Risk and Return Trade-off in the U.S. Treasury Markets

Eric Ghysels* Anh Lef Sunjin Park * Haoxiang Zhu $

December 14, 2013

Preliminary. Comments welcome

Abstract

This paper characterizes the risk-return trade-off in the U.S. Treasury markets. We
propose a discrete-time no-arbitrage term structure model, in which bond prices are
solved in closed form and the conditional variances of bond yields are decomposed into a
short-run component and a long-run component, each of which follows a GARCH-type
process. Estimated using Treasury yields data from January 1962 to August 2007, our
model simultaneously matches the conditional volatility dynamics and the deviation
from the expectations hypothesis in the data. We find that a higher short-run volatility
component of bond yields significantly predicts a higher future excess return, above
and beyond the predictive power of the yields. The long-run volatility component does
not predict bond excess returns.
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1 Introduction

Does a higher risk lead to a higher expected excess return in the U.S. Treasuries markets? To
answer this fundamental question, we need an accurate measure of risk as well as an accurate
account of returns predictability in the data. Most term structure models to date have
difficulties providing both simultaneously. For example, although Gaussian affine models can
accurately replicate Campbell and Shiller (1987)’s characterization of return predictability,
these models assume that yields are homoskedastic, therefore missing entirely the time-varying
volatility in the data. Other affine term structure models with stochastic volatility typically
fail to generate the patterns of return predictability documented by Campbell and Shiller
(1987)." Reasonable volatility processes, such as the GARCH model of Bollerslev (1986) or
the EGARCH model of Nelson (1991), rarely make their way into the no-arbitrage term
structure literature because, if those stochastic volatilities are imposed on the risk-neutral
dynamics, one loses the analytical solutions to bond prices.

In this paper, we propose a discrete-time model that integrates the advantages of both
the affine term structure models and the GARCH models of volatility. Not only do we
retain the tractability of the affine models, we also inherit the ability of GARCH models
to accurately capture time-varying volatilities of yields. The key to our approach is an
asymmetric treatment of conditional volatility under the physical (P) and risk-neutral (Q)
measures. Specifically, since conditional variances under P and Q need not be the same in
a discrete-time setup (see e.g. Le, Singleton, and Dai (2010) for a discrete-time stochastic
volatility model in which P and @ conditional variances are distinct), we choose to model the
Q conditional variances in a way that guarantees analytical affine pricing, while letting the P
conditional variances follow a GARCH-type process.

Following the ARCH-in-mean literature, pioneered by Engle, Lilien, and Robins (1987),
we allow the P conditional variances to affect the physical drifts of the state variables, the
principal components yields. This provides a direct channel through which volatility, a
measure of risk, can potentially forecast future yields and bond excess returns, hence the
risk-return trade-off. Importantly, because the feedback of volatility into the physical drifts
happens entirely under P, it does not interfere with tractable bond pricing under Q.

More specifically, we allow the P conditional variances to affect the physical drifts of
the state variables in four ways. First, in the spirit of Engle and Lee (1999), we let the
P conditional variances of yields to be driven by a long-run component and a short-run
component, each of which follows its own GARCH-like process with different degrees of
persistence. From these components, we construct the short-run and long-run volatility
components of two equal-weighted yield portfolios: a near-maturity portfolio consisting of
five yields with one to five years to maturity and a far-maturity portfolio consisting of five
yields with six to ten years to maturity. (The cutoff at five-year maturity is motivated by
a diagnostic analysis, but our results are not sensitive to this choice.) These four volatility
components allow us to differentiate the contributions to risk premiums of long-run and

1See, for example, Dai and Singleton (2002) and Joslin and Le (2012). In the context of no-arbitrage affine
term structure models, Joslin and Le (2012) discuss in depth why there must be trade-offs between fitting
volatility and the predictability of bond returns.



short-run volatility components of both the long end and short end of the yield curve.

Using weekly Treasury yields data from January 1962 to August 2007, we find a significantly
positive relation between risk and return in U.S. Treasury markets. A higher conditional
volatility this week predicts a lower yield level next week, thus a higher bond excess return.
Notably, it is the short-run component of volatility, not the long-run component, that matters
for return predictability. According to our estimates, the long-run component has a half-
life of more than 60 years, whereas the short-run component has a half life of about two
years.” Therefore, the risk-return relation is unlikely the results of transitory shocks or
trading frictions, which we expect to move at much higher frequencies; nor is it driven by
the extremely persistent time trend in volatility. The return-predicting short-run volatility
component moves at roughly the business-cycle frequency, which we find reasonable and
intuitive.

Moreover, the return-predicting power of the short-run volatility component predominantly
comes from the short-end of the yield curve. Volatilities of far-maturity yields do not have
additional predictive power for future yields once we control for volatility of the short end.
Further, the slope and the curvature of the yield curve are not predicted by any volatility
components that we study.

Putting all together, our main evidence is that a higher short-run volatility component of
near-maturity yields predicts a lower yield level next week and thus a higher excess return.
The economic magnitudes are large. For example, the volatility factor accounts for 14%,
42%, and 40% of the predictable components of weekly excess returns on one-year, five-year,
and ten-year zero coupon bonds, respectively. (The other predictive factors are the principal
components of yields.)

In addition to the empirical findings, our paper also contributes to the literature on term
structure modeling. Most affine term structure models with stochastic volatilities imply that
the conditional variances of yields are perfectly explained, or “spanned,” by yields themselves.
By imposing this spanning condition, these affine stochastic volatility models are potentially
restrictive in at least two aspects. First, there is considerable evidence that volatility is not
fully spanned by yields (see Collin-Dufresne and Goldstein, 2002; Collin-Dufresne, Goldstein,
and Jones, 2009; and Andersen and Benzoni, 2010). Second, imposing a spanning condition
can induce a “cross-measures” tension, in the sense of Joslin and Le (2012), that could
prevent a no-arbitrage model from fully capturing the predictability patterns of bond returns
in the data.® Our model addresses both issues by decoupling the risk-neutral conditional
variances from their physical counterparts. As a result, not only do we match the volatility

2The long-run component may appear extremely persistent, but such persistence is not uncommon. For
example, in a related context, Stock and Watson (2007) propose to include a random walk component to
the (log) volatility of the inflation process. They find support for this model using U.S. inflation data over a
similar sample period to ours. Given the intimate relation between nominal yields and inflation, it is not
surprising that we detect a similar degree of persistence in the long run volatility component of yields.

3Specifically, in an affine setup, volatility factors must be autonomous to remain strictly positive under
both the P and Q measures. This autonomy requirement when applied to spanned volatilities requires that
the P and Q feedback matrices share some common left-eigenvectors. Understandably, the resulting closeness
between the P and Q feedback matrices limits the ability of the model to explain returns predictability.



dynamics of yields very well, our model also closely replicates the return predictability
patterns documented by Campbell and Shiller (1987).

Our modeling approach using a GARCH-like volatility process complements a few existing
approaches. For example, compared with the unspanned stochastic volatility models by
Collin-Dufresne and Goldstein (2002) and Collin-Dufresne, Goldstein, and Jones (2009),
our model does not restrict model parameters to eliminate the spanning of conditional
volatilities by yields.” Our approach also differs from the “general stochastic volatility model”
proposed by Trolle and Schwartz (2009) and the high-frequency approach proposed by Cieslak
and Povala (2013). A GARCH-like model allows us to identify yield volatility dynamics
with considerable precision over a long sample period, not restricted by the availability of
high-frequency data.

Finally, we add to the ARCH-in-mean literature in two important aspects. First, because
both the yield volatility and the principal components of yields can forecast future yields, our
model allows two determinants of the dynamics of risk premiums: the quantity of risk and the
market price of risk. (Evidence supporting the simultaneous presence of both channels can
be found in Dai and Singleton (2000) and Dai and Singleton (2002) as well as our motivating
exercises in the next section.) By contrast, ARCH-in-mean models typically only allow the
quantity of risk, but not the market price of risk, to explain risk premiums (see, for example,
Engle, Lilien, and Robins, 1987; and Adrian and Rosenberg, 2008).° Second, whereas the
ARCH-in-mean models are typically applied to bond excess returns of individual maturities,
our model is designed to match bond prices/yields as well as bond excess returns of all
maturities, tied together by the no-arbitrage condition.® Our model, therefore, offers a more
coherent characterization of the risk-return trade-off in Treasury markets.

2 Motivating Exercises

In this section, we conduct several simple exercises that shed light on the potential relations
between risks and returns in the bond markets. These will serve as guidance for us in
designing our models for subsequent analysis.

Our first exercise is to estimate an ARCH-in-mean model in the spirit of Engle, Lilien,
and Robins (1987) (ELR):

Trpep1 = o+ 0hy + ey (1)

4These restrictions require that the volatility factors of a model have certain mean reversion rates in order
to result in an exact cancellation of the convexity effects. See Joslin (2007) for an in-depth discussion.

®Haubrich, Pennacchi, and Ritchken (2012) also use a GARCH process to model yields volatility in a
no-arbitrage setup. Their model is nested within the completely affine class of Dai and Singleton (2000). As
a result, they only allow for the quantity of risk channel to determine bond risk premiums.

6To see how matching prices/yields is a much stronger requirement than matching excess returns, note
that for a model with a stochastic discount factor M;y; to match excess returns Rf, , the requirement is
that Ey[M, 1 R;, ] = 0. However, any scaled version of such a discount factor will also match excess returns
equally well. As a result, the requirement to match excess returns cannot pin down the conditional mean of
the stochastic discount factor E[M;41], the one period bond price.



where x7, ;11 denotes the weekly excess return on an n-period zero coupon bond, starting
at time ¢ and realized one week later, at time ¢ + 1. h; denotes the conditional volatility of
the shocks e,y and h; is assumed to follow an ARCH process with thirteen weekly lags (one
quarter):

L
hi=aa+oa Z wie;_;, (2)

=1

where L = 13. In ELR’s implementation of the ARCH process, the loadings on the lag squared
residuals (w;’s) are set to fixed constants to avoid estimation uncertainty. ARCH models
may indeed involve quite a few parameters, which led to the popularity of GARCH models
which we will consider below. We adopt first an ARCH specification without parameter
proliferation, opting for a flexible, but parsimonious lag structure. This is reminiscent of
MIDAS polynomials and therefore follow a setup where the w;’s are hyper-parameterized
via a normalized beta probability density function, w; = (L +1—14)""'/ S0 (L +1 — )%,
This weighting scheme (through one parameter ) is parsimonious but nonetheless is known
to reasonably capture volatility dynamics in the data.” By keeping the lag length short we
have implicitly a short-run volatility effect in mind, a specification we will contrast with the
GARCH discussed next, which will feature a more persistent volatility process.

The expected component of equation (1) says that the expected excess returns, Ey[zr, ;11],
should be linearly related to bonds’ volatility as given by h;. If the estimate of § is positive
and statistically significant, it suggests that there is a positive risk-return relationship in
bonds markets.

We use zero yields data from Gurkanyak, Sack, and Wright (2007) (GSW).® The data is
sampled weekly, starting in January 1962 and ending in August 2007.° The GSW dataset
is useful for our purposes because it is considerably smoothed.!” Thus, volatility measures
constructed from this data are less susceptible to the influence of outliers. Nonetheless, the
short-maturity yields from the GSW data involve a high degree of extrapolation. As such, for
maturities shorter than six months, we bootstrap zero yields from CRSP’s raw bond prices
using the standard Fama-Bliss algorithm. We implement the estimations of equations (1)
and (2) using QMLE.

Table 1 reports the results for twenty different maturities, from 6- to 120-month. Each row
corresponds to a different maturity n in (1). The second column, labelled ARCH-M, reports
the estimates of §. Standard errors are calculated from the Newey-West covariance matrix,
constructed using thirteen lags. Consistent with ELR, we find that the estimates of ¢ are

"For more discussion on MIDAS polynomial specifications, see e.g. Ghysels, Sinko, and Valkanov (2007)
and Ghysels (2013).

8The data can be downloaded from http://www.federalreserve.gov/pubs/feds/2006.

90ur sample ends in August 2007 for at least two reasons. First, as is currently typical for the term
structure literature, we avoid the era with near-zero interest rate in the wake of the global financial crisis.
Second, recent work has shown that for equities the risk-return relation breaks down during financial crisis as
flight-to-quality concerns dominate (see e.g. Ghysels, Plazzi, and Valkanov (2013) and references therein).

10Tt is possible that the smoothing algorithm used by GSW also filters out information from the yield
curves and thus weakens potential predictive relationships in the data.



Table 1: Predictability of weekly excess returns from ARCH volatilities, GARCH volatilities
and yields PCs. *, ** *** denote the conventional significance levels of 1%, 5%, and 10%,
respectively.

ARCH-M | GARCH-M OLS: PC GLS: ARCH and PC
Maturity ) 1) 5p01 X 104 (Spcg X 104 (51)03 X 104 5ARCH 5PCQ X 104
6m 0.21%** 0.18*** 0.20 0.10 -0.34 0.11 -0.02
12m 0.24*** 0.21%** 0.27 0.81* 0.94 0.14* 0.68**
18m 0.19*** 0.16*** 0.31 1.23* 1.47 0.18** 1.06%
24m 0.17*** 0.14*** 0.35 1.63* 1.87 0.22%** 1.36%
30m 0.15%** 0.12%** 0.39 2.02* 2.14 0.23*** 1.60*
36m 0.13*** 0.10** 0.41 2.40** 2.31 0.23*** 1.82*
42m 0.11%** 0.08* 0.44 2.79** 2.39 0.23*** 2.04*
48m 0.10** 0.07 0.46 3.17 2.40 0.22%** 2.27*
54m 0.09** 0.06 0.48 3.55™% 2.34 0.20*** 2.52*
60m 0.08** 0.05 0.50 3.92** 2.24 0.18*** 2.80%
66m 0.08** 0.05 0.52 4.30* 2.08 0.17*** 3.14%
72m 0.08*** 0.05 0.54 4.67** 1.90 0.15** 3.55*
78m 0.08*** 0.05 0.56 5.03*** 1.67 0.14** 4.03**
84m 0.09*** 0.04 0.58 5.39*** 1.42 0.12** 4.54**
90m 0.09*** 0.04 0.61 5.75%** 1.14 0.11* 5.08**
96m 0.09*** 0.04 0.63 6.10*** 0.84 0.10* 5.62%**
102m 0.10*** 0.04 0.66 6.45%** 0.50 0.10 6.17***
108m 0.10%** 0.04 0.69 6.79%* 0.15 0.09 6.69**
114m 0.11%** 0.04 0.73 7127 -0.23 0.09 7.16%**
120m 0.11%** 0.05 0.76 7.45%** -0.63 0.09 7.57**

significantly positive across the entire maturity spectrum, suggesting a positive risk-return
relationship.
In the second exercise, we replace the ARCH process in (2) by a GARCH(1,1) process:

hi = ag + Bhi_, + oge;. (3)

All else is kept identical to the first exercise.

The estimates of § are reported in the third column, labelled GARCH-M, of Table 1.
Notably, although the estimates of § are all positive, they are only significant for the short
range of maturities up to 42 months (three and a half years). Note that the GARCH volatility
can be written as an infinite sum of lagged squared residuals, hf = constant +og Y oo 3'ei_;.
The contrast between the ARCH-M and GARCH-M columns of Table 1 suggests that more
recent, volatility may be more important in determining the risk premia in bond markets.

The § estimates for both the ARCH-M and GARCH-M columns have a similar pattern:
they are highest (most positive) at the 12-month maturity, then decreasing as maturity
increases to about five years, and finally flattening out for longer maturities. The weaker
risk-return relation along the maturity spectrum suggests that (a) excess returns become less
predictable as maturity lengthens, (b) volatility becomes less predictive for longer-dated bonds,

6



or both (a) and (b). Either way, this evidence suggests that distinguishing short-maturity
volatility and long-maturity volatility may prove fruitful for a coherent understanding of the
risk-return relationship across all maturities.

In the two exercises implemented so far, we only allow the time-varying quantity of risk,
hs, to predict excess returns. Absent from this setup is an independent role for time-varying
market prices of risks in determining bond risk premia. This role is provided by the large
literature on Gaussian term structure models, in which the quantity of risk (yields volatility)
is assumed constant and thus all returns predictability is generated by the time variation in
market prices of risks.

In the third exercise, we run a simple OLS regression that predicts weekly excess returns
using three principal components (PCs) of yields:

TTpt41 = Apc + 0pc1PCLly + 6pca PC2; + dpc3PC3; + €441. (4)

In standard affine Gaussian term structure models, these three PCs (PC1-3) reasonably
capture the time variation in the state variables, which also govern the market prices of risks
implied by these models. We construct the PCs from yields with maturities of 6 months, 1
year, 2 years, 3 years, b years, 7 years, and 10 years.'’ As is standard, the first three PCs are
the level, slope, and curvature of the yield curve, respectively.

Estimated coefficients for the OLS regression in (4) are reported in the columns under
the heading “OLS:PC” of Table 1. Consistent with the established results in the literature
(for example, Campbell and Shiller (1991) and Fama and Bliss (1987)), we find that the
slope factor is strongly predictive of future excess returns, particularly so for the longer dated
bonds.

In the last exercise, we combine the two sets of predictive variables, volatilities and yield
PCs, in the following regression:

Ty 41 = ape + 0arcahe + 0pc1 PCLy + dpca PC2y 4 0pes PC3: + €441, (5)

where we use the ARCH volatility h; implied from the first exercise. To save space, we only
report estimates of d srcg and dpco in the last two columns of Table 1. We see that volatility
is a significant predictor beyond the three PCs, and it is significantly if it is constructed from
1-year to 8-year yields.

Taken together, the exercises in this section suggest that (1) yields volatilities can forecast
excess returns above and beyond the information embedded in the current yield curve, (2)
information in more recent volatility seems more important in determining bond risk premia,
and (3) volatilities constructed from short-maturity yields and long-maturity yields have
different information content for excess returns. These three observations directly drive our
modeling approach in the next section.

11'We choose these maturities since they represent the most liquid segments of the yield curve. These
maturities are also covered by the Federal Reserve Board’s H.15 releases.



3 Model

In this section, we formally develop a model of the term structure of interest rates in discrete
time.

3.1 The risk-neutral dynamics and bond pricing

Our model specification for the risk-neutral dynamics is standard. The vector of state
variables, X, follows a Gaussian VAR(1) under the risk-neutral (Q) measures, and the short
rate, r¢, is a linear function of Xj;:

Xip = K+ KX, + ¢, with ¢, ~ N(0,Sx), (6)
e = 0o + 51Xt- (7)

It immediately follows from the affine structure of the setup that zero-coupon yields at all
maturities are affine in X;:

Ynt = An,X + Bn,XXt (8)

with the loadings (A, x, Bn.x) obtained from standard yield pricing recursions.

3.2 The time-series dynamics

We assume that X; follows affine dynamics with conditionally Gaussian innovations under
the physical (P) measure:

Xt+1 = KO —+ KlXt + KV‘/t + €tt1 Wlth €tp1 N(07 Et), (9)

where matrices Ky, K, and Ky are N x 1, N x N, and N x M, respectively. We now turn
to the specifications of the conditional variance, 3J;, and the GARCH-in-mean term, V;.

Dynamics of conditional variance >;

Given the evidence provided in Section 2 that recent and distant volatilities might have
different information for excess returns, we explicitly model the long-run and short-run
components of ¥; in the spirit of Engle and Lee (1999) (EL):

Et - St + Lt, (10)
Sy = psSi—1 + alee, — Ti-1), (11)
Ly =%x(1—pp) + prLi—1 + ¢(ere, — i), (12)

—_

where pg, pr, @, and ¢ are all positive scalars. Yy is the same variance matrix in (6) and
thus is positive semi-definite (psd). Clearly, the Gaussian models are obtained as a special
case when pg =pr =a=¢ =0.



The interpretation of this model is straightforward. The total variance matrix ¥; is de-
composed into a short-run component, Sy, and a long-run component, L;. This decomposition
is a simple way to differentiate the impact of recent volatilities on returns dynamics from
that of distant volatility information. Each component follows its own autoregressive process
with different persistence, captured by pgs and pr. Without loss of generality, we impose
the restriction that pg < pr. In both equations (11) and (12), the last term, (e;e; — X;_1),
represents news about volatility. A piece of volatility news dissipates at a faster rate for S;
than for L.

In addition, the lack of the intercept term in the AR(1) process of S; implies that the
population mean of S; is zero. In this sense, L, is a low-frequency trend component of ¥,
whereas S; is a high-frequency, transitory component around zero.

Finally, to guarantee that 3, is strictly positive definite, we impose the restriction:

1> pr>ps>a+o, (13)

in addition to the positivity requirement for pg, pr, a, and ¢. Condition (13) is imposed by
EL in their univariate setting. Along the lines of proofs in EL, we can show that condition
(13) implies that 3; and L; are positive definite in our multivariate model."

We observe that our model naturally gives rise to unspanned stochastic volatility (USV)
under the P measure. By construction, the conditional variance ¥;, the sum of lagged
“squared residuals,” is not spanned by X;. In this regard, our model presents a significant
departure from the traditional affine models with spanned volatilities. Collin-Dufresne and
Goldstein (2002), Collin-Dufresne, Goldstein, and Jones (2009), Andersen and Benzoni (2010),
among others, show the importance of allowing for USV in bond markets.

The GARCH-in-mean term V;

As in the (G)ARCH-in-mean literature, the role of V; is to summarize volatility informa-
tion relevant for forecasting excess returns. In our multivariate setting, the challenge is
dimensionality. For an N-factor model (N being the dimension of X;), there are N(N + 1)
unique entries in the matrices S; and L;. A typical three-factor model has 12 conditional
variance and covariances. Clearly, including all of these elements in V; would make the model
over-parameterized.

To keep the model parsimonious, we focus on the conditional volatilities of two particular
portfolios of bond yields. The first portfolio is an equal-weighted portfolio of yields with
maturities 1, 2, 3, 4, and 5 years. The second is an equal-weighted portfolio of yields with

12In particular, the long-term component, L;, can be expressed as an infinite-order polynomial of the
product eze;. Under condition (13), all coefficients of this polynomial are non-negative, which guarantees that
L; is positive definite. To see how the positive definiteness of ¥; follows from this, we add equations (11) and
(12) side by side to arrive at:

S =3Ex(1—pr)+ (1= pr)Li-1+ (ps —a— )Ei—1 + (a + )ese;.

Conditions (13) and the positivity of o and ¢ means that all the scalar loadings are positive. Hence, as long
as L; 1 is positive definite, so is 3, by induction.



maturities 6, 7, 8, 9, and 10 years. This choice is motivated from the exercise in Section 2 that
yield volatilities inferred from short to medium range of the yield curve contain information for
excess returns beyond the yield curve factors; yield volatilities inferred from longer maturities
of yields, less so. This separation is nondegenerate as long as N > 2. By separating the two
yield portfolios by maturities, we will uncover the impacts of volatilities in the short and
long ends of the yield curve. We emphasize that the choice of the cutoff point, 5 years, is not
critical to our results. We also estimate model using a cutoff point of 3 years, and the results
are similar.

With two yield portfolios and two horizons, V; contains four elements. These four entries
can be explicitly derived from the conditional variance ¥, in the following way. We denote by
B,_5 x and Bg_10.x the weighting vectors of the two portfolios on the factor X;. Thus, by
(8), the conditional variance of the first yield portfolio is

1 5
5 Z Yn,t+1
n=1

A similar calculation gives the conditional variance of the second yield portfolio, with
maturities 6-10 years. The long-term variance of these two portfolios can be computed in a
similar manner by replacing >, with L;. Putting them together, we write

VB BBl s x — [ Bisx LBl ; x
V/BrsxLiBi_s x

- / /
\/BG—lo,XEtBG—lo,X - \/B6—107XL75B6—10,X

/
Bﬁ—IO,XLtBﬁ—lo,X

V&Tt = B175,XEtBi_57X- (14)

Vi

The first (second) element of V; is the short-run (long-run) volatility component of the
yield portfolio with maturities 1-5 years. The third (fourth) element of V; is the short-run
(long-run) volatility component of the yield portfolio with maturities 6-10 years. Note that

the first element of V; is written this way, instead of “\/31_5,)(5153{_5 v, because S; needs
not be positive definite. But L; is.

Implications on bond excess returns

Combining (8) and (9), we can write the one-period expected excess return on the n-period
bond as:

Ei[xry, 441] = constant + (nB, x — (n — 1)B,—1 x K1 — By x) Xt
—(n—1)By1xKv'Vi. (16)

Clearly, we capture a volatility component as well as a pure yield curve component of bond
risk premia. As n varies, equation (16) gives us a term structure of risk-return relations
across the maturity spectrum.

10



We note that the derivation of expected excess returns in (16) can also be obtained through
the stochastic discount factor implied by our model. Specifically, given our specifications of
the P and Q dynamics, the implied stochastic discount factor can be written as:

2(X
Mgy = e—f‘tw (17)

f (Xis1)

where f2(X,,1) and fF(X,s1) denote the conditional densities of X;,; given the time-t
information set under the Q and P measures, respectively. Since the state variables X; share
a common support under both measures, M, defines a valid and strictly positive pricing
kernel (which rules out arbitrage).

To summarize, our model is fully characterized by the risk neutral dynamics in (6) and (7),
the time series dynamics in (9), and the associated volatility dynamics given by (10), (11), and
(12). The full parameter set is given by: ©x = (50,51,K6Q, K(l@, Yx, Ko, K1, Ky, ps,a, pr, d).

3.3 Econometric identification
Canonical setup

To obtain econometric identification, we apply the standard rotations of the affine term
structure literature (see, for example, Dai and Singleton, 2000). Since the state variables
in our setup are not bounded, any rotation from X to Z = Uy + U, X for any (Up, Uy) is
admissible, as we show in Appendix A. In other words, for any affine transformation of X to
7, we will obtain another observationally equivalent instance of our model, characterized
by the same set of equations (6)-(13), with a different parameter set ©,. Explicit mappings
between ©x and O (as functions of (Uy, U;)) are provided in Appendix A.

By rotating the state variables freely, we obtain econometric identification using the canon-
ical setup of Joslin, Singleton, and Zhu (2011). Specifically, under this canonical setup, d; is a
vector of ones, Ké? is a vector of zeros, and K ? is of Jordan form. Thus, the risk-neutral means
of the state variables are zeros, and the intercept term in the short rate equation, dy, becomes
the risk-neutral long-run mean of the short rate r;. Adopting the notation of Joslin, Singleton,
and Zhu (2011), we replace dy by r2 in the canonical setup. Thus, the econometrically
identified parameter set becomes Ox = (rQ, Ki@, Yx, Ko, K1, Ky, ps, o, pr, ¢).

Rotation to observable yield portfolios

Consider a J x 1 vector of yields y;. The affine structure of bond yields,
yr = Ax + Bx X, (18)

means that any non-degenerate yields portfolios P, characterized by a NV x J loadings matrix
W must be affine in the states: P, = WA+ WBX,.

Our ability to freely rotate once again means that we can rotate X to P and thus we can
simply replace our canonical model by one in which P, serves as state variables. As shown by

11



Joslin, Singleton, and Zhu (2011) and Joslin, Le, and Singleton (2012), using yields portfolios,
which are observable, as state variables greatly enhances the (numerical) identification of
model parameters. With P; as the state variables, we denote the parameter set by:

@P = (rg>KP7 ZP) KO) Kla KV,PS,Q>PL>¢)-

The parameters (1L, K (1@, ps,Q, pr, @) are invariant to rotations and thus are identical across
Ox and ©p. The remaining parameters are rotation-specific. For example, Y x refers to
the Q conditional variance of the latent state variables under the canonical setup, whereas
Yp refers to the Q conditional variance of P;. As in Joslin, Singleton, and Zhu (2011), the
first three parameters (rg, K ;@ , 2p) determine the loadings of bond yields with P, as states.
The next three parameters (Ko, K1, Ky/) determine the P conditional mean of P, (given by
equation (9) replacing X; by P;). The last four parameters (pgs, @, pr., ¢) together with ¥p
determine the dynamics of the P conditional variances of P; (through equations (10), (11),
(12) with ¥ x replaced by ¥p). Because the volatility factors, V;, are volatility components of
observable yield portfolios, they remain invariant to factor rotations. (See Appendix A for
more details.)

Joslin, Le, and Singleton (2012) show that by letting P, be the lower order principal
components (PCs) of bond yields, estimation of the model is least sensitive to assumptions
regarding the observational errors of bond yields. Using this observation, we will use a
representation of our model with P; being the first N PCs of bond yields in our empirical
implementation. As a result, subsequent mentions of state variables should be understood as
references to the first N PCs of bond yields.

3.4 Discussion of modeling choices

Our model can be viewed as a generalization of Gaussian no-arbitrage models, which can
be recovered from our setup by setting ¥; to a constant matrix (Xp), and Ky to zeros.
As explained earlier, we choose an asymmetric approach in which only the P conditional
variances are stochastic, whereas the conditional variances under (Q remain constant. This
asymmetric treatment is possible because diffusion invariance need not hold in a discrete-time
model.

Keeping the Q-volatility constant has the benefit of parsimony. If generality were the
objective, one would set the Q conditional variances stochastic too, as long as analytical
pricing remains feasible. One such model under Q is provided by Le, Singleton, and Dai
(2010) (a discrete-time counterpart to the stochastic volatility models in Dai and Singleton
(2000)), in which the conditional variances are time-varying but affine in states in a way that
affine pricing of yields is preserved.

We argue, however, that as long as yields are affine in states, the direct effects of alternative
Q dynamics on risk premiums are insensitive to the volatility structure under Q. That is,
as far as risk premium is concerned, setting a constant variance under Q is almost without
loss of generality. The remaining of this subsection goes through the logic of this argument,
based on analysis by Joslin and Le (2012).
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Consider the expression for expected excess returns in (16). The direct channel that
alternative Q dynamics have on risk premiums is through the yields loadings B. The other
parameters (K7, Ky ) come from the P dynamics. Joslin and Le (2012) show that estimates
of yields loadings B are very similar across different affine models with distinct volatility
structures. Intuitively, since the Q dynamics is typically strongly identified in the data,
minimizing cross-sectional pricing errors has priority in maximum-likelihood estimations.
Thus, regardless of the volatility structure, estimates of yield loadings B in affine models are
typically very close to the unconstrained estimates obtained by regressing yields onto yields
PCs.

Different Q dynamics can also have indirect effects on the dynamics of risk premiums if
they can somehow influence the estimates of the time series parameters K; and/or Ky in
(16). Joslin and Le (2012) provide one example in the context of affine stochastic volatility
models, in which the Q conditional variances are at least partially priced in the cross-section
of yields and thus are partially spanned by yields. For these models, Joslin and Le (2012)
show that the positivity requirement under Q for volatility can impose strong constraints
on the time series parameters. Specifically, in an affine setup, volatility factors must be
autonomous to remain strictly positive under both the P and Q measures. When applied to
spanned volatilities, this autonomy requires that the P and Q feedback matrices share some
common left-eigenvectors. The resulting closeness between the P and Q feedback matrices
brings the model closer to the expectations hypothesis (in which the P and Q conditional
means are the same). As a result, these constraints can prevent a model from fully explaining
the risk-return relation in the data—the very focal point of our study.

There are at least two ways to address the tension documented by Joslin and Le (2012).
One is our approach, in which the time series parameters (K;, Ky ) are unambiguously
unconstrained since they are free parameters. The other is to adopt the risk-neutral setup
of an affine stochastic volatility model but then impose constraints on the risk-neutral
parameters so that our model exhibits (completely) unspanned stochastic volatility (USV, see
Collin-Dufresne and Goldstein, 2002; and Collin-Dufresne, Goldstein, and Jones, 2009). But
with volatility not priced in the cross-section, the yields pricing equation induced by USV
and the yields pricing equation (8) of our setup are observationally equivalent. In both cases,
what appear on the right hand side of (8) are pure yield curve factors and not stochastic
volatility. It follows that either way the models’ implications for bond risk premia—the
decomposition of expected excess returns into a volatility component and a pure yield curve
component in (16)—will be similar.’® Thus, for simplicity, we maintain the assumption that
the conditional variance matrix is constant under Q.

4 Results

In this section we present the estimation results of the model of Section 3. As is standard,
we use N = 3 factors. Again, the three factors are chosen to be the first three PCs of bond

13The distinction between our model and a USV model is more pronounced for nonlinear securities such as
calls or puts. This is not our focus, however.
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yields, denoted by P;.

4.1 Estimation

We use the same dataset over the same sample period as described in Section 2. We also
adopt the same procedure in constructing the PCs of bond yields. Following Joslin, Le, and
Singleton (2012), we assume that the first three PCs of bond yields are observed perfectly.'*
As is standard, we assume that the remaining higher-order PCs, denoted by P., are observed
with i.i.d. uncorrelated Gaussian errors with one common variance. That is,

0t = Pey+e and e ~ N(0,Ic2), (19)

where o, is a scalar; and the superscript ¢ indicates an observed quantity as opposed to a
theoretical construct. Let W, denote the loading matrix corresponding to the higher-order
yield PCs. Then, P, = W.y7, whereas the theoretical counterpart of P, can be computed
by Per = We(Ap + BpP;). Recall that the yields loadings Ap and Bp can be obtained from
the loadings Ax and By in (18) with necessary adjustments to account for the rotation from
X to P (see Appendix A for details).

The likelihood function of the observed data, L, is given by:

L= Z F(Pes1|Pr) + f(Pets1|Prsa), (20)

where f denotes log conditional density. The first term captures the density of the time-series
dynamics and can be written as:

T 1 -
> f(Pen|P) = constant — Slog([54]) = 5 D118 (Prar = Ko — KaPr = Ky W)|I3,
t t
(21)

where T denotes the sample length and [|.|| denotes the L? norm. The second term of the
likelihood funtion captures the density of the cross-sectional fit and can be expressed as:

T 1
; f(Pen|Pinn) = constant — Slog(o:"™) — 55 Z [[Pesi = We(Ap + BpPry)|I5
(22)

where J denotes the number of yields used in estimation.

Estimates of the model parameter set, ©p, and the standard deviation of pricing errors,
0., are obtained by maximizing the likelihood of observed data L. For inferences, we do not
use classical MLE standard errors. Rather, we use standard procedures to convert our ML

4 Joslin, Le, and Singleton (2012) show that this assumption, as opposed to assuming individual yields are
observed perfectly, guarantees that our estimates are close to those obtained from the Kalman filter with
more general distributions of observational errors.
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estimation problem into a set of GMM moment conditions.'” Standard errors that are robust
to serial autocorrelation and heteroskedasticity in the residual errors are then obtained using
the Newey and West (1987) matrix.

4.2 Model diagnosis

Our first step in the estimation is to diagnose the individual effect of the four entries of V; in
our model. Recall that V; affects the conditional means of the state variables through Ky,
a 3 X 4 matrix. The three rows of Ky correspond to the three PCs used as state variables.
The first two columns of Ky, correspond to the first two elements of V;, which capture the
effects of short-run and long-run components of the short end of the yield curve. The last
two columns of Ky correspond to the last two elements of V;, which capture the effects of
short-run and long-run components of the long end of the yield curve.

To understand the individual effect of each element of V; for each element of the pricing
state variables P;, we estimate 12 specifications of the model by allowing one entry of Ky
to be nonzero at a time. For example, the first specification only allows the (1,1) entry of
Ky to be a free parameter, and sets all other entries of Ky to be zero. This specification
therefore solely examines the effect of the first entry of V;—the short-run volatility component
in near-maturity bond yields—on the level of the term structure of yields. Similarly, the
second specification only allows the (1,2) entry of Ky to be a free parameter, and examines
the effect of the first entry of V; on the slope of yields.

Table 2 reports the results. We see that among specifications 1-12, only specifications
1 and 3 lead to a statistically significant estimate of Ky,. A higher first entry of V;, i.e. a
higher short-run volatility component in near-maturity bond yields, predicts a lower PC1
next week. So does a higher third entry of V,, i.e., a higher short-run volatility component
in far-maturity bond yield. Because a lower PC1 is associated with a higher bond excess
returns, this evidence suggests that there is a positive risk-return relation in bond markets,
but the risk must be measured as the short-run component.

More concretely, the effect of V; on bond risk premiums is spelled out exactly in equation
(16). For each bond with n periods to maturity, the effect of V; on its risk premium is the
(negative of the) product of the exposure of the bond to each risk factor, as captured by
the yield loading B, and the effect V; has on the forecast of future PCs, as captured by Ky .
For specifications 1 and 3, for which the last two rows of Ky are set to zeros, the last two
elements of B are inconsequential, i.e., V; only affects bond risk premium though exposure to
level risk. Moreover, all yield loadings on the level factor are positive and precisely estimated
(since the @ dynamics is very strongly identified). As a result, for specifications 1 and 3, a
negative and significantly estimated estimate for the non-zero entry of Ky translates into a
positive trade-off between risk and expected excess returns.

In specification 13, we allow both the (1,1) and (1,3) entries of Ky to be free parameters,
and find that only the (1,1) entry is significant. This further indicates that near-maturity

158pecifically, we take the first-order derivative of £ with respect to each parameter being estimated. Let
L, be the time-t element of £ (£ =", L;). This first-order condition gives rise to a moment condition of the
form E [88%] = 0, where 6 denotes any given parameter being estimated.
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Table 2: Validating model choices.

Non-zero entries  Estimate of non-zero entries P-val

Spec 1: Ky (1,1) —27.75%** 0.003
Spec 2: Ky (1,2) 7.42 0.319
Spec 3: Ky (1,3) —20.99** 0.032
Spec 4: Ky (1,4) 4.01 0.623
Spec 5: Kv(2.1) 13.41 0.502
Spec 6: Kv(2.2) 8.49 0.254
Spec T: Ky (2,3) 10.95 0.370
Spec 8: Ky (2,4) 1.16 0.856
Spec 9: Kv(3,1) -8.62 0.612
Spec 10: Kv(3.2) -95.84 0.180
Spec 11: Kv(3,3) -31.98 0.159
Spec 12: Ky (34) -24.16 0.240

Ky (1,1 —36.84** 0.018
Spec 13: KVE1,3§ 12.67 0.412

bonds contain more volatility information about expected excess returns than far-maturity
bonds do.

Moving beyond the above initial exercise, to find a statistically supported specification,
we conduct a more comprehensive search by roaming over different variants of our model,
each with a different specification for Ky . Ideally, we would try all combinations of zero
constraints on all 12 entries of Ky, giving us 2'2 = 4096 different specifications. However,
given the computational burden, we consider combinations of rows and columns of Ky and
set the corresponding rows and columns to zero. With three rows and four columns, we end
up with 23 x 2% = 128 different specifications of K. We use the BIC scores to compare
across different specifications. Interestingly, specification 1, in which only the (1,1) entry of
Ky is set free, emerges as the most preferred candidate.

Based on the evidence provided in this subsection, our main focus for the remaining of
the paper will be on specification 1.'¢

4.3 Parameter estimates

Table 3 reports the full model estimation for specification 1, together with the p-values. To
facilitate a comparison between feedback matrices under P and Q, we report the Q feedback

16We also check whether our findings regarding the relative contributions of the short-maturity and far-
maturity yield portfolios are sensitive to the five year cutoff. Specifically, we repeat all the exercises with
a different construction of the yield portfolios. We let the short-maturity (long-maturity) portfolio be an
equal-weighted portfolio of three (seven) yields with maturities ranging from one year to three (four to ten)
years. All of our results in this subsection remain essentially the same.
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Table 3: Parameter estimates of the model, only allowing the (1,1) entry of Ky to be a free
parameter

Estimates P-vals
0.02%** 0.00
K, —0.02*** 0.00
—(.08*** 0.00
1.00%** 0.00 0.00* 0.00 0.75 0.05
K 0.00*** 0.99***  —0.01*** 0.00 0.00 0.00
0.00 -0.00 0.95** 0.14 0.67 0.00
—27.75%** 0.00 0.00 0.00 0.01
Ky 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
1.00*** 0.01*** 0.01*** 0.00 0.00 0.00
K;@P —0.00*** 0.99**  —0.02*** 0.00 0.00 0.00
—0.00***  —0.01**  0.97** 0.00 0.00 0.00
0.54 0.77
Yip -0.16 0.73 0.78 0.77
0.97 -0.06 1.74 0.77 0.83 0.77
P2 0.99*** 0.00
p‘z? 0.73*** 0.00
o 0.04*** 0.00
) 0.04*** 0.00
rgo 0.10*** 0.00
oe (bps) 7.2+ 0.00

matrix, K ;@P, with the PCs of yields P, used as state variables.!” As expected, the diagonal
values of the K; and K;@p matrices are close to one, suggesting a high persistence of the
PCs at the weekly frequency. Notably, all elements of K 973 are statistically signficant. The
differences between the two feedback matrices reveal the contributions of the PCs to bond
risk premiums, which we will examine more closely in the next subsection. For now, we note
that the differences between K; and K ;@73 and the statistical significance of the Ky matrix
means that both the PCs of bond yields and the short-run volatility component seem to have
independent contributions to the dynamics of bond risk premiums.

For ease of interpretation, we report the annualized degrees of persistence, p3? and p??,

"That is, K %; satisfies: ER[Pry1] = constant + K %;7% K?P is obtained from the K matrix and the
yields loadings Bx of the canonical model, using the rotations described in Appendix A.
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instead of py and pg. The long-run volatility component L; is extremely persistent, with p3?
estimated to be 0.99, suggesting a half life of more than 60 years. The short-run volatility
component is less persistent, and the estimated p2* suggests that it has a half life of about
two years. Given the highly persistent L,, it is perhaps not surprising that the estimated
Yp is not statistically significant: by (12), the point estimation of ¥p involves dividing by
(1 —pr), a very small scaler, which leads to large standard errors. The estimated o and ¢ are
both 0.04, so about 8% of the variance shock in each week, €€, — ¥X;_1, enters next week’s
conditional variance ;.

Further, as is typically the case for three-factor models, our model prices bonds well, with
standard deviation of pricing errors estimated to be about seven basis points.

As a robustness check we also implement specifications 3 and 13, with estimates reported
in Table 4. We see that the estimates for those two specifications are essentially the same as
those for specification 1 (Table 3). For specification 3 (top half of Table 4), a visible difference
is that p2* = 0.79, suggesting slightly higher persistence of S; than in specification 1. This
is probably because the higher persistence of volatility in the far-maturity yields makes the
estimated S; more persistent through the GARCH-in-mean term Ky V;. For specification 13
(bottom half of Table 4), the estimates are essentially identical to those in Table 3, except for
a larger (1,1) entry of Ky, suggesting that the short-run volatility component of far-maturity
bond yields does not provide incremental information relative to the short-run volatility
component of near-maturity yields. Both specifications imply a similar magnitude of bond
pricing errors.

The statistical significance of the short-run volatility component and the insignificance of
long-run volatility component map well back to our motivating exercises in Section 2. The
volatility process in the ARCH-in-mean equation (2) only collects recent histories of squared
residuals; therefore, it is short-run by construction. The GARCH(1,1) volatility process in (3)
collects a much longer history of squared residuals; therefore, it is a mixture of short-run and
long-run volatility information. By mixing the return-relevant short-run volatility component
and the return-irrelevant long-run component, a single-component GARCH volatility process
suppresses the predictability of the former. Indeed, recall from the first two columns of
Table 1 that ARCH volatilities show strong predictive power for excess returns across all
maturities, but GARCH volatilities do so only for relatively short maturities. More generally,
the same argument can apply to other term structure models with a single volatility factor:
unless this single volatility factor is predominantly short-run, the risk-return trade-off can be
contaminated by the long-run component and becomes hard to detect in the data.

4.4 FEconomic significance

The evidence reveals that there is a significantly positive risk-return relation in bond markets.
A natural next question is the economic magnitude of the effect of volatility for bond excess
returns. From (16), we can decompose the predictive component of one-week excess return of
an n-week bond, 7, 41, into a Pi-related component and a Vj-related component. For each
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Table 4: Two robustness checks of the model. The top table shows the estimation for
specification 3. The bottom table shows the estimation for specification 13.

Estimates P-vals
0.02** 0.01
Ko —0.02%** 0.00
—0.08%** 0.00
1.00*** 0.00 0.00* 0.00 0.44 0.10
K 0.00*** 0.99*** —0.01*** 0.00 0.00 0.00
0.00 -0.00 0.95%** 0.14 0.81 0.00
0.00 0.00 —20.99**  0.00 0.02
Ky 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
1.00%** 0.01%** 0.01*** 0.00 0.00 0.00
K2, —0.00%**  0.99***  —0.02*** 0.00 0.00 0.00
—0.00***  —0.01*** 0.97*** 0.00 0.00 0.00
0.49 0.66
Xp -0.06 0.67 0.74 0.66
0.83 -0.12 1.50 0.67 0.72 0.67
52 kK
p 0.99 0.00
p§2 0.79*** 0.00
«a 0.04*** 0.00
10} 0.04** 0.01
rQ 0.10% 0.00
oe (bps) 7.05%** 0.00
Estimates Pvals
0.02%** 0.00
Ko —0.02%** 0.00
—0.08%** 0.00
1.00*** 0.00 0.00** 0.00 0.85 0.04
K1 0.00*** 0.99*** —0.01%** 0.00 0.00 0.00
0.00 -0.00 0.95%** 0.15 0.72 0.00
—36.84** 0.00 12.67 0.00 0.03 0.47
Ky 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
1.00%** 0.01*** 0.01*** 0.00 0.00 0.00
K%, —0.00*** 0.99*** —0.02%** 0.00 0.00 0.00
—0.00***  —0.01*** 0.97*** 0.00 0.00 0.00
0.52 0.75
Yp -0.18 0.69 0.77 0.75
0.95 -0.02 1.67 0.75 0.93 0.75
p52 0.99%** 0.00
péz 0. 7% 0.00
« 0.03*** 0.00
) 0.04*** 0.00
re 0.08*** 0.00
oe (bps) 7.04%** 0.00
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Table 5: Risk premium decomposition.

l-yr 2-yr  3-yr 4-yr 5-yr 6-yr T-yr &yr 9-yr 10-yr

PC1 0.41 027 021 018 0.15 0.14 0.12 0.11 0.10 0.09
PC2 0.35 041 0.46 050 0.53 053 052 051 049 047
PC3 0.09 0.14 0.11 0.06 0.01 0.00 0.01 0.03 0.06 0.10
PC1-3 0.86 082 0.78 0.73 0.69 067 0.65 0.65 0.65 0.65

Vi-component 0.14 0.24 032 0.38 042 044 044 043 041 0.40

maturity n, we calculate the fraction

Var [(n — 1)Bn—1,79KV‘/t]
Var|[(nB,p — (n—1)By_1pK1 — Bip)Pr — (n — 1) B,_1 p Ky V]

(23)

in sample as a proxy for the contribution of the volatility component V; for bond excess
returns. We calculate the equivalent fraction for the contribution of the PC component. In
this calculation, we use the estimates from specification 1, that is, with only the (1,1) entry
of Ky is set free and other entries are set to zero.

The contributions of the PC-related (V;-related) components are reported in the first four
rows (last row) of Table 5. Each column corresponds to a given bond maturity. The first
three rows report the individual contributions of each of the three PCs. It is perhaps not
surprising that the slope factor represents the most important contribution to risk premiums.
This is consistent with established results in the literature (see, for example, Fama and Bliss,
1987; and Campbell and Shiller, 1991). The level factor seems most important for relatively
short-dated bonds, whereas the curvature factor seems inconsequential across the entire
maturity spectrum. Summing up the first three rows gives the overall contributions to risk
premiums of all three PCs (because the PCs are uncorrelated).

Because of the correlation between V; and Py, the sum of the last two rows can exceed
one, but it is no higher than 1.11 for the 10 maturities, suggesting that the correlation is
not a severe concern. In fact, the in-sample correlations between the P;-related components
and the Vj-related component is very close to zero for each bond maturity. This means that
these components represent essentially independent channels through which risk premiums
are determined.

Table 5 reveals that the volatility measure, V;, is an important contributor to expected
bond excess returns, with a magnitude comparable to that of yield PCs. About 14% of the
predictive component of the excess returns of one-year zero-coupon bond can be attributed
to V;. This fraction increases with maturity, reaching its peak of 44% for the six-year and
seven-year bond, and then slowly declines to 40% for the 10-year bond. The contribution
by the PC components, by contrast, declines from 86% at one-year maturity to 65% at
seven-year maturity, and then stablizes at 65% for the remaining far end of the yield curve.

Figure 1 plots the demeaned time-series of the total expected excess returns and the
volatility component for the 10-year zero-coupon bond. By construction, this volatility
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Figure 1: Model-implied (weekly) risk premium (demeaned) on 10-year zero coupon bond.
In the model only the (1,1) entry of Ky is estimated, and all other entries of Ky are set to
Z€ero.
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component is a linear function of the first entry of the V; vector. It has high time variation
and captures a large fraction of expected bond excess returns. Figure 1 also shows a sizeable
increase in risk premiums during the Fed experiment regime of the early 1980s. According
to our model, much of this increase is attributable to an increase in the short-run volatility
component—a result we find reasonable and intuitive.

Our results in this subsection imply that to fully characterize the dynamics of bond
risk premiums, a model should allow for two channels: a time-varying market price of risk
and a time-varying quantity of risk. Moreover, the market prices of risks must represent
an independent source of time variation and cannot be subsumed by the quantity of risk.
For example, the habit-based term structure model of Le, Singleton, and Dai (2010) allows
for both channels but the time-varying market prices of risks depend exclusively on yield
volatility. As a result, risk premiums implied by their model are solely determined by yield
volatility. Based on our findings, their model is likely to miss a sizeable portion of time
variation in bond risk premiums. Our results corroborate the findings of Le and Singleton
(2013) in their analysis of structural term structure models.

Although it can be tempting to interpret the last row of Table 5 as the contribution by
the quantity of risk, and the second last row as the contribution by the market price of risk,
such an interpretation may not be entirely accurate. The reason is that, in principle, the
market prices of risk can also depend on yield volatility.
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4.5 Matching return predictability and conditional volatilities in
the data

Having examined the statistical and economic significance of the conditional volatility V; for
bond excess returns, we now take a step back and examine how well the model fits salient
empirical patterns of return predictability and time-varying volatility in bond markets. We
emphasize that a key contribution of our model is to well match both aspects of the data.

Figure 2 shows the Campbell and Shiller (1987) regression coefficients implied by the model,
together with those implied by the data. As is well known, if the expectations hypothesis
holds and thus risk premiums are not time-varying, the coefficients of this regression should
be uniformly ones across all maturities. Instead, the coefficients obtained from the data are
significantly negative and increasingly so as maturities increase. Our model does a relatively
decent job in capturing this pattern of the data, arguably as well as the Gaussian affine term
structure models do (see Dai and Singleton, 2002). A weakness of the Gaussian models is the
constant-volatility assumption; thus, those models cannot match the conditional volatilities
of yields.

Figure 3 plots the model-implied one-week ahead conditional volatilities of the first three
PCs of the yield term structure, as well as those of the 1-year, 5-year, and 10-year yields. As
a comparison, we also plot realized volatilities and conditional volatilities estimated from a
univariate EGARCH model. At each point in time, the realized volatilities are computed
using daily changes in yields over the preceding three months. The EGARCH model is
implemented using weekly yields over the entire sample. Volatilities implied by our model
are very close to those two commonly used volatility measures.

Figure 2: Campbell-Shiller regression coefficients in data and implied by model. In the
model only the (1,1) entry of Ky is estimated, and all other entries of Ky are set to zero.

Maturity
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Figure 3: Model-implied volatilities and realized volatilities. In the model only the (1,1)

entry of Ky is estimated, and all other entries of Ky are set to zero.
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5 Conclusion

In this paper, we study the risk-return tradeoff in the U.S. Treasury markets through the lens
of a new discrete-time no-arbitrage term structure model. The model combines the tractability
of affine term structure models with the ability of GARCH models to deliver an accurate
measure of yield volatility. Not only does this model fit yields and yield volatilities well
across all maturities, it also closely replicates the returns predictability characterized by the
Campbell and Shiller (1987) regressions. Moreover, this model also allows us to differentiate
the contributions to risk premiums of long-run and short-run volatility components of both
the short end and long end of the yield curve.

Using yields data from 1962 to 2007, we find a significantly positive relation between
risk and return in U.S. Treasury markets. A higher conditional volatility this week predicts
a higher expected excess return next week. Notably, it is the short-run component of
volatility, not the long-run component, that matters for return predictability. Moreover, the
return-predicting power of the short-run volatility component predominantly comes from
the short-end of the yield curve. Volatilities of far-maturity yields do not have additional
predictive power for future yields once we control for volatility of the short end. Volatilities
have economically important effects on bond risk premiums. For example, the volatility factor
accounts for 14%, 42%, and 40% of the predictable components of weekly excess returns
on one-year, five-year, and ten-year zero coupon bonds, respectively. The other source of
predictability comes from the principal components of yields.

Our results have important implications. We show that the volatility factor, a proxy for
quantity of risk, and the principal components of yields, a proxy for the market price of risk,
have comparable weights in determining bond risk premiums. Therefore, models that rule
out either channel only provide an incomplete characterization of the risk premium dynamics.
Furthermore, because the short-run volatility component, not the long-run component, is
responsible for predicting returns, the risk-return trade-off may be missed by models with a
single volatility factor.
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A Appendix: Rotation of Factors

This appendix describes the detailed steps of rotating one set of factors into another.

A.1 Summary of the model

As explained in the text, our model is characterized by the following risk-neutral (Q) and
time-series (IP) dynamics of the latent factors Xj:

ry =00 + 01X, (24)
X1 =K¢ + KPX + e, (25)
X1 =Ko+ K1 Xy + Ky Vi + €41, (26)

where e;%l ~ N(0,YXx) and €41 ~ N(0,%;), with ¥, following the component model of Engle
and Lee (1999):

X =S¢ + Ly, (27)
Sy =psSi_1 + alee, — Xi_1), (28)
Lt :(1 — pL)ZX —|— pLLt,1 + ¢(€t62 — Etfl). (29)

Combining (24) and (25), we see that yields at all maturities are affine in the state variables:
Ynt = An,X + Bn,XXta (30)

with A, x and B,, x computed from the standard recursive equations for bond pricing.
The volatility vector V; is given by:

\/31—5,X2t31_5,x - \/Bl—s,XLtBi_s),x
\/B1_5,XLth_5’X
- \/ Bs10xXe B 10.x — \/ Bs10.xLiBg 10 x
\/BG—lonLtBé—l(),X

Vi ) (31)

where B;_5 x and Bs_10,x denote the weighting vectors for the equal-weighted yield portfolios
with near maturities (1-5 years) and far maturities (6-10 years).
Our model is fully characterized by the following parameter set

@X = (607517 Kg}?K;@’qu K07 K17KV7p57a7pL7¢)‘
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A.2 Rotation of factors

Consider a rotation from factors X; to Z, = Uy + U, X; for any given pair (Uy, U;). For
example, the new factors Z; could be the yield PCs. It is straightforward to see that both
the risk-neutral and time-series dynamics will be of the same affine form:

Tt :50 + SQZt, (32)
Zyyr =K + K22+ &4, (33)
Zi =Ko+ K\ Z, + KyV; + &4, (34)

where €2, ~ N(0,%x) and &, ~ N(0,%;). The mappings from the original model to the
rotated model are as follows:

50 =0 — 5/1U1_1U0’ (35)
5 =5Ur (36)
K§ =Us + Ui K§ — U KU Uy, (37)
K2 =u, kU7, (38)
Sy =Ui S UL, (39)
Ko =Uy + Uy Ko — Uy K, U0y, (40)
Ky =U, K U (41)
Ky =U1Ky. (42)

Additionally, the conditional covariance matrix under P, as well as its long-run and short-run
counterparts, are simply given by:

Et UIEtUla Lt UlLtUla and St UlstUl (43)

Combining these with the dynamics in (27), (28), and (29), we see that the parameters (pg,
pL, @, ¢) governing the volatility dynamics are invariant to rotations.

To calculate the yield loadings, we observe that y,; = A, x + B, xX: = A, x +
B,.xU; (Z; — Up). Thus, the loadings with respect to the new state variable Z are given by:

Apnz=A,x — B,xU;'Uy and B,z = B,xU;". (44)

Finally, note that V; is invariant to rotations in that V; = V;. Intuitively, this is due to the
fact that V; is measured by the volatilities of observable yields portfolios. More concretely,
take one of the terms in the construction of V}, say Bi_s ZEtBl 5.2, We see that:

Bi_s525B)_5 ; = Bi_s xU ' U\SUUT Y B 5 « = Bi_s x4 Bi_s .
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