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Abstract

Top income inequality rose sharply in the United States over the last 30 years

but increased only slightly in economies like France and Japan. Why? This pa-

per explores a model in which the interplay between entrepreneurial efforts to

grow existing market share and the creative destruction associated with out-

side innovation lead top incomes to obey a Pareto distribution. The extent to

which entrepreneurs, interpreted very broadly, can grow the markets for their

existing ideas is a key determinant of top income inequality, while the creative

destruction by which one entrepreneur replaces another restrains inequality.

Any changes in the economy that make a given amount of entreprenuerial ef-

fort more effective at building market share will increase top inequality. Ex-

amples might include the world wide web and possibly globalization. On the

other hand, policies that restrain the growth of market share by entrepreneurs

can limit inequality. Differences in these considerations across countries may

help explain the divergent patterns of top income inequality that we see in the

data.

∗We are grateful to Xavier Gabaix, Mike Harrison, Chris Tonetti, and seminar participants at the
Federal Reserve Bank of San Francisco, Harvard, Princeton, Stanford, and USC for helpful comments.
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1. Introduction

As documented extensively by Piketty and Saez (2003) and Atkinson, Piketty and

Saez (2011), top income inequality — such as the share of income going to the top

1% or top 0.1% of earners — has risen sharply in the United States since around

1980. The pattern in other countries is different and heterogeneous, however. For

example, top inequality rose only slightly in France and Japan. Why? What eco-

nomic forces explain the rise in top income inequality in the United States? And

why has top inequality risen by much less in countries like France and Japan?

We consider these questions from a theoretical standpoint. It is well-known that

the upper tail of the income distribution follows a power law. One way of think-

ing about this is to note that income inequality is fractal in nature, as we document

more carefully below. In particular, the following questions all have essentially the

same answer: What fraction of the income going to the top 10% of earners accrues

to the top 1%? What fraction of the income going to the top 1% of earners accrues

to the top 0.1%? What fraction of the income going to the top 0.1% of earners ac-

crues to the top 0.01%? The answer to each of these questions — which turns out to

be around 40% in the United States today — is a simple function of the parameter

that characterizes the power law. Therefore changes in top income inequality natu-

rally involve changes in the power law parameter. This paper considers a range of

economic explanations for changes in the power law exponent.

We are far from being able to point to a single explanation, say, for exlaining

the rise in top income inequality in the United States. Instead, we present a model

that highlights different economic forces that could potentially contribute to such

an explanation.

The model we develop uses the Pareto-generating mechanisms that researchers

like Gabaix (1999) and Luttmer (2007) have used in other contexts. Gabaix studied

why the distribution of city populations is Pareto with its key parameter equal to

unity; Luttmer studies why the distribution of employment by firms has the same

structure. It is worth noting that both cities and firm sizes exhibit substantially more

inequality than top incomes (power law inequality for incomes is around 0.6, as
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we show below, versus around 1 for city populations and firm employment). Our

approach therefore is slightly different: why incomes are Pareto and why Pareto

inequality is changing over time, rather than why a power law inequality measure

is so close to unity.1 The basic insight in this literature is that exponential growth,

tweaked slightly, can deliver a Pareto distribution for outcomes. The tweak is needed

for the following reason. Suppose that city populations (or incomes or employment

by firms) grow exponentially at 2% per year plus some random normally-distributed

shock. In this case, the log of population would follow a normal distribution with a

variance that grows over time. To keep the distribution from spreading out forever,

we need some kind of “tweak.” For example, a constant probability of death will

suffice to render the distribution stationary, as would some minimum size for the

city.

In the model we develop below, researchers create new ideas — new songs, best-

selling books, smartphone apps, financial products, surgical techniques, or even

new ways of organizing a law firm. The random growth process corresponds to

the way entreprenueurs increase their productivity and build market share for their

new products. The growth rate of this process is tied to entrepreneurial effort, and

anything that raises this effort, resulting in faster growth of idiosyncratic produc-

tivity, will raise top income inequality. The “death rate” in our setup is naturally

tied to creative destruction: researchers create new products that make the previ-

ous best-selling song or smartphone application obsolete. A higher rate of creative

destruction restrains the random growth process and results in lower top income

inequality. In this way, the interplay between existing entrepreneurs growing their

markets and the creative destruction associated with new ideas determines top in-

come inequality.

This paper proceeds as follows. Section 2 presents some basic facts of top in-

come inequality, emphasizing that the rise in the United States is accurately charac-

terized by a change in the power law parameter. The next two sections then develop

1These papers in turn build on a large literature on such mechanisms outside economics. For
example, see Reed (2001), Mitzenmacher (2004), and Malevergne, Saichev and Sornette (2010). Gabaix
(2009) and Luttmer (2010) have excellent surveys of these mechanisms, written for economists.
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the model, first with an exogenous allocation of labor to research (which makes the

main mechanism transparent), and then more fully with an endogenous allocation

of labor. The final main section studies numerical examples to illustrate the quanti-

tative possibilities of the framework. A conclusion summarizes what remains to be

done and how the model could be taken to the data more carefully.

1.1. The existing literature

Before moving on, it is worth pausing to consider a couple of natural candidate

explanations in order to understand why they fall short, at least in their simple form.

First, consider a basic income tax explanation. It is well-known that top marginal

tax rates have fallen sharply in the United States. For example, in the early 1960s,

the top marginal tax rate exceeded 90%, but by 2008, the top marginal tax rate was

just 35%. Why doesn’t this decline explain the rise in top income inequality in the

U.S.? The key problem with this explanation is that, at least in its simple form, it

cannot work at the very top. Because inequality is rising even at the very top, one

needs to explain why the Top 0.01% share is rising more than the Top 0.1% share.

But because earnings are so high for both of these groups, they are both facing the

same top marginal tax rate. A decline in that rate from 90% to 35% would not tilt

the income toward the higher earning group, which is what we require. This point

is emphasized by Piketty, Saez and Stantcheva (2011). Kim (2013) shows that the

change in marginal tax rates can play a more important role in the presence of a

random-growth process but concludes that this is only a part of the story for the

U.S.

Next, consider explanations related to fairness. A simple version would be that

cultural norms in France, say, seek to keep top CEOs from making more than $5

million per year, or more than 100 times the average wage. The problem with expla-

nations like this, which involve implicit caps of some kind, is that they would lead

to a clumping of incomes around the cap. Top incomes would not look like a Pareto

distribution in this case.

A number of other recent papers contribute to our understanding of the dynam-
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ics of top income inequality. Piketty, Saez and Stantcheva (2011) and Rothschild and

Scheuer (2011) explore the possibility that the decline in top tax rates has led to a

rise in rent seeking, leading top inequality to increase. Haskel, Lawrence, Leamer

and Slaughter (2012) suggest that globalization may have raised the returns to su-

perstars via a Rosen (1981) mechanism. Philippon and Reshef (2009) focus explicitly

on finance and the extent to which rising rents in that sector can explain rising in-

equality; see also Bell and Van Reenen (2010). Bakija, Cole and Heim (2010) and

Kaplan and Rauh (2010) note that the rise in top inequality occurs across a range of

occupations; it is not just focused in finance or among CEOs, for example, but in-

cludes doctors and lawyers and star athletes as well. Benabou and Tirole (2013) dis-

cuss how competition for the most talented workers can result in a “bonus culture”

with excessive incentives for the highly skilled. There is of course a much larger

literature on changes in income inequality throughout the distribution. Katz and

Autor (1999) provide a general overview, while Autor, Katz and Kearney (2006), Gor-

don and Dew-Becker (2008), and Acemoglu and Autor (2011) provide more recent

updates.

Lucas and Moll (2011) explore a model of human capital and the sharing of ideas

that gives rise to endogenous growth. Perla and Tonetti (2014) study a similar mech-

anism in the context of technology adoption by firms. These papers show that if the

initial distribution of human capital or firm productivity has a Pareto upper tail,

then the ergodic distribution also inherits this property and the model can lead to

endogenous growth, a result reminiscent of Kortum (1997). The Pareto distribution,

then, is more of an “input” in these models rather than an outcome.

The most closely-related papers to this one are Benhabib, Bisin and Zhu (2011),

Nirei (2009), Aoki and Nirei (2013), and Moll (2012). These papers study economic

mechanisms that generate endogenously a Pareto distribution for wealth, and there-

fore for capital income. The mechanism responsible for random growth in these

papers is either the asset accumulation equation (which naturally follows a random

walk when viewed in partial equilibrium) or the capital accumulation equation in a

neoclassical growth model. The present paper differs most directly by focusing on

labor income rather than wealth.
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Figure 1: Top Income Inequality in the United States and France
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Source: World Top Incomes Database.

As mentioned earlier, this paper is not able to conclusively distinguish between

various explanations that might contribute to the different patterns of top income

inequality that we see around the world. Instead, the goal is less ambitious. Drawing

on Pareto-generating mechanisms that have been used to study Zipf’s Law for cities

and the size distribution of firms, we hope to provide a baseline model that explains

why top income inequality obeys a power law and suggest some of the forces that

may contribute to the heterogeneity we see across countries and over time.

2. Some Basic Facts

Figures 1 through 3 show some of the key facts about top income inequality that

have been documented by Piketty and Saez (2003) and Atkinson, Piketty and Saez

(2011). For example, the first figure shows the large increase in top inequality for

the United States, compared to the relative stability of inequality in France.

Figure 2 shows these same statistics for more countries. The facts that stand
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Figure 2: Top Income Inequality around the World
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Source: World Top Incomes Database.

out are (i) heterogeneity, (ii) the basic stability of the distribution between 1960 and

1980, and (iii) the rise in top inequality in a number of countries since 1980.

Finally, Figure 3 shows the rise since 1980 more systematically. The horizon-

tal axis shows the top 1% share averaged between 1980 and 1982, while the verti-

cal axis shows the same share for 2006–2008. Nearly all the economies for which

we have data lie above the 45-degree line: that is, top income inequality has rise

almost everywhere. The rise is largest in the United States, South Africa, and Nor-

way, but substantial increases are also seen elsewhere, such as in Ireland, Portugal,

Singapore, Italy, and Sweden. Japan and France exhibit smaller but still noticeable

increases. For example, the top 1% share in France rises from 7.4% to 9.0%.

2.1. Fractal Inequality and the Pareto Distribution

It is well known, dating back to Pareto (1896), that the top portion of the income

distribution is accurately characterized by a power law. That is, at high levels, the
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Figure 3: Top Income Inequality around the World, 1980-82 and 2006–2008
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Note: Top income inequality has increased since 1980 in most countries for which we have
data. The size of the increase varies substantially, however. Source: World Top Incomes
Database.
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income distribution is approximately Pareto. Saez (2001) documents this fact care-

fully using U.S. income tax records. If Y is a random variable denoting incomes

above some high level (i.e. for Y ≥ y0), then

Pr [Y > y] =

(

y

y0

)−ξ

, (1)

where ξ is called the “power law exponent.”

An important property of the Pareto distribution can then be seen easily. In par-

ticular, let S̃(p) denote the share of income going to the top p percentiles. This share

is given by (p/100)1−1/ξ. A larger power-law exponent, ξ, is associated with lower

top income inequality inequality. It is therefore convenient to define the “power-

law inequality” exponent as

η ≡
1

ξ
(2)

so that

S̃(p) =

(

100

p

)η−1

. (3)

For example, if η = 1/2, then the share of income going to the top 1% is 100−1/2 =

.10. However, if η = 3/4, the share going to the top 1% rises sharply to 100−1/4 ≈ 0.32.

To see the fractal structure of top inequality under a Pareto distribution, let S̃(a, b)

denote the fraction of income going to the top b percent of people that actually goes

to the top a percent. For example, S̃(1, 10) answers the question, “Of the income

going to the top 10 percent of earners, what fraction actually goes to the top 1 per-

cent?” If income follows a Pareto distribution, then

S̃(a, b)=
S̃(a)

S̃(b)

=

(

b

a

)η−1

It is often useful — certainly given the data in the World Top Incomes Database

— to look at shares where b is 10 times larger than a. In this case, let’s define S(a) ≡

S̃(a, 10 · a). For example, S(1) is the fraction of income going to the top 10% that
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actually accrues to the top 1%, and S(.1) is the fraction of income going to the top

1% that actually goes to the top 1 in 1000 earners. Under a Pareto distribution,

S(a) = 10η−1 (4)

and

log10 S(a) = η − 1. (5)

Notice that this last result holds for all values of a, or at least for all values for

which income follows a Pareto distribution. This means that top income inequality

obeys a fractal pattern: the fraction of the Top 10 percent’s income going to the Top

1 percent is the same as the fraction of the Top 1 percent’s income going to the Top

0.1 percent, which is the same as the fraction of the Top 0.1 percent’s income going

to the Top 0.01 percent.

Not surprisingly, top income inequality is well-characterized by this fractal pat-

tern.2 Figure 4 shows the S(a) shares directly. At the very top, the fractal prediction

holds remarkably well, and S(.01) ≈ S(.1) ≈ S(1). The share of all income going

to the Top 10 percent, S(10) is slightly higher than the others prior to 1980. But af-

ter 1980, even this share fits the fractal pattern quite well. Prior to 1980, the fractal

shares are around 25 percent: one quarter of the Top X percent’s income goes to the

Top X/10 percent. By the end of the sample in 2010, this fractal share is closer to 40

percent.

This rise in top income inequality shown in Figure 4 can be related directly to

the power-law income inequality exponent using equation (5). Or, put another way,

the change in the fractal shares is precisely equal to the change in the PL inequality

exponent:

∆ log10 S(a) = ∆η. (6)

The corresponding Pareto inequality measures are shown in Figure 5.

Figure 6 breaks down the overall top 0.1% of earners by occupation using data

2Others have noticed this before. For example, see Aluation.wordpress.com (2011).
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Figure 4: Fractal Inequality Shares in the United States
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Note: S(a) denotes the share of income going to the top .01 percent of earners as
a share of that going to the top 10a percent. For example, S(10) is the share of all
income earned by the Top 10%, while S(1) is the share of the Top 1% in the Top
10% income, etc. Source: World Top Incomes Database.

Figure 5: The Power-Law Inequality Exponent η, United States
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Note: η(a) is the inequality power law exponent obtained from the fractal in-
equality shares in Figure 4 assuming a Pareto distribution. See equation (5) in
the text.
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Figure 6: The Rise in Top Income Inequality by Occupation
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Note: The graph shows the ratio of the top 0.1% income share in 2005 to its share in 1979,
by occupation. Source: Data are from Table 7 in Bakija, Cole and Heim (2010).

from Bakija, Cole and Heim (2010) and shows that the rise in top income inequality

is not driven by any particular occupation, such as finance. Specifically, the figure

shows the factor by which an occupation’s share of national income rose between

1979 and 2005. For example, taxpayers working the “Arts, media, and sports” within

the top 0.1% of earners saw their share of national income increase from 0.08 per-

cent to 0.27 percent, a factor of 3.4. Executives, managers, and supervisors (non-

finance) — the largest category among the top 0.1% — saw their share rise from 1.37

percent to 3.42 percent, a factor of 2.5. This is approximately equal to the 2.6-fold

increase in the share received by the top 0.1% of earners overall.
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2.2. Summary

Here then are the basic facts related to top income inequality that we’d like to be

able to explain:

1. Between 1960 and 1980, top income inequality was relatively low and stable

in both the United States and France.

2. Since around 1980, top income inequality has increased sharply in countries

like the United States, Norway, and Portugal, while it has increased only slightly

in some other countries like France, Japan, and Spain.

3. Top income inequality in the United States follows a fractal pattern, where the

share of the top X percent of income going to the top X/10 percent of earners

is similar for different values of X. This share is a simple function of the power-

law inequality exponent.

4. Changing top income inequality corresponds to a change in the power-law

inequality exponent.

5. According to Piketty and Saez (2003), the rise in inequality since 1980 is pri-

marily associated with labor income, not capital income.

3. A Model of Top Income Inequality

It is now well-known that exponential growth and Pareto distributions are tightly

linked, and this link is at the heart of the basic mechanism in this paper. To see why,

consider Figure 7. Suppose xit corresponds to the idiosyncratic productivity of an

entrepreneur’s production function, and suppose this productivity grows exponen-

tially subject to some random shocks. In addition, there is a constant probability of

creative destruction — that the entrepreneur’s run as a leader comes to an end and

s/he is replaced by a new entrepreneur at the starting value x0. With a continuum

of entrepreneurs obeying a similar process, this setup will converge to a stationary

Pareto distribution for xi. The Pareto inequality parameter will be an increasing

function of the growth rate of the process and a decreasing function of the rate of
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Figure 7: Basic Mechanism: Random growth and creative destruction

Note: A random growth process, subject to some lower bound x0 and occasional
“creative destruction,” can lead to a stationary Pareto distribution of x across a
continuum of such entrepreneurs.

creative destruction. This setup seems to capture some of the key features of top

incomes: the importance of entrepreneurial effort, the role of creative destruction,

and the centrality of “luck” as some people succeed beyond their wildest dreams

while others fail. The remainder of this section develops this setup more formally.

3.1. Entrepreneurs and Market Share

An entrepreneur is a monopolist with the exclusive right to sell a particular variety,

in competition with other varieties. We interpret this statement quite broadly. For

example, think of a Silicon Valley startup, an author of a new book, a new rock band,

an athlete just making it to the pro’s, or a doctor who has invented a new surgical

technique. Moreover, we do not associate a single variety with a single firm — the

entrepreneur could be a middle manager in a large company who has made some

breakthrough and earned a promotion.

When a new variety is first introduced, it has a low market share/quality/productivity,

denoted by x. The entrepreneur then expends effort to improve x. We explain later
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how x affects firm productivity and profitability. For the moment, however, it is suf-

ficient to just assume that the entrepreneur’s income is proportional to x, as it will

be in general equilibrium.

The entrepreneur’s problem is

max
{ct,et}

E

∫ ∞

0
e−(ρ+δ+δ̄)t[ log ct + β log ℓt]dt (7)

subject to

ct = ψtxt (8)

et + ℓt + τ = 1 (9)

dxt = µ(et)xtdt+ σxtdBt (10)

µ(e) = φe (11)

The entrepreneur gets utility from consumption and leisure. For simplicity, we

do not allow entrepreneurs to smooth their consumption and instead assume that

consumption equals income, which in turn is proportional to the market share vari-

able x. The factor of proportionality,ψt, is exogenous to the individual’s actions and

is the same for all entrepreneurs; it is endogenized in general equilibrium shortly.

The entrepreneur has one unit of time each period, which can be used for effort e

or leisure ℓ or it can be wasted, in amount τ . This could correspond to time spent

addressing government regulations and bureaucratic red tape, for example.3

Equation (10) describes how effort improves idiosyncratic productivityx through

a geometric Brownian motion. The average growth rate of productivity is µ(e) = φe,

where φ is a technological parameter converting effort into growth.

The entrepreneur discounts future utility for three reasons. First, there is the

standard rate of time preference ρ. Second, there is a Poisson creative destruction

process by which the entrepreneur loses her monopoly position and is replaced by

a new entrepreneur. This occurs at the (endogenized in general equilibrium) rate

3Because consumption enters in log form, the income and substitution effects from a labor in-
come tax cancel exactly and a labor income tax leaves equilibrium effort — and therefore top income
inequality — unchanged in this setup. See Kim (2013).
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δ. Because our model will turn out to be stationary, we omit the additional nota-

tion required to permit δ to be time varying. Finally, there is an exogenous piece to

destruction as well, which occurs at a constant rate δ̄.

3.2. Bellman approach

The Bellman equation for the entrepreneur is

ρV (x) = max
e

logψ + log x+ β log(Ω− e) +
E[dV (x)]

dt
+ (δ + δ̄)(V w

− V (x)) (12)

subject to (10), where Ω ≡ 1 − τ and
E[dV (x)]

dt is short-hand for the Ito calculus

terms, i.e.
E[dV (x)]

dt = µ(e)xV ′(x) + 1
2σ

2x2V ′′(x). V (x) is the expected utility of an en-

trepreneur with quality x. The flow of the value function depends on the “dividend”

of utility from consumption and leisure, the “capital gain” associated with the ex-

pected change in the value function, and the possible loss associated with creative

destruction, in which case the entrepreneur becomes a worker with expected utility

V w.

zzz Bellman equation missing a g/ρ term associated with growth of ψt

The first key result describes the entrepreneur’s choice of effort. (Proofs of all

propositions are given in the appendix).

Proposition 1 (Entrepreneurial Effort): Entrepreneurial effort solves the Bellman

problem in equation (12) and is given by

e∗ = Ω−
1

φ
· β(ρ+ δ + δ̄). (13)

This proposition implies that entrepreneurial effort is an increasing function of the

technology parameter φ but decreases whenever τ , β, ρ, δ, or δ̄ are higher.

3.3. The Stationary Distribution of Entrepreneurial Income

We assume there are a continuum of entrepreneurs of unit measure at any point

in time, corresponding to the usual unit measure of product varieties. The ini-
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tial distribution of idiosyncratic productivity x is given by f0(x), and the distribu-

tion evolves according to the geometric Brownian motion process given above. En-

trepreneurs can be displaced in one of two ways. Endogenous creative destruction

(the Poisson process at rate δ) leads to replacement by a new entrepreneur who in-

herits the existing quality x; hence the distribution is not mechanically altered by

this form of destruction. In large part, this is a simplifying assumption; otherwise

one has to worry about the extent to which the higher baseline quality of the new

entrepreneur trades off with the higher x that the previous entrepreneur has ac-

cumulated. We treat the exogenous destruction at rate δ̄ differently. In this case,

existing entrepreneurs are replaced by new “young” entrepreneurs with some base

quality level x0. Exogenous destruction could correspond to the actual death or re-

tirement of existing entrepreneurs, or it could stand in for policy actions by the gov-

ernment: one form of misallocation may be that the government appropriates the

patent from an existing entreprenuer and gives to a new favored individual. Finally,

it simplifies the analysis to assume that x0 is the minimum possible productivity:

there is a “reflecting barrier” at x0; this assumption could be relaxed.

We’ve set up the stochastic process for x so that we can apply a well-known result

in the literature for generating Pareto distributions.4 If a variable follows a Brownian

motion, like x above, the density of the distribution f(x, t) satisfies a Kolmogorov

forward equation. In particular, the density satisfies

∂f(x, t)

∂t
= −

∂

∂x
[µ(e∗)xf(x, t)] +

1

2
·
∂2

∂x2
[

σ2x2f(x, t)
]

− δ̄f(x, t) (14)

If a stationary distribution, limt→∞ f(x, t) = f(x) exists, it therefore satisfies

0 = −
d

dx
[µ(e∗)xf(x)] +

1

2
·
d2

dx2
[

σ2x2f(x)
]

− δ̄f(x) (15)

Guessing that the Pareto form f(x) = Cx−ξ−1 solves this differential equation, one

obtains the following result:

4For more detailed discussion, see Reed (2001), Mitzenmacher (2004), Gabaix (2009), and Luttmer
(2010). Malevergne, Saichev and Sornette (2010) is closest to the present setup.
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Proposition 2 (The Pareto Income Distribution): The stationary distribution of

(normalized) entrepreneurial income is given by

F (x) =

(

x

x0

)−ξ∗

(16)

where

ξ∗ = −
µ̃∗

σ2
+

√

(

µ̃∗

σ2

)2

+
2 δ̄

σ2
(17)

and µ̃∗ ≡ µ(e∗)− 1
2σ

2 = φΩ− β(ρ+ δ∗ + δ̄)− 1
2σ

2 . Power-law inequality is therefore

given by η∗ ≡ 1/ξ∗.

The word “normalized” in the proposition refers to the fact that the income of an

entrepreneur with productivity x is ψtx. Aggregate growth occurs via the ψt term, as

discussed when we turn to general equilibrium, while the distribution of x is what

is stationary. Finally, we put a “star” on δ as a reminder that this value is determined

in general equilibrium as well.

Comparative statics: Taking δ∗ as exogenous for the moment, the comparative

static results are as follows: power-law inequality, η∗, increases if effort is more ef-

fective at growing market share (a higher φ), decreases if the time endowment is

reduced by government policy (a higher τ and hence lower Ω), decreases if en-

trepreneurs place more weight on leisure (a higher β), and decreases if either the

endogenous or exogenous rates of creative destruction rise (a higher δ∗ or δ̄).5

The analysis so far shows how one can endogenously obtain a Pareto-shaped

income distribution. We’ve purposefully gotten to this result as quickly as possible

while deferring our discussion of the general equilbrium in order to draw attention

to the key economic forces that determine top income inequality.

Next, however, we flesh out the rest of the general equilibrium: how productivity

x enters the model, how x affects entrepreneurial income (the proportionality factor

ψt), and how creative destruction δ∗ is determined.

5The effect of σ2 on power-law inequality is more subtle. If η∗ < µ∗/δ∗, then a rise in σ2 increase
η∗, while if η∗ < µ∗/δ∗, then the effect goes in the other direction. zzz clean up
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3.4. Production and General Equilibrium

The remainder of the setup is a relatively conventional model of endogenous growth

with quality ladders and creative destruction, in the tradition of Aghion and Howitt

(1992). A fixed population of people choose to be basic laborers, researchers (search-

ing for a new idea), or entrepreneurs (who have found an idea and are in the process

of improving it).

A unit measure of varieties exist in the economy, and varieties combine to pro-

duce a single final output good:

Y =

(
∫ 1

0
Y θ
i di

)1/θ

. (18)

Each variety is produced by an entrepreneur using a production function that ex-

hibits constant returns to the only nonrivalrous input, labor Li:

Yi = γntxαi Li. (19)

The productivity in variety i’s production function depends on two terms. The

first captures aggregate productivity growth. The variable nt measures how far up

the quality ladder the variety is, and γ > 1 is the step size. For simplicity, we assume

that a researcher who moves a particular variety up the quality ladder generates

spillovers that move all varieties up the quality ladder: in equilibrium, every variety

is on the same rung of the ladder. (This just avoids us having to aggregate over

varieties at different positions on the ladder.)

The second term is the key place where an entrepreneur’s effort decisions pay

off: labor productivity depends on xαi . In this sense, xi most accurately captures the

entrepreneur’s productivity in making variety i. It could equivalently be specified as

quality, and, as usual, variety i’s market share is increasing in xi.

The key resource constraint in this environment involves labor:

Lt +Rt + 1 = N̄ , Lt ≡

∫ 1

0
Litdi (20)
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A fixed measure of people, N̄ , are available to the economy. People can work as the

raw labor making varieties, or as researchers, Rt, or as entrepreneurs — of which

there is always just a unit measure, though their identities can change. It is conve-

nient to define L̄ ≡ N̄ − 1.

Researchers discover new ideas through a Poisson process with arrival rate λ per

researcher. Research is undirected and a successful discovery increases the produc-

tivity of a randomly chosen variety by a proportion γ > 1. The researcher is awarded

a patent to be the exclusive producer of that variety. In addition, as explained above,

the new idea generates spillovers that raise productivity in all other varieties as well.

The flow rate of innovation is therefore

ṅt = λRt (21)

and this also gives the rate of creative destruction:

δt = ṅt. (22)

3.5. The Allocation of Resources

There are 12 key quantities in this economic environment: Y , Yi, xi, Li, L, R, n, δ,

ei, ci, ℓi, ψ. The entrepreneur’s choice problem laid out earlier pins down c, ℓ, and e

for each entrepreneur. Production functions determine Y , Yi, n, and δ. This leaves

us needing to determine R, Li, and ψ.

It is easiest to do this in two stages. Conditional on a choice for R, standard

equilibrium analysis can easily pin down the other variables, and the comparative

statics can be calculated analytically. So to begin, we focus on a situation in which

the fraction of people working as researchers is given exogenously: R/L̄ = s̄. Later,

we let markets determine this allocation as well and provide numerical results.

We follow a standard approach to decentralizing the allocation of resources. The

final goods sector is perfectly competitive, while each entrepreneur engages in mo-

nopolistic competition in selling their varieties. Each entrepreneur is allowed by

the patent system to act as a monopolist and charges a markup over marginal cost
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given by 1/θ. In equilibrium, then, the following conditions hold:

Proposition 3 (Output, Wages, and Profits): Let w denote the wage per unit of raw

labor, and let πi denote the profit earned by the entrepreneur selling variety i. As-

sume now and for the rest of the paper that α = (1 − θ)/θ.6 The equilibrium with

monopolistic competition leads to

Yt = γntXαL (23)

wt = θγntXα (24)

πit = (1− θ)γntXα
(xi
X

)

(25)

where X ≡
∫ 1
0 xidi is the mean of the x distribution across entrepreneurs.

According to the proposition, aggregate output is an increasing function of the

mean of the idiosyncratic productivity distribution, X. More inequality (a higher

η) therefore has a level effect on output in this economy. Notice that this benefits

workers as well by increasing the wage for raw labor. The entrepreneur’s profits are

linear in idiosyncratic productivity, xi.

We can now determine the value ofψt, the parameter that relates entrepreneurial

income to x. Entrepreneur’s earn the profits from their variety, minus whatever

costs have to be paid to the researcher who discovered the idea in the first place

(i.e. a payment from the entrepreneur to the researcher for the patent). We spec-

ify this payment as a rental contract where the entrepreneur pays the fraction p of

profits in every period.7 The entpreneur’s income is then given by πi(1 − p). In

the entrepreneur’s problem, we previously stated that the entrepreneur’s income is

ψtxi, so these two equations define ψt as

ψt = (1− p)(1− θ)γntXα−1. (26)

6This is merely a simplifying assumption that makes profits a linear function of xi. It can be relaxed
with a bit more algebra.

7The assumption that researchers are an exogenous and constant share of the labor force implicitly
means that p is forced to adjust whenever we consider a comparative static exercise. When we endo-
genize the research allocation below, p will be the key price that is chosen so that researchers and raw
labor earn the same wage.
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Finally, we can now determine the overall growth rate of the economy along a

balanced growth path. Once the stationary distribution of x has been reached, X =

x0

1−η is constant. Since L is alson constant over time, the aggregate production func-

tion in equation (23) implies that growth in output per person is ṅt log γ = λs̄L̄ log γ

if the allocation of research is given by R/L̄ = s̄. This insight pins down the key

endogenous variables of the model, as shown in the next result.

Proposition 4 (Growth and inequality in the s̄ case): If the allocation of research is

given exogenously by R/L̄ = s̄ with 0 < s̄ < 1, then along a balanced growth path,

the growth of final output per person, gy, and the rate of creative destruction are given

by

g∗y = λs̄L̄ log γ (27)

δ∗ = λs̄L̄. (28)

Power-law inequality is then given by Proposition 2 with this value of δ∗.

As a reminder, from Proposition 2, Power-law inequality is given by

η∗ ≡ 1/ξ∗, where ξ∗ = −
µ̃∗

σ2
+

√

(

µ̃∗

σ2

)2

+
2 δ̄

σ2
(29)

and µ̃∗ ≡ µ(e∗)− 1
2σ

2 = φΩ− β(ρ+ δ∗ + δ̄)− 1
2σ

2 .

3.6. Growth and Inequality: Comparative Statics

In the setup with an exogenously-given allocation of research, the comparative static

results are easy to see, and these comparative statics can be divided into those that

affect top income inequality only, and those that also affect economic growth.

First, a technological change that increases φwill increase top income inequality

in the long run. This corresponds to anything that increases the effectiveness of

entrepreneur’s in building the market for their product. A canonical example of

such a change might be the rise in the World Wide Web. For a given amount of

effort, the internet allows successful entrepreneurs to growth their markets much
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more quickly than before, and we now see many examples now of firms that go from

being very small to very large quite quickly. Such a change is arguably not specific

to any particular economy but rather common to the world. This change can be

thought of as contributing to the overall rise in top income inequality throughout

most economies, as was documented back in Figure 3.

Interestingly, this technological change has no affect on the long-run growth rate

of the economy, at least as long as s̄ is held fixed. The reason is instructive about

how the model works. In the long run, there is a stationary distribution of x. Some

varieties are extraordinarily successful, while most are not. Even though an increase

in φ increases the rate of growth of x for all entrepreneurs, this only serves to widen

the stationary distribution. There is a level effect on overall GDP (working through

X), but no growth effects. Long-run growth only comes about through the arrival

of new ideas, not through the productivity growth associated with developing an

existing idea. (And this is true despite the presence of a linear differential equation

for x!)

The parameters Ω ≡ 1 − τ and β also affect top income inequality without af-

fecting growth when s̄ is held constant. An increase in τ corresponds to a reduction

in the time endowment available to entrepreneurs — an example of such a policy

might be the red tape and regulations associated with starting and maintaining a

business. With less time available to devote to the productive aspects of running a

business, the distribution of x and therefore the distribution of entrepreneurial in-

come is narrowed and top income inequality declines. A similar result obtains if two

economies differed with respect to β. An economy where preferences are such that

entrepreneurs put more weight on leisure will spend less time building businesses

and feature lower top income inequality in the long run.

The two key parameters in the model that affect both growth and top income

inequality are λ and s̄, and they work the same way. If researchers are more produc-

tive at finding new ideas (a higher λ) or if simply a larger fraction of the labor works

in research, the long-run growth rate will be higher — a traditional result in Schum-

peterian growth models. Here, however, there will also be an effect on top income

inequality. In particular, faster growth mean more creative destruction — a higher
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δ. This means that entrepreneurs have less time to build successful businesses, and

this reduces top income inequality in the stationary distribution.

These are the basic comparative statics of top income inequality. Notice that a

rise in top income inequality can be the result of either favorable changes in the

economy — a new technology like the World Wide Web — or unfavorable changes

— like policies that protect existing entrepreneurs from creative destruction.

?? δ̄ – discuss as a govt policy distortion?

??Firm size distribution?

Figure 8 shows numerical results when s̄ exogenously pins down the allocation

of labor to research.

4. Endogenizing R&D

We endogenize the allocation of labor to research (s) in a standard fashion...
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Figure 8: Numerical Examples: Exogenous s̄
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5. Numerical Examples

Figure 9 shows numerical results when s ≡ R/L̄ is endogenously determined. Fi-

nally, Figure 10 shows numerical examples that illustrate different ways in which the

model can match the time series behavior of top income inequality in the United

States and France.

6. Notes

Firm size distribution issues...

Guvenen AER 2007 Are Labor Income Shocks Really Very Persistent? Also RED

2009 (suggests that a unit root process is not out of the question).

Future work: estimate the stochastic process for top incomes. Does it look like

the random growth process with creative destruction? Have the parameters changed

over time in the U.S.? Can we do this as well for a country like France or Japan for

comparison? This would be a great way to verify the basic mechanism of the paper...

Evidence that hours worked by top earners has been rising over time in U.S., in

contrast to median/others?

KFE intuition? Always converge? Pareto is unique solution??

“And so we come again to the gains of the top earners, clearly the big story told

by the data. Its worth noting that over this same period of time, inequality of work

hours increased too. The top earners worked a lot more and most other Americans

worked somewhat less.” –T Cowen.

Meghir pistaferri. RED volume. BPEA Kaplan just recently (comment)

Within firms? What is happening to wage inequality within firms??

Experience matters. Human k. Age earnings. Flatter in France.

Mike Harrison

V(x,t) – be careful with time dependence in the Prop 1

Ensemble arguments: how to go from stationary distn for a given entrepreneur to

the distn across varieties for all entrepreneurs at a point in time?
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Figure 9: Numerical Examples: Endogenous s
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Figure 10: Numerical Examples: Matching Inequality in U.S. and France
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Proving convergence and uniqueness: Harrison in his book does this for a standard

diffusion w/ drift, which is what I have for log x. He prefers a probabilistic argument

to the KFE because it connects directly with the primitives of the problem (maybe

use Harrison for formal proof in appdx and keep KFE in text for analytic directness?).

Look in his book at section on reflected Brownian motion where he “divide future

into regenerative blocks.” These blocks in my setting will be the exponential lengths

of time that an entrepreneur is active (exponential because killing times are pois-

son). Renewal theory?

Harrison also mentioned liking the Preferential Attachment generator. Maybe

this could be connected to Klette and Kortum? But of course I do not want firm size

to be changing over time...

Using avgincome99 etc to make progress?

Scale effects

Is xhuman capital? Possibly. Not obvious that human capital depreciates rapidly

when new entrepreneur replaces you? That seems more about ideas...

Within firm income inequality? e.g. Frydman?

A Appendix: Proofs of the Propositions

Proof of Proposition 1. Entrepreneurial Effort

See pp. 1-3 of notes. Needs to be typed in...
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