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Abstract

We construct a text-based measure of uncertainty starting in 1890 using front-page articles

of the Wall Street Journal. News implied volatility (NVIX) captures well the disaster concerns

of the average investor. NVIX peaks during stock market crashes, times of policy-related uncer-

tainty, world wars and financial crises. We find that periods when people are more concerned

with a rare disaster, as proxied by news, are either followed by periods of above average stock

returns, or followed by periods of large economic disasters. Concerns related to wars and gov-

ernment policy explain 53% and 22% of the time-variation in risk premia our measure identifies.

These findings suggest that time variation in rare disaster risk is an important source of aggre-

gate asset prices fluctuations. We provide parameter values of interest to macro-finance, such

as the persistence and volatility of the disaster probability process.
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1 Introduction

Looking back, people’s concerns about the future more often than not seem misguided and overly

pessimistic. Only when these concerns are borne out in some tangible data, do economists tip

their hat to the wisdom of the crowds. This gap between measurement and the concerns of the

average investor is particularly severe when large rare macroeconomic events are concerned. In

this case, concerns might change frequently, but real economic data often makes these concerns

puzzling and unwarranted. This paper aims to quantify this “spirit of the times”, which after

the dust settles is forgotten and only hard data remains to describe the period. Specifically, our

goal is to measure people’s concerns regarding rare disasters and use this measurement to ask: do

time-varying concerns regarding rare disasters drive aggregate stock market returns? If so, which

concerns drive variation in risk premia?

To answer these questions, we construct a text-based measure of uncertainty using the frequency

of words appearing on the front-page of the Wall Street Journal. We use the relatively short sample

of options-implied volatility to estimate the relation between the issues the business press writes

about and the level of economic uncertainty as measured by volatility implied by option prices

(VIX). This empirical strategy measures what the average reader is concerned about when disaster

risk is high, and allows us to use the long time-series of news data, which goes back to 1890, to

measure disaster concerns over this period. Our empirical strategy relies on two assumptions: (i)

the choice of words by the business press is a good and stable reflection of the concerns of the

average investor, and (ii) disaster concerns of the average investor are priced in option markets.

The first is consistent with the Gentzkow and Shapiro (2006) empirically supported model of news

firms. The second is firmly grounded in theory. With respect to disaster risk, standard asset pricing

models suggest that option prices are a canary in the coal mine.

We rely on “Big Data“ techniques to uncover information from this rich and unique text dataset.

Specifically, we estimate the relationship between option prices and the frequency of words using

a Support Vector Regression. The key advantage of this method over Ordinary Least Squares is

its ability to deal with a large feature space. This quality does not come without pitfalls, and the

data intensive nature of the procedure leads us to rely more on out-of-sample validation tests than

in-sample formal statical tests as would be standard in a conventional setting. We find that, news

2



implied volatility predicts volatility implied by options out-of-sample well, with an R-squared of

0.34 and root mean squared error of 7.52 percentage points.1

News implied volatility (NVIX), the predicted value from this text regression, is a news-based

measure of uncertainty, which captures well the disaster concerns of the average investor over more

than a century. NVIX peaks during stock market crashes, times of policy-related uncertainty, world

wars and financial crises. This measure has two features missing from more standard financial and

macro-economic variables used previously. Relative to financial variables it provides insight into

the origins of risk premia variation. Relative to macro-variables, it encodes information about

concerns that did not materialize in a particular history. These two features of our measure allow

us to test whether investor concerns as reflected by business press coverage are consistent with the

time-varying disaster risk hypothesis.

We test two key predictions of the time-varying rare disaster risk hypothesis: (i) periods when

people are more concerned with a rare disaster are followed by periods of above average returns,

or (ii) followed by periods of large economic disasters. We find strong support for both predictions

across a variety of sub-samples and for a variety of alternative controls. A one standard deviation

increase in NVIX increases annualized excess returns by 4 (3) percentage points over the next three

months (year). Consistent with the theory, we find that NVIX also predicts economic disasters. A

one standard deviation increase in NVIX leads to an increase in the disaster probability from an

unconditional 2% to 3% over the next three months. Our return predictability results are robust

and cannot be explained by several plausible alternative explanations. They are not driven by

time-variation in stock market volatility or by the truncation induced by the exclusion of disasters

from the return forecasting regressions.

We use standard calibrations in the literature to check if our estimates are quantitatively consis-

tent with each other. Hypothetically, it could easily be the case that our tests detect predictability

both in returns and disasters, but the amount of variation in returns is orders of magnitudes larger

than the amount detected in the disaster predictability specification. In this case we would need

an implausibly large disaster size to reconcile the two specifications quantitatively. We find that
1We review in Section A.5 alternative text-based methods Loughran and McDonald (2011); Baker, Bloom, and

Davis (2013) and explain why the chosen approach is superior for our purposes. One could potentially improve on
this out-of-sample fit using financial variables (e.g. past volatility, default spreads, etc.) at the cost of losing the
interpretability of the text-based index, which is central to our analysis.
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the point estimates of both the return and the disaster predictability specifications imply together

risk-adjusted disaster sizes considered plausible in the literature. Our findings suggest that time

variation in rare disaster risk is not only an important source of risk premia variation, but also a

quantitatively reasonable one.

While the link between implied volatility and disaster concerns is well-grounded in theory,

options implied volatility could reflect additional sources of uncertainty. Examples include variation

in normal times volatility and variation in the price of variance risk, which are features of alternative

asset pricing models (e.g. Bansal and Yaron, 2004). If one interprets disaster risk as “jump risk,” a

more targeted measure of disaster risk could focus only on deep out-of-the-money puts. Bollerslev

and Todorov (2011) develop such a model free measure of left tail risk (LT). While our results are

robust to using LT instead of implied volatility in our estimation, option implied volatility allows

a longer sample for estimation, and is consistent with the broader definition of disasters studied in

the macro-finance literature.2 We rely instead on content analysis to sort out which of the option

implied volatility components drive risk premia.

Interpretability, a key feature of the text-based approach, allows us to trace back a large part

of the variation in risk premia to concerns related to wars (53%) and government policy (22%).

Half of the time-series variation in risk premia NVIX identifies is driven by concerns tightly related

to war disasters, strongly reinforcing our formal tests of the time-varying rare disaster hypothesis.

We find some suggestive evidence that government-related concerns are related to redistribution

risk, as our measure traces remarkably well tax-policy changes in the US, though government

concerns are more ambiguous than war-related concerns. We decompose NVIX into four additional

categories: Stock Markets, Financial Intermediation, Natural Disasters, and a residual component.

Of these categories only the residual component of news has a reliable statistical relation with

future expected returns.

Our paper fits in a large literature that studies asset pricing consequences of large and rare

economic disasters. At least since Rietz (1988), financial economists have been concerned about

the pricing consequences of large events that happened not to occur in US data. Brown, Goetzmann,

and Ross (1995) argues the fact we can measure the equity premium in the US stock market using
2Empirically, at the monthly frequency LT is 88 percent correlated with the volatility index we use (VXO). In

unreported tests, we created a news-implied left tail index by replacing VXO with LT and found that NVIX and this
alternative index are 90 percent correlated and focus on similar words.
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such a long sample suggests that its history is special. Barro (2006) and subsequently Barro and

Ursua (2008); Barro, Nakamura, Steinsson, and Ursua (2011); Barro (2009) show that calibrations

consistent with 20th century world history can make quantitative sense of equity premium point

estimates in the empirical literature. Gabaix (2012), Wachter (forthcoming), Gourio (2008), and

Gourio (2012) further show that calibrations of a time-varying rare disaster risk model can also

explain the amount of time-variation in the data. The main challenge of this literature is whether

those calibrations are reasonable. As Gourio (2008) puts it, “this crucial question is hard to

answer, since the success of this calibration is solely driven by the large and persistent variation is

the disaster probability, which is unobservable.” We bring new data to bear on this question.

Our novel way of measuring ex-ante disaster concerns can shed light on the plausibility of these

calibrations. We find that concerns over disasters swing quite a bit, but not quite as persistent as

the calibrations in Wachter (forthcoming) and Gourio (2008) assume. Both calibrate the disaster

probability process to explain the ability of valuation ratios to predict returns, which means the

disaster probability process largely inherits the persistence of valuation ratios. Our results indicate

that shocks to the disaster probability process have a half-life between 4 and 8 months, which is

fairly persistent but inconsistent with standard calibrations in the literature.

One motivation for our paper is the empirical fact that estimating aggregate risk-return trade-

offs is a data intensive procedure. For example, Lundblad (2007) shows that the short samples used

in the literature is the reason why research on the classic variance-expected return trade-off had

been inconclusive. Testing the particular form of risk-return trade-off predicted by the time-varying

disaster risk hypothesis is more challenging on two fronts; plausible measures of disaster risk are

available for no more than two decades, and validation of these measures is even more challenging,

since disasters are rare.

Our paper is also related to a recent literature that uses asset pricing restrictions to give an

interpretation to movements in the VIX. Bates (1991) finds that option prices did not predict the

crash of 1987. Bollerslev and Todorov (2011) uses a model free approach to back out from option

prices a measure of the risk-neutral distribution of jump sizes in the S&P 500 index. Backus, Cher-

nov, and Martin (2011) challenge the idea that the jumps detected by “overpriced” out of money

put options are related to the macroeconomic disasters discussed in the macro-finance literature.

Drechsler (2008) interprets abnormal variation in VIX as changes is the degree of ambiguity among
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investors. Drechsler and Yaron (2011) interpret it as a forward looking measure of risk. Kelly

(2012) estimates a tail risk measure from a 1963-2010 cross-section of returns and finds it is highly

correlated with options-based tail risk measures. Our paper connects information embedded in

VIX with macroeconomic disasters by extending it back a century, and by using cross equation

restrictions between disaster and return predictability regressions to estimate disaster probability

variance and persistence. Importantly, by decomposing NVIX into word categories we add to this

literature interpretable measures of different disaster concerns, and gain novel insights about the

origins of risk premia variation.

Broadly, our paper contributes to a growing body of work that applies text-based analysis to

fundamental economic questions. Baker, Bloom, and Davis (2013) develop an index of economic

policy uncertainty using the frequency of newspaper references to policy uncertainty. Hoberg and

Phillips (2010, 2011) use the similarly of company descriptions to determine competitive rela-

tionships. Tetlock (2007) documents that the fractions of positive and negative words in certain

financial columns predict subsequent daily returns on the Dow Jones Industrial Average, and Gar-

cía (2013) shows that this predictability is concentrated in recessions. These effects mostly reverse

quickly, which is more consistent with a behavioral investor sentiment explanation than a rational

compensation for risk story. By contrast, we examine lower (monthly) frequencies, and find strong

return and disaster predictability consistent with a disaster risk premium by funneling front-page

appearances of all words through a first-stage text regression to predict economically interpretable

VIX. The support vector regression we employ offers substantial benefits over the more common

approach of classifying words according to tone (e.g. Loughran and McDonald, 2011). It has been

used successfully by Kogan, Routledge, Sagi, and Smith (2010) to predict firm-specific volatility

from 10-K filings. We discuss in detail in Section A.5 the benefits of our approach over alternative

text analysis methods.

The paper proceeds as follows. Section 2 describes the data and methodology used to construct

NVIX. Section 3 formally tests the time-variation in disaster risk hypotheses, reports our main

results and considers alternative explanations. Section 4 uncovers which concerns drive risk premia

to capture the spirit of the times. Section 5 concludes.
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2 Data and Methodology

We begin by describing the standard asset pricing data we rely on, as well as our unique news

dataset and how we use it to predict implied volatility out-of-sample.

We assume throughout that the choice of words by the business press provides a good and stable

reflection of the concerns of the average investor. This assumption is quite natural and consistent

with a model of a news firm which observes real-world events and then chooses what to emphasize

in its report, with the goal of building its reputation. Gentzkow and Shapiro (2006) build a model

along these lines and present a variety of empirical evidence consistent with its predictions. The

idea that news media reflects the interests of readers is suggested in Tetlock (2007), empirically

supported by Manela (2011), and used for structural estimation of the value of information in

Manela (forthcoming).

To the extent that it does not hold, the type of “Big Data” techniques we use to interpret text

data would produce noisy estimates of implied volatility. Such measurement error would bias our

predictability results toward zero. Reassuringly, these techniques have proven successful in related

settings (Antweiler and Frank, 2004; Kogan, Routledge, Sagi, and Smith, 2010).

2.1 News Implied Volatility (NVIX)

Our news dataset includes the title and abstract of all front page articles of The Wall Street Journal

from July 1889 to December 2009. We omit titles that appear daily.3 Each title and abstract are

separately broken into one and two word n-grams using a standard text analysis package that

eliminates highly frequent words (stop-words) and replaces them with an underscore. For example,

the sentence “The Olympics Are Coming” results in 1-grams “olympics” and “coming”; and 2-grams

“_ olympics”, “olympics _”, and “_ coming”. We remove n-grams containing digits.4

We combine the news data with our estimation target, the implied volatility indices (VIX and

VXO) reported by the Chicago Board Options Exchange. We chose to use the older VXO implied

volatility index that is available since 1986 instead of VIX that is only available since 1990 because

it grants us more data and the two indices are 0.99 correlated at the monthly frequency.
3We omit the following titles keeping their abstracts when available: ’business and finance’, ’world wide’, ’what’s

news’, ’table of contents’, ’masthead’, ’other’, ’no title’, ’financial diary’.
4Specifically, we use ShingleAnalyzer and StandardAnalyzer of the open-source Apache Lucene Core project to

process the raw text into n-grams.
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We break the sample into three subsamples. The train subsample, 1996 to 2009, is used to

estimate the dependency between news data and implied volatility. The test subsample, 1986

to 1995, is used for out-of-sample tests of model fit. The predict subsample includes all earlier

observations for which options data, and hence VIX is not available.5

Each month of text is represented by xt, a K = 374, 299 vector of n-gram frequencies, i.e.

xt,i = appearences of n-gram i in month t

total n-grams in month t
. We mark as zero those n-grams appearing less than 3

times in the entire sample, and those n-grams that do not appear in the predict subsample. We

subtract the mean V IX = 21.42 to form our target variable vt = V IXt − V IX. We use n-gram

frequencies to predict VIX with a linear regression model

vt = w0 + w · xt + υt t = 1 . . . T (1)

where w is a K vector of regression coefficients. Clearly w cannot be estimated reliably using least

squares with a training time series of Ttrain = 168 observations.

We overcome this problem using Support Vector Regression (SVR), an estimation procedure

shown to perform well for short samples with an extremely large feature space K.6 While a full

treatment of SVR is beyond the scope of this paper, we wish to give an intuitive glimpse into this

method, and the structure that it implicitly imposes on the data. SVR minimizes the following

objective

H (w, w0) =
∑

t∈train
gε (vt − w0 −w · xt) + c ‖w‖2 ,

where gε (e) = max {0, |e| − ε} is an “ε-insensitive” error measure, ignoring errors of size less than
5A potential concern is that since the train sample period is chronologically after the predict subsample, we are

using a relationship between news reporting and disaster probabilities that relies on new information, not in the
information sets of those who lived during the predict subsample, to predict future returns. While theoretically
possible, we find this concern empirically implausible because the way we extract information from news is indirect,
counting n-gram frequencies. For this mechanism to work, modern newspaper coverage of looming potential disasters
would have to use less words that describe old disasters. By contrast, suppose modern journalists now know the
stock market crash of 1929 was a precursor for the great depression. As a result, they give more attention to the
stock market and the word “stock” gets a higher frequency conditional on the disaster probability in our train sample
than in earlier times. Such a shift would cause its regression coefficient wstock to underestimate the importance of the
word in earlier times. Such measurement error actually works against us finding return and disaster predictability
using our measure.

6See Kogan, Levin, Routledge, Sagi, and Smith (2009); Kogan, Routledge, Sagi, and Smith (2010) for an application
in finance or Vapnik (2000) for a thorough discussion of theory and evidence. We discuss alternative approaches in
Section A.5.
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ε. The minimizing coefficients vector w is a weighted-average of regressors

ŵSV R =
∑

t∈train
(α̂∗t − α̂t) xt (2)

where only some of the Ttrain observations’ dual weights αt are non-zero.7

SVR works by carefully selecting a relatively small number of observations called support vec-

tors, and ignoring the rest. The trick is that the restricted form (2) does not consider each of the

K linear subspaces separately. By imposing this structure, we reduce an over-determined prob-

lem of finding K � T coefficients to a much easier linear-quadratic optimization problem with a

relatively small number of parameters (picking the Ttrain dual weights αt). The cost is that SVR

cannot adapt itself to concentrate on subspaces of xt (Hastie, Tibshirani, and Friedman, 2009). For

example, if the word “peace” were to be important for VIX prediction independently of all other

words that appeared frequently at the same low VIX months, say “Tolstoy”, SVR would assign the

same weight to both. Ultimately, success or failure of SVR must be evaluated in out-of-sample fit

which we turn to next.

Figure 1 shows estimation results. Looking at the train subsample, the most noticeable obser-

vations are the LTCM crisis in August 1998, September 2002 when the US made it clear an Iraq

invasion is imminent, the abnormally low VIX from 2005 to 2007, and the financial crisis in the fall

of 2008. In-sample fit is quite good, with an R2 (train) = V ar(w·xt)
V ar(vt) = 0.65. The tight confidence

interval around v̂t suggests that the estimation method is not sensitive to randomizations (with

replacement) of the train subsample. This gives us confidence that the methodology uncovers a

fairly stable mapping between word frequencies and VIX, but with such a large feature space, one

must worry about overfitting.

However, as reported in Table 1, the model’s out-of-sample fit over the test subsample is quite

good, with R2 (test) = 0.34 and RMSE (test) = 7.52. In addition to these statistics, we also report

results from a regression of test subsample actual VIX values on news-based values. We find that
7SVR estimation requires us to choose two hyper-parameters that control the trade-off between in-sample and

out-of-sample fit (the ε-insensitive zone and regularization parameter c). Rather than make these choices ourselves, we
use the procedure suggested by Cherkassky and Ma (2004) which relies only on the train subsample. We first estimate
using k-Nearest Neighbor with k = 5, that συ = 6.664. We then calculate cCM2004 = 29.405 and εCM2004 = 3.491.
We numerically estimate w by applying with these parameter values the widely used SVM light package (available
at http://svmlight.joachims.org/) to our data.
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Figure 1: News-Implied Volatility 1890-2009
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Solid line is end-of-month CBOE volatility implied by options V IXt. Dots are news implied volatility (NVIX)
v̂t + V IX = w0 + V IX + w · xt. The train subsample, 1996 to 2009, is used to estimate the dependency
between news data and implied volatility. The test subsample, 1986 to 1995, is used for out-of-sample tests
of model fit. The predict subsample includes all earlier observations for which options data, and hence VIX
is not available. Light-colored triangles indicate a nonparametric bootstrap 95% confidence interval around
v̂ using 1000 randomizations. These show the sensitivity of the predicted values to randomizations of the
train subsample.

Table 1: Out-of-Sample VIX Prediction

Panel (a) Out-of-Sample Fit Panel (b) Out-of-Sample OLS Regression
vt = a+ bv̂t + et, t ∈ test

R2 (test) = V ar (v̂t) /V ar (vt) 0.34 a -3.55*** (0.51)
RMSE (test) =

√
1

Ttest

∑
t∈test (vt − v̂t)2 7.52 b 0.75*** (0.19)

Ttest 119 R2 0.19
Reported are out-of-sample model fit statistics using the test subsample. Panel (a) reports variance of the
predicted value (NVIX) as a fraction of actual VIX variance, and the root mean squared error. Panel (b)
reports a univariate OLS regression of actual VIX on NVIX. In parenthesis are robust standard errors. ***
indicates 1% significance.
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Figure 2: News-Implied Volatility Peaks by Decade
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We describe NVIX peak months each decade by reading the front page articles of The Wall Street Journal
and cross-referencing with secondary sources when needed. Many of the market crashes are described in
Mishkin and White (2002). See also Noyes (1909) and Shiller and Feltus (1989).

NVIX is a statistically powerful predictor of actual VIX. The coefficient on v̂t is statistically greater

than zero (t = 3.99) and no different from one (t = −1.33), which supports our use of NVIX to

extend VIX to the longer sample.

2.2 NVIX is a Reasonable Proxy for Disaster Concerns

NVIX captures well the fears of the average investor over this long history. Noteworthy peaks in

NVIX include the stock market crash of October and November 1929 and other tremulous periods

which we annotate in Figure 2. Stock market crashes, wars and financial crises seem to play an

important role in shaping NVIX. Noteworthy in its absence is the “burst” of the tech bubble in

March 2000, thus not all market crashes indicate rising concerns about future disasters. Our model

produces a spike in October 1987 when the stock market crashed and a peak in August 1990 when

Iraq invaded Kuwait and ignited the first Gulf War. This exercise gives us confidence in using the
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model to predict VIX over the entire predict subsample, when options were hardly traded, and

actual VIX is unavailable.

We find it quite plausible that changes in the disaster probability perceived by the average

investor would coincide with stock market crashes, world wars and financial crises. Since these are

exactly the times when NVIX spikes due to each of these concerns, we find it is a plausible proxy

for disaster concerns.

2.3 Asset Pricing Data

We use two different data sources for our stock market data. Our main time-series return data are

returns on the Dow Jones index from Global Financial Data, available monthly from July 1871 to

December 2010. We refer to this series throughout as “market” returns. Results are similar if we

substitute the later part of our sample by returns on the S&P 500 index or total market portfolio

index. We also use Robert Shiller’s time series of aggregate S&P 500 earnings from his website.

We chose to use this data to run our predictability tests because this index is representative of the

overall economy and goes back a long way. We also use daily return data on the Dow Jones index.

This data goes back to January 1896 and is in fact the shortest of our time-series and determines

how far back we go in our study. We use this data to construct proxies for realized volatility which

is important when we explore alternative stories for our main result. To compute excess returns

we use 90 day US government bond yields from Global Financial Data for a measure of the risk

free rate that goes back to 1920. For the earlier part of our sample we use yields on 10 year US

government bonds. Results do not change if we use long bonds for our entire sample. In addition,

we use the VXO and VIX indices from the CBOE. They are implied volatility indices derived from

a basket of option prices on the S&P 500 (VIX) and S&P 100 (VXO) indices. The VIX time series

starts in January 1990 and VXO starts in January 1986.

2.4 Implied Volatility, Disaster Probabilities, and Expected Returns

The motivation for our empirical tests rests on the idea that in periods when agents are more

concerned with the possibility of a crash, out-of-the-money put options on an index that tracks

aggregate wealth should be more expensive. We use the term “concerned”, because option markets

summarize a combination of preferences and beliefs regarding rare economic disasters. In this
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section we formalize this idea in a simple setup. We start by showing that the time-varying disaster

risk hypothesis predicts a relationship between expected returns and disaster probabilities. We then

show that theory predicts that options implied volatility is tightly related to disaster probabilities.

Assume the states of the economy can be partitioned into disaster and non-disaster states, and

the only source of time-variation in discount rates is the probability of a disaster. In this case the

price of any cash-flow can be written as:

Pt = Et[mt,t+1Xt+1] = ptE
D[mt,t+1Xt+1] + (1− pt)END[mt,t+1Xt+1]

where pt = Probt(IDt→t+1 = 1) is the probability at time t of a disaster occurring in period t + 1,

and ED[·] ≡ E[·|IDt→t+1 = 1] denotes expectations conditional on a disaster. END[·] is defined

analogously, as an expectation conditional on a non-disaster state. The stochastic discount factor

mt,t+1 prices time t + 1 cash-flows at time t. As shown in the Appendix, expected returns and

expected returns in paths without disasters can be approximated as,

Et[Ret+1] ≈ END[Ret+1]−
(
ED[mt,t+1R

e
t+1]

END[mt,t+1] − E
D[Ret+1]

)
pt, (3)

ENDt [Ret+1] ≈ END[Ret+1]−
(
ED[mt,t+1R

e
t+1]

END[mt,t+1]

)
pt, (4)

Armed with a measure of investors perception of the likelihood of a disaster for a given period,

one can test the time-varying disaster risk hypothesis using simple predictability regressions, either

in the entire sample, using (3), or in a sample excluding disasters, using (4). The first test is

sensitive to estimation of expected disaster size, EDt [Ret+1], which relies on the small number of

disasters in the test sample. Because disasters are so rare, even for very long samples, expected

disaster sizes could be poorly estimated. This is analogous to the result in Broadie, Chernov, and

Johannes (2009), which shows that expected returns off deep out of the money put options are

statistically challenging to estimate directly. In this paper we focus on tests of equation (4).

Naturally, a measure of the disaster probability would also predict disasters if investors beliefs

are rational, because Et[IDt→t+1] = pt. If we knew that the measure pt was the correct measure of

disaster concerns, we could use this prediction to test whether investors are rational. Or in case our

measure is a potential measure of disaster concerns, we could use this prediction to test the joint
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hypothesis that investors are rational and pt is a measure of investors disaster concerns. Both of

these tests suffer from similar small sample issues as the estimation of the expected size of disasters

ED[Ret+1].

Unfortunately there is no measure of disaster concerns, pt, readily available. For a very short

sample we have VIX, option implied volatility. We next show that, under the assumptions outlined

in the beginning of this section, V IX2
t is linear function of pt, where the disaster probability horizon

is the maturity of the options used to construct VIX.

We apply this pricing framework to interpret the economic content of VIX. The CBOE con-

structs VIX for maturity τ as a weighted average of put and call prices as follows:

V IXt,τ = 100

√√√√2erf τ
τ

[∫ F0

0

( 1
k2

)
Putt,τ,kdk +

∫ ∞
k0

( 1
k2

)
Callt,τ,kdk

]
, (5)

where Putt,τ,k is the market price at time t of a put option with maturity τ and strike price k on

the underlying index.8 For the VIX specifically, this index is the S&P 500 and the maturity is one

month. Applying our pricing framework to put options (and analogously for calls),

Putt,τ,k = pt,τE
D
[
mt,t+τ [k − St+τ ]+

]
+ (1− pt,τ )END

[
mt,t+τ [k − St+τ ]+

]
,

where pt,τ is the disaster probability from t to t + τ from t vantage point. Plugging this pricing

equation into (5) and transforming quantities to the variance space, VIX can be written as a

function of the probability of a disaster and the spread in implied variance across disaster and

non-disaster states,9

V IX2
t = pt,1

(
V IX2

D − V IX2
ND

)
+
(
V IX2

ND

)
. (6)

Note that time subscripts are absent by assumption, as all time variation in this economy is driven

by disaster probabilities, i.e. conditional moments are constant. Plugging in the formula for VIX

8Formally the CBOE formula is Vt = 2erf τ
[∑k0

k=0

(
∆k
k2

)
Putt,τ,k +

∑∞
k=k0

(
∆k
k2

)
Callt,τ,k

]
−
(
F0
k0
− 1
)2, where F0

is the forward value of the underlying index. To get to our formula we need to assume all strike prices are tradable.
9We omit the horizon parameter in what follows, since our analysis is restricted to one month VIX.
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and rearranging we get a simple link between VIX and disaster probabilities,

pt,1 = V IX2
t − V IX2

ND

V IX2
D − V IX2

ND

. (7)

In this equation, V IX2
D−V IX2

ND measures the difference in risk-neutral variance between disaster

and non-disaster states. If the gap between current VIX and normal times VIX is large, it indicates

the disaster probability is high. For example, in an economy where return volatility is constant,

V IX2
ND is equal to return variance and V IX2

D is a function of the risk-neutral disaster size, which

is larger if the expected disaster is large or if investors are more risk-averse. It immediately follows

that a disaster is more likely to hit when disaster probability is high, Et[IDt→t+1] = pt,1.

We can now rewrite our two main empirical tests,

Et[Ret+1|IDt→t+1 = 0] = βR0,1 + βR1,1V IX
2
t , (8)

Et[IDt→t+1] = βD0,1 + βD1,1V IX
2
t , (9)

where

βR0,1 = END[Ret+1] +
ED[mt,t+1R

e
t+1]

END[mt,t+1]
V IX2

ND

V IX2
D − V IX2

ND

, βD0,1 = −V IX2
ND

V IX2
D − V IX2

ND

,

βR1,1 = − 1
V IX2

D − V IX2
ND

(
ED[mt,t+1R

e
t+1]

END[mt,t+1]

)
, βD1,1 = 1

V IX2
D − V IX2

ND

.

Equations (8) and (9) form the basis of our empirical analysis. It is important to emphasize that

the simple one-to-one link between disaster probabilities and V IX2 is a direct consequence of the

assumption that there are no other sources of time-variation in the economy, and in particular

that ENDt [mt,t+1] and EDt [mt,t+1] are constant (if the event is indeed a disaster we should have

EDt [mt,t+1] > ENDt [mt,t+1]) . A natural question is whether our setup can distinguish between

movements in the natural and risk-neutral probability of disasters. While generally it is challenging

to separate the two based on return predictability regressions alone, for economies where the only

source of risk premia variation is the disaster probability, we can distinguish between the two by

estimating the disaster probability process directly. We explore this approach in Section 3.3.

The more powerful approach of equation 8 avoids the problem of disaster size estimation, but
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requires identification of disaster events, which we turn to next. This alternative approach of

essentially performing return predictability regressions on a truncated distribution of returns also

leads to concerns regarding bias in our estimation. We address such concerns in Section 3.2.

We discuss VIX-based tests in Section 3, but due to the high volatility of stock market returns,

these return predictability tests prescribed by theory (equations 3 and 4) are data intensive tests,

and in the short sample available we fail to reject the null of no predictability. Motivated by this

empirical challenge we use NVIX, news-implied volatility, which is a projection of VIX on news,

giving us a measure of the form

NV IXt = E [V IXt|Newst] + εt,

where εt is measurement error introduced by the SVR procedure. A regression that uses NVIX

instead of VIX recovers an unbiased estimate of βR1 and βD1 which are our quantities of interest, as

long E[Ret+τ ε2t ] = E[Ret+τ εt] = E[IDt→t+τ ε2t ] = E[IDt→t+τ εt] = 0.10

2.5 Economic Disasters

The time-varying disaster risk hypothesis is really about macroeconomic disasters, measured by

sharp drops in consumption. The main challenge to use economic activity data to test the time-

varying disaster risk hypothesis is to get the timing of the disaster arrival right. When exactly did

investors become aware the Great Depression was happening? One natural answer is “Black Mon-

day”. But was the Great Depression really one terrible rare event people learned about on October

29? or was it a sequence of three or four bad events? Information embedded in market prices are

a natural channel to detect the timing at which investors realized what was happening, and the

extent to which the future drop in economic activity was already anticipated. The cost of focusing

on the stock-market to identify disasters is that we distance ourselves from the economic disasters

that the disaster risk literature has in mind, and shift the focus towards statistical measurement of

jumps in asset prices.

Our approach to identify disasters uses both pieces of information, requiring that big stock

market drops be followed by large drops in economic activity. This approach has the advantage of
10Follows from cov(Ret+τ , NV IX2

t ) = cov(Ret+τ , E [V IXt|Newst]2)+cov(Ret+τ , ε2t )+2cov(Ret+τ , εtE [V IXt|Newst])
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Figure 3: Economic Disasters Identification
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We call month t a disaster month if rmt < 0 and rmt ×∆yt−1,t+5 ≥ κ, where rmt is the log market return during
the month and ∆yt−1,t+5 is log industrial production growth from month t− 1 to month t+ 5, a six month
window including the industrial production growth during month t. The lines depict three different crash
identification thresholds, {0.5%, 1.5%, 2.5%}. The one in the middle (1.5%) is our baseline specification.

keeping the focus on macroeconomic disasters, while using stock markets to identify the timing of

economic disasters. We construct a “disaster-index” Zt = min{ermt − 1, 0}× (eyt+5−yt−1 − 1), where

rmt is the log market return during month t and yt+5 − yt−1 is log industrial production growth

from month t− 1 to month t+ 5, a six month window including the industrial production growth

during month t. We classify month t as an economic disaster if month t disaster index is in the

top κ percentile among all months in our full sample (1896 − 2009), that is IDt = 1 × (Zt ≥ Zκ).

Our baseline case is κ = 1.5, but we consider also κ′s from 0 to 3. We take the view that a disaster

event lasts for three months, ID,rt = ID,rt+1 = ID,rt+2 = IDt , and construct ID,rt→t+τ = 1−
∏τ
j=1

(
1− ID,rt+j

)
,

which turns on as long there is at least one disaster month during the window τ . This approach

follows work by Schularick and Taylor (2009) and Krishnamurthy and Vissing-Jorgensen (2012).

When predicting disasters we want to focus on the initial disaster month. We classify as a

disaster ID,Dt = ID,rt if ID,rt + ID,rt−1 + ID,rt−2 = 1. That is, if month t is a disaster month, but the

previous two periods were not. We construct ID,Dt→t+τ = 12
τ

∑τ
j=1 I

D,D
t+j , which is the annualized
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disaster realization rate during this period. The dummy ID,rt→t+τ is the right construction if we are

interested in identifying disaster periods, while ID,Dt→t+τ is the right construction if we are interested

in measuring disaster probabilities (see Appendix). We use ID,rt→t+τ in the return predictability

regressions, and ID,Dt→t+τ in the disaster predictability specifications.

We can see what disasters this approach identifies in Figure 3, where we report periods such

that IDt = 1. The different lines depicts disaster regions identified by different thresholds κ. A

month is characterized as a disaster according to a threshold if it is below the line. This approach

requires negative signals from both economic activity and market returns to classify a month as a

disaster.

We use industrial production because it is the only measure of aggregate activity available

during our entire sample. It is available monthly since 1919 and annually since the beginning of the

sample. This leaves us with about 25 years (1896-1919) where we do not have a monthly measure

of economic activity. In this case we use gross domestic product which is measured quarterly by

the NBER, and interpolate linearly to obtain our measure of economic activity growth during the

window of interest.

3 Time-Varying Disaster Concerns

In this section we formally test the hypothesis that time-variation in disaster risk is an important

driver of variation in 1986 to 2009 expected returns on US equity. We start with our main findings.

We then explore and rule out alternative stories. Finally, we discuss the quantitative implications

of our regression results for the persistence and volatility of the disaster probability process, and

the size of disaster concerns.

3.1 Results

The time-varying disaster risk explanation of asset pricing puzzles has two key empirical predictions

regarding asset prices: (i) periods of high rare disaster concerns are periods when put options on the

market portfolio are abnormally expensive, and (ii) these periods are followed either by economic

disasters or above average excess returns on the market portfolio. Since disaster concerns are

unobservable, we test these two predictions jointly. Specifically we test if periods of high option
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prices are followed by either disasters or periods of above average excess returns.

The formal motivation for our empirical strategy described in Section 2.4 boils down to testing

if NVIX predicts future returns in paths without disasters, and if NVIX predicts disasters. To

implement these two tests we rely on disaster indicators ID,rt→t+τ , which are 1 if there is a month

classified as a disaster during the period t to t+ τ , not including t.

The last four columns of Table 2 show that in the short-sample for which option prices are

available the results are weak. In the sample for which VIX is available, the implied volatility index

predicts excess returns in the three months to six months horizons. However, VIX was abnormally

low just before the sole economic disaster in 2008, what does not reject the time-varying disaster

risk story but suggests return predictability is the result of other economic forces. If we consider a

slightly longer sample for which the VXO implied volatility index on the S&P 100 is available, the

evidence for return predictability becomes weaker, with the six-month horizon coefficient losing it’s

statistical significance.

Table 2: Return Predictability

ret→t+τ = βR0 + βR1 X
2
t + εt+τ if ID,rt→t+τ = 0

Xt NV IXt V XOt V IXt

1896-2009 1896-1995 1986-2009 1990-2009 1986-2009 1990-2009

τ
βR1 R2 βR1 R2 βR1 R2 βR1 R2 βR1 R2 βR1 R2

t(β1) T t(β1) T t(β1) T t(β1) T t(β1) T t(β1) T

1 0.19** 0.41 0.19* 0.36 0.10 0.21 0.13 0.48 0.03 0.04 0.16 0.83
[2.04] 1322 [1.9] 1145 [0.55] 284 [0.7] 236 [0.22] 284 [0.85] 236

3 0.21*** 1.55 0.20** 1.14 0.20* 2.68 0.22** 4.16 0.14** 2.85 0.23*** 5.87
[3.13] 1306 [2.45] 1131 [1.93] 282 [2.09] 234 [2.21] 282 [2.7] 234

6 0.16*** 1.89 0.16** 1.55 0.16* 3.51 0.16* 4.19 0.09 2.41 0.17** 6.29
[2.71] 1284 [2.19] 1112 [1.77] 279 [1.71] 231 [1.49] 279 [2.24] 231

12 0.14** 2.55 0.15** 2.49 0.08 1.66 0.10 2.84 0.05 1.35 0.09 3.05
[2.34] 1248 [2.01] 1082 [0.89] 273 [1.11] 225 [0.9] 273 [1.21] 225

24 0.08* 2.12 0.09 2.24 0.04 0.93 0.04 0.80 0.02 0.34 0.02 0.38
[1.7] 1176 [1.49] 1022 [0.59] 261 [0.53] 213 [0.35] 261 [0.32] 213

Reported are monthly return predictability regressions based on news implied volatility (NVIX), S&P 100
options implied volatility (VXO), and S&P 500 options implied volatility (VIX). The sample excludes any
period with an economic disaster (ID,rt→t+τ = 1). The dependent variables are annualized log excess returns
on the market index. The first and third columns report results for the sample period for which VXO is
available, while the second and fourth columns are for the sample period for which VIX is available. t-
statistics are Newey-West corrected with number of lags/leads equal to the size of the return forecasting
window.
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While we do not have new options data to bring to bear, we use NVIX to extrapolate investors’

disaster concerns. Our test of the time-varying disaster concern hypothesis is a joint test that

NVIX measures investors disaster concerns and that disaster concerns drive expected returns on

the market index. Hence, a failure to reject the null can either mean NVIX does not accurately

measures disaster concerns or disaster concerns do not drive expected returns. NVIX largely inherits

the behavior of VIX and VXO in sample periods where both are available. Point estimates are

very similar, especially for the VIX sample, but the predictability coefficient on NVIX is estimated

less precisely. To some extent this should not be surprising as NVIX was constructed to fit these

implied volatility indices, though we only use post 1995 data for NVIX estimation.

The advantage of using NVIX, however, is the ability to consider much larger samples. The

first two columns of Table 2 reports our main results for two alternative extended sample periods.

In the first column we see that return predictability for the entire sample going from 1896 to 2009

is very well estimated with a point estimate similar to the VIX sample, and a t-stat over 2 from one

month to twelve months horizons. Coefficients are statistically significant up to 24 months head,

contrasting with a much shorter horizon for the VIX sample. The second column reports results for

the sample period where no option prices are available, and the third column for the sample period

for which we did not use any in sample option price data. Estimates are similar across different

samples.

We interpret the extended sample results as strong evidence for the joint hypothesis that NVIX

measures disaster concerns and time-variation in disaster concerns drive expected returns. The

coefficient estimates imply substantial predictability with a one standard deviation increase in

NV IX2 leading to σNV IX2 × β1 = 21.66 × 0.19 = 4.12% higher annualized excess returns in

the following month. At the annual frequency excess returns are 3.03% higher. Unsurprisingly, R-

squares are small and attempts to exploit this relationship carry large risks even in samples without

economic disasters. Forecasting coefficients are monotonically decreasing in the forecasting horizon,

consistent with the fact that disaster concerns are persistent but substantially less persistent than

alternative return predictors such as dividend yields and equivalents. Disaster concerns have an

autocorrelation coefficient of .79 at the monthly frequency compared to .98 for the the dividend

yield.

A second prediction of the time-varying disaster concerns hypothesis is that disaster concerns
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Table 3: Disaster Predictability: Extended Sample Tests

ID,Dt→t+τ = βD0 + βD1 NV IX
2
t + εt

1896-2009 1938-2009

τ
βD1 (×100) R2 βD1 (×100) R2

t(βD1 ) T t(βD1 ) T

1 0.35** 0.67 0.29 1.11
[1.97] 1367 [1.1] 863

3 0.23** 0.89 0.10 0.37
[2.09] 1367 [0.85] 863

6 0.21* 1.46 0.04 0.10
[1.75] 1367 [0.51] 863

12 0.21 2.77 0.01 0.03
[1.58] 1367 [0.27] 863

24 0.14 2.26 -0.05 0.72
[1.1] 1367 [1.04] 863

ND 8 2
Reported are monthly return predictability regressions based on news implied volatility (NVIX). The depen-
dent variable is the dummy variable ID,Dt→t+τ that turns on if there was an economic disaster between months
t (excluding) and t+ τ . t-statistics are Newey-West corrected with number of lags/leads equal to the size of
the disaster forecasting window.

should be abnormally high before disasters. This prediction does not say economic disasters are

predictable, but rather that in a long enough sample, disasters should happen more often when

disaster concerns are high. This relationship is challenging to estimate as rare disasters are rare

by definition. As we argued before in the sample for which we have option prices available, option

market did not reveal an abnormally high concern with an economic disaster on the eve of the

2008-2009 Great Recession. Implied volatilities were running below realized volatility in the months

preceding the stock market crash. We test this disaster predictability hypothesis using a simple

linear probability model.

Table 3 reports disaster predictability regression results for the extended sample that relies on

NVIX. We find that, in the full sample, NVIX is high just before disaster events. In the entire sample

under the baseline specification for identifying disasters we identify eight disasters, which results

in a 1.75% per month probability of a disaster event.11 When NVIX is one standard deviation

above its mean this probability increases from 1.75% to 3%. These are large numbers in terms of
11We discuss how we classify a period as an economic disaster in Section 4.3 and show how the results change if

we change our disaster classification.
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economic significance. It is important to note that these results rely heavily on the pre-war sample

as the majority of the disasters that our criteria identify are in the earlier part of the century. In

the second column of Table 3, we see that when we focus on the post-Great Depression sample the

coefficients remain positive, indicating that NVIX is typically high before crashes but we cannot

reject the null, what is not surprising since we only identify two disasters during this sample. The

extended NVIX sample seems necessary to draw strong conclusions about disaster predictability.

3.2 Robustness and Alternative Explanations

We next explore alternative explanations for our main results. One possibility is that NVIX is not

measuring variation in disaster concerns but rather current stock market volatility. According to

this story NVIX predicts returns because investors demand higher expected returns during more

volatile periods. We test this story by including stock market realized variance as a control. The

results can be seen in Table 4. The coefficient on NVIX is slightly reduced and statistical significance

is also reduced, suggesting that at least a piece of the information embedded in NVIX is related to

current stock market volatility. However, the estimates show that NVIX has substantial additional

new information relative to current stock market volatility.

A second concern we have is that excluding disasters could mechanically generate predictability

in a world of time-varying volatility. The argument is as follows: suppose stock-market ex-ante

volatility is moving around in a predictable fashion. Our strategy to identify disasters is more

likely to identify disasters in periods of high ex-ante volatility. Suppose NVIX has information

about future volatility. Since disaster months are excluded from the regression, we are truncating

the left tail of the distribution exactly when volatility is higher. This mechanism would make our

proxy for volatility artificially predict returns. This story calls for a selection adjustment, which

we derive explicitly in Section A.3.

The intuition is analogous to studies where we only observe a selected sample. The standard

procedure is to control for this selection effect.12 In our exercise we know the model and the

selection criteria under the null, so there is no need for an instrument. In the first stage we

estimate a selection equation, where we estimate the ability of NVIX to predict the probability

that a given period is a disaster under the null where all that is happening is time-variation in
12For example, the Heckman selection model is a popular example of such selection corrections.
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Table 4: Alternative Explanations

ret→t+τ = βR0 + βR1 NV IX
2
t + β2Xt + εt if ID,rt→t+τ = 0

Realized Variance Truncation Both

τ
βR1 R2 βR1 − γ R2 βR1 − γ R2

t(βR1 ) T t(βR1 − γ) T t(βR1 − γ) T

1 0.14 0.68 0.15* 0.41 0.10 0.68
[1.33] 1322 [1.65] 1322 [0.99] 1322

3 0.17*** 1.99 0.18*** 1.55 0.14** 1.99
[2.58] 1306 [2.66] 1306 [2.11] 1306

6 0.15** 2.05 0.13** 1.89 0.12* 2.05
[2.36] 1284 [2.24] 1284 [1.9] 1284

12 0.11* 3.11 0.11* 2.55 0.09 3.11
[1.93] 1248 [1.89] 1248 [1.5] 1248

24 0.08 2.24 0.06 2.12 0.05 2.24
[1.53] 1176 [1.22] 1176 [1.06] 1176

This table presents return predictability regressions based on our constructed NVIX series and realized stock
stock market variance. We measure stock market realized variance using daily returns on the Dow Jones
index within the relevant month. The dependent variable are market annualized log excess returns. Each row
and each column represents a different regression. Rows show different forecasting horizons. The first column
shows predictability coefficients of NVIX squared on future returns controlling for past realized variance.
In the second column we show the same predictability coefficient after we subtract γ, the predictability
coefficient implied by the time-varying truncation that our procedure of excluding disasters induces (for a
full discussion see Section A.3). The third column controls simultaneously for both realized variance and
truncation. t-statistics are Newey-West corrected with number of lags/leads equal to the size of the disaster
forecasting window.

volatility. This specification gives a benchmark coefficient which is the coefficient that a regression

of future returns on NVIX should have if predictability was the result of this truncation story. In

short, instead of the null hypothesis being a zero coefficient, it is a new adjusted coefficient.

We develop this analysis in full in the appendix, but it is convenient to inspect an equation to

grasp the intuition of our test. We classify a month as a disaster if returns in the month are lower

than a threshold rt+1. Expected returns for a period that was not classified as a disaster are higher

than average because of the truncation our classification imposes,

E[rt+1|rt+1 ≥ rt+1] = µr + σt+1E

[
εr,t+1|εr,t+1 ≥

rt+1 − E[rt+1]
σt+1

]
= µr + σt+1λ(rt+1),

where λ(·) is commonly know as the mills ratio. According to the truncation rationale NVIX will

predict returns in paths that were not classified as disasters to the extent it predicts σt+1λ(rt+1).
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Table 5: Post Depression Sample including Disasters

ret→t+τ = β0 + βR1 NV IX
2
t + β2Xt + εt

Sample: 1896-2009 1938-2009
Disasters Excluded Included Excluded Included

τ
βR1 R2 βR1 R2 βR1 R2 βR1 R2

t(βR1 ) T t(βR1 ) T t(βR1 ) T t(βR1 ) T

1 0.14 0.68 0.03 0.39 0.20 0.46 0.10 0.48
[1.33] 1322 [0.26] 1367 [1.52] 857 [0.8] 863

3 0.17*** 1.99 0.03 0.32 0.23*** 2.18 0.08 0.22
[2.58] 1306 [0.35] 1367 [2.81] 853 [0.65] 863

6 0.15** 2.05 0.05 0.48 0.21*** 3.16 0.13* 1.10
[2.36] 1284 [0.77] 1367 [3.02] 847 [1.72] 863

12 0.11* 3.11 0.02 0.15 0.15** 2.84 0.12** 1.85
[1.93] 1248 [0.34] 1367 [2.22] 835 [2.15] 863

24 0.08 2.24 0.01 0.08 0.10* 2.43 0.12** 3.59
[1.53] 1176 [0.17] 1367 [1.74] 811 [2.43] 863

This table presents return predictability regressions based on our constructed NVIX series and realized stock
stock market variance for two different subsamples. We measure stock market realized variance using daily
returns on the Dow Jones index within the relevant month. Each row and each column represents a different
regression. Different forecasting horizons are in rows. The table shows predictability coefficients of NVIX
squared on future returns controlling for past realized variance. t-statistics are Newey-West corrected with
number of lags/leads equal to the size of the disaster forecasting window.

Under the null that the return predictability is the result of truncation we have:

E[λ(rt)σt+1|NV IX2
t ] = γ0 + γNV IX2

t (10)

So what this selection problem prescribes is to run our main forecasting regression, and test if β1 is

different from γ, which is the coefficient of the regression of the truncated mean return on NVIX.

If we could not reject equality of coefficients, then the time-varying truncation hypothesis would

be consistent with our results.

Results with the adjusted coefficients and t-stats are in Table 4. Both the statistical and

economic significance of the results survive once we adjust for this mechanical selection effect.

Yet one might still be concerned that the parametric structure that we impose on the return

distribution might not be doing a good job of capturing this truncation effect. One way to alleviate

these concerns is to focus on a sub-sample where there were fewer disasters but not exclude the

disasters from the sample. Since the majority of our disasters happen during the Great Depression,

we focus on a sub-sample starting in 1938, when the NBER officially declared the end of the
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Great Depression. We run the return forecasting regression in the post depression sample without

excluding disasters, where only two economic disasters happened according to our baseline criteria.

Since we are not excluding disasters truncation concerns become mute.

The results in Table 5 show that the coefficients for horizons 6 to 24 months does not change

both in magnitude or in statistical significance. Coefficients for one and three months are slashed by

roughly half and lose their statistical significance. We will see in Table 6 that these short horizons

are also more sensitive to our criteria to identify economic disasters, but longer horizons estimates

remain significant.

Table 6 examines the sensitivity of our main return predictability results to different disaster

thresholds. Our baseline specification (κ = 1.5%) identifies twenty-one disasters in our sample. The

results change somewhat depending on the criteria used, with evidence for return predictability

becoming weaker as we use a more strict definitions of a disaster. This works exactly as expected

as including disaster months in the return predictability regression biases the coefficient downward.

3.3 Volatility, Persistence and Size of Disaster Concerns

In this section we connect the coefficient estimates from our two predictability specifications to

structural parameters of interest in the macro-finance literature. In particular, our regressions

can recover the volatility and persistence of the disaster probability process, and the risk neutral

disaster size. We report our estimates for these quantities in Table 7. We explain formally where

our estimates come from and provide an economic interpretation.

As shown above, pt is linearly related to V IX2, which holds true even in the more general case

where normal times risk-neutral volatility moves over time

V IX2
t = pt

(
V IX2

D − V IX2
ND,t

)
+
(
V IX2

ND,t

)
(11)

A linear approximation of the above expression implies that VIX movements are driven by

disaster concerns (p̂t) and normal times risk ( ̂V IX2
ND,t),

V̂ IX2
t ≈ φ0p̂t + φ1 ̂V IX2

ND,t,

where x̂ denotes deviations from the unconditional mean and φ’s are approximating constants.

25



Ta
bl
e
6:

D
isa

st
er

T
hr
es
ho

ld
Se

ns
iti
vi
ty

D
isa

st
er

re t
→
t+
τ

=
β

0
+
β
R 1
N
V
I
X

2 t
+
ε t

if
I
D
,r

t→
t+
τ

=
0

th
re
sh
ol
d

κ
=

0%
κ

=
0.

5%
κ

=
1%

κ
=

1.
5%

κ
=

2%
κ

=
2.

5%
κ

=
3%

τ
β
R 1

R
2

β
R 1

R
2

β
R 1

R
2

β
R 1

R
2

β
R 1

R
2

β
R 1

R
2

β
R 1

R
2

t(
β
R 1

)
T

t(
β
R 1

)
T

t(
β
R 1

)
T

t(
β
R 1

)
T

t(
β
R 1

)
T

t(
β
R 1

)
T

t(
β
R 1

)
T

1
-0
.0
5

0.
04

0.
05

0.
04

0.
16

*
0.
32

0.
19

**
0.
41

0.
19

**
0.
42

0.
21

**
0.
55

0.
23

**
*

0.
66

[0
.5
2]

13
67

[0
.5
2]

13
48

[1
.7
7]

13
35

[2
.0
4]

13
22

[2
.0
4]

13
11

[2
.3
9]

12
96

[2
.7
3]

12
80

3
-0
.0
2

0.
01

0.
08

0.
23

0.
19

**
*

1.
30

0.
21

**
*

1.
55

0.
20

**
*

1.
48

0.
23

**
*

1.
96

0.
22

**
*

1.
68

[0
.1
8]

13
67

[0
.8
1]

13
39

[2
.8
8]

13
22

[3
.1
3]

13
06

[3
.0
4]

12
91

[3
.4
2]

12
68

[3
.1
8]

12
48

6
0.
01

0.
01

0.
11

*
0.
95

0.
16

**
*

1.
79

0.
16

**
*

1.
89

0.
14

**
1.
52

0.
15

**
1.
75

0.
14

**
1.
41

[0
.1
5]

13
67

[1
.8
3]

13
27

[2
.6
7]

13
05

[2
.7
1]

12
84

[2
.4
4]

12
63

[2
.5
2]

12
30

[2
.2
6]

12
05

12
0.
01

0.
00

0.
12

**
1.
92

0.
14

**
2.
60

0.
14

**
2.
55

0.
12

**
2.
00

0.
12

**
2.
06

0.
11

*
1.
65

[0
.0
8]

13
67

[2
.4
4]

13
12

[2
.4
]

12
78

[2
.3
4]

12
48

[2
.1
1]

12
15

[2
.0
4]

11
75

[1
.7
9]

11
44

24
0.
00

0.
00

0.
10

**
3.
29

0.
10

*
2.
70

0.
08

*
2.
12

0.
07

1.
68

0.
06

1.
25

0.
05

0.
84

[0
.0
4]

13
67

[2
.4
4]

12
88

[1
.9
5]

12
30

[1
.7
]

11
76

[1
.4
8]

11
30

[1
.2
7]

10
67

[1
.0
3]

10
24

N
D

0
7

14
21

27
34

41
T
hi
s
ta
bl
e
pr
es
en
ts

re
tu
rn

pr
ed

ic
ta
bi
lit
y
re
gr
es
sio

ns
ba

se
d
on

ou
r
co
ns
tr
uc
te
d
N
V
IX

se
rie

s
fo
r
di
ffe

re
nt

di
sa
st
er

th
re
sh
ol
ds

an
d
di
ffe

re
nt

ho
riz

on
s.

T
he

sa
m
pl
e
ex
cl
ud

es
an

y
pe

rio
d
w
ith

an
ec
on

om
ic

di
sa
st
er
.
T
he

de
pe

nd
en
t
va
ria

bl
e
ar
e
an

nu
al
iz
ed

st
oc
k
m
ar
ke
t
lo
g
ex
ce
ss

re
tu
rn
s.

t-
st
at
ist

ic
s
ar
e

N
ew

ey
-W

es
t
co
rr
ec
te
d.

T
he

sa
m
pl
e
pe

rio
d
is

18
96

to
20
09
.

26



Under the conditions discussed in Section 2.4, we can use our news based measure of implied

volatility, NVIX, and recover unbiased estimates of βD1 and βR1 . One of these assumptions was that

there was no variation in normal-times risk ( ̂V IX2
ND,t = 0). We show next how to recover additional

information about disaster risk, in particular we are interested in the volatility, persistence and the

expected disaster sizes.

If the disaster probability process follows an AR(1) process with persistence parameter ρp,

an OLS regression of the (annualized) average number of disaster 12
τ

∑τ−1
s=0 I

D
t+s→t+s+1 on V̂ IX2

t

recovers plim(βD1.τ ) =
φV AR(p̂t)

∑τ−1
j=0 ρ

j
p

V ar(V̂ IX2
t )

, which implies that the ratio between coefficients of two

different horizons τL and τS recovers the disaster probability persistence ρp:

plim

(
τL
τS

βDτL
βDτS

)
=

1− ρτLp
1− ρτSp

. (12)

We follow a similar strategy with the return predictability specification, but in this case a similar

computation only recovers the overall persistence of expected returns ρR:

plim

(
τLβ

R
τL

τSβRτS

)
= 1− ρτLR

1− ρτSR
. (13)

If disaster probability variation is the only driver of expected returns, i.e. either there is no

variation in normal times risk ( ̂V IX2
ND,t = 0) or normal times risk does not impact risk premia,

then this persistence should match the one we recover from the disaster predictability specification

(ρp = ρR). In general, however, expected returns are also driven by time-variation from other

sources of uncertainty. If such movements are priced, they would also lead to variation in risk

premia. Evidence presented in Section 4.3 strongly suggests that the bulk of time variation in

risk premia our measure identifies is directly related to disasters. In this section we reinforce that

result by evaluating quantitatively whether the amount of predictability and persistence in expected

returns is consistent with the amount of predictability and persistence in disasters.

Table 7 panel (a) and (b) reports ρ estimates. First, we find a tight range of persistence estimates

implied by the return predictability specifications, except perhaps for the results that rely on very

short horizons. The disaster probability specification suggests very similar magnitudes. While the

estimates strongly suggest disaster concerns are persistent, they are somewhat smaller than the
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Table 7: Disaster Risk: Persistence, Volatility and Size

(a) Disaster Probability Persistence (b) Disaster Probability Persistence
Implied by Return Predictability Regressions Implied by Disaster Predictability Regressions

ρR =
{
x

∣∣∣∣∣ τLβRτLτSβRτS
= 1−xτL

1−xτS

}
τS\τL 3 6 12 24

1 1.12 0.95 0.94 0.92
3 0.82 0.90 0.89
6 0.94 0.91
12 0.88

ρp =
{
x

∣∣∣∣∣βDτLβDτS = 1−xτL
1−xτS

}
τS\τL 3 6 12 24

1 0.61 0.78 0.90 0.91
3 0.93 0.98 0.95
6 1.01 0.96
12 0.92

(c) Risk Neutral Disaster Size (d) Disaster Probability and Expected Return Volatility

τ

∣∣∣∣ED[mt,t+τRet+τ ]
END[mt,t+τ ]

∣∣∣∣ = βRτ
βDτ

1 0.53
3 0.91
6 0.79
12 0.65
24 0.57

τ σ( 12
τ
E[
∑τ

s=0 pt,t+1|NV IX2
t ]) σ( 12

τ
END[ret→t+τ |NV IX2

t ])
1 7.52 % 4.01%
3 4.96 % 4.50%
6 4.46 % 3.51%
12 4.53 % 2.93%
24 3.13 % 1.79%

numbers considered in the literature. For example, Gourio (2012) uses approximately ρp = 0.96 at

the monthly frequency, and Wachter (forthcoming) chooses ρp = 0.99 to match the persistence of

valuation ratios.

We exploit the cross-equation restriction between the return predictability and the disaster

predictability regressions imposed by the rare disaster risk model to evaluate whether implied

disaster sizes are quantitatively reasonable. Under the hypothesis that all time-variation in expected

returns detected by NVIX is driven by variation in the disaster probability, the ratio between return

and disaster predictability regression coefficients recovers the risk-adjusted disaster size:

plim

(
βRτ
βDτ

)
= −

ED[mt,t+τR
e
t+τ ]

END[mt,t+τ ] . (14)

Our point estimates for this quantity range from 53% to 91%, with a median point estimate of

65% (Table 7(c)). Are these disaster sizes reasonable? We can compare these estimates with the

Barro and Ursua (2008) calibration based on a large sample of countries some of which experienced

economic disasters. In their calibration, agents have a coefficient of relative risk aversion of 3.5, the

average rare disaster exhibits a 22% consumption drop and a 32% stock market decline. In this

case we have
∣∣∣∣ED[mt,t+1Ret+1]
END[mt,t+1]

∣∣∣∣ =
∣∣∣∣ED[β( ct+1

ct
)−γRet+1]

END[β( ct+1
ct

)−γ ]

∣∣∣∣ ≈ ∣∣∣ (0.78)−3.5(−32%)
0.94

∣∣∣ = 81%. This number is in
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the same ballpark as our estimates. This indicates that the amount of predictability we detect in

expected returns is consistent with the amount of predictability given a reasonable calibration of

rare disasters.

Let us now turn to the volatility of the disaster probability process. To estimate this volatil-

ity we follow a similar approach and identify variation in disaster probabilities from the disaster

predictability specification:

σ2
p = V ar(E[pt,τ |N̂V IX2

t ]) = (βDτ )2V ar(N̂V IX2
t ).

A similar computation backs out the amount of expected return variation detected by our mea-

sure. In panel (d) we report our estimates for the (annualized) volatility of disaster probability

shocks and expected returns shocks detected by NVIX. It is again useful to contrast these quan-

tities with parameter choices currently used in the literature. Wachter (forthcoming) calibrates a

continuous time model to produce an unconditional standard deviation of σp ≈ 2.9% per year in

disaster probability. Gourio (2012) calibrates a discrete time model with an unconditional annual

volatility of σp ≈ 2.3%. We estimate this same quantity to be 4.53%, at least 50% larger. Rel-

ative to the calibrations in the literature we find disaster concerns to be more volatile and less

persistent. Note this results are not a mechanical consequence of NVIX being a noisy proxy for

the true disaster probability process. Estimated volatility is recovered from the ability of NVIX to

predict disasters at different horizons and estimated persistence is recovered from the amount of

predictability detected at different horizons.

4 The Origins of Disaster Concerns

What drives investors’ concerns at different periods? Are these concerns reasonable? The NVIX

index we constructed relies on the relative frequency of words during each month in the sample.

In this section we investigate which words play an important role and try to describe the zeitgeist

- the spirit of the times. We gain novel insights about the origins of disaster concerns by utilizing

our text-based measure of uncertainty.
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Table 8: Top Variance Driving n-grams

n-gram Variance Share, % Weight, % n-gram Variance Share, % Weight, %

stock 37.28 0.10 oil 1.39 -0.03
market 6.74 0.06 banks 1.36 0.06
stocks 6.53 0.08 financial 1.32 0.11
war 6.16 0.04 _ u.s 0.88 0.05
u.s 3.62 0.06 bonds 0.81 0.04
tax 2.01 0.04 _ stock 0.80 0.03
washington 1.78 0.02 house 0.77 0.05
gold 1.46 -0.04 billion 0.67 0.06
special 1.44 0.02 economic 0.64 0.05
treasury 1.43 0.06 like 0.59 -0.05

We report the fraction of NVIX variance h (i) that each n-gram drives over the predict subsample as defined
in (15), and the regression coefficient wi from (1), for the top 20 n-grams.

4.1 Important Words

We begin by calculating the fraction of NVIX variance that each word drives over the predict

subsample. Define v̂t (i) ≡ xt,iwi as the value of VIX predicted only by n-gram i ∈ {1..K}. We

construct

h (i) ≡ V ar (v̂t (i))∑
j∈K V ar (v̂t (j)) (15)

as a measure of the n-gram specific variance of NVIX.13 Table 8 reports h (i) for the top vari-

ance driving n-grams and the regression coefficient wi from the model (1) for the top variance

n-grams. Note that the magnitude of wi does not completely determine h (i) since the frequency

of appearances in the news interacts with w in (15).

Clearly, when the stock market makes an unusually high fraction of front page news it is a

strong indication of high implied volatility. The word “stock” alone accounts for 37 percent of NVIX

variance. Examining the rest of the list, we find that stock market-related words are important as

well. This should not be surprising since when risk increases substantially, stock market prices tend

to fall and make headlines. War is the fourth most important word and accounts for 6 percent.
13Note that in general V ar (v̂t) 6=

∑
j∈K V ar (v̂t (j)) due to covariance terms.
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Table 9: Categories Total Variance Share

Category Variance Share, % n-grams Top n-grams

Government 2.59 83 tax, money, rates, government, plan
Intermediation 2.24 70 financial, business, bank, credit, loan
Natural Disaster 0.01 63 fire, storm, aids, happening, shock
Stock Markets 51.67 59 stock, market, stocks, industry, markets
War 6.22 46 war, military, action, world war, violence
Unclassified 37.30 373988 u.s, washington, gold, special, treasury

We report the percentage of NVIX variance (=
∑
i∈C h (i)) that each n-gram category C drives over the

predict subsample.

4.2 Word Categorization

To study the principal word categories driving this variation, we classify n-grams into five broad

categories of words: Government, Intermediation, Natural Disasters, Stock Markets and War. We

rely on the widely used WordNet and WordNet::Similarity projects to classify words.14 WordNet

is a large lexical database where nouns, verbs, adjectives and adverbs are grouped into sets of

cognitive synonyms (synsets), each expressing a distinct concept. We select a number of root

synsets for each of our categories, and then expand this set to a set of similar words which have a

path-based WordNet:Similarity of at least 0.5.

Table 9 reports the percentage of NVIX variance (=
∑
i∈C h (i)) that each n-gram category

drives over the predict subsample. Stock market related words explain over half the variation in

NVIX. War-related words explain 6 percent. Unclassified words explain 37 percent of the variation.

This large number speaks volumes about the limitations of manual word classification. Clearly

there are important features of the data, among the 374, 299 n-grams that the automated SVR

regression picks up. While these words are harder to interpret, they seem to be important in

explaining VIX behavior in-sample, and predicting it out-of-sample.

Each NVIX component can be interpreted as a distinct type of disaster concerns. Figure 4

plots each of the four NVIX categories responsible for more of its variation to provide some insight

into their interpretation. We omit the easily interpretable Natural Disasters category because it

generates a tiny amount of NVIX variation.

The NVIX Stock Markets component has a lot to do with stock market volatility as shown in
14WordNet (Miller, 1995) is available at http://wordnet.princeton.edu. WordNet::Similarity (Pedersen, Patward-

han, and Michelizzi, 2004) is available at http://lincoln.d.umn.edu/WordNet-Pairs.
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Figure 4: News Implied Volatility due to Different Word Categories
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In all panels dots are monthly NVIX due only to category C-related words v̂t (C) = xt · w (C). Panel
(a): Solid line is annualized realized stock market volatility. Shaded regions indicate stock market crashes
identified by Reinhart and Rogoff (2011). Panel (b): Shaded regions are US wars, specifically the American-
Spanish, WWI, WWII, Korea, Vietnam, Gulf, Afghanistan, and Iraq wars. Panel (c): Solid line is the annual
average marginal tax rate on dividends from Sialm (2009). Panel (d): Solid line is percent of total insured
deposits held by US banks that failed each month, from the FDIC starting April 1934. Shaded regions
indicate banking crises identified by Reinhart and Rogoff (2011).
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Figure 4a. Attention to the stock market as measured by this component seems to spike at market

crashes and persist even when stock market volatility declines. This component likely captures

proximate concerns about the stock market that have other ultimate causes, but can also capture

concerns with the market itself.

Wars are clearly a plausible driver of disaster risk because they can potentially destroy a large

amount of both human and physical capital and redirect resources. Figure 4b plots the NVIX War

component over time. The index captures well the ascent into and fall out of the front-page of

the Journal of important conflicts which involved the US to various degrees. A common feature

of both world wars is an initial spike in NVIX when war in Europe starts, a decline, and finally a

spike when the US becomes involved.

The most striking pattern is the sharp spike in NVIX in the days leading up to US involvement

in WWII. The newspaper was mostly covering the defensive buildup by the US until the Japanese

Navy’s surprise attack at Pearl Harbor on December 1941. Following the attack, the US actively

joined the ongoing War. NV IX[War] jumps from 0.87 in November to 2.86 in December and

mostly keeps rising. The highest point in the graph is the Normandy invasion on June 1944 with

the index reaching 4.45. The Journal writes on June 7, 1944, the day following the invasion:

“Invasion of the continent of Europe signals the beginning of the end of America’s wartime way of

economic life.” Clearly a time of elevated disaster concerns. Thus, NVIX captures well not only

whether the US was engaged in war, but also the degree of concern about the future prevalent at

the time.

Policy-related uncertainty as captured by our Government component tracks well changes in

the average marginal tax rate on dividends as shown in Figure 4c. An important potential disaster

from a stock market investor perspective is expropriation of ownership rights through taxation.

While in retrospect, a socialist revolution did not occur in the US over this period, its probability

could have been elevated at times.

Intermediation-related NVIX spikes when expected, mostly during financial crises. Figure 4d

shows that the Intermediation component is high during banking crises identified by Reinhart and

Rogoff (2011), but also during other periods when bank failures were high, such as the late 1930s

and early 1970s. Apparent in the figure are the panic of 1907, the Great Depression of the 1930s,

the Savings & Loans crisis of the 1980s and the Great Recession of 2008.
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Table 10: Risk premia decomposition

Panel A - Regression Coefficients: ret→t+τ = βR0 +
∑N
j=1 β

R
j X

j
t + εt+τ if ID,rt→t+τ = 0

τ Gov’t War Intermediation Stock Markets Natural Disasters Residual R2/T

1 1.58 2.87** 1.20 2.49 -0.69 3.08 0.67
[0.94] [2.37] [0.5] [1.53] [0.6] [1.52] 1322

3 2.79** 2.72*** 1.89 2.74** -0.22 3.28** 2.42
[2.39] [2.79] [1.16] [1.99] [0.27] [2.45] 1306

6 2.08* 2.95*** 1.24 1.57 0.22 3.04*** 4.03
[1.96] [3.21] [0.92] [1.2] [0.34] [2.66] 1284

12 1.83* 2.76*** 1.49 1.34 0.52 1.97* 5.81
[1.75] [3.72] [1.49] [1.07] [0.92] [1.76] 1248

24 2.18** 1.54** 1.09 1.44 -0.17 0.73 6.43
[2.32] [2.3] [1.42] [1.35] [0.41] [0.83] 1176

Panel B - Risk premia variation share by concern
(

(βRj )2×σ̂2(Xj
t )

σ̂2(
∑N

j=1 β
R
j X

j
t |βR)

)
τ Gov’t War Intermediation Stock Markets Natural Disasters Residual

1 0.12 0.40 0.06 0.28 0.02 0.37
3 0.31 0.31 0.12 0.28 0.00 0.35
6 0.21 0.44 0.06 0.11 0.00 0.36
12 0.22 0.53 0.11 0.11 0.02 0.20
24 0.64 0.35 0.12 0.25 0.00 0.06

Reported are monthly return predictability regressions based on the six word categories constructed from
news implied volatility (NVIX). The sample excludes any period with an economic disaster (ID,rt→t+τ = 1). The
dependent variables are annualized log excess returns on the market index. All six variables are normalized
to have a standard deviation equal to one. Panel B reports the share of risk premia variation due to each
of the categories. Note that they add up to more than one as the different categories are not orthogonal to
each other. t-statistics are Newey-West corrected with number of lags/leads equal to the size of the return
forecasting window.

4.3 Which Concerns Drive Risk Premia?

Our approach relies on interpretable news to measure uncertainty. This feature allows us to inves-

tigate which types of concerns are responsible for time-variation in expected returns. We use the

word classification to decompose variation in risk premia, and report the results in Table 10.

At the one-year horizon, War (53%) and Government (22%) related concerns capture the bulk of

the variation in risk premia. Both categories have a statistically reliable relation with future market

excess returns. Concerns related to Stock Markets (11%). Financial Intermediation (11%) and

Natural disasters (2%), account for some of the variation in expected returns, but the relationship

is statistically unreliable. The orthogonal, uninterpretable, component of NVIX accounts for 20%
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of the variation.15

This decomposition strongly supports the time-varying rare disaster risk model. At least 53%

of the variation in risk premia is unequivocally related to disaster fears. War concerns is the main

driver of our return predictability results. This result shows that the relationship between news

implied volatility and expected returns documented in Section 3 are mostly driven by disaster

concerns. Just as important, this result does not say that most of the variation in news implied

volatility is related to disaster concerns, but shows that most of variation in news implied volatility

that is priced in the stock market is due to disaster concerns. The fact that a substantial fraction of

the variation in risk premia in the last century is due to concerns related to wars, strongly suggests

that risk premia estimates likely reflect the very special realization of history the US happened to

experience during this period.16

Government related concerns allows for a considerable wider range of possible interpretations.

Work by Baker, Bloom, and Davis (2013), Pastor and Veronesi (2012), and Croce, Nguyen, and

Schmid (2012) has emphasized the role of policy-related uncertainty in inducing volatility and

reducing asset prices in the recent period. One might argue that policy-related uncertainty is a

very different type of risk than the the rare disaster risk that the macro-finance literature has

in mind. However, we find the tight relation between our government concerns measure and the

evolution of US capital taxation shown in Figure 4c suggestive that our measure captures concerns

related to expropriation risk. Not the typical cash-flow shock we use to model risk, but from the

average capital holder perspective, a sudden sharp rise in taxes is a disaster. These results suggest

that we may need to go beyond representative agent models to fully account for variation in risk

premia.

While Stock Markets related concerns is not reliably related to future returns at all frequen-

cies, at higher frequencies (3 months) it predicts returns with the same economic and statistical

magnitude as Government and War. Stock market related concerns spike following periods of high

stock market volatility. Consistent with these regression results, Figure 4a shows that stock market

concerns tracks well the time-series of realized volatility. This result is not surprising, common

sense and theory predicts (Abel, Eberly, and Panageas, 2007; Huang and Liu, 2007) that investors
15Note that shares add up to slightly more than one due to fact that the shocks are not orthogonal to each other.
16See Brown, Goetzmann, and Ross (1995) for this argument.
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pay more attention to the stock market in periods of high volatility. Interestingly, but nevertheless

hard to interpret, is that this attention persists longer than the shocks to volatility themselves and

that attention to the stock market predict returns, while realized volatility does not. We think there

are several plausible stories that fit this empirical pattern. One story could be a very short-term

version of the depression babies narrative (Malmendier and Nagel, 2011), where investors fear risk

for a long time after a period of high volatility. A slightly different interpretation of the data is that

periods of high volatility incite crash fears in investors. Our disaster predictability estimates (see

Table 7) imply that such persistent disaster fears would not be implausible, as disaster probabili-

ties are substantially more persistent than stock market volatility. A third possibility is that this

measure tracks broadly defined variation in uncertainty, for example due to long-run risk concerns.

While we cannot sort out these different explanations, we think our Stock Market category can be

useful for future studies to study theories of optimal inattentive behavior.

We were surprised to find that Financial Intermediation does not account for much of the

time-variation in risk premia in our data. This was puzzling to us because the largest event in

the sample we estimate NVIX is the 2007-2008 financial crisis. We think there are three possible

conclusions from the empirical evidence: it could be that our measure of uncertainty fails to pick

up concerns related to the intermediary sector appropriately. However, Figure 4d strongly suggests

that our measure gets at least the major financial events right. A second possibility is that financial

crises are intrinsically different since they are liability crises, essentially credit booms gone bust

(Schularick and Taylor, 2009; Krishnamurthy and Vissing-Jorgensen, 2012). Reinhart and Rogoff

(2011) suggests that financial crises are the result of complacency and a sense of “this time is

different” among investors, what would suggest that financial crises happen only when investors

are not concerned about financial intermediaries.

Our fifth category, Natural disasters, also fails to predict returns. This should be expected

as we perceive as unlikely that there is time-variation in the likelihood of natural disasters at the

frequencies that we are looking at, in particular regarding natural disasters that are large enough

to impact aggregate wealth. However, a behavioral story of overreaction to past disasters could

generate such a link. Nonetheless, we find not such link in the data, at least not when one focuses

on the entire stock market. Even though a large fraction of NVIX variation is not interpretable,

as the overwhelming majority of words are unclassified, this residual component explains only 20%
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of the variation in risk premia at yearly frequencies and up to 37% at monthly frequencies. Our

ex-ante chosen categories seem to do a good job of capturing the concerns that impact risk premia,

but there is still a non-trivial fraction of risk premia left unexplained.

Taken together these results paint a novel picture of the origins of aggregate fluctuations. In

particular, we find that a substantial amount of risk premia variation is driven by disaster concerns.

From the roughly 4% a year variation in risk premia news implied volatility can measure, at least

53% is driven by war concerns, tightly related to the type of disasters that motivates the rare

disaster literature. An additional 22% of this variation is plausibly related to expropriation risk,

which is very different from the types of cash-flow shocks we are used to study in rare disaster

models.

5 Conclusion

We use a text-based method to extend options-implied measures of disaster concerns back to the

end of the 19th century, bringing new data to bear on the time-varying rare disaster asset pricing

model. We show that our news-based measure of implied volatility, NVIX, predicts returns at

frequencies up to 24 months. Consistent with the time-varying disaster risk view our measure

also predicts disasters. Importantly, the amounts of predictability detected in stock returns and

disasters are quantitatively consistent with each other, leading to implied disaster sizes that are in

the same ball park as the ones estimated by Barro and Ursua (2008) using cross sectional data. We

find that at least half of the predictability in excess returns detected by news implied volatility is

driven by concerns related to wars, which is strong evidence for the view that time-varying disaster

concerns is an important driver of asset prices.
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A Appendix

A.1 Disaster Probability and Return Predictability

Following the framework we used to analyze the link between VIX and disaster probability, we split

states between disaster states and non disaster states. And consider the pricing of excess returns

between t and t+ 1 , we have

0 = Et
[
mt,t+1R

e
t+1
]

0 = ptE
D
t [mt,t+1R

e
t+1] + (1− pt)ENDt [mt,t+1R

e
t+1]

Rearranging, we get

ENDt [Ret+1] = − 1
ENDt [mt,t+1]

covNDt (mt,t+1, R
e
t+1)− pt

(1− pt)
EDt [mt,t+1R

e
t+1]

ENDt [mt,t+1]

The first term is the standard risk adjustment, where assets that are negatively related to

the stochastic discount factor have higher equilibrium expected excess returns. The second term

captures the risk-adjustment and cash-flow effects of the possibility of a rare disaster. This asset

pricing restriction predicts that as long EDt [mt,t+1R
e
t+1] < 0, periods of high disaster probabilities

will be be periods of high expected returns in the histories without disasters. If as in last section

we assume that the only source of variation are the disaster probabilities then,

ENDt [Ret+1] = − 1
END[mt,t+1]cov

ND(mt,t+1, R
e
t+1)− pt

(1− pt)
ED[mt,t+1R

e
t+1]

END[mt,t+1]

Given that rare disasters are rare, we can approximate this relationship around p ≈ 0,

ENDt [Ret+1] ≈ END[Ret+1]−
ED[mt,t+1R

e
t+1]

END[mt,t+1] pt

Putting together the fact that expected returns are approximately linear in disaster probabilities

and from last section that disaster probabilities are proportion to the VIX squared, we have that

expected returns should be proportional to VIX squared. In fact plugging equation we get pt =
V IX2

t,−V IX2
ND

V IX2
D−V IX

2
ND

, and therefore
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ENDt [Ret+1] ≈ END[Ret+1]−
ED[mt+1R

e
t+1]

END[mt+1]

(
V IX2

t, − V IX2
ND

V IX2
D − V IX2

ND

)
= β0 + β1

(
V IXt

100

)2

A.2 Multi period regressions

We have shown that one-month ahead return forecasts and disaster forecasts can be written as

linear functions of disaster probabilities,

ENDt [Ret+1] ≈ END[Ret+1]−
ED[mt+1R

e
t+1]

END[mt+1] pt

Et[IDt→t+1] = pt.

Multi-period forecasts are useful to investigate the persistence of the disaster probability process.

Assume pt follows an AR(1),

pt+1 = µp + ρppt + σpεt+1

In this case, we should have that the decay rate of predicted number of disasters over the

predictability horizon τ should be informative about the persistence of the disaster probability

process. In annualized terms we have

Et

[
12
τ

τ−1∑
s=0

IDt+s→t+s+1

]
= 12

τ

τ−1∑
s=0

ρsppt = pt
12
τ

1− ρτp
1− ρp

To link return predictability regressions across periods we impose a conditional log-normal

structure for returns in periods without disasters. Let r be the log market return

rt+1 = µr,t + σrεt+1 + ζrI
D
t+1

The expected return in paths without disasters µr,t is our quantity of interest. Analogously, the

log stochastic discount factor growth is,
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m̃t+1 = µm + σmεt+1 + ζmI
D
t+1

No arbitrage implies,

Et
[
em̃t+1+rt+1

]
= 1

Exploring conditional log-normality we get,

ENDt [rt+1 − rf,t+1] = −σmσr + pte
ζm
(
eζr − 1

)
+ 1

2σ
2
r

Cumulative annualized excess returns for τ horizon gives us,

12
τ
ENDt [

τ−1∑
s=0

rt+s+1 − rf,t+s+1] = −12σmσr + 121
2σ

2
r + eζm

(
eζr − 1

) 12
τ

τ−1∑
s=0

ρsppt

= −12σmσr + 121
2σ

2
r + eζm

(
eζr − 1

) 12
τ

1− ρτp
1− ρp

pt

Note that the ratio between disaster and return predictability identifies risk-neutral disaster

sizes, eζm
(
eζr − 1

)
.

A.3 Truncation

A concern that we have regarding our approach to identify disasters is that the predictability results

in non-crash periods might be a mechanical artifact of truncating the left tail of the distribution

during periods of higher volatility. If NVIX is a proxy for future stock-market volatility periods of

higher volatility where no disaster was observed will be period of artificially higher returns. This

will me a mechanical of artifact of the truncation. Testing this hypothesis is fairly straightforward.

Consider the following model featuring time-varying volatility ,

σ2
t+1 = µσ + ρσσ

2
t + ω

√
σ2
tHσWt+1

rt+1 = µr + σt+1HrWt+1

∆yt+1 = µy + ρy∆yt + σt+1HyWt+1
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So in this counter-factual economy all predictability is driven by volatility, and there is no sense

that very low returns are special. But suppose in this environment we use threshold r to split

the sample in disaster periods and normal times. In this case we would have average returns in

non-crash periods given by:

E[rt+1|rt+1 ≥ r(
dw−1∑
j=0

∆yt+j), σt+1] = µr + σt+1E

[
Wr,t+1|Wr,t+1 ≥

r(
∑dw
j=0 ∆yt+j)− µr

σt+1

]

= µt + φσ2
t + σt+1λ(r(

dw∑
j=0

∆yt+j))

λ(r) is the well known Mills ratio, which is the mean of a truncated variable, and dw is the disaster

window we use to select disasters (dw = 6). In the context of our example we know exactly how

months were selected as disasters, so we know the threshold r(
∑dw
j=0 ∆yt+j). If NV IXt predicts

future volatility the truncation will lead us to find predictability that NVIX predicts returns when

in fact it does not. In this case conditional expectations are given by:

E[rt+1|rt+1 ≥ r(
dw∑
j=0

∆yt+j), NV IX2
t , σ

2
t ] = µr + E[σt+1λ(r(

dw∑
j=0

∆yt+j))|NV IX2
t , σt]

Focusing on linear expectations we can write this as:

E[λ(r(
dw∑
j=0

∆yt+j))σt+1|NV IX2
t , σ

2
t ] = γ0 + γ1NV IX

2
t + γ2σ

2
t

E[rt+1|rt+1 ≥ r(
dw∑
j=0

∆yt+j), NV IX2
t , σ

2
t ] = µr + γ0 + γ1NV IX

2
t + γ2σ

2
t

The above expression tells us that in order to test the time-varying rare disaster story against the

truncation story it suffices to test the NVIX coefficient against γ1 instead of zero. If the estimated

coefficient is larger than γ1 we can reject the null that the predictability during periods without

disasters is induced by this truncation effect. Note that under the null NVIX is allowed to predict

“disasters”, between quotes because there are no disasters under the null, only periods that are

classified as disasters. The essence of this test is to compare the amount of return predictability we

detect in the data with what one would expect if expected returns were exclusively driven by time-
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varying volatility, but truncation was inducing a spurious correlation between NVIX and future

returns.

For multi-period return forecasts, a observation is excluded as long there is at least on disasters

in the forecasting window, implying that the bias will be less severe for longer horizons, since the

independent variable is an average of truncated and non truncated months. To derive the truncation

bias formally let Xt =

 NV IX2
t

σ2
t

, we can write multi-period expected returns as,

E[
∑τ
i=1 rt+i
τ

|{rt+z ≥ r(
dw∑
j=0

∆yt+j)|1 ≤ z ≤ τ}, Xt] = 1
τ

τ∑
i=1

E[E[rt+i|rt+i ≥ r(
dw∑
j=0

∆yt+i+j), Xt+i−1]|Xt]

= 1
τ

τ∑
i=1

E[µr + γ0 + γ1NV IX
2
t+i−1 + γ2σ

2
t+i−1|Xt]

= µr + γ0 + 1
τ

(
γ11′NV IX2 + γ21′σ2

) τ−1∑
i=0

ΓiXt

where 1x denotes a column vector with 1 on the position of variable x. Under the null, the multi-

period regression coefficient should be,

βR1,null = 1
τ

(γ11NV IX2 + γ21σ2)
τ∑
i=1

Γi1NV IX2 .

A.4 Time-Varying Expected Returns: are Rare Disasters the Whole Story?

Proponents of the rare disaster explanation suggest it can explain one of the key facts regarding

the time-series properties of stock-market returns, that the dividend yield on the market portfolio

predicts future returns far into the future. Our results suggest NVIX captures variation at different

frequencies than the dividend yield, but it seems only natural to horse-race them. If the concerns

encoded in NVIX are the same concerns reflected in dividend yields one of the variable should drive

the other out of the regression. We would expect that the variable measured with more more noise

to be driven out of the regression. And if not driven completely out we would expect the coefficient

magnitude to decrease.

Table 11 shows that if we focus on the whole sample this is approximately what happens,

with the coefficients on both NVIX and price to earnings ratios decreasing in the multivariate
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Table 11: Price-to-Earnings Ratio Predictability

ret→t+τ = β0 + β1NV IX
2
t + β2(PE )t + εt if IDt→t+τ = 0

Sample Period 1896-2010 1896-1994

Dependent β1 β2 R2 β1 β2 R2

Variable t(β1) t(β2) T t(β1) t(β2) T

ret→t+1 0.18** 0.41 0.19* 0.36
[2.03] 1323 [1.9] 1146

-0.49* 0.28 -0.66 0.27
[1.73] 1323 [1.49] 1146

0.18** -0.47* 0.67 0.22** -0.80* 0.75
[1.97] [1.67] 1323 [2.07] [1.72] 1146

ret→t+3 0.21*** 1.56 0.20** 1.14
[3.13] 1307 [2.45] 1132

-0.44** 0.68 -0.56 0.58
[1.99] 1307 [1.6] 1132

0.20*** -0.41* 2.15 0.22*** -0.69* 2.00
[3.02] [1.87] 1307 [2.67] [1.94] 1132

ret→t+6 0.16*** 1.89 0.16** 1.55
[2.71] 1285 [2.19] 1113

-0.44** 1.40 -0.59* 1.24
[2.06] 1285 [1.76] 1113

0.15** -0.42* 3.11 0.18** -0.68** 3.18
[2.55] [1.93] 1285 [2.47] [2.08] 1113

ret→t+12 0.14** 2.55 0.15** 2.49
[2.34] 1249 [2.01] 1083

-0.53** 3.88 -0.76** 3.88
[2.39] 1249 [2.47] 1083

0.12** -0.50** 5.98 0.17** -0.82*** 7.02
[2.09] [2.24] 1249 [2.3] [2.81] 1083

ret→t+24 0.08* 2.12 0.09 2.24
[1.7] 1177 [1.49] 1023

-0.50** 7.60 -0.65*** 6.47
[2.2] 1177 [2.61] 1023

0.07 -0.48** 9.19 0.10* -0.68*** 9.30
[1.48] [2.1] 1177 [1.76] [2.78] 1023

This table presents return predictability regressions based on our constructed NVIX series and price-to-
earning ratios. The sample excludes any period with an economic disaster. The dependent variable are
annualized log excess returns on the market index. Price-to-earnings ratios are from Shiller, where earnings
are 10 years averages of S&P 500 earnings.t-statistics are Newey-West corrected with number of lags/leads
equal to the size of the disaster forecasting window. The first column reports the results for our entire sample
period, and the second column for the sample period for which we did not use any in sample option price
data.
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specification. It is reassuring that the NVIX coefficient is always estimated more reliably than

the price to earnings ratio coefficient. With the difference being specially meaningful for shorter

horizons. However, comparing R2 across horizons we see that the predictive power of the two

different variables roughly adds up. This pattern is replicated across alternative sample periods,

and strongly suggests that these variables are measuring different things.

We interpret these results as saying disaster concerns, at least the ones we can measure though

NVIX, are not likely to be the whole explanation behind time-variation in expected returns. A

possibility put forth by Wachter (forthcoming) is that different disaster concerns might move at

different frequencies, generating return predictability at different frequencies. Under this story VIX

and price to earnings ratio would put different weights in these different concerns.

A.5 Alternative Text-based Analysis Approaches

We estimate the relationship between news and volatility, disaster concerns and returns in our

dataset using support vector regression (1). SVR overcomes the main challenge, which is the large

dimensionality of the feature space (number of unique n-grams). Our approach lets the data speak

without much human interaction. Two alternative approaches have been suggested by previous

literature.

The first approach, creates a topic-specific compound full-text search statement and counts

the resulting number of articles normalized by a measure of normal word count. The result is a

univariate time-series that can be used in a least squares regression. An advantage of this approach

is that resulting articles are highly likely to be related to the specific topic, resulting in a fine-grained

index that is easily interpretable. However, it requires a very large body of text every period and

ignores many other articles that also relate to the same topic.

A leading example of this approach is the news-based economic policy uncertainty index sug-

gested in Baker, Bloom, and Davis (2013). It searches for articles containing the term ’uncertainty’

or ’uncertain’, the terms ’economic’ or ’economy’ and one or more of the following terms: ’pol-

icy’, ’tax’, ’spending’, ’regulation’, ’federal reserve’, ’budget’, or ’deficit’. Our attempt to apply

the Baker, Bloom, and Davis (2013) methodology to our dataset, classified as discussing economic

policy uncertainty only 47 out of 320000 articles, or 43 out of 1439 months. Needless to say, we

found no return predictability using this index.

44



A second approach, classifies words into dictionaries or word lists that share a common tone.

One then counts all occurrences of words in the text belonging to a particular word list, again

normalized by a measure of normal word count.17 An advantage of this approach is that it reduces

the feature space from the number of n-grams to the number of word lists. One disadvantage is

that all words within a word list are equally-weighted. Thus the words ’war’ and ’yawn’ would

count the same, even though their appearance on the front page of a newspaper has very different

importance.

A recent contribution by Loughran and McDonald (2011) develops a negative word list, along

with five other word lists, that reflect tone in financial text better than the widely used Harvard

Dictionary and relate them to 10-K filing returns. We applied the Loughran and McDonald (2011)

methodology to our sample of articles. We tried both tf (proportional weights) and tf.idf weights

of words appearing in their Negative, Positive, Uncertainty, Modal Strong, and Modal Weak word

lists. Unlike NVIX, the ten time-series do not appear to capture important historical events. We

then run return predictability regressions on the scores of each word list separately and together

with NVIX. The intermediate step of regressing VIX on the scores is unnecessary here because

the predicted value of VIX would just be a constant multiplying the raw word list score. Most of

the lists have no predictive power. Only Uncertainty and Modal Weak using proportional weights

are significant but do not drive out NVIX. We therefore conclude that support vector regression is

better suited to our purposes given our data.

Tables 12 and 13 repeat our analysis but this time include also the tone scores as a second

independent variable in addition to NVIX. Both tables show that NVIX remains a significant

return and disaster predictor throughout.

17Examples of this approach can be found in Antweiler and Frank (2004), Tetlock (2007), Engelberg (2008), and
Tetlock, Saar-Tsechansky, and Macskassy (2008).
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