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Abstract

We develop a dynamic lifecycle model to study the increases in college com-
pletion and average IQ of college students in cohorts born from 1900 to 1972.
We discipline the model by constructing historical data on real college costs
from printed government reports covering this time period. We find that in-
creases in college completion of 1900 to 1950 birth cohorts are due primarily to
changes in college costs, which generate a large endogenous increase in college
enrollment. Additionally, we find strong evidence that cohorts born after 1950
underpredicted sharp increases in the college earnings premium they eventually
received. Combined with increasing college costs during this time period, this
generates a slowdown in college completion, consistent with empirical evidence
for cohorts born after 1950. Lastly, we claim that the rise in average college
student IQ cannot be accounted for without a decrease in the variance of ability
signals. We attribute the increased precision of ability signals primarily to the
rise of standardized testing.
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1 Introduction

The twentieth century saw a dramatic expansion of higher education in the United States.

Among those in the 1900 birth cohort, less than 4% held a bachelor’s or first professional

degree at age 23, but by the 1970 birth cohort this share had risen to more than 30%.

Panel (a) of Figure 1 plots this series for all cohorts from 1900 through 1977.1 Concurrent

with the increase in college attendance, the ability gap widened substantially between

college students and those individuals with a high school degree and no college experience,

i.e., “non-college” individuals. This pattern is seen in Panel (b) of Figure 1, which plots

the average IQ percentile (our proxy for “ability”) of college and non-college individuals.2

For example the average college student born in 1907 had an IQ in the 53rd percentile,

very close to the average non-college individual whose IQ was in the 47th percentile. Yet

over the next several decades, the average IQ percentile increased among college enrollees

and decreased among those with only a high school degree. Most intriguing is that this

trend of increased ability sorting occurred even as the share of students attempting college

grew steadily larger.

The goal of this paper is to understand the causes of these two empirical trends.

However, this task is complicated by the vast number of changes in both the aggregate

economy and education sector over this time period. We combat this by developing an

overlapping generations lifecycle model populated by high school graduates who are het-

erogeneous in both ability and financial assets. An important feature of the model is

that individuals only see a noisy signal of their true ability when making risky decisions

about college enrollment. We incorporate newly constructed data on college costs ob-

tained from historical printed government sources. Additionally, we estimate life-cycle

wage profiles for men and women in each birth-year cohort in order to accurately model

the opportunity costs of wages foregone by college attendees and the education earnings

premia realized by those who either complete some college or successfully graduate from

college.
1The 1977 cohort was 23 years old in 2000 when this data series ends. Data for cohorts born up to 1967 are taken

from Snyder (1993), and from 1968 through 1977 are the authors’ calculation.
2These two data trends have also been documented by other authors, including Hendricks and Schoellman (2012). In

panel (b), data points for cohorts prior to 1950 are from Taubman and Wales (1972). The 1960 data point is from the
NLSY79, as calculated by Hendricks and Schoellman (2012). The 1980 data point is our calculation based on data from
the NLSY97.
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Figure 1: College Completion and Average Student Ability in the U.S. since 1900
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We calibrate parameters of the model to match the U.S. data and then conduct a series

of experiments in order to understand changes in college completion and ability sorting

over time. First, we find that the secular increase in high school completion is responsible

for less than half of the increase in college completion over the entire time period. The

remainder is due to changes in college enrollment and completion rates conditional on

high school graduation. Interestingly, however, the key features of the model allowing

us to match the data depend critically on the time period considered. For cohorts born

from 1930 to 1950, we find that changes in college costs are key for generating the

increase in college completion, as they generate a large endogenous increase in college

enrollment. Endogenous changes in the average ability of college students also affects

college completion rates, but the impact is quantitatively much smaller.

For cohorts born after 1950, the benchmark model significantly overpredicts college

completion rates in the data. We show that this is likely due to a sharp increase in the

growth rate of the college earnings premium. While the college earnings premium was

roughly flat for cohorts born between 1900 and 1950, the growth rate increased sharply

for cohorts born after 1950. We find that modifying the model to allow for imperfect

forecasting of the college wage premium improves substantially the predictions for college
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completion for cohorts born after 1950, while leaving the results for cohorts born before

1950 largely unaffected.

In terms of capturing increased ability sorting over time, we consistently find that

changes in economic factors (i.e., earnings premia, college costs, opportunity costs, and

asset endowments) have little impact. Instead, the key feature in the model that accounts

for this is uncertainty about ability. We show that a decrease in the variance of ability

signals can generate an increase in ability sorting similar to that in the data. We attribute

this change to the increases in standardized testing which improved students knowledge

of their own ability relative to other students in their cohort, as discussed in Hoxby

(2009).

This paper is related to a large literature on the joint determination of enrollment

changes and ability sorting, but previous work focuses almost exclusively on the post-

World War II period. Lochner and Monge-Naranjo (2011) look at the role of student loan

policies with limited commitment, and shows that this can generate ability sorting. Our

focus on an earlier time period excludes the student loan innovations they consider, so we

instead investigate other factors that may be relevant in understanding ability sorting.

Garriga and Keightley (2007) consider the impact of different education subsidies for

enrollment and time-to-degree decisions, in a model with borrowing constraints and risky

education investment. Hendricks and Leukhina (2011) consider the role of borrowing

constraints and learning in understanding the evolution of educational earnings premia.

Like this paper, Altonji (1993) and Manski (1989) assume that high school students do

not perfectly know their own ability, and they use this feature to investigate the role of

preferences, ability, and earnings premia for enrollment and dropout. Cunha, Heckman,

and Navarro (2005) extend the model developed in Willis and Rosen (1979) to include

uncertain ability, and find that roughly sixty percent of the variability in returns to

schooling is forecastable.

Hendricks and Schoellman (2012) study the same time period as we do, but they take

data on college completion and student ability as given in order to understand changes

in the college earnings premium in a complete markets model. By contrast, we seek to

understand the economic factors that affected college completion and average student
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ability for cohorts since 1900. Perhaps most related to this paper is Castro and Coen-

Pirani (2012), who ask whether educational attainment over time can be explained by

earnings premia in a complete markets model. They find that it cannot. Our model,

with limited borrowing and uncertainty about ability, matches college attainment well

for early cohorts, but shares the problem that the model overpredicts attainment after

1950 due to the increase in the earnings premia for these cohorts. In both, disgarding

individuals’ ability to perfectly forecast future earnings premia helps the model fit, but

not entirely.

Our work also relates to a number of empirical papers on the impact of different eco-

nomic forces on historical post-secondary completion, including college costs and income

(Campbell and Siegel, 1967), student ability (Taubman and Wales, 1972), academic qual-

ity (Kohn, Manski, and Mundel, 1976) and borrowing constraints (Hansen and Weisbrod,

1969).

2 Model

In this section, we develop an overlapping generations model to investigate the causes

of increased college completion and increased ability sorting.3 The relevant features

include borrowing limits, uncertain ability, and risky completion of college education.

The notation introduced in this section is summarized in Table 2 of the Appendix.

Demographics and Preferences Time in the model is discrete, and a model period is one

year. Each period, Nmt males and Nft females are born, each of whom lives for a total of

T periods. Let a = 1, 2, . . . , T denote age. Each individual maximizes expected lifetime

consumption

E0

T∑
a=1

βa−1

(
c1−σ
a − 1

1− σ

)

Endowments and Signals Individuals are ex-ante heterogeneous along three dimensions:

their sex, m or f , initial asset endowment k0, and ability to complete college, denoted α.

The probability that any individual completes his or her current year of college is given

3The counterpart to ability in the data is IQ.
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by π(α), where π′ > 0. Log initial assets, log(k0), and ability α are drawn from a joint

normal distribution with correlation ρt, means µα,t and µk,t, and standard deviations σα,t

and σk,t. Note that the parameters on the joint distribution for {α, k0} are potentially

time-varying.

While sex and asset endowments are perfectly observable, ability α is not. Instead,

each individual receives a signal θ = α + ε at the beginning of life. The error term is

ε ∼ N(0, σ2
ε). Note that because assets and ability are jointly distributed, individuals

actually receive two pieces of information about ability – the signal θ and asset endowment

k0. Let ν = (k0, θ) be the information an individual has about his true ability. After the

initial college enrollment decision, ability α becomes publicly observable.

Education Decisions The population we are considering consists of high school gradu-

ates, so that birth in this model translates to a high school graduation in the real world.

At birth, every individual decides whether or not to enroll in college, given sex, asset

endowment k0, and signal θ. This is the only time this decision can be made. Once

enrolled in college, individuals can only exit college by graduating or failing out with

annual probability π(α). After failure, individuals enter the labor force and may not

re-enroll, consistent with the finality of dropout decisions discussed in Card and Lemieux

(2001). Graduating college requires C years of full-time education at a cost of λt per

year. If an individual decides to not enter college, he or she immediately enters the labor

market and begins to work.

Labor Market We adopt the common assumption that individuals of different ages, a,

sex s, and education, e, are different inputs into a constant returns to scale production

function that requires only labor. Therefore, wages depend on age, sex, education level,

and the year. We write wages as wa,t(e, s) for s ∈ {f,m} and e ∈ {0, 1, . . . , C}. While

ability α has no direct effect on realized wages, it does affect expected wages because

higher ability students are more likely to graduate college and earn higher wages.

Savings Market Each individual can borrow and save at an exogenous interest rate rt.

We assume individuals must die with zeros assets, so kT+1 = 0. Borrowing is constrained
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to be a fraction γ ∈ [0, 1] of expected discounted future earnings. Therefore, individuals

must keep assets kt each period above some threshold k̄, where

k̄ = −γ · E
n=T∑
n=a

wn,t
1 + rt

Note that both the expectations operator and wage can depend on a number of factors,

including ability α, age a, year t, education e, and sex s. Therefore, the borrowing

constraint will be written as the function k̄(α, a, t, e, s). In a slight abuse of notation, we

will write k̄(a, t, e, s) when the borrowing constraint does not depend on ability α, as is

the case once an individual finishes college.

2.1 Timing and Recursive Problem

At the beginning of year t, Nmt men and Nft women are born at age a = 1. Again,

each individual is initially endowed with assets k0, sex s, ability α, and a signal θ of true

ability. Immediately, each individual decides whether or not to enroll in college. If he

or she enrolls in college, true ability is immediately realized, and the individual proceeds

through college. In the case of failure (due to π(α)) or graduation, he or she proceeds

to the labor market and works for the remainder of his or her life. Individuals who do

not enroll in college proceed directly to the labor market, where they receive the wage

associated with age a, education e = 0, and sex s.

Recursive Problem for Worker For individuals currently not enrolled in college, their

ability is irrelevant for their decision problem. Therefore, the value of entering year t at

age a with assets k, years of college education e, and sex s ∈ {f,m} is:

V w
a,t(k, e, s) = u(c) + βV w

a+1,t+1(k′, e, s)

s.t. c+ k′ = (1 + r)k + wa,t(e, s)

k′ ≥ k̄(a, t, e, s)

kT+1 = 0
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Recursive Problem for College Student If instead an individual is currently enrolled in

college, he has already completed e years of his education and must pay λt in college

costs for the current year. The probability that he passes and remains enrolled the next

year, however, depends on his ability α. Recall that α is known with certainty as soon

as the education decision is made, so there is no uncertainty about ability.

The value of being enrolled in college at year t at age a, with assets k, ability α, e

years of education completed, and sex s ∈ {f,m} is:

V c
a,t(k, α, e, s) = u(c) + β

[
π(α)V c

a+1,t+1(k′, α, e+ 1, s) + (1− π(α))V w
a+1,t+1(k′, α, e, s)

]
s.t. c+ k′ − λt = (1 + r)k

k′ ≥ k̄(α, a, t, e, s)

π(α) = 0 if a = C ∀α

The last restriction simply states that if a = C, that individual is graduating college and

cannot acquire any more years of college education.

The College Enrollment Decision Given the value of being enrolled in college and work-

ing, it is possible then to define the educational decision rule at the beginning of life.

Recall that at this point, α is unknown, but each individual receives a signal ν = (k0, θ).

Each individual then constructs beliefs over possible ability levels by using Bayes’ Rule.

Let F (α; k0, θ) be the cumulative distribution function of beliefs (as defined by Bayes’

Rule) over ability levels. Given all this, an individual born in year t of sex s with assets

k0 and signal θ enters college if and only if the expected value of entering college is higher

than the (certain) value of entering the workforce. This is given by the inequality∫
α

V c
1,t(k0, α, 1, s)F (dα; k0, θ) ≥ V w

1,t(k0, 0, s) (2.1)

3 Calibration

The goal of this paper is to assess the role played by a number of features of the economy

in understanding ability sorting and college enrollment over time. We therefore take a
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multi-faceted approach to parameterizing the model. First, we construct historical data

series for Nmt, Nft, and λt, which are incorporated directly into the model. Second, we

estimate life-cycle wage profiles wa,t(e, s), which are taken as given by model individuals

solving their dynamic problem. Third, we exogenously choose values for T , C, rt, β,

ρt, µα,t, µk,t, σα,t, σk,t, and π(α). Finally, we calibrate σε,t, and γ in order to match

important features of the time series data. Each of these are discussed in more detail

below.

3.1 Historical Time Series Data

As previously mentioned, Nmt males and Nft females are “born” into the model each

year, meaning they graduate high school and enter the model eligible to make college en-

rollment decisions. We take high school completion, and thus the population of potential

college enrollees, as exogenous. The series for Nmt and Nft are taken directly from the

U.S. Statistical Abstract Historical Statistics, and we use linear interpolation to supply

missing values.

Annual college costs per student, λt, are calculated as the average tuition and fee

expenses paid out-of-pocket by students each year.4 Note that because we measure

average out-of-pocket costs in the data, λt accounts for changes over time in the average

amount of financial aid received by students in the form of public and private scholarships

and grants. Full details of the data construction are relegated to Appendix A. Briefly,

however, we compute λt each period as the total revenues from student tuition and fees

received by all institutions of higher education divided by the total number of students

enrolled in those institutions. The complete time series is constructed by splicing together

data from historical print sources including the Biennial Surveys of Education (1900 to

1958) and the Digests of Education Statistics (since 1962).

4Additional student expenses, such as room and board, could also be included, and in fact we do consider these costs
as a robustness exercise in Section 5. We choose to leave these out of the benchmark specification because such costs are
usually more accurately classified as consumption rather than education expenses, and must be paid regardless of college
enrollment status.
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3.2 Life-Cycle Wage Profiles

Life-cycle wage profiles wa,t(e, s) are estimated using decennial U.S. Census data from

1940 through 2000, along with American Community Survey (ACS) data from 2006-

2010. Each ACS data set is a 1% sample of the U.S. population, so that when combined

they constitute a 5% of the U.S. population, similar to a decennial census. The data

are collected from the Integrated Public-Use Microdata Series (IPUMS) (Ruggles et al.,

2010), and include wage and salary income, educational attainment, age, and sex. From

age and education data we compute potential labor market experience, x, as age minus

years of education minus six. We assume that wages can be drawn from one of three

education categories - high school, some college, or college. These correspond to e = 0,

e ∈ [1, C − 1] and e = C in the model. For each education category, we estimate wage

profiles for the non-institutionalized population between ages 17 and 65 who report being

in the labor force using the following regression:

log(wi,t) = δbi,t +
4∑
j=1

βsjx
j
i,t (3.1)

where i denotes individuals, b is birth-year cohort, s is sex, and x is potential labor

market experience. In words, we regress log wages on a full set of birth year dummies

plus sex specific quartics in experience.

3.3 Exogenous Parameters

Parameters set exogenously prior to solving the model are: T , C, rt, β, ρt, µα,t, µk,t, σα,t,

σk,t, and π(α). We set the length of working life at T = 48, implying that individuals

born into the model at age 18 would retire at age 65. The number of periods required

to complete college is C = 4, so that all individuals in the model have post-secondary

education e ∈ {0, 1, 2, 3, 4}.5 The real interest rate is set to rt = 0.04 in all periods, and

the discount rate is β = 0.96, a standard value in models with annual periods.

We now turn to the parameters for the joint normal distribution over {α, k}. Recall

from Section 2 that α only affects an individual’s probability of passing college. Fur-

5We are not presently concerned with educational attainment beyond the bachelor’s degree level, so we do not model
post-graduate education in this paper.

10



thermore, our interest in “ability” is limited to understanding changes over time in the

average ability of college versus non-college students within cohorts. In other words, we

only care here about the relative ability of students within the same birth year, as in the

data from Figure 1b, not across birth years. As this is our objective, we do not have

to worry about trends in average student ability (such as the so-called “Flynn effect”)

and can normalize the ability distribution for each birth cohort. For this reason, we set

µα,t = 0 and σα,t = 1, for all t, so the distribution for α is a standard normal, conditional

on k0.

Unlike with ability, we are certainly concerned about changes over time in the mean

and variance of the initial asset distribution. We interpret k0 as a reduced-form way of

capturing all of the personal financial resources available to a new high school graduate,

including but not limited to parental gifts and bequests, and the individual’s own income

and savings. Additionally, since the model does not allow for individuals to work while

in college, we interpret initial assets to also include the present value of income earned

while enrolled. With this in mind, we require that the mean and standard deviation of

initial assets in the model to track the mean and standard deviation of income in U.S.

data. To this end, we start with µk,t equal to the annual mean real income per person, as

in Piketty and Saez (2006) so that the average real asset endowment in the model equals

the actual real mean income in the U.S. each year. Then, in order to account for the fact

that µk,t includes the individuals’ own earnings while in college, we adjust it upward for

men and downward for women so that the difference between mean asset endowments for

men and women matches the gender earnings gap in our estimated wage profiles during

college years.

Piketty and Saez (2006) also provide historical data on the share of income received

by the top ten percent of individuals, as well as the cut-off income level for the 90th

percentile. Assuming that the U.S. income distribution is log-normal as predicted by

Gibrat’s law, we can use these data to back out the implied standard deviation of the

U.S. income distribution each year. The procedure is as follows. Let real income in

year t, denoted Yt, be a random variable with realization yt such that Yt ∼ lnN (µt, σ
2
t )

and the associated cumulative distribution function is FY (yt;µt, σ
2
t ). Observed data are
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the real mean income in the U.S. in year t, denoted yt, and the 90th percentile of real

income in year t, denoted y90,t. A standard property of the log-normal distribution is

that E[Yt] = exp(µt+
σ2
t

2
). Since E[Yt] = yt is observed, we can guess a value σ̃2

t and solve

for the associated mean of the distribution:

µ̃ = ln(yt)−
σ̃2
t

2

Next, we compute 1−FY (y90,t; µ̃, σ̃
2
t ), which would be the fraction of total income received

by those with income above the threshold value y90,t if the mean and variance of the

income distribution were actually µ̃ and σ̃2
t . This process continues iteratively until we

find a value σ2
t , and associated µt such that the fraction of income received by the top

ten percent equals that observed in the data. We then set σk,t = σt.

The last parameter related to the stochastic endowment process that we need to

determine is ρt, the correlation between ability and initial asset endowments. Lacking

the rich historical data that would be required to properly identify this parameter, we

will assume for the benchmark parameterization that ρt = 0 for all t, so that ability and

assets are independent random variables. Intuitively, though, one would expect some

positive correlation between a student’s financial resources and his or her probability

of completing college. It is well known, for example, that parental income is positively

related with student test scores and performance (Black, Devereux, and Salvanes, 2005;

Cameron and Heckman, 1998). Moreover, this correlation also implies a more precise

signal of ability. Thus, we later examine in Section 5.1 how the results may change as

we allow ρ to increase.

Finally, we need to set the annual probability of passing college, π(α). Note that

π(α) is a reduced form way to capture college non-completion for any reason, including

failure and voluntary drop-out. We employ the simple assumption that an individual’s

cumulative probability of completing college equals her percentile rank in the ability dis-

tribution. For example, an individual whose ability is higher than 75% of the peers in her

birth-year cohort will complete college with probability 0.75, conditional on enrollment.

With the length of college set to C = 4, there are 3 independent opportunities for failure

- after the first, second, and third years of school. Thus, the annual probability π(α) is
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simply the cumulative probability raised to the power one-third.

3.4 Calibrated Parameters

Finally, we choose the borrowing constraint, γ, and the variance of the noise on the ability

signal, σε,t, to replicate the two main data series of interest – college completion and the

average ability of college relative to non-college individuals. The borrowing constraint

is set to γ = 0.025 in order to match the time series of college completion. Intuitively,

this means that in any given period an individual can borrow up to 2.5% of his expected

lifetime income. Post-schooling, this amount is known with certainty because the wage

profiles are given, but during college the expected lifetime income is conditional on the

probability of passing college.

Unfortunately, we do not have direct evidence on the precision with which individuals

in a given cohort know their own ability relative to their peers. At a qualitative level, it is

likely that this precision has increased – i.e., σε,t has likely decreased – over time. In the

early part of the 20th century, no standardized exams existed to compare students within

cohorts across schools. Those college admissions exams that did exist were generally

school-specific, so there was little scope for comparison of students across schools. During

World War I, the U.S. military began testing recruits using the Army Alpha and Army

Beta aptitude tests. By World War II, these tests were replaced by the Army General

Classification Test (AGCT), a precursor to the Armed Forces Qualification Test (AFQT).

On the civilian side, the introduction of the Scholastic Aptitude Test (SAT) in 1926

started a trend toward more widespread use of standardized exams as a college admissions

criteria. As standardized testing became more common, students obtained more and more

precise signals of their own ability relative to peers. In the modern era, virtually every

student contemplating college takes either (or both) of the SAT or the ACT (American

College Testing) exams. Even those who do not take these college admissions exams still

have quite precise information about their relative ability because other standardized

exams are mandated at public schools.

With this historical background in mind, we make the following assumptions on the

time series structure of σε,t. For cohorts making college decisions prior to World War II,

13



i.e., those born 1900 through 1923 and graduating high school from 1918 through 1941,

we assume that σε,t decreases linearly from σε,1900 = 2 to σε,1923 = 0.2. For cohorts born

after 1923, σε,t remains constant at 0.2. This is an admittedly ad hoc construction, but

in a simple way it captures the trend of each subsequent cohort getting slightly better

information than the previous cohort as aptitude and ability tests became more common

in the time between the world wars. By the completion of World War II, such tests were

in widespread use and students likely had quite precise signals about their own ability

relative to peers.

4 Results

Our main computational exercise consists of first simulating the model for U.S. birth

cohorts from 1900 through 1972 (i.e., students who graduated high school from 1918

through 1990), verifying that the model replicates important features of the historical

data, and then running counterfactual simulations to quantify the impact of changes in

direct college costs, education earnings premia, and opportunity costs of college (foregone

wages) on college completion and average student ability. Having discussed the bench-

mark model parameterization, we now examine how well the simulated model matches

U.S. data.

4.1 Benchmark Model Fit

Figure 2 depicts the model predictions along with historical U.S. data for college com-

pletion and average student ability. The measure of college completion that we choose to

match is the share of 23-year-olds with a college degree. While educational attainment

is often measured later in life to capture those who complete college at older ages, we

prefer this series for a couple of reasons. First, to our knowledge it is the only measure

of college completion with consistent time series data for birth cohorts back to 1900.

Second, our model is not constructed to evaluate college enrollment decisions of older

students who: (i) are generally less financially-dependent upon parents when paying for

education; (ii) face different opportunity costs of school after having been in the work-
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force for some time; and (iii) may anticipate different return on investment in education

due to later-life completion.

Figure 2: Benchmark Model Results
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Panel (a) of Figure 2 shows that, overall, the model replicates well the trends in

U.S. college completion over much of the 20th century, with one notable exception. The

model does not capture the initial decline and subsequent increase in college completion

for cohorts born in the 1950s and 1960s. This deviation is due primarily to the modeling

assumption that individuals know their lifetime wage profile with certainty, implying

that they can perfectly forecast changes in the education earnings premium. Later we

consider alternative assumptions, and find that the model can generate more accurate

predictions over this time period.

Panel (b) of Figure 2 plots the average ability percentile of students who attempt

college (even if they do not complete), and those who have only high school education.

While we only have a few reliable data points to match, those we do have show a clear

pattern of increased sorting by ability over time. For cohorts born at the beginning of

the 20th century, college and non-college students had similar ability on average, but the

ability gap widened throughout the century. This general pattern is also predicted by

the model.
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Table 1: Measures of Fit for Various Model Specifications

Average Ability

Fraction of 23-year-olds with College Degree Difference

Model \ Cohorts 1900-1972 1900-1925 1926-1950 1951-1972 1900-1972

Benchmark 0.158 0.015 0.009 0.133 0.034

Imperfect foresight 0.055 0.020 0.013 0.022 0.028

Constant costs rel. to income 0.134 0.024 0.011 0.099 0.034

Corr(α, k0) = 0.30 0.183 0.023 0.017 0.143 0.038

Include room and board 0.159 0.019 0.017 0.123 0.035

In order to facilitate quantitative comparison with alternative specifications, we also

provide measures of model fit over various time periods in Table 1. The measure of fit we

report is the sum of squared deviations between model and data. The columns labeled

“Fraction of 23-year-olds with college degree” refer to the series in Panel (a) of Figure

2. For this series, we compute the fit over all cohorts 1900-1972, and three subsamples:

1900-1925, 1926-1950, and 1951-1972. As seen in the “Benchmark” model specification

in Panel (a) of Figure 2, the model matches the data very closely for cohorts born pre-

1950, but does less well for cohorts born after 1950. The column labeled “average ability

difference” measures how well the model matches the difference between the average

ability percentile of college and non-college individuals. We only report the full sample

for this statistic because there are so few data points to match within the sub-sample

periods.

4.2 Discussion of Benchmark Results

Our measure of college completion – the fraction of twenty-three year olds with a college

degree – can be decomposed as

P grad

P 23
=

(
PHS

P 23

)(
P enroll

PHS

)(
P grad

P enroll

)
(4.1)

where PHS, P enroll, and P grad are the number of people that complete high school, enroll

in college, and graduate college. The model’s predictions for college completion can be
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decomposed into the three terms on the right hand side of equation (4.1). While the first

is exogenous, the second and third terms are endogenous to the model. In this section,

we use this decomposition to understand what drives the change in college completion

predicted by the model.

Figure 3: College Enrollment Conditional on High School Graduation
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Figure 4: College Pass Rate
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First, Figure 3 plots the share of high school graduates that enroll in college, as

predicted by the model. In the language of equation (4.1), this is P enroll/PHS. Figure 3

shows that for cohorts born between 1900 and 1920, college enrollment rates conditional
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on high school graduation were between 30 and 50 percent, albeit with a lot of noise.

This rate increased for cohorts born in the 1920s and generally remained between 50 and

60 percent for cohorts through 1950, after which the rate again increased substantially.

The third term in equation (4.1) is the share of college enrollees that graduate by age

twenty-three. This is given by the ratio P grad/P enroll and is plotted in Figure 4. While

Figure 4 shows that the college pass rate has a fair amount of year-to-year noise, the

hump-shaped trend is still evident. From the 1900 through 1930 birth cohorts, the col-

lege pass rate increased from about 51% to nearly 61%. After the 1930 cohort, however,

this trend reverses, and the pass rate steadily declines back down to around 53%. This

result is consistent with evidence from Bound, Lovenheim, and Turner (2010), who com-

pare the high school class of 1972 (roughly birth cohort 1954) to that of 1992 (birth cohort

1974) and find a significant decrease in college completion conditional on enrollment. In

our model, this pattern is due entirely to the ability composition of college students. Re-

call from Panel (b) of Figure 2 that the average ability of college enrollees was generally

increasing through the 1930 cohort, then decreasing in the following cohorts. Unfortu-

nately, we have found no reliable historical data to compare with the model’s predicted

pass rates. However, the National Center for Education Statistics (NCES) does provide

more recent data we can use for a rough comparison. For the cohort beginning college

in 1996 (assuming they are around 18 years old on average, this would be approximately

the 1976 birth cohort), the share completing college within five years was 50.2%.6 Our

last birth cohort in the model is 1972, so the comparison is not perfect, but the model

pass rate of 53.1% for that cohort is quite close.

We now isolate the effects of the college enrollment and college pass rates through two

counterfactual experiments. We ask two questions. First, how does college completion

change relative to the benchmark if there were no endogenous increase in the college

enrollment rate, as in Figure 3? Second, how does college completion change if there

were no endogenous changes in the college pass rate, as in Figure 4? Results from these

two experiments are plotted in Figure 5, along with the benchmark prediction for college

completion.

6See Table 341 in the 2010 Digest of Education Statistics.
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Figure 5: College Completion if Enrollment Rates and Pass Rates were Constant
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Figure 5 shows that if the college enrollment rate had remained constant instead of

rising after the 1920 cohort, the model would have under-predicted college completion

rates by more than half by the end of the time series.7 Similarly, if the college pass

rate had instead remained constant at the 1900 value of 51.5%, then college completion

would have been several percentage points lower than in the benchmark model. It is

clear, however, that the quantitative effects of changes in college enrollment are much

larger than those due to changing college completion rates.

4.3 Counterfactual Experiments

4.3.1 What if individuals do not have perfect foresight of education earnings premia?

Figure 6 shows that for cohorts born in the U.S. prior to 1950, the education premia

implied by our estimated life-cycle wage profiles exhibit some year to year variation, but

essentially no trend. Beginning around the 1950 cohort, however, the college earnings

premia began increasing steadily. We now examine how the model predictions for college

completion and average student ability would differ if, instead of predicting changes in the

education premium exactly, model individuals expected an historical average education

earnings premia to prevail in the future as well.

7In Figure 5, we assume that the the college enrollment rate conditional on high school graduation is constant at 36.9%,
which is the average enrollment rate for cohorts 1900 through 1920.
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Figure 6: Education Premia Implied by Estimated Life-Cycle Wage Profiles
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For this exercise, we assume that the high school wage for each cohort is observable,

but the earnings premia for individuals who complete college or some college are not

observable. Rather, individuals observe a moving average of the earnings premia earned

by previous cohorts and assume their own cohort’s earnings premia will be the same.

Thus, as the true college earnings premium begins rising, newly born cohorts will predict

the increase imperfectly and with several years lag.

Figure 7 shows the model predictions under this counterfactual experiment, assuming

a 25-year moving average. Relative to the benchmark model results, notice that the model

now comes much closer to the actual college completion rate in the data for cohorts born

after 1950. The model still does not capture all of the decline for the cohorts in the

1950s, but as Table 1 clearly shows, this specification fits the data much better than

the benchmark assumption that individuals perfectly forecast changes in the education

premia. Over the entire time period, the sum of squared deviations declines by almost

two-thirds from the benchmark value of 0.158 to 0.055. All of this gain is due to the 1951-

1972 cohorts, where the sum of squared deviations changes from 0.133 to 0.022, a decrease

of more than 83%. Additionally, the model’s ability to match changes in average ability of

college and non-college students also improves under this specification. According to the
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Figure 7: Results with Imperfect Foresight of Education Earnings Premia
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(b)
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last column of Table 1, the sum of squared deviations declines from 0.034 to 0.028. These

improvements strongly suggest that perfect foresight of education earnings premia is a

problematic assumption. Accurately modeling students’ expectations about the returns

to education is crucial for understanding college enrollment decisions, particularly during

periods of time when education premia are changing rapidly.

4.3.2 What if real college costs increased proportional to real disposable incomes?

We now ask how college completion rates and average student ability would have differed

over the time period in question if real college costs were constant with respect to real

average income. Figure 8 depicts the actual time series data for real college costs that

we use in the benchmark model (solid line), along with a hypothetical series for college

costs which are a constant fraction of annual real average income (dashed line). From

1920 to around 1940, the actual series exceeds the hypothetical series due the the fact

that per student tuition and fees spiked relative to income during the Great Depression.

Then from the early 1940s until about 1990, the hypothetical series is above the actual

series. Holding all else constant, we would expect that individuals in the counterfactual

model facing the hypothetical college costs should attend college in greater numbers for
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the cohorts born from about 1900 to 1920 (those in school from around 1920 to 1940),

and fewer of those born after 1920 would attend college.

Figure 8: College Costs
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Figure 9 largely confirms these predictions. Relative to the data, the model predicts

too many people attending college for those cohorts born between about 1910 and 1925.

For the cohorts from 1925 through 1950, the model does predict slightly fewer college

graduates, but still matches the data quite closely. And finally, for the cohorts born after

1950, the model still predicts more college graduates than in the data. However, as can

be seen in Table 1, the model fit improves over this period since the sum of squared

deviations fall from 0.133 to 0.099, a decrease of more than 25%. Turning to Panel (b)

of Figure 9, there are hardly any discernible differences in average ability of college and

non-college students relative to the benchmark model. This can also be confirmed by

noting that sum of squared deviations for the average ability difference in Table 1 is

unchanged from the benchmark value of 0.034. We conclude that the fluctuations in real

college costs relative to real income are not a major factor in accounting for the increased

ability sorting over time.
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Figure 9: Results with Alternative College Costs
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5 Robustness

Having discussed the benchmark model results and counterfactual experiments, we now

make a few remarks about the robustness of some modeling assumptions. In particular,

we made the strong assumption that ability and initial assets were uncorrelated. We

also assumed that room and board were excluded from college costs. We now relax these

assumptions and see how they affect the results.

5.1 Correlation of Ability and Initial Assets

In the benchmark specification, we assumed that the random endowments for ability

and assets were uncorrelated. However, there is evidence to suggest that these may be

positively correlated, and we want to understand how this affects the results. We maintain

the assumption that α and log(k0) share a bivariate normal distribution, only now we set

ρ = 0.3. All other parameters are maintained as in the benchmark specification. Figure

10 shows the model predictions for college completion and ability sorting between college

and non-college individuals.

Relative to the benchmark model results, two things are notable. The positive cor-

relation between ability and assets increases college completion minimally throughout
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Figure 10: Results with Positive Correlation between Ability and Initial Assets
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the time period, and it increases the difference in ability between college and non-college

students during earliest birth cohorts. Both of these effects reduce the model fit slightly,

as seen in Table 1. The increase in completion is simply due to the fact that higher abil-

ity students are now more likely to have greater financial resources as well, thus making

them more likely to attend college. The effect on average ability is also quite intuitive.

Recall that individuals receive information ν = (k0, θ), where θ = α+ε is the noisy signal

of true ability α. As ρ increases k0 becomes more informative about α, so individuals

with high initial assets will infer that they have higher ability, and thus be more likely to

enroll in college. This increases the average ability of individuals who attempt college,

while simultaneously decreasing the average ability of non-college individuals. The ef-

fect is largest for earlier birth cohorts because later birth cohorts received more accurate

signals about their true ability.

5.2 College Costs Including Room and Board

College costs in the benchmark model were restricted only to tuition and fees. Now,

we take a broader view of college costs and examine whether or not the results are

sensitive to the inclusion of room and board expenses. Like the earlier time series data
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on college tuition and fees, we construct this data from printed historical government

documents. The details are found in appendix A. For this experiment, all calibrated

values are maintained just as in the benchmark economy, with the exception of the

borrowing constraint, γ. We need to adjust γ because students now face additional

college expenses, so college completion rates would be too low if we held γ constant at

the benchmark value. The new borrowing constraint which allows us to match the time

series of college completion is γ = 0.04.

Figure 11: Results for College Costs including Tuition, Fees, Room, and Board
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Figure 11 shows the model predictions for college completion and average student

ability when room and board costs are included. Relative to the benchmark results in

Figure 2, very little has changed. The model still predicts college completion rates in

line with the data up until the 1950s and 1960s cohorts, when model and data diverge.

Additionally, average ability of college and non-college students diverges over time just

as in the benchmark model. Referring to Table 1, it is clear that while the model fits

college completion slightly worse than the benchmark model pre-1950, it does slightly

better post-1950. On the whole, this model fits almost exactly as well as the benchmark

model for both college completion and average ability difference.

25



6 Conclusion

We develop an overlapping generations model with unobservable ability and borrowing

constraints to investigate post-secondary completion and ability sorting in the birth co-

horts of 1900–1972. To discipline our model, we digitize and utilize historical data series

including statistics on college costs and high school graduation rates. We find that the

share of high school graduates enrolling in college and the subsequent college pass rate

are both key for understanding increased college graduation rates. However, we find

no evidence that economic factors – including real college costs, opportunity costs, ed-

ucation wage premia, or asset endowments – have a major impact on increasing ability

sorting over time. We do find, however, that a decrease in the variance of ability sig-

nals can properly match this fact, a trend which we attribute to increases over time in

standardized testing.

An important deviation between the benchmark model and historical data is that

the model does not properly match college completion after the 1950 birth cohort. We

show that this could be due to individuals having imperfect foresight about the college

earnings premium. If individuals observe a moving average of the earnings premia from

previous cohorts and use this to estimate the future earnings premium, then changes in

the earnings premium are taken into account only with a lag. We build this into the

model and find that it significantly improves the model’s fit. We therefore view this as

evidence of backward looking wage estimation when making college enrollment decisions.

An interesting use of this framework would be an extension to multiple countries. Ev-

idence suggests that ability is strongly related to growth (Hanushek and Kimko, 2000),

but the causality from formal schooling to economic growth is somewhat tenuous (Bils

and Klenow, 2000). If developing countries have very little ability sorting between edu-

cation levels, as was the case in the early U.S., there may be a weak correlation between

education level and labor efficiency. In a cross-country context, this could arise due to

tighter borrowing constraints or less precise signals about true ability. We will explore

this link in future research.
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Appendices

A Data

We take several historical data series as exogenous to the model, and this section details

the construction of those series. Data are taken from several sources in order to construct

a consistent series since 1900. From 1900 to 1958, most data were collected every two

years and published in the Biennial Survey of Education (BSE). Since 1962, the Digest

of Education Statistics (DES) has been published annually. Other publications including

the annual U.S. Statistical Abstract, the Bicentennial Edition “Historical Statistics of

the United States: Colonial Times to 1970”, and “120 Years of American Education: A

Statistical Portrait” help in bridging breaks between series, as well as verifying continuity

of series that may have changed names from year to year. Also, many data were revised

in later publications, so we take the most recent published estimates where available.

First, let ct be the total annual cost of college per student. We assume that the

total cost for educating all students in the U.S. in a given year equals the total revenues

received in the current period by all institutions of higher education. Dividing this by

the total enrollment each year yields the total annual cost per student. Alternatively, one

could use the total current expenditures rather than revenues as the measure of total cost,

but this makes little difference quantitatively because revenues and expenditures track

each other quite closely. In addition, the revenue data is preferable because it allows us to

determine how much of costs are paid out-of-pocket by students for tuition and fees, and

how much comes from other sources such as state, local, and federal governments, private

gifts, endowment earnings, auxiliary enterprises (athletics, dormitories, meal plans, etc.),

and other sources. The numerator for ct is constructed as follows:

• 1997-2000: total current revenue must be computed as the sum of current-fund

revenue for public and private institutions, from the DES.

• 1976-1996: total current revenue equals “current-fund revenue of institutions of

higher education” from the DES.

• 1932-1975: total current revenue equals “current-fund revenue of institutions of
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higher education” in “120 Years of American Education: A Statistical Portrait”.

• 1908-1930: total current revenue equals “total receipts exclusive of additions to

endowment” for colleges, universities, and professional schools, from the BSE.

• 1900-1908: total current revenue equals “total receipts exclusive of additions to en-

dowment” for colleges, universities, and professional schools, and is computed as

(income per student)*(total students, excluding duplicates) from the BSE. Conti-

nuity with later years can be verified using the “income per student” series, which

was published from 1890-1920.

The denominator for ct is constructed as follows:

• 1946-2000: total fall enrollment for institutions of higher education, from the DES.

• 1938-1946: resident college enrollments, from the BSE. Continuity with the later

series can be verified in that year 1946 data matches in both.

• 1900-1938: total students, excluding duplicates, in colleges, universities, and profes-

sional schools, from the BSE. Continuity with the later series can be verified in that

year 1938 data matches in both.

Second, we construct two time series which estimate the share of annual college costs

paid out-of-pocket by students. One measure, λt, includes only tuition and fees paid

by students, and the other measure, φt includes tuition, fees, room, and board. In each

year λt equals total tuition and fees paid by all students divided by total current revenue

received by institutions of higher education. Similarly, φt equals total tuition, fees, room,

and board aid by all students divided by total current revenue received by institutions

of higher education. In each case, the measure of total current revenue is the same time

series as was used above in constructing ct. The time series for λt is constructed as

follows:

• 1997-2000: current fund revenues from tuition and fees for all institutions of higher

education is computed as the sum of the series for public and private institutions,

from the DES.
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• 1976-1996: current fund revenues from student tuition and fees, from the DES.

• 1930-1975: current fund revenues from student tuition and fees, from “120 Years of

American Education: A Statistical Portrait”.

• 1918-1930: receipts of universities, colleges, and professional schools for student

tuition and fees, from BSE.

• 1900-1918: we are unable to obtain proper data for these years.

The time series for φt is constructed as follows:

• 1976-2000: Average tuition, fees, room, and board paid by full-time equivalent

(FTE) students is obtained from the DES. We multiply this by enrollment of FTE

students, also from the DES, and divide by the current fund revenues to compute

φt.

• 1960-1976: we are unable to obtain proper data for these years.

• 1932-1958: Data available biennially on 1total revenues from student tuition and

fees, as well as revenue from auxiliary enterprises and activities (room and board),

in the BSE. φt computed as the sum of these, divided by total current revenue.

• 1900-1930: φt computed as total revenue from student fees (included tuition, fees,

room, and board) divided by total current revenue.
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Table 2: Summary of Notation

Symbol Definition

Nmt Number of males born into model (i.e., graduating high school) each year

Nft Number of females born into model (i.e., graduating high school) each year

a Age of individual, where a = 1, 2, ..., T

s Sex of individual, where s ∈ {f,m}

k0 Initial asset endowment

α Ability endowment

π(α) Annual probability of passing college, given ability α

ρt Correlation between initial asset and ability endowments

µα,t Mean of ability distribution

µk,t Mean of initial asset distribution

σα,t Standard deviation of ability distribution

σk,t Standard deviation of initial asset distribution

θ Signal of true ability, where θ = α+ ε

ε Error term on signal of true ability

σε Standard deviation on distribution for ε

ν Vector of variables that are informative about true ability, where ν = (k0, θ)

C Number of years required to graduate from college

e Years of education completed by individual, where e ∈ {0, 1, ..., C}

λt Annual cost of college in year t

wa,t(e, s) Wage in year t for individual of age a, sex s, and education e

γ Individuals may not borrow more than a fraction γ of expected discounted future earnings

k̄ Minimum asset level for individual, given age, sex, education, and γ
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