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Abstract

We develop �revealed preference�tests for models of optimal infor-

mation aquisition . The tests encompass rational inattention theory as

well as sequential signal processing and search. We provide limits on

the extent to which attention costs can be recovered from choice data.

We experimentally elicit �state dependent� stochastic choice data of

the form the tests require. We �nd that subjects adjust the intensity

and focus of their attention in response to incentives. Our tests pro-

vide quantitive con�rmation that such adjustements are well-modeled

as rationally responsive to costs.

1 Introduction

Understanding behavior when information is costly to acquire has been central

to economic analysis since the seminal work of Stigler [1961]. As the impor-
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tance of information constraints has been increasingly recognized,1 so an ever

wider array of information gathering technology has been modelled : McCall

[1970] considered the case of sequential search; Verrecchia [1982] the choice of

variance of a normal signal; Sims [1998] an unrestricted choice of information

structure with costs based on Shannon entropy. Many other technologies have

been discussed in the literature.2

In this paper we introduce de�nitive behavioral conditions that cover a

large class of costly information acquisition theories, including rational inat-

tention, the selection of a signal from a pre-determined set, and sequential

information acquisition.3 We establish limits on what choice data can reveal

about the costs of information. In an experimental implementation, we �nd

that subjects adjust the intensity and focus of their attention in response to

incentives. Our tests provide quantitative con�rmation that such adjustments

are well-modeled as rationally responsive to costs.

The purpose of our tests is to introduce non-parametric methods into the

theory of information acquisition. Just as unobservability of preferences mo-

tivated the revealed preference approach to utility (Samuelson [1938], Afriat

[1967]), so unobservability of information acquisition costs motivates our ap-

proach. In the revealed preference spirit, our tests are necessary and su¢ cient

for any arbitrary �nite data set, and so can be readily applied in practice. The

success or failure of these tests will identify the relative merits of specializing

or amending the standard model.

Enriched choice data plays a central role in our tests. We utilize �state

1For example shoppers may buy unnecessarily expensive products due to their failure to
notice whether or not sales tax is included in stated prices (Chetty et al. [2009]), buyers of
second-hand cars focus their attention on the leftmost digit of the odometer (Lacetera et al.
[2012]), while purchasers limit their attention to a relatively small number of websites when
buying over the internet (Santos et al. [2012]).

2For example Reis [2006], van Nieuwerburgh and Veldkamp [2009], Woodford [2012], Gul
et al. [2012].

3That our conditions characterize so many distinct microeconomic models is striking. It
echoes the �nding of Manzini and Mariotti [2007] that identical conditions (�weak WARP�)
capture the behavioral content of many apparently distinct procedural models of boundedly
rational behavior. Following up on this approach, Masatlioglu et al. [2012] and Manzini
and Mariotti [2012] have mapped speci�c models search to their observable counterparts in
choice data.
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dependent�stochastic choice data, which described the decision maker�s prob-

ability of choosing each available act in each (objective) state of the world.4

While only recently introduced into revealed preference analysis (see Caplin

and Martin [2011], henceforth CM13), it is standard in the econometric analy-

sis of discrete choice. For example, Chetty et al. [2009] studies how choice

distributions are impacted by an in principle observable state: the inclusion

or exclusion of sales taxes in stated prices. He �nds evidence of incomplete

state awareness among buyers.5 It is also easy to collect experimentally, as we

describe below.

There are two conditions that render state dependent data consistent with

optimal acquisition of costly information. First, a �no improving action switch�

(NIAS) condition ensures that choices are optimal given what was learned

about the state of the world, as in CM13. Second, a �no improving attention

cycles�(NIAC) condition ensures that total utility cannot be raised by reas-

signing attention strategies across decision problems. While these conditions

are obviously necessary, we show that they are also su¢ cient for the existence

of a costly information representation.

We provide limits on what can be learned about information costs from

state dependent stochastic choice. One cannot identify whether or not less

informative strategies (in the sense of Blackwell) would have been more costly.

One cannot identify whether or not it is feasible to mix attention strategies.

One also cannot tell whether or not inattention is costless.6 Yet there are

readily computable limits on the costs of attention in any �nite data set.

We implement our tests by experimentally eliciting state dependent sto-

chastic choice data. Our experiments incentivize shifts in the intensity and the

focus of attention. Our subjects are responsive to these shifts in incentives,

for example discriminating more �nely in their choices when learning is ex

4The key role of data enrichment has arised previously in our research in our use of
�choice process�data to test theories of sequential search (Caplin et al. [2011]).

5The data set has a long history in psychometric research. It is essential to the for-
mulation of the Weber-Fechner �laws�on limits to perceptual discrimination (see Murray
[1993]).

6This result is in the spirit of Afriat [1967], and pinpoints limits on the identi�ability of
cost functions in behavioral data.
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ante more valuable due to the rich set of potentially available action choices.

Our formal tests con�rm that behavior is broadly in line while the costly in-

formation processing. Alternative theories in which learning is unresponsive

to attentional incentives, are clearly rejected.7

Our paper is related to recent literature attempting to characterize speci�c

models of costly information acquisition. Matejka and McKay [2011] study

the implications of rational inattention with Shannon entropy costs for state

dependent stochastic choice data. Manzini and Mariotti [2012] characterize

a model of consideration sets using random choice. Ellis [2012] uses state

dependent deterministic choice to study a model in which a decision make

has a �xed set of signals to choose from. Masatlioglu et al. [2012] identify

limited attention using standard choice data. de Oliveira et al. [2013] consider

a more general model of attention, again using choice over menus as their data.

Other recent work has considered the implications of unobserved information

acquisition in dynamic (Dillenberger et al. [2012]) and strategic (Bergemann

and Morris [2013], Penta [2012]) settings. More generally, our work �ts into an

ongoing resurgence in the use of revealed preference methods. Recent examples

include Choi et al. [2007], Beatty and Crawford [2011] and Echenique et al.

[2011].

Section 2 introduces the static model of costly information acquisition.

Section 3 derives the testable implications for state dependent choice data.

Section 4 provides the extension to sequential information acquisition. Section

5 establishes limits on identi�cation. Section 6 details our experimental design,

with results in section 7. Section 8 relates our work to the broader literature

and outlines ongoing work. Section 9 concludes.

7In particular, we �nd monotonicity violations of the type suggested by Matejka and
McKay [2011] that rule out standard random utility models.
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2 A Model of Costly Information Acquisition

2.1 Decision Problems

We consider a decision making environment comprising a �nite set of states

of the world ! 2 
 with cardinality M . We de�ne � = �(
) as the set of

probability distributions over states. Given 
 2 �, 
! denotes the probability
of state !. A decision maker (DM) has prior � 2 �. As in CM13, we consider
a DM with an expected utility function over a prize set. A decision problem

consists of a �nite set of available actions A from which the DM must choose.

The state ! speci�es precisely which prize corresponds to each such action.

In the current analysis we treat the underlying utility function as known and

suppress reference to the prize space. Instead we directly specify state depen-

dent utility function U : 
 � A �! R and let Ua! denote the utility of action
a in state !.8 We let F be the set of all conceivable actions a : 
! RM with

F comprising all non-empty �nite subsets of F .

2.2 Behavior

Formally, the DM chooses an attention strategy. In the current section, we

follow the rational inattention literature in treating such an attention strategy

as a stochastic mapping from states of the world to subjective signals, the

8Throughout this paper, we assume that the DM�s expected utility function and prior
beliefs over states of the world are both known to the researcher - only attention strategies
and costs are not directly observable. This assumption is in line with the focus of the paper,
but is not central to our approach. By enriching the data set, we could recover beliefs
and preferences from the choice data of the DM, and use these as a starting point for our
representation. In order to recover utility, we could replace the �Savage style�acts we use in
this paper (which map deterministically from states of the world to prizes) with �Anscombe-
Aumann�acts that map states of the world to probability distributions over the prize space.
Assuming the DM does maximize expected utility, U could then be recovered by observing
choices over degenerate acts (i.e. acts whose payo¤ are state independent). If we further add
to our data set the choices of the DM over acts before the state of the world is determined
(or at least in a situation in which they cannot exert any e¤ort to determine that state) then
we can also recover the DM�s prior over objective states (again assuming expected utility
maximization).
Alternatively, Caplin and Martin [2011] show how the conditions of the type presented in

this paper could be extended to cover the case of unknown utility.
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probabilities of which depend on the state of the world. We extend the model

to sequential sampling in section 4.

Throughout the analysis we will be characterizing expected utility maxi-

mizers. Hence we identify each subjective signal with its associated posterior

beliefs 
 2 �, which is equivalent to the subjective information state the DM
following the receipt of that signal. Having selected an attention strategy, the

DM can condition choice of action only on these signals. For a particular prior,

the set of feasible attention strategies is the set of stochastic mappings from

objective information states to subjective signals that satisfy Bayes�law.9

De�nition 1 Given prior � 2 �, feasible attention strategies �(�) com-
prise all mappings � : 
!�(�) that have �nite support �(�) � � and that

satisfy Bayes� law, so that for all ! 2 
 and 
 2 �(�),


! =
�!�!(
)X

�2

����(
)

,

where �!(
) � �(!)(f
g).
We use ~� � [��(�) to denote the set of attention strategies for all priors

Note that �!(
) can be interpreted as the probability of signal 
 conditional

on state of the world !.

There are costs of attention. An attention cost function maps attention

strategies to the corresponding level of disutility. We allow costs to be in�nite

to nest constraints on information acquisition - as when a hard limit is imposed

on the mutual information between prior and posteriors (Sims [2003]), by

allowing only partitional information structures (Ellis [2012]), or by allowing

only normal signals (Verrecchia [1982]). To avoid triviality we assume that

feasible attention strategies exist for all priors.

De�nition 2 An attention cost function is a mapping K : � � ~� ! �R
9Attention strategies are equivalent to temporal lotteries in models that capture prefer-

ences over the timing of the resolution of uncertainty (Kreps and Porteus [1978]).
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with K(�; �) 2 R for some � 2 �(�) for all � 2 � and K(�; �) = 1 for

� =2 �(�). We let K denote the class of such functions.

In sections 2 through 4 we impose no cross-prior restrictions on behavior.

Until that point it simpli�es notation to specify arbitrary � 2 �, to limit the
state space to satisfy �! > 0, and to let � identify feasible attention strategies

given this prior.

We model a DM who chooses an attention strategy to maximize gross

payo¤s net of information costs. The gross payo¤ associated with attention

strategy � 2 � in decision problem A 2 F is calculated assuming that actions
are chosen optimally at each posterior state. Let G : F�� ! R denote the
gross payo¤ of using a particular attention strategy in a particular decision

problem:

G(A; �) =
X

2�(�)

"X
!

�!�!(
)

#
g(
;A)

where g(
;A) = max
a2A

X
!


!U
a
! :

We make the standard assumption that attention costs are additively sep-

arable from the prize-based utility derived from the actions taken. We let

�̂ : K � F ! � map cost functions and decision problems into rationally

inattentive strategies. These are the strategies (if any) that maximize gross

payo¤ net of attention costs,

�̂(K;A) = arg sup
�2�

fG(A; �)�K(�)g :

2.3 State Dependent Stochastic Choice Data

The idealized data set that we use to test the model of rational inattention

is state dependent stochastic choice data in a �nite set of decision problems

D � F . Data of this general form is standard in psychometric research and

can be readily gathered in the laboratory, as we demonstrate in section 6.

To formalize, we de�ne Q to be the set of mappings from 
 to probability
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distributions over F with �nite support. Given q 2 Q, we let qa! denote the

probability of the DM choosing action a in state ! and denote as F (q) � F

the set of actions chosen with non-zero probability in some state of the world

under state dependent stochastic choice function q, F (q) = a 2 F jqa! > 0 for
some ! 2 
. For A 2 F , we de�ne QA as all data sets with F (q) � A.

De�nition 3 A state dependent stochastic choice data set (D; q) comprises
a �nite set of decision problems D � F and a function q : D ! Q, with

q(A) 2 QA.

A �rst requirement for existence of an attention cost function for which

an optimal attention strategy generates all observed data is consistency of

that strategy with the observed data for each observed decision problem A.

We allow for mixed strategies C : �(�) ! �(A) in de�ning this form of

consistency, with Ca(
) the probability of action a 2 A given 
 2 �(�).

Following this we de�ne the sought after representation.

De�nition 4 Attention strategy � 2 � is consistent with A 2 F and q 2
QA if there exists C : �(�)! �(A) such that:

1. Final choices are optimal:

Ca(
) > 0 =)
X
!


!U
a
! �

X
!


!U
b
! all b 2 A:

2. The attention and choice functions match the data:

qa! =
X

2�(�)

�!(
)C
a(
):

De�nition 5 Data set (D; q) has a costly information representation
( ~K; ~�) if there exists ~K 2 K and ~� : D ! � such that, for all A 2 D,

~�(A) � ~�A is consistent with q(A) and satis�es ~�A 2 �̂( ~K;A).
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3 Characterization

We establish two conditions as necessary and su¢ cient for (D; q) to have a

rational inattention representation. The �rst establishes optimality of �nal

choice given an attention strategy and applies to each decision problem sepa-

rately. The second establishes optimality of the attention strategy and applies

to the collection of decision problems. The key to our approach is the fact

that state dependent stochastic choice data can be used to reveal much about

a DM;s attention strategy.

3.1 Minimal Attention Strategies

If a DM is rationally inattentive, then one can learn much about their attention

strategy from state dependent stochastic choice data. In particular, one can

identify the average posterior beliefs that a DM must have had when choosing

each act.

De�nition 6 Given q 2 Q, de�ne the revealed posteriors r(q) : F (q) ! �

by,

[r(q)(a)]! � ra! (q) =
�!q

a
!X

�

��q
a
�

:

The revealed posterior ra!(q) is the probability of state of the world !

conditional on action a being chosen given state dependent stochastic choice

data q. If the DM chooses each action in at most one subjective information

state then the revealed posteriors de�ne their attention strategy.10 If they

choose the same action in more than one subjective state then the revealed

posterior is the corresponding weighted average.

We can use the revealed posteriors to construct a �revealed� attention

strategy for each decision problem. We do so by assuming that any action is

chosen in at most one subjective state. Under this assumption we can identify

the resulting attention strategy directly from the state dependent stochastic

10As they would do if more informative information structures are more costly.
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choice data. The probability of a posterior 
 in state of the world ! is calcu-

lated by adding up probabilities of choosing all actions that have that revealed

posterior.

De�nition 7 Given q 2 Q, ! 2 
, and 
 = ra! (q) for some a 2 F (q), de�ne
the minimal attention strategy ��q 2 � to satisfy,

��q!(
) =
X

fa2F (q)jr(q)=
g

qa!:

A key observation is that any attention strategy consistent with the data

must be weakly more informative than the minimal attention strategy, in the

sense of statistical su¢ ciency. Intuitively, this means that the minimal atten-

tion strategy can be obtained by �adding noise�to the true attention strategy.

De�nition 8 Attention strategy � 2 � is su¢ cient for attention strategy
� 2 � (equivalently � is a garbling of �) if there exists a j�(�)j � j�(�)j
stochastic matrix B � 0 with

P

j2�(�) b

ij = 1 all i and such that, for all


j 2 �(�) and ! 2 
,
�!(


j) =
X

�i2�(�)

bij�!(�
i):

Lemma 1 establishes that any consistent attention strategy must be su¢ -

cient for the minimal attention strategy.

Lemma 1 If � 2 � is consistent with q 2 Q, then it is su¢ cient for ��q:

Blackwell�s theorem establishes the equivalence of the statistical notion of

�more informative than�(su¢ ciency) and the economic notion �more valuable

than�. If attention strategy � is su¢ cient for strategy �, then it yields (weakly)

higher gross payo¤s in any decision problem. This result plays a signi�cant

role in our characterization.

Remark 1 Given decision problem A 2 F and �; � 2 � with � su¢ cient for
�,

G(A; �) � G(A; �):
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3.2 No Improving Actions Switches

Our �rst condition is that there are no improving wholesale switches of action.

Caplin and Martin [2011] show that this condition characterizes Bayesian be-

havior regardless of the rationality of the attention given. It speci�es that,

when one identi�es in the data the revealed posterior associated with any

chosen act, this action must be optimal at that posterior. The strategic ana-

log is employed by Bergemann and Morris [2013] in characterizing Bayesian

correlated equilibria.

Condition D1 (No Improving Action Switches) Data set (D; q) satis-
�es NIAS if, for every A 2 D and a 2 A,X

!

ra! (q)U
a
! �

X
!

ra! (q)U
b
!;

all b 2 A.

3.3 No Improving Attention Cycles

Our second condition restricts choice of attention strategy across decision prob-

lems. Essentially, it cannot be the case that the total gross utility can be

increased by reassigning attention strategies across decision problems. The

following example illustrates a violation of this condition.

Consider again the decision problem above with two equiprobable states

and two available actions, A = fa; bg, and with the state dependent payo¤s,

(Ua1 ; U
a
2 ) = (10; 0); (U

b
1 ; U

b
2) = (0; 20):

Suppose now that the observed choice behavior is as follows (using the choice

set A as an argument),

qa1(A) =
2

3
= 1� qb1(A);

qa2(A) =
1

3
= 1� qb2(A):
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Now consider a second decision problem di¤ering only in that the action set

is B = fa; cg, with (U c1 ; U c2) = (0; 10), with the corresponding state dependent
data set,

qa1(B) =
3

4
= 1� qb1(B);

qa2(B) =
1

4
= 1� qb2(B):

The speci�ed data looks problematic with respect to rational inattention.

Act set A provides greater reward for discriminating between states, yet the

DM is more discerning under action set B. To crystallize the resulting problem,

note that, for behavior to be consistent with rational inattention for some cost

function K it must be the case that,

G(A; �A)�K(�A) � G(A; �B)�K(�B);

G(B; �B)�K(�B) � G(B; �A)�K(�A):

While we do not observe attention strategies directly, it is immediate that

G(i; �i) = G(i; ��i) for i 2 fA;Bg. Furthermore, as �i is su¢ cient for ��i,
Blackwell�s theorem tells us that G(i; �j) � G(i; ��j) for i:j 2 fA;Bg (see Re-
mark 1): Thus we can insert the minimal attention strategies in the calculation

of gross bene�ts to conclude,

G(A; ��A)�G(A; ��B) � K(��A)�K(��B) � G(B; ��A)�G(B; ��B)

We conclude that gross bene�t is maximized by the assignment of minimal

attention strategies to decision problem observed in the data,

G(A; ��A) +G(B; ��B) � G(A; ��B) +G(B; ��A); (1)

In the above exampleG(A; ��A)+G(B; ��B) = 171
2
, whileG(A; ��B)+G(B; ��A) =

1711
12
. Thus, there is no cost function that can be used to rationalize this data.
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The NIAC condition ensures precisely that no such cycles of attention strategy

raise gross utility.

Condition D2 (No Improving Attention Cycles) Data set (D; q) satis-
�es NIAC if, for any set of decision problems A1; A2; ::::; AJ 2 D with

AJ = A1,
J�1X
j=1

G(Ak; ��
j) �

J�1X
j=1

G(Ak; ��
j+1);

where ��j = ��q(Aj).

The NIAC condition is analogous with acyclicity conditions that are stan-

dard in revealed preference theory (such as the Strict Axiom of Revealed Pref-

erence). Consider the two decision problem case described in equation 1. A

further rearrangement of this condition implies that

G(A; ��A)�G(A; ��B) +G(B; ��B)�G(B; ��A) � 0

We can interpret G(A; ��A) � G(A; ��B) < 0 as ��B being �revealed more

costly�than ��A: ��B would have given higher gross value in decision problem

A than would ��A, so the fact that it was not chosen must mean that it is more

costly. Thus, this condition can be interpreted as saying that if ��B has been

revealed more costly than ��A, we cannot also have that ��A is revealed more

costly that ��B. In fact, the condition says something more than that because,

unlike in the standard revealed preference exercise, we have information about

how much more costly ��B is than ��A in terms of expected utility. Therefore

if we have data revealing that ��B is more costly than ��A by at least some

amount x, we cannot also have information that implies that this di¤erence

must be less that x.

3.4 Characterization

NIAC and NIAS together are necessary and su¢ cient for (D; q) to have a

rational inattention representation. We establish this by applying the results
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of Koopmans and Beckmann [1957] concerning the linear allocation problem.

The cost function that we introduce is based on the shadow prices that decen-

tralize the optimal allocation in their model (see also Rochet [1987]).

Theorem 1 Data set (D; q) has a rational inattention representation if and
only if it satis�es NIAS and NIAC.

4 Sequentially Rational Inattention

So far we have considered static models of costly attention. Yet sequential

sampling has been the central focus in models of information acquisition since

the work of Wald [1947]. In this section we extend our results to a model of

sequential attention, assuming that how learning evolved before choice took

place is not directly observable. It turns that this model has no additional

behavioral restrictions on the data: NIAS and NIAC are still necessary and

su¢ cient for data to be consistent with optimal sequential attention.

4.1 Sequential Attention and Choice Strategies

We �x a time interval within which a decision is to be made. This decision

period is sub-divided into a sequence of T � 1 sub-periods in each of which

the DM decides how much attention to give to the decision at hand. The

decision on when and how to pay attention and what to choose is assumed

to be sequentially rational. We assume that there is no discount factor in

operation during this decision period, so that the sequence of attention and

action choice decisions is made to maximize the net undiscounted value of �nal

prize utility less sequential attention costs. The sequence of attentional inputs

and the actual decision time are both �exible, and it is assumed that neither

is observed in the choice data.

The DM at the start of period 0 is endowed with prior beliefs � 2 �.

The �rst decision is whether or not to stop and choose at this time. If so,

the stopping time is � = 0 and we de�ne stopping set S0 = � and G0 is

empty. If not we de�ne G0 = � and S0 is empty. In this case a �rst attention
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strategy �1 2 �(�) is selected at the start of period 1, with posterior 
1 2
�(�1) realized instantly. The DM selects a deterministic stopping rule. We

de�ne G1 � �(�1) to be all continuation posteriors, with S1 = �(�1)=G1 the
corresponding stopping set triggering a period 1 choice.

The process iterates from this point forward. We allow for history depen-

dence by de�ning the continuation set Gt for t � 0 to comprise of sequences
of posteriors 
t = (
1; ::; 
t) 2 �t. The �rst time that Gt is empty identi�es
the maximal stopping time, � = t � T . In all earlier periods, the DM picks a

period t+ 1 attention strategy function.

�t+1 : Gt ! ~� with �t(
t) 2 �(
t):

The ensuing continuation set and attention strategy are correspondingly de-

�ned:

Gt+1 �
�

t+1 2 �t+1j
t 2 Gt; 
t+1 2 �(�t(
t))

	
� �t+1(�t);

St+1 � �t+1(�t)=Gt+1:

The above fully speci�es a sequential attention strategy. We let �(�) be the

set of such strategies, with generic element � 2 �(�). For t � � we let �t(�)

comprise all pairs (�s,Gs) for 1 � s � t, with generic element �t 2 �t(�). Note
that a strategy induces a probability distribution over sequences of posteriors.

Let ��(
t) be the overall probability of posterior sequence 
t given strategy �,

with ��!(

t) being the probability of this posterior in the state ! 2 
,

��(
t) =
X
!

�!�
�
!(


t):

4.2 Evaluating Strategies

We turn to the evaluation of a choice strategy �. We assume that choices

are made optimally given posteriors. Thus, when faced with decision prob-

lem A, for each 
t 2 St, the decision maker will receive utility g(
t; A). To

count against reward utility are the attentional costs which we assume to be
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independent of preferences over prize lotteries and additively separable across

periods.

De�nition 9 Given � 2 � we de�ne period attention cost functions E : �t �
~�! �R for 1 � t � T such that E(
t; �) is the cost of using attention strategy

� following sequence of posteriors 
t. The cost of infeasible strategies with

� =2 �(
t) is in�nite. We let E denote the class of such functions.

The above covers all standard models with additive attention costs. In fact

one can enrich the domain of the period attention cost functions to include all

past attention levels as well as the current posterior without changing in any

way the ensuing analysis.11

We de�ne a strategy � as sequentially rational for decision problem A if it

solves the following problem:

� 2 arg max
�2�(�)

TX
t=0

24X

t2St

��(
t)g(
t; A)�
X

t2Gt

��(
t)E(
t; �t+1(

t))

35 ;
where 
0 � �.

Where such optima exist, �̂ : E � F ! � identi�es all sequentially ratio-

nally inattentive strategies.

4.3 SCI Representations

Our goal is to identify all data sets (D; q) that can be rationalized by E 2 E as
consistent with sequentially optimal behavior in the face of costly attention.

De�nition 10 Given decision problem A 2 F , � 2 �(�) is consistent with
q 2 Q if there exists a choice function C : �! �(A) such that:

1. Final choices are optimal: given 1 � t � � , 
t 2 St such that 
t = 
,

11While substantively enriching the model by allowing for tiredness resulting from past
e¤ort etc., including these e¤ects excessively complicates notation.
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a 2 A with C�(
) > 0, and b 2 A;X
!


!U
a
! �

X
!


!U
b
!:

2. The attention and choice functions match the data,

qa! =
�X
t=0

X

t2St

�!(

t)Ca(
t):

We can now de�ne what it means for a data set to admits a sequential

costly information representation.

De�nition 11 Data set (D; q) has a sequential costly information (SCI)
representation ( ~E; ~�) if there exists ~E 2 E and ~� : D ! � such that, for all

A 2 D, ~�(A) is consistent with q(A) and satis�es ~�(A) 2 �̂( ~E;A).

The key result is that NIAS and NIAC remain necessary (as well as su¢ -

cient) for such a representation despite the richer class of learning behaviors

covered. We establish this in the appendix as a corollary to theorem 1. Intu-

itively, the result holds because we can reduce the dynamic problem of sequen-

tial choices to a static problem of choice of strategy, due to time consistency.

Corollary 1 Data set (D; q) has an SCI representation if and only if it sat-
is�es NIAS and NIAC.

5 Recoverability

In this section we establish limits on recoverability of the cost function. We

open by considering three natural restrictions on attention cost functions: weak

monotonicity with respect to su¢ ciency; feasibility of mixed strategies; and

costless inattention. In principle these restrictions might tighten requirements

for rationalizability of stochastic choice data, since they constrain costs of

unchosen strategies. Theorem 2 establishes that this is not the case: if state

17



dependent stochastic choice is rationalizable, then it is rationalizable by a cost

function that satis�es these three conditions. Following this we provide limits

on recoverability by characterizing all cost functions that can rationalize a

given data set.

5.1 Weak Monotonicity

A partial ranking of the informativeness of attention strategies is provided by

the notion of statistical su¢ ciency (see de�nition 8). A natural condition for

an attention cost function is that more information is (weakly) more costly.

Free disposal of information would imply this property, as would a ranking

based on Shannon mutual information (see also de Oliveira et al. [2013] and

Yang [2011]).12

Condition K1 K 2 K satis�es weak monotonicity in information if, for
any �; � 2 � with � su¢ cient for �,

K(�) � K(�):

Not all restrictions on the form of the cost function can be so readily

absorbed. We show in the Appendix that there are data sets satisfying NIAS

and NIAC yet for which there exists no cost function that produces a rational

inattention representation with a cost function that is strictly monotonic with

the informativeness of the information structure (i.e. if � is su¢ cient for �0

but �0 is not su¢ cient for �, then �K(�) > �K(�0)).

5.2 Mixture Feasibility

In addition to using pure attention strategies, it may be feasible for the DM

to mix these strategies using some randomizing device.
12While in many ways intuitively attractive, this assumption may not be universally valid.

In a world with discrete signals it may be very costly or even impossible to generate continous
changes in information. Moreover the DM may be restricted to some �xed set of signals in
which case less informative structures are essentially disallowed. It may not be possible to
automatically and freely dispose of information once learned.
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De�nition 12 Given attention strategies �; � 2 �, and � 2 [0; 1], the mix-
ture strategy � � � + (1� �) � � �  2 � is de�ned by,

 !(
) = ��!(
) + (1� �)�!(
);

all ! 2 
 and 
 2 �(�) [ �(�).

The de�nition implies that the mixing is not of the posteriors themselves,

but of the odds of the given posteriors. To illustrate, consider again a case with

two equiprobable states. Let attention strategy � be equally likely to produce

posteriors (:3; :7) and (:7; :3), with � equally likely to produce posteriors (:1; :9)

and (:9; :1). Then the mixture strategy 0:5� � + 0:5 � � is equally likely to
produce all four posteriors.

A natural assumption is that DMs can choose to mix attention strategies

and pay the corresponding expected costs. They could �ip a coin and choose

strategy � if the coin comes down heads and strategy � if it comes down tails.

In expectation the cost of this strategy would be half that of � and half that

of �. Allowing such mixtures puts an upper bound on the cost of the strategy

0:5� � + 0:5 � �. However, it does not pin down the cost precisely, since there
may be a more e¢ cient way of constructing the mixed attention strategy.

Condition K2 Mixture Feasibility: for any two strategies �; � 2 � and

� 2 (0; 1), the cost of the mixture strategy  = �� � + (1� �) � � 2 �
satis�es,

K ( ) � �K(�) + (1� �)K(�):

5.3 Normalization

It is typical in the applied literature to allow inattention at no cost, and other-

wise to have costs be non-negative. Given weak monotonicity, non-negativity

of the entire function follows immediately if one ensures that inattention is

costless.

Condition K3 De�ne I 2 � as the strategy in which �! = 1 for ! 2 
.
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Attentional cost function K 2 K satis�es normalization if it is non-
negative where real-valued, with K(I) = 0.

5.4 Theorem 2

Theorem 2 states that, whenever a rational inattention representation exists,

one also exists in which the cost function satis�es conditions K1 through K3.

Whatever one thinks of the above assumptions on intuitive grounds, even if

any one or all of them are in fact false, any data set that can be rationalized

can equally be rationalized by a function that satis�es them all.

Theorem 2 Data set (D; q) satis�es NIAS and NIAC if and only if it has a
rational inattention representation with conditions K1 to K3 satis�ed.

This result has the �avor of the Afriat characterization of rationality of

choice from budget sets (Afriat [1967]), which states that choices can be ra-

tionalized by some utility function if and only if they can be rationalized by a

non-satiated, continuous, monotone, and concave utility function.

5.5 Recoverability

Theorem 1 tells us the conditions under which there exists an attentional cost

function that will rationalize the SDSC data. We now provide conditions on

the set of all such cost functions. We restrict ourselves to cost functions that

satisfy weak monotonicity, so that we can treat minimal attention strategies

as optimal. This means directly that, for all A 2 D and � 2 �,

K(��A)�K(�) � G(A; ��A)�G(A; �): (2)

The key question is what this condition implies for cost di¤erences between

between distinct minimal attention strategies in decision problems A;B 2 D.
To answer this we consider cycling these strategies among decision problems

heading from A to B and also from B to A.
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Consider �rst the direct switch from A to B. Since ��A was chosen in A

and ��B was not,

K(��A)�K(��B) � G(A; ��A)�G(A; ��B):

Conversely, since ��B was chosen in B and ��A was not,

K(��A)�K(��B) � G(B; ��A)�G(B; ��B)

Potentially tighter bounds can be placed by considering all sequences of

revealed attention strategy. Consider the corresponding inequalities in string

A1:::An 2 D with A1 = A and An = B, where we use strict monotonicity to

treat minimal attention strategies as optimal and also use them in representing

maximum achievable utility,

K(��A1)�K(��A2) � G(A1; ��
A1)�G(A1; ��

A2);

K(��A2)�K(��A3) � G(A2; ��
A1)�G(A2; ��

A3);

:::::::

K(��An�1)�K(��An) � G(An�1; ��
An�1)�G(An�1; ��

An):

Summing these inequalities in light of weak monotonicity yields,

K(��A)�K(��B) � min
fA1:::An2DjA1=A;An=Bg

X�
G(Ai; ��

Ai)�G(Ai; ��
Ai+1)

�
; (3)

Considering the reverse string A1:::An 2 D with A1 = B and An = A yields,

K(��A)�K(��B) � max
fA1:::An2DjA1=B;An=Ag

X�
G(Ai; ��

Ai)�G(Ai; ��
Ai+1)

�
: (4)

The above three conditions characterize all restrictions that can be placed

on a weakly monotonic cost function that allows it to represent a data set

satisfying NIAS and NIAC. Note �rst that NIAS and NIAC imply that the

lower bound on K(��A) �K(��B) cannot be higher than the upper bound, so

that such a cost function exists. Note also that if one considers cost functions
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that satisfy inattention is free, one may be able to place absolute numerical

restrictions on the cost function. Speci�cally, if there is a decision problem

A 2 D in which attention is of no value (all acts have state independent

payo¤s), we know that the minimal attention strategy has cost zero. Applying

all above inequalities from this decision problem bounds the level of costs.

A related comment is that if one ever sees a switch in attention strategy for

decision problems that are �close together�, in that available vectors of state

dependent payo¤s always fall within � > 0, then one can bound cost di¤erences

to within �. Hence, with a rich enough data set, arbitrarily tight bounds on

costs can be placed on models in which the data is generated by a �nite set of

possible attention strategies.

6 Experimental Design

6.1 Design

We introduce an experimental design that produces state dependent stochastic

choice data. Subjects are shown a screen on which there are displayed 100

balls, some of which are red and some of which are blue. The state of the

world is determined by the number of red balls on the screen. Prior to seeing

the screen, subjects are informed of the probability distribution over states.

They then choose among actions whose payo¤s are state dependent. There is

no external limit (such as a time constraint) on a subject�s ability to collect

information about the state of the world, nor any extrinsic cost to the subject

of gathering information. Therefore the extent to which subjects fail to discern

the true state of the world is due to their unwillingness to trade cognitive e¤ort

for monetary reward.

A decision problem is de�ned by the set of available actions, as it is in

section 2.1. A subject faces each decision problem 50 times.13 We estimate

state dependent stochastic choice functions at the individual and aggregate

13To prevent subjects from learning to recognize patterns, we randomize the position of
the balls. The implicit assumption is that the perceptual cost of determining the state is
the same for each possible con�guration of balls.
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level using the observed frequency of choosing each act in each state. In any

given experiment, the subject faces four di¤erent problems. All occurrences

of the same problem are grouped, but the order of the problems is block-

randomized. In estimating the state dependent stochastic choice function we

treat the 50 times that a subject faces the same decision making environment

as 50 independent repetitions of the same event.

The aim of our experiments is to generate environments in which we would

expect subjects to actively alter their attention in response to incentives. This

allows us to meaningfully test our NIAS and NIAC conditions. It also allows

us to show that models of �exible inattention capture important aspects of the

data that missing from models that do not have this feature.

We conducted three experiments. Each experiment was performed by be-

tween 24 and 46 subjects recruited from the New York University student pop-

ulation.14 Each subject answered 200 questions as well as 1 practice question.

At the end of the session, one question was selected at random for payment,

the result of which was added to the show up fee of $10. Subjects took on

average about 45 minutes to complete a session. Instructions are included in

the supplemental material.

6.2 Experiment 1: Changes in Attentional E¤ort

Experiment 1 tests whether subjects increase overall attentional e¤ort as in-

centives increase. It comprises of four decision problems with two equally likely

states: in state 1 there are 49 red balls and in state 2 there are 51. In each

decision problem there are two actions available fai; big with i indexing the
decision problem. In each case, a is superior in state 1 while b is superior in

state 2. Across decision problems the reward for making the correct choice in

each state varies.15 Table 1 describes the available actions in the four decision
1446 subjects took part in experiment 1, 24 in experiment 2, and 45 in experiment 3. Each

subject took part in only one experiment.
15Note that these could be recorded as state dependent dollar prizes rather than direct

utilities. Allowing for risk aversion rather than risk neutrality adds more notational com-
plexity than warranted since results are unchanged in essentials.
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problems in this experiment (payo¤s are in US$).

Table 1: Experiment 1

Payo¤s

DP Ua1 Ua2 U b1 U b2

1 2 0 0 2

2 10 0 0 10

3 20 0 0 20

4 30 0 0 30

Table 2: Experiment 2

Payo¤s

DP Ua1 Ua2 Ua3 Ua4 U b1 U b2 U b3 U b4

5 1 0 10 0 0 1 0 10

6 10 0 1 0 0 10 0 1

7 1 0 1 0 0 1 0 1

8 10 0 10 0 0 10 0 10

Experiment 1 allows us to di¤erentiate between a model in which attention

responds to incentives, and one in which subjects make optimal choices on the

basis of a �xed attention.16 While more typical in psychology (for example

signal detection theory (SDT) (Green and Swets [1966])), such models have

also attracted recent attention in the economics literature (e.g. Lu [2013] ).

SDT is clearly a special case of our model, and so implies both NIAC and NIAS.

However the same signal structure must rationalize behavior in all decision

problems. This puts further restrictions of the data in this experiment. For any

information structure, a is preferable in posteriors states such that 
1 > 0:5,

while b is preferable for posteriors such that 
1 < 0:5, regardless of the value

of x. Thus, if attention does not change as a function of incentives, neither

should choice behavior vary across the decision problems in this experiment.17

6.3 Experiment 2: Focussing Attention

In experiment 2 we vary the states on which attention is valuable and measure

the extent to which subjects focus their attention accordingly. All decision

problems in this experiment involve four equally likely states comprising two

identi�able groupings. States 1 and 2 are perceptually hard to distinguish from

one another, being de�ned respectively by 29 and 31 red balls. States 3 and

16Equivalently, one could think of this as a model in which the choice of information
structure is made before the decision problem is revealed.
17Assuming that the tie-breaking rule for the case of 
1 = 0:5 also does not change as a

function of x.
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4 are also hard to distinguish from another, being de�ned respectively by 69

and 71 red balls. There are four decision problems with two possible actions,

still labelled a and b. The decision problems di¤er according to whether it is

important to di¤erentiate between states 1 and 2 (problem 5), states 3 and 4

(problem 6), neither (problem 7), or both (problem 8), as described in table

2.

6.4 Experiment 3: Informational Spillovers

Experiment 3 is designed to test whether the introduction of a new act to the

choice set can alter the attention strategy in such a way as to increase the

probability of choosing a previously available alternative. It is based on an

example from Matejka and McKay [2011], and described in table 3. It consists

of two equally likely states (49 and 51 red balls). Decision problem 9 consists

of two actions, a (which pays the same amount in both states) and b (which

pays slightly more is state 2 and slightly less in state 1). Decision problems

10-12 add a further action c, which pays signi�cantly more in state 1 and

signi�cantly less in state 2.

Table 3: Experiment 3

Payo¤s

DP Ua1 Ua2 U b1 U b2 U c1 U c2

9 23 23 20 25 n/a n/a

10 23 23 20 25 30 10

11 23 23 20 25 35 5

12 23 23 20 25 40 0

When act a and b are available there is little incentive to gather informa-

tion, meaning that subjects may choose to remain uninformed and choose a:

However, with c available also, it becomes more important to learn the true

state, as c provides a high reward in state 1 but a low reward in state 2 -

increasingly so for later decision problems. A rationally inattentive agent may

therefore select a more informative attention strategy. If this learning sug-
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gests to the DM that state 2 is more likely, then it is optimal to choose act b,

producing a violation.

This experiment allows us to di¤erentiate between costly information process-

ing from random utility models (RUMs) (McFadden [1974], Loomes and Sug-

den [1995], Gul and Pesendorfer [2006]) which do not allow for �exible atten-

tion. RUMs take as given a probability measure over some family of utility

functions. Prior to making a choice, one utility function gets drawn from this

set according to the speci�ed measure. The DM then chooses in order to max-

imize this utility function.18 Understanding the implications of RUMs in our

setting is non-trivial, as they typically conditions out all observable states, as a

result giving rise to state independent choice. One must therefore take a stand

on what the DM knows about the true state of the world when they make their

choice. The most �exible case which does not nest �exible inattention is one

in which the DM receives a �xed signal about the state of the world, before a

utility function is randomly drawn. This model nests as special cases RUMs

in which the agent is uninformed (i.e. receives no signal) or fully informed.

A key property implied by the �xed-information RUM is monotonicity.

This axiom states that the addition of a new act to the set of available choices

cannot increase the probability that one of the pre-existing options will be

chosen (Gul and Pesendorfer [2006] and Luce and Suppes [1965]).

Monotonicity Axiom Given (�;A) 2 ��F , h 2 FnA and m 2 
,

qfm (�;A) � qfm (�;A [ h) :

Monotonicity is violated by a model of costly inattention that exhibits

information spillovers of the type described above: the introduction of act c

increases the probability of choosing act b in state 2. Such evidence would

therefore imply that RUM models that do not allow for �exible information

acquisition are missing an important aspect of behavior.

18In the case of choice over lotteries, the family of utility functions can be over the lotteries
themselves or, following Gul and Pesendorfer [2006], over the underlying prize space, with
the utility of a lottery equal to its expectation according to the selected utility function.
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6.5 Attention is Limited and Flexible

Before implementing the NIAS and NIAC, we �rst provide evidence that sub-

jects are neither fully attentive or completely inattentive. We also con�rm the

presence of the attentional �exibility that SDT and standard RUM models

ignore.

The �rst point to observe is that the experiments produced choice data that

is both stochastic and state dependent. Subjects gather some information

prior to choice, but this information is incomplete. Using aggregate data

from the simple two act cases of experiments 1 and 2 (in which there is a

clear correct choice in each state), subjects made �mistakes�, choosing the

inferior action on 32% of all trials. In all three experiments, choice behavior

is signi�cantly di¤erent across states (Fishers exact test, p < 0:0001). For

example, in experiment 1, averaging across all 4 decision problems, a was

chosen 75% of the time in state 1 and 38% of the time in state 2. These

patterns hold true at the individual level. For example, of the 46 subjects in

experiment 1, 15% made mistakes in less than 10% of questions, while 76%

had choice behavior that was signi�cantly di¤erent between the two states

at the 10% level. These results suggest that our subjects are absorbing some

information about the state of the world, but are not fully informed when they

make their choice.

Our data also rules out the �xed-signal SDT model. As discussed in sec-

tion 6.2, this model does not allow for subjects to make better decisions as

incentives increase in this symmetric case. As shown in �gure 2b below, Our

aggregate data clearly exhibits such a changes, with higher proportions of cor-

rect choices at higher incentive levels (rising from 62% in decision problem 1

to 77% in problem 4, signi�cant at the 0.1% level while clustering at the indi-

vidual). At the individual level, 54% of subjects exhibit signi�cant changes in

choice probabilities between decision problems at the 10% level.

Experiment 3 that provides evidence against a �xed-signal RUM. Table 4

shows that the 44 subjects that took part in experiment demonstrate clear vio-

lations of monotonicity. The introduction of action c increases the probability

of choosing action b in state 2 from 23% to an average of 35% across decision
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problems 9-12, signi�cant at the 1% level. At the individual level, 51% of

subjects show a signi�cant violation of monotonicity of the type predicted by

rational inattention theory at the 10% level.

Table 4

Decision problem q1(b) q2(b)

9 17% 23%

10 15% 31%

11 12% 33%

12 13% 39%

6.6 NIAS and NIAC Tests

6.6.1 Experiment 1

In the two state/two action set up of experiment 1, NIAS implies existence of

a cuto¤ posterior probability of state 1 that determines the optimal act. For

posteriors beliefs above 0.5, action a is optimal, while for lower posteriors, ac-

tion b is optimal. This cuto¤ is shown in �gure 2a together with the estimated

posteriors associated with the choice of action a and action b at the aggregate

level (treating all data as if it was generated by a single subject). This �gure

demonstrates that NIAS is satis�ed in the aggregate data. At the individual

level, for only 1 subject is there a statistically signi�cant violation of NIAS

(i.e. the estimated posterior is signi�cantly lower than 0.5 when a is chosen

or signi�cantly higher than 0.5 when b is chosen at the 10% level). Moreover,

as �gure 3a shows, monetary losses due to NIAS violations are small.19 As a

benchmark, these losses are compared to those that would have been observed

from a population of subjects choosing at random.20 The observed distribu-

tion is signi�cantly di¤erent from the simulated distribution at the 0.01% level

19Treating point estimates as each subject�s true posterior beliefs
20The use of random benchmarks has been discussed by, for example, Beatty and Crawford

[2011]. The precise procedure used to construct the random behavior is as follows: for each
decision problem and for each state, a random number is drawn for each available act. The
probability of choosing each act from that state is then calculated as the value of the random
number associated with that act divided by the sum of all random numbers.

28



(Kolmogorov-Smirnov test).

Figure 2a - NIAS Experiment 1 Figure 2b - NIAC Experiment 1

The NIAC condition in experiment 1 relates the change in incentives be-

tween decision problems to the change in � i the probability that the correct

decision is taken in state i = 1; 2 (action a in state 1, action b in state 2). For

two state/two action problems of this type, NIAC implies the condition

�� 1�(U
a
1 � U b1) + �� 2�(U

b
2 � Ua2 ) � 0, (5)

where �x indicates the change in x between two decision problems. This

expression has a natural interpretation. The �rst term is the change in the

probability of choosing the correct action in state 1 multiplied by the change

in the bene�t of choosing the right action - i.e. the di¤erence between the

payo¤ of action a and b in that state. The second term is the change in the

probability of choosing the right action in state 2 multiplied by the bene�t of

so doing. As �(Ua1 � U b1) = �(U
b
2 � Ua2 ) for each pair of decision problems in

experiment 2, equation 5 implies that � 1+� 2, the total probability of choosing

the right action, should be monotonic in rewards. Figure 2b shows that indeed

the proportion of correct responses rises from 62% in decision problem 1 to 77%

in problem 4. Di¤erences between all pairs of decision problems are signi�cant

at the 1% level, apart from between problem 2 and 3, for which the di¤erence
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is not signi�cant.

Fig 3a: NIAS losses

Experiment 1

Fib 3b: NIAC losses

Experiment 1

At the individual level 83% of subjects show no signi�cant violation of the

NIAC condition. Losses resulting from NIAC violations at the individual level

are small, as shown in �gure 3b. This �gure plots the distribution of actual

surplus minus the maximal surplus possible by reassigning attention strategies

to decision problems for each individual.21 The NIAC condition demands this

number to be zero. As a comparator, we show the distribution obtained from

random choice. Again, the observed distribution is signi�cantly di¤erent from

the simulated distribution at the 0.01% level

6.6.2 Experiment 2

Experiment 2 uses a four act set up to test whether subjects can focus their

attention where it is most valuable. The NIAS conditions are,

Ua1 (

a
1 � 
a2) + Ua3 (


a
3 � 
a4) � 0

21The actual surplus of a subject�s attention strategy is calculated assuming no violations
of NIAS.
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Table s2 in the supplemental material shows that this condition holds at the

aggregate level. At the individual level, 92% of subjects show no signi�cant

violations of NIAS and, as shown in �gure s1, the losses amongst those that

do not are again small and signi�cantly di¤erent from the random benchmark

at the 0.01% level.

With regard to the NIAC condition, the equivalent of condition 5 implies

that subjects should make the right choice in a given state more often when

the value of doing so is high.22 More speci�cally, NIAC implies six inequalities

based on binary comparisons of the 4 decision problems. Table 5 shows these

inequalities, the average value of the left hand and right hand side variables

in the aggregate data, and the probability associated with the test that these

two are equal.

Table 5: NIAC conditions for experiment 2

Condition LHS RHS P

� 61+�
6
2+�

5
3+�

5
4� � 63 + �

6
4+�

5
1+�

5
2 72.8 64.9 0.01

� 53+�
5
4� � 73+�

7
4 68.2 63.3 0.38

� 61+�
6
2� � 71+�

7
2 77.3 66.9 0.02

� 81+�
8
2� � 51+�

5
2 74.8 63.7 0.02

� 83+�
8
4� � 63+�

6
4 69.1 66.3 0.33

� 81 + �
8
2+�

8
3+�

8
4� � 71+�

7
2+�

7
3+�

7
4 72.0 65.1 0.10

In every case the inequality is satis�ed by the point estimates in the aggregate

data. In three of the cases the di¤erences are statistically signi�cant at the 5%

level. At the individual level, 79% of subjects exhibit no signi�cant failures of

NIAC and, as table s2 in the appendix shows, the resulting losses are small.

Overall, 75% of subjects exhibit no signi�cant violation of either NIAS or

NIAC.
22The precise condition is

��1�(U
a
1 � U b1) + ��3�(Ua3 � U b3) + ��2�(U b2 � Ua2 ) + ��4�(U b4 � Ua4 ) � 0:
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6.6.3 Experiment 3

For experiment 3, NIAS de�nes regions of acceptable posteriors for the choice

of each act in each decision problem. Table 6 describes these regions, and the

aggregate posteriors observed in the data

Table 6: NIAS conditions for experiment 3

DP Range 
1 Aggregate

b a c 
b1 
a1 
c1

9 [0; 40%] [50%; 100%] n/a 43 52

10 [0; 40%] [50%; 65%] [65%; 100%] 32 50 85

11 [0; 40%] [50%; 60%] [60%; 100%] 27 51 82

12 [0; 40%] [50%; 57:5%] [57:5%; 100%] 25 49 88

The aggregate data shows no signi�cant violations of NIAS. At the individual

level 91% of subjects show no signi�cant violations of NIAS, and the cost of

the resulting violations is small (table s1).

Applying bilateral NIAC to experiment 3 implies the following ranking on

q1(c)� q2(c),

q121 (c
12)� q122 (c

12) � q111 (c
11)� q112 (c

11) � q101 (c
10)� q102 (c

10):23

In the aggregate data this ordering holds. The values of q1(c) � q2(c) are

29%, 18% and 18% for decision problem 12, 11 and 10 respectively. DP 12 is

signi�cantly di¤erent from DP 11 and DP 10, though DP10 an DP11 are not

signi�cantly di¤erent from each other. At the individual level, 65% of subjects

show no signi�cant violations of NIAC.

23If it were the case that posterior beliefs when a is chosen in decision problem 9 are such
it would be preferable to choose c10 (if available) we additionally have the restriction,

q101 (c
10)� q102 (c10) � q91(c9)� q92(c9):

However this is not the case is our aggregate data.
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7 Existing Literature

Much of the work on rational inattention in economics can be traced back

to Sims [1998, 2003] which characterize the behavioral impact of constraints

on information processing in linear quadratic control problems.24 The rate

of information �ow is measured by Shannon mutual information. Sims [2003]

shows that such a constraint generates behavior similar to that generated by

an agent who observes the state of the world only noisily. However, the type of

noise is determined endogenously, based on the incentives in the environment.

Following this paper, mutual information constraints have been incorporated

in an increasing number of economic settings, including consumption-savings

problems (Sims [2006], Tutino [2008], and Mackowiak and Wiederholt [2010]),

pricing problems (Mackowiak and Wiederholt [2009], Matejka [2010], Martin

[2013]), monetary policy (Paciello and Wiederholt [2011]), and portfolio choice

(Mondria [2010]).

In part, the focus on mutual information to measure the cost of information

is justi�ed by its central position in the information theory literature. The

Shannon mutual information of two random variables is related to the expected

length in bits of the optimally encoded signal needed to generate one from the

other. It also has an axiomatic characterization which shows that information

costs must be of this form if they are to obey certain intuitive properties

(see for example Csiszár [2008]). Shannon mutual information costs also have

interesting properties from an economic standpoint. As discussed in the text,

Matejka and McKay [2011] demonstrate a strong relationship between mutual

information based rational inattention and logit-style random choice. Cabrales

et al. [2013] demonstrate a further interesting link between mutual information

and economic behavior. They consider a �ruin averse�investor facing a class

of no-arbitrage investment problems and show that the ranking of information

structures based on willingness to pay is equivalent to that provided by mutual

information.
24Although the study of costly information aquisition in economics goes back much further

- for example Stigler [1961], Marschak [1971] and Milgrom [1981].
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While much of the rational inattention literature has focussed on mutual

information costs, a variety of other cost functions and constraints have been

studied. Woodford [2012] points out that mutual information does not imply

that less attention will be paid to rare events (as such attention is cheap in ex-

pectation), in violation of experimental results due to Shaw and Shaw [1977].

He therefore proposes an alternative measure in which the cost of an informa-

tion structure is evaluated according to the related concept of the Shannon

capacity. Gul et al. [2012] consider the behavior of households who are re-

stricted to having �crude�consumption plans i.e. plans that are restricted to

having at most n realizations. van Nieuwerburgh and Veldkamp [2009] con-

sider a more general information cost function, based on the distance between

prior and posterior variance. Saint-Paul [2011] considers the case in which

DMs face Shannon cost, but can only choose discrete policy functions (essen-

tially combining the approaches of Sims [2003] and Gul et al. [2012]). Reis

[2006] considers the case of a binary information choice: in any given period

either attention can be paid, and the state is fully revealed, or not, in which

case no information is gathered. Even many of the articles that use mutual

information costs e¤ectively restrict the decision maker to choose Gaussian

signals, implying additional constraints (see Sims [2006] for a discussion).

A key strength of our approach is that our model nests all of the above

costs functions. The costs of allowable attention strategies can be captured by

K, while the cost of inadmissible strategies can be set to in�nity. The NIAS

and NIAC conditions therefore provide a test of the entire class of rational

inattention models currently in use.25

A recent wave of decision theoretic literature shares the goal of capturing

the observable implications of inattention, both rational and otherwise. Clos-

est in spirit to our work is Ellis [2012], who works with a data set similar to

ours - state dependent choice functions. Ellis [2012] asks under what condi-

tions can such data be rationalized by a model in which a DM has a set of

available partitions on the state space, and selects the best partition for the

25Note that we consider only the instrumental value of information, not any intrinsic value
that information might have as in Grant et al. [1998].
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decision problem at hand. The characterization is based on the identi�cation

of cells in the partition with all objective states in which the same choice is

made - an approach similar to that taken in our paper. This allows for the

identi�cation of the preferences revealed by choices.

There are three key di¤erences between the theoretical section of our paper

and Ellis [2012]. On the one hand, he places weaker requirements on the data:

unlike our approach, the DM�s utility function and prior beliefs are derived

from behavior rather than directly observable. On the other hand he considers

a more restrictive class of information restrictions: DMs e¤ectively face a

cost function which is zero for allowable partitions and in�nity for all other

information structures. This restriction rules out any stochasticity in choice, as

well as many commonly used information cost functions (such as those based

on Shannon mutual information). Moreover, the conditions of Ellis [2012]

require the data to be observed from essentially all decision problems to be

both su¢ cient and necessary. In contrast, our tests work on data collected

from any arbitrary collection of decision problems.

A second decision theoretic approach to identifying rational attention is to

examine choice over menus. Ergin and Sarver [2010] consider a model in which

a DM makes choices within choice sets by optimally selecting a partition on

(subjective and unobservable) states of the world, then choosing the best action

conditional on that partition.26 They characterize the implications of such a

model for choices between choice sets. Costly contemplation is characterized

by an aversion to contingent planning: an agent would prefer to �nd out

which set they are choosing from and then choose from that set, rather that

have to make contingent plans. Mihm and Ozbek [2012] extend this approach

to the case in which there are observable states of the world, resulting in a

representation similar to that considered in this paper.

Our work forms part of an ongoing project aimed at characterizing choice

behavior when the internal information state of the agent is not directly observ-

able. Block and Marschak [1960] early on stressed the di¢ culty in separating

out theories of stochastic choice. van Zandt [1996] provided an explicit neg-

26Ortoleva [2013] provides an alternative model of �thinking aversion�.
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ative result in this regard, showing that any choice behavior is rationalizable

in a model that allows for unobserved costly information acquisition if the

state of the world is not observable. Caplin and Dean [2011] and Caplin et al.

[2011] consider the case of sequential information search, using an extended

data set to derive behavioral restrictions of search of this kind as well as of

satis�cing behavior. Gabaix et al. [2006] use Mouselab data to test a near-

optimal model of sequential information search. Caplin and Martin [2011]

introduce the NIAS condition to characterize subjective rationality in a single

decision problem. Masatlioglu et al. [2012] characterize �revealed attention�,

using the identifying assumption that removing an unattended item from the

choice set does not a¤ect attention. ? consider a dynamic problem in which

the DM receives information in each period which is externally unobservable,

characterizing the resulting preference over menus. Fudenberg and Strzalecki

[2012] also consider a dynamic problem, characterizing dynamic stochastic

choice rules that are consistent with rational inattention and Shannon mutual

information costs.

In the psychology literature, theories to which we are close in spirit are

signal detection theory (Green and Swets [1966]) and categorization theory. A

common feature is that the DM receives a signal and must choose the optimal

action at each resulting posterior. These theories are connected to enormous

experimental literatures in psychology that capture state dependent stochas-

tic choice data.27 The chief distinction is that, unlike the rational inattention

model, signal detection theory generally �xes the attention strategy indepen-

dent of the incentive to learn implied by the decision making environment.

These models are therefore a special case of our general formulation.

Despite the powerful psychological precedents, there is little experimental

work on state dependent stochastic choice data within economics. There is

so far as we know no work in either �eld that tests NIAC and NIAS directly.

One related paper is Cheremukhin et al. [2011], which uses a formulation

similar to Matejka and McKay [2011] to estimate a rationally inattentive model

on subject�s choice over lotteries. However they do not analyze the state

27We do not attempt to summarize the literature here - see Verghese [2003] for a review.
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dependence in the resulting stochastic choice data.

8 Conclusions

As economists increasingly focus on attentional constraints, so the importance

of rational inattention theory has grown. We characterize a general model of

rational inattention which encompasses all models currently in the literature.

The necessary and su¢ cient conditions are simple and readily testable. We

�nd the model to do a qualitatively good job of explaining subject behavior in

a simple experimental implementation. In contrast, traditional random utility

models fail to capture important data features.

In addition to further investigating the comparison with random utility

models, we are currently exploring the behavioral content of more structured

models of attention costs, in particular the Shannon model.28 We are also

exploring the implications of the nature of attention costs for economic appli-

cations.
28See Caplin and Dean [2013].
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9 Appendix A: Proofs

9.1 Lemma 1

Lemma 1 If � 2 � is consistent with A 2 F and q 2 Q, then it is su¢ cient
for ��q:

Proof. Let � 2 � be an attention strategy that is consistent with q 2 Q
in decision problem A . First, we list in order all distinct posteriors

�i 2 �(�) for 1 � i � j�(�)j. Given that � is consistent with q, there

exists a corresponding optimal choice strategy C : f1; :::; Ig ! �(A),

with Ci(a) denoting the probability of choosing action a 2 F (q) with

posterior �i, such that the attention and choice functions match the

data,

qa! =
IX
i=1

�!(�
i)Ci(a):

We also list in order all possible posteriors 
j 2 �� � �(��q), 1 � j �
j�(��q)j, and identify all chosen actions that are associated with posterior

j as �F j,

�F j � fa 2 F jra(q) = 
jg:

The garbling matrix bij sets the probability of 
j 2 �� given �i 2 �(�) as
the probability of all choices associated with actions a 2 �F j.

bij =
X
a2 �F j

Ci(a):

Note that this is indeed a j�(�)j � j�(�)j stochastic matrix B � 0 withPJ
j=1 b

ij = 1 all i. Given 
j 2 �(�) and ! 2 
, note that,

IX
i=1

bij�!(�
i) =

IX
i=1

�!(�
i)
X
a2 �F j

Ci(a) =
X
a2 �F j

qa!;

by the data matching property. It is de�nitional that ��!(
j) is precisely

equal to this, as the observed probability of all actions associated with
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posterior 
j 2 ��. Hence,

��!(

j) =

IX
i=1

bij�!(�
i);

as required for su¢ ciency.

9.2 Theorem 1 and Corollary 1

Theorem 1 Data set (D; q) has a rational inattention representation if and
only if it satis�es NIAS and NIAC.

Proof of Necessity. Necessity of NIAS follows much as in CM13. Fix

A 2 D, ~�A and ~C : �(~�A) ! �(A) in a rational inattention representation,

and possible a 2 A. By de�nition of a rational inattention representation,

X

2�(~�A)

~Ca(
)

"X
!2



!U
a
!

#
�

X

2�(~�A)

~Ca(
)

"X
!


!U
b
!

#
all b 2 A:

Substituting,


! =
�!~�!(
)X
�

��~��(
)
;

cancelling the common denominator
X
�

��~��(
) in the inequality, substituting

qa! =
X


2�(~�A)

~�!(
) ~C
a(
), and dividing all terms by

X
�

��q
a
�, we derive,

X
!

ra! (q)U
a
! =

X
!

2664 �!q
a
!X

�

��q
a
�

3775Ua! �X
!

2664 �!q
a
!X

�

��q
a
�

3775U b! =X
!

ra! (q)U
b
!;

establishing necessity of NIAS.

To con�rm necessity of NIAC consider any sequence A1; A2; :::::AJ 2 D

with AJ = A1 and corresponding attention strategy ~�j for 1 � j � J . By

45



optimality,

J�1X
j=1

G(Aj; ~�
j)�K(~�j) �

J�1X
j=1

G(Aj; �
j+1)�K(~�j+1):

Given that K(~�1) = K(~�J), note that,

J�1X
j=1

G(Aj; ~�
j)�G(Aj; ~�

j+1) �
J�1X
j=1

K(~�j)�K(~�j+1) = 0;

so that,
J�1X
j=1

G(Aj; ~�
j) �

J�1X
j=1

G(Aj; ~�
j+1):

To establish that this is inherited by the minimal attention strategies ��j for

1 � j � J , note from lemma 1 that with ~�j su¢ cient for ��j , G(B; ~�j) �
G(B; ��j) for all B 2 F . For B = Aj this is an equality since both strategies

give rise to the same state dependent stochastic demand,

G(Aj; ~�
j) = G(Aj; ��

j) =
X
a2Aj

X
!

�!q
a
!U

a
! :

Hence,

J�1X
j=1

G(Aj; ��j
)) =

J�1X
j=1

G(Aj; ~�
j) �

J�1X
j=1

G(Aj; ~�
j+1) �

J�1X
j=1

G(Aj; ��
j+1);

establishing NIAC.

Proof of Su¢ ciency. There are three steps in the proof that the NIAS

and NIAC conditions are su¢ cient for (D; q) to have a rational inattention

representation. The �rst step is to establish that the NIAC conditions ensures

that there is no global reassignment of the minimal attention strategies ob-

served in the data to decision problems A 2 D that raises total gross surplus.

The second step is use this observation to de�ne a candidate cost function on

attention strategies, �K : � ! R [ 1. The key is to note that, as the solu-
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tion to the classical allocation problem of Koopmans and Beckmann [1957],

this assignment is supported by �prices� set in expected utility units. It is

these prices that de�ne the proposed cost function. The �nal step is to ap-

ply the NIAS conditions to show that
�
�K; ��

�
represents a rational inattention

representation of (D; q), where �� comprises minimal attention strategies.

Enumerate decision problems in D as Aj for 1 � j � J . De�ne the

corresponding minimal attention strategies ��j for 1 � j � J as revealed in

the corresponding data and let �� � [A2D��A be the set of all such strategies
across decision problems, with a slight caveat to ensure that there are precisely

as many strategies as there are decision problems. If all minimal attention

strategies are di¤erent, the set as just de�ned will have cardinality J . If

there is repetition, then retain the decision problem index with which they

are associated so as to make them distinct, and thereby to ensure that the

resulting set � has precisely J elements. Index elements ��j 2 �� in order of

the decision problem Aj with which they are associated.

We now allow for arbitrary matchings of attention strategies to decision

problems. First, let bjl denote the gross utility of decision problem j combined

with minimal attention strategy l,

bjl = G(Aj; ��
l);

with B the corresponding matrix. De�ne M to be the set of all matching

functions ! : f1; ::; Jg ! f1; ::; Jg that are 1-1 and onto and identify the
corresponding sum of gross payo¤s,

S(!) =

JX
j=1

bj!(j):

It is simple to see that the NIAC condition implies that the identify map

!I(j) = j maximizes the sum over all matching functions ! 2M. Suppose to

the contrary that there exists some alternative matching function that achieves

a strictly higher sum, and denote this match !� 2M. In this case construct a

�rst sub-cycle as follows: start with the lowest index j1 such that !�(j1) 6= j1.
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De�ne !�(j1) = j2 and now �nd !(j2), noting by construction that !(j2) 6= j2.

Given that the domain is �nite, this process will terminate after some K � J

steps with !�(jK) = j1. If it is the case that !�(j) = j outside of the set [Kk=1
jk, then we know the increase in the value of the sum is associated only with

this cycle, hence,
K�1X
k=1

bjkjk <

K�1X
j=1

bjkjk+1 ;

directly in contradiction to NIAC. If this inequality does not hold strictly,

then we know that there exists some j0 outside of the set [Kk=1 jk such that
!�(j0) 6= j0. We can therefore iterate the process, knowing that the above strict

inequality must be true for at least one such cycle to explain the strict increase

in overall gross utility. Hence the identity map !I(j) = j indeed maximizes

S(!) amongst all matching functions ! 2M.

With this, we have established that the identity map solves an allocation

problem of precisely the form analyzed by Koopmans and Beckmann [1957].

They characterize those matching functions ! : f1; ::Jg ! f1; ::Jg that max-
imize the sum of payo¤s de�ned by a square payo¤ matrix such as B that

identi�es the reward to matching objects of one set (decision problems in our

case) to a corresponding number of objects in a second set (minimal attention

strategies in our case). They show that the solution is the same as that of the

linear program obtained by ignoring integer constraints,

max
xjl�0

X
j;l

bjlxjl s.t.
JX
j=1

xjl =
JX
l=1

xjl = 1:

Standard duality theory implies that the optimal assignment !I(j) = j is

associated with a system of prices on minimal attention strategies such that

the increment in net payo¤ from any move of any decision problem is not more

than the increment in the cost of the attention strategy.

De�ning these prices as �Kj, their result implies that,

bjl � bjj = G(Aj; ��
l)�G(Aj; ��

j) � �Kl � �Kj;
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or,

G(Aj; ��
j)� �Kj � G(Aj; ��

l)� �Kl:

The result of Koopmans and Beckmann therefore implies existence of a

function �K : � �! R that decentralizes the problem from the viewpoint

of the owner of the decision problems, seeking to identify surplus maximizing

attention strategies to match to their particular problems. Note that if there

are two distinct decision problems with the same revealed posterior, the result

directly implies that they must have the same cost, so that one can in fact

ignore the reference to the decision problem and retain only the posterior in

the domain. Set K(�) = 1 if � 6= ��A. We have now completed construction
of a qualifying cost function �K : � ! R [ 1 that satis�es �K(�) 2 R for

some � 2 �. The entire construction was aimed at ensuring that the observed
attention strategy choices were always maximal, ��A 2 �̂(K;A) for all A 2 D.
It remains to prove that ��A is consistent with q(A) for all A 2 D. This

requires us to show that, for all A 2 D, the choice rule that associates with

each 
 2 �(��A) the certainty of choosing the associated action a 2 F (A) as

observed in the data is both optimal and matches the data. That it is optimal

is the precise content of the NIAS constraint,X
!

ra! (A)U
a
! �

X
!

ra! (A)U
b
!;

for all b 2 A. That this choice rule and the corresponding minimal attention

function match the data holds by construction.

Corollary 1 Data set (D; q) has an SRI representation if and only if it satis�es
NIAS and NIAC.

Proof. Su¢ ciency is implied by theorem 1 applied to the special case with

T = 1. To prove necessity, we �rst construct a mapping from sequential

to static attention strategies � : �(�) �! �(�), with �(�) 2 �(�). Given
� 2 �(�) and 
 2 � we specify the corresponding state dependent probabilities
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as,

��!(
) =
X

f
t2Stj
t=
, 1�t��g

��!(

t):

We also de�ne a mapping from sequential to static attention cost functions,

� : E �! K. Given E 2 E and � 2 �(�),

�E(�) =

(
inf(�2�(�)j��=�gE(�);

1 if @� 2 �(�) s.t. �� = �:

Note that �E : �(�)! �R inherits regularity (existence of a real-valued strat-
egy) from the corresponding assumption for E : �(�)! �R.

��(
t) =
X
!

�!�
�
!(


t):

We show now that, given ( ~E; ~�) with ~E 2 E and ~� : D ! �(�) that

de�ne an SCI representation, the pair (~�( ~E); ~�) with ~� � ~�( ~E) 2 K, ~E 2 E ,
and ~� : D ! �(�) de�ne a rational inattention representation, whereupon

application of the necessity aspect of theorem 1 implies that the data satisfy

NIAS and NIAC. Since ( ~E; ~�) de�ne an SRI representation of (D; q), we know

that for all A 2 D, ~�(A) is consistent with q(A) and satis�es ~�(A) 2 �̂( ~E;A).
Hence there exists ~C : � ! �(A) such that, given 1 � t � � , 
t 2 St such

that 
t = 
, a 2 A with ~C�(
) > 0, and b 2 A;X
!


!U
a
! �

X
!


!U
b
!:

In addition, the attention and choice functions match the data,

qa! =

�X
t=0

X

t2St

~�!(

t) ~Ca(
t);

where ~�!(

t) � �

~�(A)
! (
t).

Using the same choice function ~C : � ! �(A), it is immediate that all
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choices are optimal in ~�
A � � [~�(A)] and that it rationalizes the data,

qa! =

�X
t=0

X

t2St

~�!(

t) ~Ca(
t) =

X

2�

X
f
t2Stj
t=
, 1�t��g

~�!(

t) ~Ca(
) =

X

2�

~�
A

! (
)
~Ca(
):

Hence, for all A 2 D; ~�
A 2 �(�) is consistent with q(A). It remains only to

con�rm that ~�
A 2 �̂(�( ~E); A). Given that ( ~E; ~�) is an SRI representation, we

know that, given A 2 D,

~�A 2 arg max
�2�(�)

TX
t=0

24X

t2St

��(
t)g(
t; A)�
X

t2Gt

��(
t)E(
t; �t+1(

t))

35 :
Substitution shows that this implies that the corresponding property holds for
~�
A
in relation to ~�;

~�
A 2 arg max

�2�(�)

X

2�

X
�!
~�
A

! (
)g(
;A)� ~�(�);

completing the proof.

9.3 Theorem 2

Theorem 2 Data set (D; q) satis�es NIAS and NIAC if and only if it has a
rational inattention representation with conditions K1 to K3 satis�ed.

Proof. The proof of necessity is immediate from theorem 1. The proof of

su¢ ciency proceeds in four steps, starting with a rational inattention repre-

sentation
�
�K; ��

�
of (D; q) of the form produced in theorem 1 based on sat-

isfaction of the NIAS and NIAC conditions. A key feature of this function

is that the function �K is real-valued only on the minimal information strate-

gies �� � f��AjA 2 Dg associated with all corresponding decision problems,
otherwise being in�nite. The �rst step is the proof is to construct a larger do-

main �� � �� to satisfy three additional properties: to include the inattentive

strategy, I 2 ��; to be closed under mixtures so that �; � 2 �� and � 2 (0; 1)
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implies � � � � (1� �) � � 2 ��; and to be �closed under garbling,�so that if
� 2 �� is su¢ cient for attention strategy � 2 �, then � 2 ��. The second step
is to de�ne a new function �K that preserves the essential elements of �K while

being real-valued on the larger domain �� � ��, and thereby to construct the

full candidate cost function �K : �! R[1. The third step is to con�rm that
�K 2 K and that �K satis�es the required conditions K1 through K3. The �nal

step is to con�rm that
�
�K; ��

�
forms a rational inattention representation of

(D; q).

We construct the domain �� in two stages. First, we de�ne all attention

strategies for which some minimal attention strategy �� 2 � is su¢ cient;

��S = f� 2 �j9� 2 �� su¢ cient for �g:

Note that this is a superset of �� and that it contains I. The second step is to

identify �� as the smallest mixture set containing ��S: this is itself a mixture

set since the arbitrary intersection of mixture sets is itself a mixture set.

By construction, �� has three of the four desired properties: it is closed

under mixing; it contains ��, and it contains the inattentive strategy. The

only condition that needs to be checked is that it retains the property of being

closed under su¢ ciency:

� 2 �� su¢ cient for � 2 � =) � 2 �� .

To establish this, it is useful �rst to establish certain properties of ��S and of
��. The �rst is that ��S is closed under garbling:

� 2 ��S su¢ cient for � 2 � =) � 2 ��S.

Intuitively, this is because the garbling of a garbling is a garbling. In technical

terms, the product of the corresponding garbling matrices is itself a garbling

matrix. The second is that one can explicitly express �� as the set of all �nite
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mixtures of elements of ��S,

�� =

(
� =

JX
j=1

�j � �jjJ 2 N; (�1; ::�J) 2 SJ�1; �j 2 ��S

)
;

where SJ�1 is the unit simplex in RJ: To make this identi�cation, note that the
set as de�ned on the RHS certainly contains ��S and is a mixture set, hence is a

superset of ��. Note moreover that all elements in the RHS set are necessarily

contained in any mixture set containing ��S by a process of iteration, making

is also a subset of ��, hence �nally one and the same set.

We now establish that if � 2 � is a garbling of some � 2 ��, then indeed
� 2 ��. The �rst step is to express � 2 �� as an appropriate convex combination
of elements of ��S as we now know we can,

� =
JX
j=1

�j � �j:

with all weights strictly positive, �j > 0 all j. Lemma 2 below establishes that

in this case there exist garblings �j of �j 2 ��S such that,

� =
JX
j=1

�j � �j;

establishing that indeed � 2 �� since, with ��S closed under garbling, �j 2 ��S
and �j a garbling of �j implies �j 2 ��S.
We de�ne the function �K on �� in three stages. First we de�ne the function

�KS on the domain ��S by identifying for any � 2 ��S the corresponding set of
minimal attention strategies �� 2 �� of which � is a garbling, and assigning to
it the lowest such cost. Formally, given � 2 ��S,

�KS(�) � min
f�2��j� su¢ cient for �g

�K(�):

Note that �KS(�) = �K(�) all � 2 ��. To see this, consider A;A0 2 D with
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��A
0
su¢ cient for ��A. By the Blackwell property, expected utility is at least as

high using ��A
0
as using ��A for which it is su¢ cient,

G(A; ��A
0
) � G(A; ��A):

At the same time, since
�
�K; ��

�
is a rational attention representation of (D; q),

we know that ��A 2 �̂(K;A), so that,

G(A; ��A)�K(��A) � G(A; ��A
0
)�K(��A

0
):

Together these imply that K(��A) � K(��A
0
), which in turn implies that

�KS(�) = �K(�) all � 2 ��.
Note that �KS(�) also satis�es weak monotonicity on this domain, since if

we are given �; � 2 ��S with � su¢ cient for �, then we know that any strategy
� 2 �� that is su¢ cient for � is also su¢ cient for �, so that the minimum

de�ning �KS(�) can be no lower than that de�ning �KS(�).

The second stage in the construction is extend the domain of the cost

function from ��S to ��. As noted above, this set comprises all �nite mixtures

of elements of ��S,

�� =

(
� =

JX
j=1

�j � �jjJ 2 N; (�1; ::�J) 2 SJ�1; and �j 2 ��S

)
:

Given � 2 ��, we take the set of all such mixtures that generate it and de�ne
�K(�) to be the corresponding in�mum,

�K(�) = inf8><>:J2N;�2SJ�1;f�jgJj=12��S j�=
JX
j=1

�j��j

9>=>;

JX
j=1

�j �KS(�
j):

Note that this function is well de�ned since �KS is bounded below by the cost

of inattentive strategies and the feasible set is non-empty by de�nition of ��.

We establish in Lemma 3 that the in�mum is achieved. Hence, given � 2 ��,
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there exists J 2 N; � 2 SJ�1; and elements �j 2 ��S with � =
JX
j=1

�j � �j such

that,

�K(�) =
JX
j=1

�j �KS(�
j):

We show now that �K satis�es K2, mixture feasibility. Consider distinct

strategies � 6= � 2 ��. We know by Lemma 3 that we can �nd J�;� 2 N;
corresponding probability weights ��;� 2 S�;� and elements �j; �j 2 ��S with

� =
J�X
j=1

�j � �j, � =
J�X
j=1

�j � �j, and such that,

�K(�) =
J�X
j=1

��j
�KS(�

j);

�K(�) =
J�X
j=1

��j �KS(�
j):

Given � 2 (0; 1), consider now the mixture strategy de�ned by taking each
strategy �j with probability ���j and each strategy �

j with probability (1 �
�)��j . By construction, this mixture strategy generates  = [� � � + (1� �) � �]
2 � and hence we know by the in�mum feature of �K( ) that,

�K( ) �
J�X
j=1

���j �KS(�
j) +

J�X
j=1

(1� �)��j
�KS(�

j) = ��K(�) + (1� �)�K(�);

con�rming mixture feasibility.

We show also that �K satis�es K3, weak monotonicity in information. Con-

sider �; � 2 �� with � su¢ cient for �. We know by Lemma 3 that we can �nd
J 2 N; � 2 SJ�1; and corresponding elements f�jgJj=1 2 ��S with �xed range
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�(�j) = �(�) such that � =
JX
j=1

�j � �j and such that,

�K(�) =

JX
j=1

�j �KS(�
j):

We know also from Lemma 2 that we can construct f�jgJj=1 2 ��S such that

� =

JX
j=1

�j � �j and such that each �j is a garbling of the corresponding �j.

Given that �KS satis�es weak monotonicity on its domain ��S, we conclude

that,
�KS(�

j) � �KS(�
j):

By the in�mum feature of �K(�) we therefore know that,

�K(�) �
JX
j=1

�j �KS(�
j) �

JX
j=1

�j �KS(�
j) = �K(�);

con�rming weak monotonicity.

We show now that we have retained the properties that made
�
�K; ��

�
a

rational inattention representation of (D; q). Given A 2 D, it is immediate

that �� and the choice function that involves picking action a 2 F (A) for sure
in revealed posterior rA(a) is consistent with the data, since this was part of

the initial de�nition. What needs to be con�rmed is only that the revealed

minimal attention strategies are optimal. Suppose to the contrary that there

exists A 2 D such that,

G(A; �)� �K(�) > G(A; ��A)� �K(��A);

for some � 2 ��. By Lemma 3 we can �nd J 2 N; a strictly positive vector

� 2 SJ�1; and corresponding elements f�jgJj=1 2 ��S, such that � =
JX
j=1

�j ��j
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and such that,

�K(�) =
JX
j=1

�j �KS(�
j):

By the fact that � =
JX
j=1

�j��j and by construction of the mixture strategy,

G(A; �) =

JX
j=1

�jG(A; �
j);

so that,
JX
j=1

�j
�
G(A; �j)� �KS(�

j)
�
> G(A; ��A)� �K(��A):

We conclude that there exists j such that,

G(A; �j)� �KS(�
j) > G(A; ��A)� �K(��A):

Note that each �j 2 ��S inherits its cost �KS(�
j) from an element ��j 2 ��

that is the lowest cost minimal attention strategy according to �K on set ��

that is su¢ cient for �j,
�KS(�

j) = �K(��j);

where the last equality stems from the fact (established above) that �KS(�) =
�K(�) on �� 2 ��. Note by the Blackwell property that each strategy ��j 2 ��

o¤ers at least as high gross value as the strategy �j 2 ��S for which it is

su¢ cient, so that overall,

G(A; ��j)� �K(��j) � G(A; �j)� �KS(�
j) > G(A; ��A)� �K(��A):

To complete the proof it is su¢ cient to show that,

�K(�) = �K(�);
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on � 2 ��: With this we derive the contradiction that,

G(A; ��j)� �K(��j) > G(A; ��A)� �K(��A);

in contradiction to the assumption that
�
�K; ��

�
formed a rational inattention

representation of (D; q).

To establish that �K(�) = �K(�) on � 2 ��, note that we know already that
�KS(�) = �K(�) on �� 2 ��. If this did not extend to �K(�), then we would be

able to identify a mixture strategy  2 �� su¢ cient for ��A with strictly lower
expected costs, �K( ) < �K(�). To see that this is not possible, note �rst from

Lemma 1 that all strategies that are consistent with A and q(A) are su¢ cient

for ��A. Weak monotonicity of �K on �� then implies that the cost �K( ) of any

mixture strategy su¢ cient for ��A satis�es �K( ) � �K(�), as required.

The �nal and most trivial stage of the proof is to ensure that normalization

holds. Note that I 2 ��S, so that �KS(I) 2 R according to the rule immediately
above. If we renormalize this function by subtracting �K(I) from the cost

function for all attention strategies then we impact on no margin of choice

and do not interfere with mixture feasibility, weak monotonicity, or whether

or not we have a rational inattention representation. Hence we can avoid

pointless complication by assuming that �K(I) = 0 from the outset so that

this normalization is vacuous. In full, we de�ne the candidate cost function
�K : ��! R [1 by,

�K(�) =

(
�K(�) if � 2 ��
1 if � =2 ��:

Note that weak monotonicity implies that the function is non-negative on its

entire domain.

It is immediate that �K 2 K, since �K(�) = 1 for � =2 �� and the domain
contains the corresponding inattentive strategy I on which �K(�) is real-valued.

It is also immediate that �K satis�es K3, since �K(I) = 0 by construction. It

also satis�es K1 and K2, and represents a rational inattention representation,

completing the proof.

58



Lemma 2 If � =
JX
1

�j � �j with J 2 N; � 2 SJ�1 with �j > 0 all j, and

f�jgJj=1 2 �, then for any garbling � of �, there exist garblings �j of �j 2 �
such that,

� =

JX
j=1

�j � �j;

Proof. By assumption, there exists a j�(�)j�j�(�)j matrix B with
P

k b
ik = 1

all i and such that, for all 
k 2 �(�),

�!(

k) =

X
�i2�(�)

bik�!(�
i):

Since � =
JX
1

�j � �j, we know that �(�j) � �(�). Now de�ne compressed

matrix Bj as the unique submatrix of B obtained by �rst deleting all rows

corresponding to posteriors �i 2 �(�)n�(�j), and then deleting all columns
corresponding to posteriors 
k such that bik = 0 all �i 2 �(�)n�(�j). De�ne
�j 2 � to be the strategy that has as its support the set of all posteriors that
are possible given the garbling �j of �j,

�(�j) = f
k 2 �(�)jbik > 0 some �i 2 �(�j)g;

and in which state dependent probabilities of all posteriors are generated by

the compressed matrix Bj,

�j!(

k) =

X
�i2�(�j)

bik�j!(�
i);

for all 
k 2 �(�j).
Note by construction that each attention strategy �j is a garbling of the

corresponding �j 2 �, since each Bj is itself a garbing matrix for whichP
k b

ik = 1 for all �i 2 �(�j). It remains only to verify that � =
JX
j=1

�j � �j.
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This follows since,

�!(

k) =

X
�i2�(�)

bik�!(�
i) =

X
�i2�(�)

bik
JX
j=1

�j�
j
!(�

i) =

JX
j=1

�j
X

�i2�(�j)

bik�j!(�
i) =

JX
j=1

�j�
j
!(


k):

Lemma 3 Given � 2 ��, there exists J 2 N; � 2 SJ�1, and elements �j 2 ��S

with � =
JX
j=1

�j � �j such that,

�K(�) =
JX
j=1

�j �KS(�
j):

Proof. By de�nition �K(�) is the in�mum of
JX
j=1

�j �KS(�
j) over all lists

f�jgJj=1 2 ��S such that � =
JX
j=1

�j � �j. We now consider a sequence of

such lists, indicating the order in this sequence in parentheses, f�j(n)gJ(n)j=1 ,

such that in all cases there are corresponding weights �(n) 2 SJ(n)�1 with

� =

J(n)X
j=1

�j(n) � �j(n) and that achieve a value that is heading in the limit to

the in�mum,

lim
n�!1

J(n)X
j=1

�j(n) �KS(�
j(n)) = �K(�).

A �rst issue that we wish to avoid is limitless growth in the cardinality

J(n). The �rst key observation is that, by Charateodory�s theorem, we can

reduce the number of strictly positive weights in a convex combination � =
J�(n)X
j=1

��j(n) � �j(n) to have cardinality J�(n) � M + 1. We con�rm now that

we can do this without raising the corresponding costs,
J�(n)X
j=1

��j(n) �KS(�
j(n)).
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Suppose that there is some integer n such that the original set of attention

strategies has strictly higher cardinality J(n) > M + 1. Suppose further that

the �rst selection of J1(n) � M + 1 such posteriors for which there exists a

strictly positive probability weights �1j(n) such that � =
J1(n)X
j=1

�1j(n) � �j(n) has

higher such costs (note WLOG that we are treating these as the �rst J1(n)

attention strategies in the original list). It is convenient to de�ne �1j(n) = 0

for J1(n)+1 � j � J(n) so that we can express this inequality in the simplest

terms,
J(n)X
j=1

�1j(n)
�KS(�

j(n)) >

J(n)X
j=1

�j(n) �KS(�
j(n):

This inequality sets up an iteration. We �rst take the smallest scalar

�1 2 (0; 1) such that,
�1�1j(n) = �j(n):

That such a scalar exists follows from the fact that
J1(n)X
j=1

�1j(n) =

J(n)X
j=1

�j(n) = 1,

with all components in both sums strictly positive and with J(n) > J1(n). We

now de�ne a second set of probability weights �2j(n),

�2j(n) =
�j(n)� �1�1j(n)

1� �1
:

for 1 � j � J(n). Note that these weights have the property that � =
J(n)X
j=1

�2j(n) � �j(n) and that,

J(n)X
j=1

�2j(n) �KS(�
j(n)) =

J(n)X
j=1

"
�j(n)� �1�1j(n)

1� �1

#
�KS(�

j(n)) <

J(n)X
j=1

�j(n) �KS(�
j(n):

By construction, note that we have reduced the number of strictly positive

weights �2j(n) by at least one to J(n)� 1 or less. Iterating the process estab-
lishes that indeed there exists a set of no more than M + 1 posteriors such
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that a mixture produces that �rst strategy � and in which this mixture has no

higher weighted average costs than the original strategy. Given this, there is

no loss of generality in assuming that J(n) �M + 1 in our original sequence.

With this bound on cardinality, we know that we can �nd a subsequence

of attention strategies �j(n) which all have precisely the same cardinality

J(n) = J � M + 1 all n. Going further, we can impose properties on all of

the J corresponding sequences f�j(n)g1n=1. First, we can select subsequences
in which the ranges of all corresponding attention functions have the same

cardinality independent of n,

���(�j(n))�� = Kj

for 1 � j � J . Note we can do this because, for all j and n, the number of

posteriors in the attention strategy �j(n) is bounded above by the number of

posteriors in the strategy �, which is �nite

With this, we can index the possible posteriors 
jk(n) 2 �(�j(n)) in order,
1 � k � Kj and then select further subsequences in which these posteriors

themselves converge to limit posteriors,


jk(L) = lim
n!1


jk(n) 2 �:

which is possible because the sequence of posteriors lives in a compact set, and

so have a convergent subsequence.

We ensure also that both the associated state dependent probabilities them-

selves and the weights �j(n) in the expression � =
J(n)X
j=1

�j(n) � �j(n) converge,

lim
n!1

�!
�

jk(n)

�
= �jk! (L);

lim
n!1

�j(n) = �j(L):

Again, this is possible because the state dependent probabilities and weights

live in a compact set.

The �nal selection of a subsequence ensures that, given 1 � j � J , each
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�j(n) 2 ��S has its value de�ned by precisely the same minimal attention

strategy ��j 2 �� as the least expensive among those that were su¢ cient for

it and hence whose cost it was assigned in function �KS. Technically, for each

1 � j � J ,
�KS(�

j(n)) = �K(��j);

for 1 � n � 1: this is possible because the data set and hence the number of
minimal attention strategies is �nite.

We �rst use these limit properties to construct a list of limit attention

strategies �j(L) 2 ��S with � =
JX
j=1

�j � �j for 1 � j � J . Strategy �j(L) has

range,

�(�j(L)) = [Kj

k=1

jk(L);

with state dependent probabilities,

�
�j(L)

�
!

�

jk(L)

�
= �jk! (L):

Note that the construction ensures that � =
JX
j=1

�j(L)��j(L). To complete

the proof we must establish only that,

�K(�) =
JX
j=1

�j(L) �KS(�
j(L)):

We know from the construction that, for each n;

JX
j=1

�j(n) �KS(�
j(n)) =

JX
j=1

�j(n) �K(��
j):

Hence the result is established provided only,

�KS(�
j(L)) � �K(��j);

which is true provided ��j being su¢ cient for all �j(n) implies that ��j is su¢ -
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cient for the corresponding limit vector �j(L). That this is so follows by de�n-

ing Bj(L) = [bik(L)]j to be the limit of any subsequence of the j�(��j)j �Kj

stochastic matrices Bj(n) = [bik(n)]j which have the de�ning property of suf-

�ciency, �
�j(n)

�
!
(
jk(n)) =

X
�
i2�(��j)

[bik(n)]j � ��!(�
i);

for all 
jk(n) 2 �(�j(n)) and ! 2 
. It is immediate that the equality holds
up in the limit, establishing that indeed ��j is su¢ cient for each corresponding

limit vector �j(L), con�rming �nally that �KS(�
j(L)) � �K(��j) and with it

establishing the Lemma.

9.4 No Strong Blackwell

A simple example with data on one decision problem with two equally likely

states illustrates that one cannot further strengthen the result in this dimen-

sion. Suppose that there are three available actions A = fa; b; cg with corre-
sponding utilities,

(Ua1 ; U
a
2 ) = (10; 0) ; (U

b
1 ; U

b
2) = (0; 10) ; (U

c
1 ; U

c
2) = (7:5; 7:5) :

Consider the following state dependent stochastic choice data in which the

only two chosen actions are a and b,

qa1 = qb2 =
3

4
= 1� qb1 = 1� qa2 :

Note that this data satis�es NIAS; given posterior beliefs when a is chosen,

a is superior to b and indi¤erent to c, and when b is chosen it is superior to a

and indi¤erent to c. It trivially satis�es NIAC since there is only one decision

problem observed. We know from theorem 2 that is has a rational inattention

representation with the cost of the minimal attention strategy K (��) � 0 and
that of the inattentive strategy being zero, K(I) = 0. Note that �� is su¢ cient

for I but not vice versa, hence any strictly monotone cost function would have

to satisfy K (��) > 0. In fact it is not possible to �nd a representation with this
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property. To see this, note that both strategies have the same gross utility,

G(A; �) =
1

2
� 3
4
� 10 + 1

2
� 3
4
� 10 = 1 � 7:5 = G(A; I);

where we use the fact that the inattentive strategy involves picking action c for

sure. In order to rationalize selection of the inattentive strategy, it must there-

fore be that �� is no more expensive than I, contradicting strict monotonicity.
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