays monotonic coe¢ cients), suggesting that the presence of di¤erences in �i
does not signi�cantly a¤ect the results. Moreover, when we simulate the model assuming

TFP growth rates are the same (i.e. gi = gj 8i; j) we �nd that there is no U, only a
downward slope. Investigating the coe¢ cients we �nd that they are almost �at and close

to zero. In other words, the model itself with alpha di¤erences generates no noticeable

structural change, and the downward slope is purely generated by the initial conditions.

We conclude that di¤erences in capital shares are not signi�cantly related to the stages of

diversi�cation.
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Figure 11 � Industry structure along the development path allowing for

capital share variation (i.e., yit equals AitK
�i
it n

1��i
it ). The left panels represent the

relationship between income and specialization within manufacturing, based on the

IW regression where GINIc;t equals �̂c (x) + �̂ (x)GDPc;t + "c;t, for GDPc;t in the interval

[x��=2; x+�=2] . The right panels represent the coe¢ cients �̂ (x) from these regressions.

The upper panels represent the model with �i variation and � = 0 (no industry-speci�c

productivity convergence):The middle panel is the model with � equal to one.

The bottom panel is the model with �i variation across industries setting gi = gj8i; j .

5.2 Other factors

To see whether structural change appears empirically related to any of the factors of struc-

tural change other than TFP growth rates (R&D intensity, labor intensity, �rm size), we
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repeat the experiment illustrated in Figure 2 and compute series for the weighted average

of each of these measures (R&D intensity, etc.) for each country over time. Industry R&D

intensity and labor intensity measures are 3-decade averages of the values reported in Ilyina

and Samaniego (2011).28 The industry �rm size is the average number of employees per

establishment in the US over the period 1963-1992, as reported by UNIDO in INDSTAT3.

Again, each measure is normalized so that the mean measure is zero and the standard devi-

ation is one. Then, as before, weighted averages are computed for each country-year, where

the weights are value added shares of each industry in total manufacturing, computed us-

ing UNIDO data. Finally, we apply the same nonparametric method to these measures,

examining their relationship to real GDP per capita.

Figure 12 shows the link between each of these measures and income using the IW

method. Average R&D displays a positive relationship with income within manufacturing,

indicating that, behind the "stages of diversi�cation", economic structure shifts towards

industries with rapid TFP growth, and industries with high R&D intensity. Figure 12 also

shows a link between average R&D intensity and income for the broad sectors in the ILO

data:29 in this case the trend is downwards, consistent with the assumption that " < 1 across

sectors. These results support the assumption that TFP growth di¤erences can be a driving

force behind structure change along the development path, and that behind the scenes TFP

growth is related to R&D intensity.

Regarding the other measures, AG argue that di¤erences in labor shares could be a

driving force behind structural change. We can see that labor intensity shows a hump-

shaped relationship with income. In particular, labor intensity declines beyond the income

level of $10,000. Thus, while labor shares may be a factor of structural change, they do

not appear to play a consistent role throughout the "stages."30 This justi�es our focus on

a model with productivity di¤erences, abstracting from di¤erences in labor shares. As for

�rm size, average �rm size declines along the development path before �attening out, which

does not obviously support the idea that countries are more able to overcome large optimal

scales of production as they develop. Again, this does not mean that the scale of production

is not relevant for understanding some aspects of economic structure (e.g. the Buera and

28R&D intensity is the median R&D spending as a share of capital expenditures among �rms in Compustat.

Labor intensity is the wage share of value added in the INDSTAT3 database.
29For most measures, unfortunately we do not have data for sectors outside of manufacturing.
30More speci�cally, AG argue that the relevant variable is the productivity growth rate divided by the

labor share. The weighted average of this variable across manufacturing industries behaves in a manner

simmilar to the labor share.
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Kaboski (2012) model is about resource shifts between the home and the market), but it is

not obviously related to the "stages."
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Figure 12 �Trends in average �rm size, R&D intensity and labor intensity

within manufacturing along the development path. The pattern of R&D

intensity is consistent with TFP growth being related to R&D spending.

The other measures do not display a monotonic relationship with income.

6 Concluding Remarks

This paper �lls an important gap in the literature on structural change and growth by

accounting for the broadest pattern of structural transformation along the development path:

the "stages of diversi�cation." We develop a multi-sector model in which di¤erential TFP

growth rates across industries and sectors lead to structural transformation. We �nd that

the model accounts for the pattern of diversi�cation followed by specialization �stages of

diversi�cation �that is well-known in the literature. The results are robust to a variety of

extensions and modi�cations, and hold both across sectors and within manufacturing. This

does not rule out a role for other factors, such as di¤erences in factor shares or international
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trade. However, the paper provides quantitative evidence that productivity di¤erences can

account on their own for the dynamics of industrial structure along the development path.

Importantly, the theory indicates that �ows of resources may be di¤erent depending on the

level of aggregation, something that the data con�rm.

In general the literature tends to interpret the "stages" as being related to trade �most

notably in the recent theory of integration and trade presented by Imbs et al (2012). This

paper shows that even in a closed economy persistent total factor productivity (TFP) growth

di¤erences across industries are su¢ cient to generate a U-shaped pattern of specialization. It

would be interesting in future work to develop a model that nests all the various possibilities,

to estimate the contribution of di¤erent factors to the evolution of economic structure. For

example, IW�nd that open economies tend to re-specialize at a lower income level, something

that can only be analyzed in an open economy model.

In the paper we take initial conditions as given for our quantitative experiments. The re-

sults suggest that poorer countries tend to begin specialized in industries where TFP growth

is low. Although it is beyond the scope of this paper, it is interesting to think about why ini-

tial conditions might be biased in this way. One possibility is that there are non-homothetic

preferences (see Kongsamut et al (2000)), so that consumption patterns in poor countries

are dominated by subsistence considerations that wear o¤ later. If manufacturing industries

that produce goods necessary for subsistence (e.g. food products) happen to have slow TFP

growth, whereas sectors that are necessary for subsistence (e.g. agriculture) so happen to

have rapid TFP growth, then we would observe these initial conditions. Another possibility

that does not necessarily hinge on non-homothetic preferences involves the transition from

a "traditional" technology with low productivity growth to a "modern" technology with

more rapid productivity growth. Ngai (2004) shows that small di¤erences across countries

in barriers to technology adoption can lead to very large di¤erences in income by delaying

the transition from the "traditional" to the "modern" technologies. Initial conditions would

be determined by the traditional technology and the date of transition between technologies.

The idea that the transition between the "traditional" and "modern" technologies could

explain economic structure as well as income levels is an interesting topic for future research.
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Appendix

A Alternative Measurement of productivity in Manu-

facturing

We measure productivity using the NBER Manufacturing Productivity Database. The data

are more disaggregated that the ISIC3 Classi�cation we need for the UNIDO data, so we

aggregate them using Domar weights.

In addition, we use an alternative way of measuring TFP growth rates. Using the UNIDO

dataset, we compute the TFP growth rates of 28 UNIDO manufacturing industries of the

United States using the following equation:

ln(TFPit) = ln(Yit)� (1� �) ln(Lit)� � ln (Kit) (11)
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where Yit is the production index. This requires computing the capital stock at the industry

level. The UNIDO dataset provides investment data but not capital stock data Kit, so we

use a perpetual inventory method

Kit+1 = (1� �)Kit + Iitqit (12)

to compute growth rate of capital stock, where Iit is investment and qit represents investment-

speci�c technical progress31. Then the growth rate of Kit is the sum of growth rates of I and

q: We set qit = gtiq, so that growth rates of qi vary across industries. We use growth factor

giq from IS. Also, � = 0:06 and � = 0:3. These are standard numbers in the literature.32

Then, if � (x) is the log growth rate of x over the time period in the data, note that

ln gi = � (Yi)� (1� �)�(Li)� �� (Ki) (13)

We obtain � (Yi) and �(Li) from UNIDO, and set � (Ki) = � (Ii) + log giq, which is the long

run relationship in (12).

In addition, equation (5) suggests using inverse price growth rates to measure industry

TFP growth. The price index is computed using value added divided by the production

index from the UNIDO dataset.33 Both TFP and price growth rates are averages over the

period 1963� 1992 (data are available upon request). TFP growth rates computed this way
are highly correlated with those derived from the NBER data, with a correlation coe¢ cient

of 0:6 (signi�cant at the 5 percent level). The TFP growth and price growth series based on

UNIDO data are highly negatively correlated with a coe¢ cient of �0:9 (signi�cant at the 5
percent level). All of this is encouraging as to the robustness of the productivity measures.

We simulate industry shares following equation (5) for UNIDO price growth and (6) for

TFP growth and apply nonparametric methodology to model simulated Gini coe¢ cients on

income. Again, we obtain a U-shape in both cases, see Figure 13.

31We allow for investment-speci�c technical progress because the model is one with many industries where

productivity growth rates in capital-producing industries may be di¤erent from productivity growth else-

where.
32The value of � is from Greenwood, Hercowitz and Krusell (1997) and is a value typical in models with

investment-speci�c technical change, in other words where gq > 1.
33Recall that value added vit = pityit. The assumption is that growth in the UNIDO industrial production

index proxies for growth in yit.
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Figure 13. IW nonparametric regression using simulated industry concentration measures

based on equation (6) using INDSTAT3 TFP growth rates, and based on

equation (5) using INDSTAT3 price growth rates.

Finally, using the model itself, we can map between productivity growth rates and changes

over time in employment shares by means of equation (6), setting the errors �t = 0. We use

this procedure to back out a measure of productivity growth we call gmediani , which will be

the median productivity growth factor implied by changes in employment patterns around

the world (details below). We repeat the above experiments using gmediani for all countries,

again providing a clean experiment that abstracts from all country di¤erences other than

initial conditions.

All that is required to use (6) to back out productivity growth values from country

employment data is knowing gjct for some benchmark industry j in each country. We assume

that in all countries and dates the productivity growth rate is the same in industry 342,

Printing and Publishing. We choose this industry because in the NBER data gj ' 1, for

industry 342, i.e. there is essentially no total factor productivity growth in this industry.

At the sector level, we assume that productivity growth is the same in all countries for

Community, Social and Personal Services, which has the lowest gi value among the sectors.

Having generated series for gict as described above, we compute gic, the average of the

time series for each country and industry. The measure gmediani is simply the median value

of gic for each i. Note that, since the country with the median value will vary by industry

i, no country�s employment patterns correspond to gmediani , even though gmediani is derived

from the employment data.
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First, it turns out that gmediani is very highly correlated with the values of gi calibrated

using NBER data. Within manufacturing the correlation is 0:40 and across sectors it is 0:70,

both signi�cant at the �ve percent level. Second, Figure 14 displays the link between special-

ization and development using the basic model, using gmediani as a measure of productivity

growth. Again, the �ndings are robust. When we apply the measures of �t to these curves,

we �nd that the curves in Figure 13 �t a bit worse than when we measure gi using NBER

data, and that the coe¢ cients are not monotonic unless we allow for convergence parameter

� > 0, as before. However, the curves using gmediani provide an extremely tight �t to the

data, with Dmean and Dshape an order of magnitude smaller than before. Also, with gmediani

the coe¢ cients are also monotonic and negative below about $5000 even when � = 0. Thus,

the model essentially reproduces the empirical curves with gmediani .
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Figure 14 - Patterns of specialization in the basic model using gmediani . This is the median TFP

growth rate across countries measured using employment patterns as described in the text.

B Intermediate goods

We have abstracted from the existence of intermediate goods. There is a question as to

whether results might change if we allowed for intermediates. For one thing, when there

are intermediate goods, Ngai and Samaniego (2009) point out that TFP growth measures

computed using gross output data (as is the case for the NBER numbers) understate TFP

growth in a value added model.
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Consider that the input-output matrix is largely diagonal: industries tend to use inter-

mediates produced within the industry. Let us abstract from the o¤-diagonal elements. In

this case, the production function is

yit = Ait
�
K�
itn

1��
it

�1� 
x (14)

where xit are intermediate goods and  is the intermediate goods share. Producers solve the

problem

max
kit;nit;xit

fpityit � wtnit � rtKit � pitxitg : (15)

Solving for optimal use of xit, It is easy to show that this is equivalent to solving

max
kit;nit

fpit~yit � wtnit � rtKitg : (16)

where ~yit = yit � xit is value added in terms of good i, with the value-added production

function

~yit = pit ~AitK
�
itn

1��
it (17)

~Ait = A
1

1� 
it

h
 

 
1� �  

1
1� 

i
:

While (17) is of the same form as (23), note that the growth factor of ~Ait is equal to g
1

1� 
i > gi.

At the same time, this does not matter for the results. Recall that what a¤ects rates

of structural change in the model is the combination of gi and ", not one or the other in

isolation. If we regress the log value added growth on the log real value-added productivity

factor g
1

1� 
i , we would obtain a di¤erent value of epsilon. Recall that (6) is equivalent to

logGi = � + ("� 1) log gi + �i where � = logGj � log gj for some arbitrary industry j and
�i is any unmodeled noise. If we use gi instead of g

1
1� 
i in this equation, we would have an

estimated elasticity ~" where ~" � 1 = ("� 1) (1�  ) �a lower value, since  < 1. However,

structural change within sectors would be driven by the following relationship

Git

Gjt

=

24g 1
1� 
i

g
1

1� 
j

35~"�1 = � gi
gj

� ~"�1
1� 

=

�
gi
gj

�"�1
; (18)

which is exactly equivalent quantitatively to patterns of structural change in our model

without intermediates. Thus, signi�cant o¤-diagonal elements in the input-output tables

would be required to change our quantitative results.

A similar intuition regards the possibility of adjustment costs in the reallocation of capital

cross industries. Given other parameters, capital adjustment costs could slow the reallocation

of resources across industries. However in the presence of adjustment costs the value of "

required to match the link between industry growth and TFP growth in the data would be

larger. Thus, results would not be a¤ected.
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C Industry TFP growth data

Below we report the industry productivity growth rates used in the model calibrations. See

the text for the measurement strategies.

The manufacturing measures are computed from the NBER manufacturing productivity

database. That database is at the 4-digit SIC level, so we aggregate the measures using

Domar weights. The sector level values are computed using relative price growth information

from the US BEA. First, we compute the value for TFP growth in manufacturing using the

NBER manufacturing productivity database. Then, the productivity growth factor in any

given sector is the value for manufacturing times the factor by which the price of the good

produced in that sector declines relative to manufacturing.
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Table 1: NBER TFP Growth Rates for the ISIC revision 2 industry classi�cation. Source:

NBER productivity database and authors�calculations.

Industry ISIC code NBER TFP Growth Rate

Food products 311 0.0101

Beverages 313 0.0303

Tobacco 314 -0.0345

Textiles 321 0.0269

Apparel 322 0.0121

Leather 323 -0.0034

Footwear 324 -0.0035

Wood products 331 0.0113

Furniture, except metal 332 0.0066

Paper and products 341 0.0088

Printing and publishing 342 -0.0022

Industrial chemicals 351 0.0214

Other chemicals 352 0.0135

Petroleum re�neries 353 0.0196

Misc. pet. and coal products 354 0.0223

Rubber products 355 0.0142

Plastic products 356 0.0339

Pottery, china, earthenware 361 0.0078

Glass and products 362 0.0051

Other non-metallic mineral prod. 369 0.0120

Iron and steel 371 0.0047

Non-ferrous metals 372 0.0016

Fabricated metal products 381 0.0029

Machinery, except electrical 382 0.0285

Machinery, electric 383 0.0347

Transport equipment 384 0.0160

Prof. & sci. equip. 385 0.0126

Other manufactured prod. 390 0.0089
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Table 2: Productivity growth across broad ILO Sectors. The manufacturing sector is com-

posed of the 28 ISIC2 industries. The value for Manufacturing in the table is the average

over the sample period in the NBER data.

ILO 1-Digit Classi�cation (9 sectors) Growth Factor g

1 Agriculture, Hunting, Forestry and Fishing 1:027

2 Mining and Quarrying 0:995

3 Manufacturing* 1:012

4 Electricity, Gas and Water 0:987

5 Construction 0:983

6 Wholesale and Retail Trade and Restaurants and Hotels 1:011

7 Transport, Storage and Communication 1:006

8 Financing, Insurance, Real Estate and Business Services 0:982

9 Community, Social and Personal Services 0:974

Productivity Growth and Structural Transformation:
Technical Appendix

D General equilibrium model with capital

We now develop a multi-industry growth model with capital and ask whether the mechanisms

described above can generate stages of diversi�cation at the industry or sector levels in this

environment in a general equilibrium framework.

D.1 Preferences and Technology

Time is discrete and there is a [0; 1] continuum of agents. There are S sectors, each of which

produces an aggregate of I industries. Let Is be the set of industries that supplies sector s.

We focus on the case in which each industry supplies only one sector, so that Is \ Is0 = ?,
8s 6= s0. Note that this is without loss of generality, as one could have two industries identical

in all ways that are distinguished by the fact that they provide a given good to two di¤erent

sectors.

We assume that sectors s 2 f1; :::; S � 1g produce consumption goods. Only one sector,
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S; produces capital goods. Now for each sector s 2 f1; :::Sg, the production function has
the CES form:

yst =

"X
i2Is

�i � u
"s�1
"s

s;i;t

# "s
"s�1

;
X
i2Is

�i = 1; s = 1; :::; S (19)

where usit is use of good i by sector s, �i is the weight on good i, and "s is the elasticity of

substitution among goods within sector s.

Agents consume a CES aggregate ct of the output of the di¤erent consumption sectors:

ct =

"
S�1X
s=1

�sy
"�1
"

st

# "
"�1

:

Finally, agents have isoelastic preferences over ct and discount the future using a factor

� < 1, so that:
1X
t=0

�t
c1��t � 1
1� �

: (20)

They are endowed with one unit of labor every period which they supply inelastically, and

start period zero with capital K0.

Let qst be the price of the sector aggregate s, with rt as the interest rate and wt as the

wage. Agents choose expenditure on each good so as to maximize (20) subject to the budget

constraint
SX
s=1

qstyst �
SX
s=1

X
i2Is

rtKit +
SX
s=1

X
i2Is

wtnit (21)

and the capital accumulation equation

Kt+1 = ySt + (1� �)Kt: (22)

On the supply side, each industry features a Cobb-Douglas production function:

yit = AitK
�
itn

1��
it ; Ait = Ai0g

t
i (23)

where gi = Ai;t+1=Ait is the TFP growth factor of industry i and Ai0 is given. Producers

maximize pro�ts

max
nit;Kit

fpityit � wtnit � rtKitg (24)

subject to (23), where pit is the output price of industry i at time t. Capital and labor are

freely mobile across sectors �we discuss this assumption further in Section B.

41



D.2 Equilibrium

The producers��rst order conditions imply that the capital labor ratio is constant across

industries, which implies that Aitpit = Ajtpjt. Thus, as in related models, goods that experi-

ence rapid productivity growth display a decline in their relative price. This result, combined

with the consumer�s �rst order conditions implies that the ratio of value added pityit in any

two industries in the same sector s depends on parameters and the productivity terms.

pityit
pjtyjt

=

�
�s;i
�s;j

�"s �Ait
Ajt

�"s�1
=
nit
njt

8s (25)

Notice that the same relationship holds for the ratio of employment �just as with the basic

model �except that it only holds comparing industries that are in the same sector.

De�ne the growth factor of employment (or value added) in industry i as

Git �
ni;t+1
ni;t

=
pi;t+1yi;t+1
pityit

: (26)

Then, the expression Git=Gjt then denotes the growth of employment (or value added) in

industry i relative to industry j. Using (25) we have that

Git

Gj;t

=

�
gi
gj

�"s�1

8s: (27)

Consequently, within sectors, structural change depends on relative TFP growth factors gi
gj

and on the elasticity of substitution "s. For comparing industries across sectors requires

characterizing shifts in expenditure across sectors, as well as investment behavior.

D.3 Sectorial and Aggregate Growth

Notice that in equilibrium we can aggregate the industries in a given sector into a sectorial

production function. To see this, de�ne qst as the price index for �nal goods in sector s, so

that

qstyst =
X
i2IS

pitAitk
�
t nit

where kt is the equilibrium capital-labor ratio, which is common across industries. De�ne

input use in sector s as Kst =
P

i2Is Kit and nst =
P

i2Is nit. Then, de�ne a sectorial

production function:

yst = AstK
�
stn

1��
st ; Ast = As0�g

t
s (28)

where �gst = As;t+1=Ast.
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The problem of the sector s �rms and the industry i 2 Is �rms can be combined as

max
nit

8<:qst
"X
i2Is

�i � (Aitk�t nit)
"s�1
"s

# "s
"s�1

� rtkt
X

nit � wt
X

nit

9=; (29)

The �rst order conditions imply that:

njt
nit

=

�
�j
�i

�"s �Ait
Ajt

�1�"s
(30)

We also have that
P

i ni = ns by de�nition, so we can use (30) write ni in terms of ns.

Substituting this back into problem (29), we have that a sector s �rm solves the problem

max
nit

fqstAstk�t ns � rknst � wnstg

where

Ast =

"X
i2I

�
"s

s;i � A
"s�1

it

# 1
"s�1

=

"X
i2I

�
"s

s;i � A
"s�1

i0 g
t("s�1)
i

# 1
"s�1

: (31)

Recalling that �gst = As;t+1=Ast, we have that

�gst =
Y
i2Is

g
xit=Xst
i (32)

where

xit = �"ss;iA
"s�1
it , Xst =

X
i2Is

xit:

Since the total production of consumption sectors ct =
hPS�1

s=1 �sy
"�1
"

st

i "
"�1

; we can also

aggregate all the consumption goods production sectors in the same fashion. Then we have

that

ct = ActK
�
ctn

1��
ct , Act =

"
S�1X
s=1

�"s � A
"�1

st

# 1
"�1

(33)

As a result, the aggregate behavior of the model economy with many sectors is the same

as that of a 2-sector economy that produces ct using technology (33) and produces capital

goods using technology (28). In the consumption goods sector, �rms maximize

max
Kct ;nct

�
pctActK

�
ctn

1��
ct � rtKct � wtnct

	
where Act =

"
S�1X
s=1

�"s � A
"�1

st

# 1
"�1
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whereas in the capital goods sector:

max
Kht ;nht

�
pStAStK

�
Stn

1��
St � rtKSt � wtnSt

	
where ASt =

"X
i2IS

�"Si � A
"S�1

it

# 1
"S�1

Consumers choose consumption ct and investment ySt to solve:

max
ct;ht

( 1X
t=0

�t
c1��t � 1
1� �

)
(34)

s:t: pctct + pStySt � rtKt + wt (35)

Kt+1 = Kt (1� �) + ySt (36)

K0 given. (37)

In equilibrium, capital and labor markets must clear at all dates, so

ct = ActK
�
ctn

1��
ct (38)

ySt = AStK
�
Stn

1��
St

Kt = KSt +Kct (39)

nct + nSt = 1 (40)

It will be convenient to set pS;t = 18t, so that consumption goods prices pct are expressed
relative price to the price of capital goods.

Solving the 2-sector problem and using the equilibrium conditions, we obtain expressions

for labor shares in the capital goods sector nSt and the consumption goods�sector nct = 1�nSt
along an unbalanced growth path. These turn out to be functions only of the productivity

growth rates gi, parameters, and of the equilibrium growth rate of aggregate consumption

gct =
pc;t+1ct+1
pctct

which is endogenous. This will be true at all dates except possibly date zero,

where nSt is determined by the initial condition K0.

De�ne real GDP as yt = ySt + pctct. Notice it is measured in units of capital.

Proposition 1 Equilibrium exists and is unique. In equilibrium, the growth factors of total

capital K;capital per capita k, and total output y depend on the growth factors of TFP in the

consumption and capital sectors and on the growth factor of consumption sector (as well as

parameters):

gkt =
kt+1
kt

=
Kt+1

Kt

= g
1

1��
ASt

�
rt
rt+1

� 1
1��

(41)
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and

gyt =
yt+1
yt

= g
1

1��
ASt

�
rt
rt+1

� �
1��

(42)

where GDP is de�ned as yt = ySt+pctct and the equilibrium interest rate is rt =

�
gASt�1
gAct�1

�1��
g�ct�1

�
�

1 + � for t > 0. At date zero, r0 is determined by market clearing given K0.

Proposition 2 The model economy converges to a balanced growth path where in each sector

lim
t!1

Ast = Ajt where j =

(
argmaxi2Is fAig if "s > 1

argmini2Is fAig if "s < 1
,

and

lim
t!1

Act = Ast where s =

(
argmaxs<S fAsg if " > 1

argmins<S fAsg if " < 1
.

Recalling that the only endogenous variable that a¤ects rt for t > 0 is gct,34 Proposition

1 implies that we can compute the equilibrium for the multi-industry model economy in

transition, provided we can derive the series for gct. The economy with many consumption

goods sectors will asymptotically converge to an economy with one consumption sector which

has either the highest or lowest TFP growth rate depending on the elasticity of substitution.

The same occurs within the capital goods sector. As a result, the expression rt converges to

some constant r and, although in general the model does not possess a balanced growth path

(see Ngai and Pissarides (2007)), it converges to one. This suggests that the equilibrium may

be computed by �nding a su¢ ciently good approximation to the series for gct. In the limit,

since by assumption "s 6= 1 for all s � S, one industry will end up dominating each sector.

However, we wish to study the behavior of the model economy in transition, where sectors

are relatively diversi�ed.

E UNIDO Calibration: Manufacturing

In the remainder of the paper we will focus on a particular type of equilibrium. Observe that

the capital stock will be set to satisfy the Euler equation (41) at all dates except date zero.

In other words, the investment share of the model economy will in general be smooth over

time, except between dates zero and one. The model will be calibrated to the available data

and, since the initial year in which data for a given country become available has no economic

34In general, at t = 0, the value of r0 is determined by market clearing and the value of K0.
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content, it is di¢ cult to justify why the �rst year we have data for (generally 1963) happens

to be the only date when the intertemporal optimization condition (41) is not satis�ed. For

this reason, we focus on an equilibrium where this does not occur.

De�nition 3 An Euler Growth Path (EGP) is an equilibrium and an initial condition K0

such that equation (41) holds at date zero.

The Euler growth path is a generalization of a balanced growth path which exists in

models that do not exhibit balanced growth. For our benchmark results, we calibrate the

model to match an Euler growth path by matching the composition of manufacturing but

not necessarily its size. Details are in Section G. Nonetheless, it is important to underline

that our results concerning the structure of the economy turn out not to hinge on whether

we focus on an Euler growth path: results on the equilibrium calibrated to match the initial

conditions in the data are qualitatively indistinguishable.

Calibrating the model economy requires a choice of industries, and values of the following

parameters and variables.

1. Technological parameters �; �:

2. Preference coe¢ cients �s;i; � i; �:

3. Elasticities of substitution "s for s � S, and ", the elasticity across consumption sectors

4. The intertemporal elasticity parameter �:

5. Productivity growth values gi.

6. Productivity initial conditions Ai0:

We provide two selections of industries. In this section, we calibrate the model so as to

focus on the "stages" in manufacturing in the UNIDO data. In the following section, we

disaggregate the non-manufacturing sectors further to focus on the "stages" across broad

sectors in the ILO data. We calibrate the model twice because the data required for the

ILO sector calibration are available for fewer countries. We refer to them as the UNIDO or

manufacturing calibration and the ILO or sector calibration. Details are provided below. The

simulation requires computing transition dynamics in a model without a balanced growth

path, and the procedure is described in Section G.
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Table 3: Sectors and Industries in the model economy

Industries

Sector Agriculture Services, etc ISIC Manuf Construction

Agriculture X - - -

Services, etc - X - -

Manufacturing (not capital) - - X -

Manufacturing (capital) - - X X

For the UNIDO calibration, we group all industries into four sectors: Agriculture, Ser-

vices, Capital and Non-capital manufacturing. Agriculture, services and non-capital manu-

facturing sectors produce consumption goods, and the capital sector only produces capital

goods. Industries include agriculture, services, the 28 UNIDO manufacturing industries, and

construction (see Table 3). Thus, the agriculture and services industries only contain one

industry. The UNIDO industries serve either the capital or the non-capital manufacturing

sectors. We assigned an industry to the capital sector if the US NIPA tables count it in

their "�xed asset" tables (see Table 4). Construction serves the capital sector too. The

initial shares of agriculture, services, manufacturing and construction sectors out of GDP

are derived from World Development Indicators data (WDI).35

1. We assume that � = 0:06 as in Greenwood et al (1997): this is a standard values in

models in which the productivity of the investment technology exceeds that in the

consumption sector. We use a standard value for the capital share, � = 0:3.

2. To calibrate the utility weights �s;i, it should be noted that in a sense these weights

are arbitrary, as they depend on the exact unit of measurement for good i.36 Thus,

without loss of generality, we set �s;i =
1
Is
, where Is is the number of industries in

sector s. The same applies to � i, the utility weight at the sector level, so � i =
1

S�1 . We

set � = 0:95, a standard value.

35For countries with missing data, we use predicted values computed by regressing sector shares on income,

income squared and UNIDO industry shares in the manufacturing sector for all countries and years in our

sample.
36For example, if I measure apples and get �s;apples = 2 (and Aapples;0 = 3), I could choose to measure

apples in units of "half an apple" and then �s;apples = 1 (and Aapples;0 = 6).
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Table 4: Capital good-producing manufacturing industries

Industry ISIC code

Wood products 331

Furniture, except metal 332

Fabricated metal products 381

Machinery, except electrical 382

Machinery, electric 383

Transport equipment 384

Prof. & sci. equip. 385

Other manufactured prod. 390

3. For each sector, equation (27) is equivalent to logGi = � + ("� 1) log gi + �i where

� = logGj � log gj for some arbitrary industry j and �i is any unmodeled noise in
the relationship. We regress U.S. value added growth rates on TFP growth rates37

for capital and non-capital manufacturing goods respectively, �nding that they were

not statistically signi�cantly di¤erent: "noncapmanuf = "capital. Pooling the data, we

estimate that "noncapmanuf = "capital = 3:73. Across sectors, we use the value " = 0, as

discussed earlier.

4. The preference parameter � is calibrated so that in the long run the investment share of

GDP converges to 12 percent, which is roughly the share in the US: investment shares

in transition turn out not to be very di¤erent. This implies that � = 3: typical values

used in calibration fall in the range � 2 [1; 5],38 so it is encouraging that our value falls
in the middle.

5. Productivity growth values gi are drawn from the NBER productivity database, as

described in Section 2. We use the average value over the period 1963-1992. See

37We use data from Jorgenson et al (2007): although they are a little more disaggregated, we want a

value estimated at roughly the same level of aggregation as the UNIDO data. The UNIDO data themselves

are too few so we were unable to obtain a good estimate from them directly. The estimate of " is slightly

di¤erent from Ilyina and Samaniego (2012) because of the inclusion of Construction in the set of capital

goods producing industries.
38Growth models tend to use � = 1, whereas asset pricing studies tend to use larger values, see for example

Jermann (1998).
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Table 1. To calibrate the growth factors of the consumption goods sectors, �rst we use

equation (31) to compute TFP growth in the capital sector (excluding construction)

over the period 1963-1992, and get the average value gS = 1:0241. According to NIPA,

the relative price of construction has risen at a rate of 0:0109 each year relative to other

capital. This means the growth factor of construction sector gconstruction = gS=e
0:0109 =

1:0130. For the services sector, the relative price of services has risen at a rate of

0:0103 each year relative to other capital. This means the growth factor of services

sector gservices is then gS=e0:0103 = 1:0136. For agriculture, we have that the relative

price of agriculture has dropped at a rate of 0:004 each year relative to other capital.

So the growth factor of the agricultural sector is gagriculture = gS=e
�0:004 = 1:0282.

6. For the initial productivities of the capital and consumption sectors, we initially set

Acapital;0 = 1 and Aconsumption;0 = 1. The former is a normalization, and the latter is

without loss of generality because the size of the non-investment sectors is independent

of the level of Aconsumption;0 = 1.39 Then, using (25) and (31), for the capital sector

industries i 2 IS, we set initial TFP to equal Ai0 =
h

ni0P
�
"S
i ni0

i 1
"S�1 , thus matching the

initial share of capital industries in each country. For the consumption sectors, set As0
(where s 2 fservices, agriculture and non-capital manufacturingg) so as to match the

initial share of that sector in each country: As0 =
h

ns0P
�"ns0

i 1
"�1
. Finally, for industry

productivity in non-capital manufacturing, we have again that Ai0 =
h
ni0As0P
�"si ni

i 1
"s�1 .

Industry shares are drawn from UNIDO and sector shares are based on the WDI.40

Finally, we multiply Ai0 in all industries and sectors by a country-speci�c constant so

that the country GDP per head relative to US GDP per head in the initial year is the

same as in the data.

Finally, there are many country factors the literature has related to economic growth

which are not featured in the model (see for example Barro (1991) or Sala-i-Martin (1997)).

We add a country-speci�c productivity growth term that a¤ects all industries equally, and

calibrate it to match average GDP growth rates in each country over the sample period. This

term could be interpreted as capturing policies that a¤ect technological di¤usion, trends in

39Proof available upon request. We could calibrate the ratio of these producivity terms to match the

relative price of capital reported in the initial year in the Penn World Tables 7.1 but this does not a¤ect

results �as a result of the Proposition.
40As mentioned, an adjustment to industry shares is required due to our focus on an EGP: see Section G

for details.
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Table 5: Calibrated Parameters: Baseline Model

gconstruction gservices gagriculture "capital "consumption

1:0130 1:0136 1:0282 3:73 0

"noncapmanuf � � � �

3:73 3 0:06 0:3 0:95

policy, or any of the factors commonly included in growth regressions. In any case, results

are not sensitive to the inclusion of this term.

E.1 Simulation

For each country we use initial conditions from 196341 as starting points, and simulate the

share of GDP nit of any industry or sector along unbalanced growth path.42

Figure 15 shows the estimated curve of Gini using industry shares simulated in our

baseline model. We can see that our baseline model is able to capture the U-shape of stages

of diversi�cation very well. Thus, the results derived using the simple model are robust to

allowing the composition and size of the capital sector to evolve independently of the non-

capital manufacturing sector, and to allowing the model to generate the GDP series as well

as just industry structure. It is notable that, in the full growth model, the re-specialization

after the turning point is slower than the initial specialization, just as in IW.43

41For some countries initial data in 1963 are not available: then we use the earliest available year.
42In our derivations, the model measures GDP in terms of capital goods (remember we normalize capital

goods price to 1 and consumption goods prices are expressed as relative to capital goods price). In the

data, however, GDP is measured in terms of consumption goods, see Greenwood et al (1997). Since in our

model, Aht = pctAct , we can express the GDP growth factor measured in units of consumption using the

formula egyt = gyt gAhgAc
. This is the notion of GDP we use in the graphs below. The model simulated using

GDP de�ned in terms of capital goods yields very similar results. An issue here is that the values of Ah0
and Ac0 are arbitrary in the calibration, but not when we wish to express cross-country GDP in common

units. We handle this by assuming that the real GDP data are measured in units of consumption and are

internationally comparable, and then use the model to compute growth rates (which do not depend on GDP

levels) extrapolating from initial GDP in the data.
43If we extend the simulated curve from $15,000 to $20,000, the rising right hand side of the curve continues

to increase linearly.
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Figure 15. Industry structure along the development path in the full model. The left

panel is the relationship between income and specialization within manufacturing

reported in IW. The right panel is the same relationship in the pseudo-data

generated from the model economy. The range of income is the same as that

reported in IW.

F ILO Calibration: Broad sectors

IW report how economic structure evolves along the development path for 9 broad sectors,

drawing on data from the ILO. In this section, we will show that TFP growth di¤erences in

our model can explain economic structure through the economy at sector level. We recali-

brate the model economy so that S = 10, where the capital and non-capital manufacturing

sectors are the same as in the UNIDO calibration, whereas the other 8 sectors correspond

to the non-manufacturing sectors in the ILO 1-digit data. Thus, whereas before we had

capital, non-capital manufacturing, agriculture and services, we now disaggregate services

into several new sectors. See Table 2 for the list of non-manufacturing sectors. Within

manufacturing, we still use 28 UNIDO industries, of which 8 produce capital goods as the

UNIDO calibration (Table 4). The de�nition of the capital goods sector is the same as the

UNIDO calibration, i.e. 8 UNIDO industries and construction. All other sectors in Table 2

produce consumption goods. The initial sector shares are taken from the ILO dataset.44 As

earlier, we set " = 0. All other parameters are calibrated as before.

Figure 16 shows the estimated link between income and sectoral concentration using the

44Again, an adjustment is required due to the focus on an EGP. See Appendix.
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9 ILO sector shares simulated in our model. It is clear that economic structure at sector

level still displays a U-shape. Again, the turning point is around $9,000 as in the data.
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Figure 16. Economic Structure along the Development path: results for the entire economy,

using the ILO 1-Digit Sector Classi�cation. The left panel represents the ILO employment

data, whereas the right panel is based on model-generated shares.

Within the manufacturing sector (for both capital and non-capital manufacturing indus-

tries), resources will shift towards high-TFP growth industries, as calibrated elasticities of

substitution are above one. However across sectors, because the elasticity of substitution

across the consumption sectors is less than unity, the model predicts that the economy will

shift resources towards the slowest TFP growth sector. During this process of structural

change, the economy displays a U-shaped pattern of stages of diversi�cation at both levels

of disaggregation. This is exactly what we observe in the data in Figure 2 in the main text.

A lot of attention has been devoted to explaining changes in the share of agriculture

and services along the development path �see Ngai and Pissarides (2004, 2007), Rogerson

(2008) and Duarte and Restuccia (2010), among others. Although not designed to do so, the

model matches extremely well the observed changes in the link between agricultural shares

and service shares and income. See Figure 17.45

45The model does not produce a hump shape in the share manufacturing, which some authors have focused

on (e.g. Buera and Kaboski (2012)). Pooling lots of countries and using the IW method, the data do seem

to display a hump but it is weak compared to the dramatic rise of services and fall in agriculture, which

the model does reproduce. Duarte and Restuccia (2010) show that a model with our basic mechanisms plus

non-homothetic preferences can reproduce the hump.
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Figure 17. IW regressions for shares of agriculture, manufacturing and services. The left

panel is based on the ILO data. The right panel is based on the model-generated shares.

G Simulation procedure

Simulating the model requires overcoming two distinct problems.

The �rst concerns matching the model with the data. Notice that the model reduces to a

2 sector model where consumption and investment are made by di¤erent sectors. As shown

in Greenwood, Hercowitz and Krusell (1997), this is the same as a one-sector model with

investment speci�c technical change. In the one-sector growth model, the equilibrium for any

initial conditions is a jump to the stable branch of a saddle path that leads to the long run

equilibrium (which in this case is the model where the capital sector has converged to contain

only one industry). Thus, for general initial conditions K0, the share of investment will jump

after period 1, so that the structure of the manufacturing sector will change abruptly after

period zero (and smoothly thereafter).

We handle this problem in two ways. First, we computed everything without worrying

about the jump. Second, we calibrated the model so as to focus on an Euler growth path �

which are the results reported in the paper (results were very similar either way).

In this second case we did not set the initial value of the capital stock K0 to match the

investment share of GDP in each country. The reason was that, in all other periods after

t = 0, the investment share will follow the Euler equation. It seems arbitrary to assume

that in all countries the Euler equation is satis�ed in all years except 1963, or whatever

happens to be the year for which data are initially available. As a result, we assume that
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the Euler equation is also satis�ed at date zero. We call this an "Euler growth path" or

EGP. To do this requires setting the investment share of GDP at a value that is di¤erent

from that in the data. At the same time, it is critical that we preserve the composition

of manufacturing. Hence, we adopted a recursive strategy. We know from the data the

composition of investment in year zero. Given an assumption on the investment to GDP

ratio, we can preserve the ratio of capital to manufacturing and �nd a value for the size

of manufacturing that preserves its composition.46 Then we check whether the assumption

on the investment to GDP ratio corresponds to an EGP.47 If not, then we generate another

guess based on the predicted EGP value from the last iteration. We �nd that 3 loops is

su¢ cient for very tight convergence. When we regress data on initial manufacturing shares

on the model initial manufacturing shares, we �nd a coe¢ cient of 1:16 (positive and close to

one) and an intercept of �0:026 (close to zero), both signi�cant at the 1% level. We take this
to imply that, in general, our procedure does not signi�cantly distort the sector structure of

the model economy.

The second computational issue we confront is the fact that we are simulating a model

economy that does not have a balanced growth path (although it converges to one). Recall

that the aggregate behavior of the model is the same as a one-sector model with investment

speci�c technical change. In the one-sector growth model, any approximation to the saddle

path will "shadow" it for a period of time, eventually diverging in�nitely from it: see Colucci

(2001). As a result, we adopt a procedure to provide this "shadowing" without su¤ering an

eventual divergence.

The procedure is to assume limited computational ability among the agents, a procedure

we call "rolling windows of consciousness." Speci�cally, the structure of the model economy

can be computed exactly given the investment share of employment. This can be computed

exactly given a series for gct, which is determined by Euler equation (65) and the transver-

sality condition. The Euler equation converges uniformly to gct = g
1

1��
ASt
, where gASt is the

weighted-average productivity in the manufacturing industry and which is known for any t

given initial conditions and using equation (6). We assume that an agent at date t acts as

though di¤erence equation (65) characterizes gct up to period t+ T; whereas after t+ T the

agent believes that gct = g
1

1��
ASt
. Notice that this is distinct from simulating the transition

46Other sectors are resized so that, relative to each other, shares of GDP are preserved too.
47Recall that computing the equilibrium, including the initial share of investment, requires a series for

gc, which in turn depends on sector productivity growth rates. However, sector productivity growth rates

depend on the initial composition and size of the economy. This is why an iterative procedure is necessary

to �nd an EGP.
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path of the economy assuming that there is some �xed date T in the future after which

productivity dynamics in the model economy change and correspond to a BGP:48 we found

that procedure to be sensitive to the value of T . Instead, the horizon over which the agent

uses the exact Euler equation (6) does not change over time.

We tried T = 50, 90 and 200. For T = 90, the error between the realized value of gc1 and

the value forecast by the agent when making investment and consumption decisions in period

0 is about 1% of the actual value (because the series for gct converges uniformly to its long

run value, the forecast errors are the highest in the �rst period). For T = 200 these values

are indistinguishable to eight decimal places. At the same time, for all these values of T , the

Gini nonparametric regression results such as Figure 15 were indistinguishable regardless of

the value of T .

This indicates two results. First, this procedure could yield an arbitrarily accurate ap-

proximation to the correct aggregate equilibrium dynamics, given a su¢ ciently large (but

�nite) value of T . This is distinct from the shadowing property, which provides arbitrarily

precise approximations only for a �nite period, after which there is increasing divergence.

Second, industry dynamics are robust even to using values of T such that aggregate dynamics

are computed with some degree of imprecision.

48See for example He and Liu (2008).
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H Proofs

Proof of decentralized economy. For consumers:

max
yst

1X
t=0

�t
c1��t � 1
1� �

ct =

"
S�1X
s=1

�sy
"�1
"

st

# "
"�1

s:t:

S�1X
s=1

qstyst + qStySt =
SX
s=1

X
i2Is

rtKit +

SX
s=1

X
i2Is

wtnit

Capital and labor market clearing conditions are:

Kt =
SX
s=1

X
i2Is

Kit

1 =
SX
s=1

X
i2Is

nit

F.O.C w.r.t yst :
qst
qs0t

=

�
ys0t
yst

� 1
" �s
�s0

s; s0 = 1; :::; S � 1 (43)

or
yst
ys0t

=

�
�s
�s0

ps0t
pst

�"
s; s0 = 1; :::; S � 1 (44)

Final Goods Sector s maximizes pro�t:

max
us;i;t

qstyst �
X
i2I

pitus;i;t

= qst

"X
i2I

�s;i � y
"s�1
"s

i;t

# "s
"s�1

�
X
i2I

pityi;t

F.O.C w.r.t yi;t :

qst

"X
i2I

�s;i � y
"s�1
"s

i;t

#
�s;iy

�1
"s
i;t = pit

similarly for yj;t :

qst

"X
i2I

�s;i � y
"s�1
"s

i;t

#
�s;jy

�1
"s
j;t = pjt

So we have:
pit
pjt
=

�
yj;t
yi;t

� 1
"s �s;i
�s;j

(45)
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or
yi;t
yj;t

=

�
�s;i
�s;j

pjt
pit

�"s
(46)

For industry i in a given sector:

max pitAitK
�
itn

1��
it � rtKit � wtnit

F.O.C w.r.t Kit :

pit�AitK
��1
it n1��it = rt (47)

F.O.C w.r.t nit :

pit(1� �)AitK
�
itn

��
it = wt (48)

Dividing one F.O.C. by the other we get that

1� �

�

�
Kit

nit

�
=
wt
rt
) kt =

wt
rt
� �

1� �
(49)

where the capital labor ratio kt � Kit=nit is a constant across industries. Applying this

result to (47) implies that
Ait
Ajt

=
pjt
pit

(50)

Using (46), (49) and (50) yields

nit
njt

=

�
�s;i
�s;j

�"s �Ait
Ajt

�"s�1
(51)

which, rearranging (45), implies that nit
njt
= pityit

pjtyjt
. De�ne the industry i growth factor as :

Git =
pi;t+1yi;t+1
pityit

and the expression Git=Gjt then denotes the growth of industry i relative to industry j

Git

Gj;t

=

pi;t+1yi;t+1
pityit

pj;t+1yj;t+1
pjtyjt

=

pit+1
pjt+1

�
�s;i
�s;j

pjt+1
pit+1

�"s
pit
pjt

�
�s;i
�s;j

pjt
pit

�"s
=

�
pit+1
pjt+1

�1�"s
�
pit
pjt

�1�"s =

�
Ait+1
Ait

�"s�1
�
Ajt+1
Ajt

�"s�1
=

�
gi
gj

�"s�1
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Proof of Proposition 1. Solving the 2 sector problem and using the equilibrium condi-

tions, we have:

ASt = pctAct (52)

rt =

pctc
�
t

pct�1c
�
t�1

�
� 1 + � =

�
gAS;t�1
gAc;t�1

�1��
g�ct�1

�
� 1 + � IF � 6= 0 (53)

where gct�1 � ptct
pt�1ct�1

is the growth factor of aggregate consumption (54)

gAct�1 =
Act
Ac;t�1

; gAS;t�1 =
ASt
AS;t�1

are known (55)

Let �t = ��1r
��
1��
t � g

1
1��
AS;t

r
�1
1��
t+1 + (1� �) r

�1
1��
t

kt =
KSt

nSt
=
Kct

nct
=

�
�ASt
rt

� 1
1��

Kt = kt

The growth factor of capital per capita in each sector is:

gkt =
kt+1
kt

= g
1

1��
ASt

�
rt
rt+1

� 1
1��

(56)

Similarly; we get aggregate capital growth factor:

g
Kt
= gkt

Using (52) and (36), we derive capital sector output, i.e., investment:

ySt =

�
�ASt+1
rt+1

� 1
1��

� (1� �)

�
�ASt
rt

� 1
1��

= (�ASt)
1

1��

"�
gAS;t
rt+1

� 1
1��

� (1� �)

�
1

rt

� 1
1��
#

(57)

and the growth factor of investment ySt is:

gySt =
yS;t+1
ySt

= g
1

1��
ASt

�
gAS;t+1
rt+2

� 1
1�� � (1� �)

�
1

rt+1

� 1
1��

�
gASt
rt+1

� 1
1�� � (1� �)

�
1
rt

� 1
1��

so that the labor in capital sector is:

nS;t = �

"
1

rt

�
gAS;trt

rt+1

� 1
1��

� (1� �)

rt

#
(58)
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and the growth factor of nht is:

gnSt =
nS;t+1
nSt

=

1
rt+1

�
gAS;t+1

rt+1

rt+2

� 1
1�� � (1��)

rt+1

1
rt

�
gASt

rt

rt+1

� 1
1�� � (1��)

rt

(59)

Notice that nSt (and hence nct = 1� nS;t) is independent of the level of technology in c and
yS as long as the interest rate is too. We can get capital in capital sector:

KS;t = �

"
1

rt

�
gAS;trt

rt+1

� 1
1��

� (1� �)

rt�1

#�
�ASt
rt

� 1
1��

(60)

De�ne the aggregate output per capita as yt = ySt + pctcct. Since Kct = Kt � KSt and

nct = 1� nSt,

yt = ySt + pctcct

= AStK
�
Stn

1��
St + pctActK

�
ctn

1��
ct

= AStk
�

1��
t =

�
�

rt

� �
1��

A
1

1��
St

(61)

and its growth factor is:

gyt =
yt+1
yt

= g
1

1��
ASt

�
rt
rt+1

� �
1��

(62)

Aggregate consumption is:

Ct = pctct = yt � yS;t (63)

=

�
�

rt

� �
1��

A
1

1��
S;t

� (�ASt)
1

1��

"�
gASt
rt+1

� 1
1��

� (1� �)

�
1

rt

� 1
1��
#

(64)

The growth factor of consumption is:

gct =
Ct+1
Ct

= g
1

1��
ASt

�t+1
�t

: (65)

Notice that as t!1 the expressions for gASt and gAct converge to constants, so the di¤erence

equation for gct converges uniformly to that which characterizes the model of investment-

speci�c technical change in Greenwood, Hercowitz and Krusell (1997). Thus, the result that

the transversality condition picks out a single equilibrium solution in that model extends to

our case too.

Proof of Proposition 2. Corollary of the proof of Proposition 1 and (27).
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