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momentum strategy based on forecasts of each momentum strategy’s mean and
variance generates an unconditional Sharpe ratio approximately double that of
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robust across eight different markets and asset classes and multiple time periods.
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1 Introduction

A momentum strategy is a bet that past returns will predict future returns in the cross-section

of assets, and is typically implemented by buying past winners and selling past losers. Mo-

mentum is pervasive: the academic finance literature documents the efficacy of momentum

strategies across multiple time periods, across many markets, and in numerous asset classes

that include equities, bonds, currencies, commodities, and exchange-traded futures.1 Momen-

tum is a strategy employed by numerous quantitative investors within and across multiple

asset classes and even by mutual fund managers.2

Despite the pervasive evidence of momentum, the underlying mechanism responsible for its

returns is as yet unknown. By virtue of the high Sharpe ratios associated with momentum

strategies, the return patterns are difficult to explain within the standard rational-expectations

asset pricing framework. Following Hansen and Jagannathan (1991), in a frictionless frame-

work the high Sharpe ratio associated with zero-investment momentum portfolios implies

high variability of marginal utility across states of nature. Moreover, the lack of correlation

of momentum portfolio returns with standard proxy variables for macroeconomic risk (e.g.,

consumption growth) sharpens the puzzle still further (see, e.g., Daniel and Titman (2012)).

1Momentum strategies were first documented in U.S. common stock returns from 1965 to 1989 by Jegadeesh
and Titman (1993) and Asness (1995), by sorting firms on the basis of three to 12 month past returns.
Subsequently, Jegadeesh and Titman (2001) show the continuing efficacy of US equity momentum portfolios
in common stock returns in the 1990 to 1998 period. Israel and Moskowitz (2013) show the robustness of
momentum prior to and after these studies from 1927 to 1965 and from 1990 to 2012. There is even evidence
of momentum going back to the Victorian age from Chabot, Remy, and Jagannathan (2009) and evidence
from 1801 to 2012 from Geczy and Samonov (2013) in what the authors call “the world’s longest backtest.”
Strong and persistent momentum effects are also present outside of the US equity market. Rouwenhorst (1998)
finds evidence of momentum in equities in developed markets, and Rouwenhorst (1999) documents momentum
in emerging markets. Asness, Liew, and Stevens (1997) demonstrate positive momentum in country indices.
Among common stocks, there is also evidence that momentum strategies perform well for industry strategies,
and for strategies that are based on the firm specific component of returns (Moskowitz and Grinblatt (1999),
Grundy and Martin (2001), and Asness, Porter, and Stevens (2000)). Momentum is also present outside of
equities: Okunev and White (2003) find momentum in currencies; Erb and Harvey (2006) in commodities;
Moskowitz, Ooi, and Pedersen (2012) in exchange traded futures contracts; and Asness, Moskowitz, and
Pedersen (2013) in bonds. Asness, Moskowitz, and Pedersen (2013) also integrate the evidence on within-
country cross-sectional equity, country-equity, country-bond, currency, and commodity momentum strategies.

2Jegadeesh and Titman (1993) motivate their investigation of momentum with the observation that “. . . a
majority of the mutual funds examined by Grinblatt and Titman (1989, 1993) show a tendency to buy stocks
that have increased in price over the previous quarter.” Grinblatt, Titman, and Wermers (1995) further
document the prevalence of momentum-based strategies in mutual fund holdings. Asness, Ilmanen, Israel, and
Moskowitz (2013) show that hedge funds exhibit significant exposure to momentum across a variety of hedge
fund categories.
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A number of behavioral theories of price formation purport to yield momentum as an impli-

cation, such as Daniel, Hirshleifer and Subrahmanyam (1998, 2001), Barberis, Shleifer, and

Vishny (1998), Hong and Stein (1999), Grinblatt and Han (2005), and Frazzini (2006), but

no single theory has been accepted as a definitive explanation.

However, the strong positive average returns and Sharpe ratios of momentum strategies are

punctuated with occasional strong reversals, or “crashes.” Like the returns to the carry trade

in currencies, momentum returns are negatively skewed, and the crashes can be pronounced

and persistent.3 In our 1927 to 2013 U.S. equity sample, the two worst months for a momentum

strategy that buys the top decile of past 12-month winners and shorts the bottom decile of

losers are consecutive: July and August of 1932. Over this short period, the past-loser decile

portfolio returned 232%, while the past-winner decile portfolio had a gain of only 32%. In a

more recent crash, over the three-month period from March to May of 2009, the past-loser

decile rose by 163%, while the decile portfolio of past winners gained only 8%.

We investigate the impact of and potential predictability of these momentum crashes, which

appear to be a key and robust feature of momentum strategies. At the start of each of the two

crashes discussed above (July/August of 1932 and March-May of 2009), the broad US equity

market was down significantly from earlier highs. Market volatility was also high. And,

importantly, the market as a whole rebounded significantly during these momentum crash

months. This is consistent with what we find regarding the general behavior of momentum

crashes: they tend to occur in times of market stress, specifically when the market has fallen

and when ex-ante measures of volatility are high. They also occur when contemporaneous

market returns are high.4

These patterns are suggestive of the possibility that the changing beta of the momentum

portfolio may partly be driving the momentum crashes. The time variation in betas of re-

turn sorted portfolios was first documented by Kothari and Shanken (1992), who argue that,

by their nature, past-return sorted portfolios will have significant time-varying exposure to

systematic factors. Because momentum strategies are bets on past winners, they will have

positive loadings on factors which have had a positive realization over the formation period

3See Brunnermeier, Nagel, and Pedersen (2008), and others for evidence on the negative skewness of carry
trade returns.

4Our result is consistent with that of Cooper, Gutierrez, and Hameed (2004) and Stivers and Sun (2010),
who find, respectively, that the momentum premium falls to zero when the past three-year market return has
been negative and that the momentum premium is low when market volatility is high. However, these papers
do not examine conditional risk measures as we do here.
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of the momentum strategy.

Grundy and Martin (2001) apply Kothari and Shanken’s insights to price momentum strate-

gies. Intuitively, the result is straightforward, if not often appreciated: when the market has

fallen significantly over the momentum formation period – in our case from 12 months ago

to 1 month ago – there is a good chance that the firms that fell in tandem with the market

were and are high beta firms, and those that performed the best were low beta firms. Thus,

following market declines, the momentum portfolio is likely to be long low-beta stocks (the

past winners), and short high-beta stocks (the past losers). We verify empirically that there

is dramatic time variation in the betas of momentum portfolios. Using beta estimates based

on daily returns we find that, following major market declines, betas for the past-loser decile

rise above 3, and fall below 0.5 for past winners. Hence, when the market rebounds quickly,

momentum strategies will crash because they have a conditionally large negative beta.

Grundy and Martin (2001) further argue that performance of the momentum portfolio is

dramatically improved, particularly in the pre-WWII era, by dynamically hedging the market

and size risk in the portfolio. However, their hedged portfolio is constructed based on forward-

looking betas, and is therefore not an implementable strategy. In this paper, we show that this

results in a strong bias in estimated returns, and that a hedging strategy based on ex-ante

betas does not exhibit the performance improvement noted in Grundy and Martin (2001),

which is not implementable in real time.5

The source of the bias is a striking correlation of the loser-portfolio beta with the return on the

market. In a bear market, we show that the up- and down-market betas differ substantially for

the momentum portfolio. Using a Henriksson and Merton (1981) specification, we calculate up-

and down-betas for the momentum portfolios. We show that, in a bear market, a momentum

portfolio’s up-market beta is more than double its down-market beta (−1.51 versus −0.70),

and that this difference is highly statistically significant (t-stat = 4.5). Outside of bear

markets, there is no statistically significant difference in betas.

5The result that the betas of winner-minus-loser portfolios are non-linearly related to contemporaneous
market returns has also been documented in Rouwenhorst (1998) who documents this feature for non-US
equity momentum strategies (Table V, p. 279). Chan (1988) and DeBondt and Thaler (1987) document this
non-linearity for longer-term winner/loser portfolios. However, Boguth, Carlson, Fisher, and Simutin (2010),
building on the results of Jagannathan and Korajczyk (1986), note that the interpretation of the measures of
abnormal performance (i.e., the alphas) in Chan (1988), Grundy and Martin (2001), and Rouwenhorst (1998)
are problematic and provide a critique of Grundy and Martin (2001) and other studies which “overcondition”
in a similar way.
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More detailed analysis shows that most of the up- versus down-beta asymmetry in bear mar-

kets is driven by the past losers, whose up- and down-betas differ by 0.6, while for the past-

winner decile the difference is only -0.2. This pattern in dynamic betas of the loser portfolio

means that momentum strategies, in bear markets, behave like written calls on the market:

When the market falls, they gain a little; when the market rises they lose dramatically.

We next show that these crashes are predictable, and that dynamically hedging market beta

exposure ex-ante does not significantly improve the returns to momentum strategies. Given

the written-call like behavior of the momentum strategy in bear markets, a question that

naturally arises given this finding is whether the time variation in the momentum premium

we document is related to time-varying exposure to volatility risk.

To examine this hypothesis, we use VIX-imputed variance-swap returns to show that the

payoffs to momentum strategies have a strong negative exposure to innovations in market-

variance in bear markets (but not in “normal” markets). However, we also show that hedging

out this time varying exposure to market-variance (by buying S&P variance swaps in bear

markets) does not restore the profitability of momentum in bear markets.

Using the insights from the relationship between momentum payoffs and volatility, and the

fact that the momentum strategy volatility is itself predictable and is distinct from the pre-

dictability in the mean return, we design an optimal dynamic momentum strategy, which at

each point in time, is scaled up or down so as to maximize the unconditional Sharpe ratio of

the dynamic portfolio. Specifically, given a conditional expected excess return and conditional

volatility for the momentum strategy, we first show theoretically that, to maximize the uncon-

ditional Sharpe ratio, a dynamic strategy should scale the weight on the long-short strategy

so that, at each point in time, the conditional volatility of the scaled strategy is proportional

to the conditional Sharpe ratio of the strategy. Then, we use the insights from our analysis

on the forecastability of both the momentum premium and momentum volatility to generate

the dynamic weights. We find that the optimal dynamic strategy significantly outperforms

the standard static momentum strategy, more than doubling its Sharpe ratio. In addition,

the dynamic momentum strategy also significantly outperforms constant volatility momentum

strategies suggested in the literature (e.g., Barroso and Santa-Clara (2012)). The reason is

because the dynamic strategy not only helps smooth the volatility of the momentum portfolio

as does the constant volatility approach, but in addition also exploits the strong forecastability

of the Sharpe ratio of the momentum strategy, which we uncover in our analysis.
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Given the paucity of momentum crashes and the pernicious effects of data mining from an

ever-expanding search across studies and in practice for strategies that improve performance,

we challenge the robustness of our findings by replicating our results in different sample peri-

ods, four different equity markets, and five distinct asset classes. Across different time periods,

markets, and asset classes, we find remarkably consistent results. First, in US data the outper-

formance of the dynamic strategy is shown to be robust in every quarter-century subsample.

Second, we show that all momentum strategies seem to suffer from crashes, all of which are

driven by the conditional beta and option-like feature of losers. Specifically, the same option-

like behavior is present for cross-sectional equity momentum strategies in Europe, Japan, the

UK, and for a global equity momentum strategy. In addition, the optionality is a feature of

index futures-, commodity- and currency-momentum strategies. Finally, the same dynamic

strategy applied to these alternative asset class momentum strategies is remarkably success-

ful in each and every asset class, generating unconditional Sharpe ratios far higher than the

static momentum strategies in each asset class. Even in markets where the static momentum

strategy has failed to yield positive profits – e.g., in Japan – our dynamic momentum strategy

delivers a significantly positive Sharpe ratio. Applied across all markets and asset classes, a

dynamic momentum strategy delivers an annualized Sharpe ratio of 1.18, more than four times

larger than that of the static momentum strategy applied to US equities over the same period.

Thus, our results pose a significantly greater challenge for rational asset pricing models then

the static momentum strategy, based on the arguments in Hansen and Jagannathan (1991).

Finally, we consider several possible explanations for the option-like behavior of momentum

payoffs. For equity momentum strategies, one possibility is that the optionality arises because,

for a firm with debt in its capital structure, a share of common stock is a call option on the

underlying firm value (Merton 1990). Particularly in distressed periods where this option-like

behavior is manifested, the underlying firm values in the past loser portfolio have generally

suffered severe losses, and are therefore potentially much closer to a level where the option

convexity would be strong. The past winners, in contrast, would not have suffered the same

losses, and would still be “in-the-money.” This hypothesis, however, does not seem applicable

for the index futures, commodity, and currency strategies we study, which also exhibit strong

option-like behavior. In the conclusion, we briefly discuss a behaviorally motivated explanation

for this phenomenon, but a fuller understanding of these convex payoffs is an open area for

future research.

The layout of the paper is as follows: Section 2 describes the data and portfolio construction
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and documents the empirical results for momentum crashes in US equities. In Section 3 we ex-

amine the performance of an optimal dynamic strategy based on our findings. In Section 4 we

investigate whether the anomalous performance of the momentum strategy can be explained

by dynamic loadings on other known factors such as those of Fama and French (1993) and

volatility risk. Section 5 performs similar analysis on momentum strategies in international

equities and in other asset classes. Section 6 speculates about the sources of the premia we

observe, discusses areas for future research, and concludes.

2 US Equity Momentum

In this section, we present the results of our analysis of momentum in US common stocks over

the 1927 to 2013 time period. We begin with the data description and portfolio construction.

2.1 US Equity Data and Momentum Portfolio Construction

Our principal data source is the Center for Research in Security Prices (CRSP). We construct

monthly and daily momentum decile portfolios, where both sets of portfolios are rebalanced

only at the end of each month. The universe starts with all firms listed on NYSE, AMEX or

NASDAQ as of the formation date. We utilize only the returns of common shares (with CRSP

sharecode of 10 or 11). We require that the firm have a valid share price and a valid number of

shares as of the formation date, and that there be a minimum of eight valid monthly returns

over the past 11 months, skipping the most recent month, which is our formation period.

Following convention and CRSP availability, all prices are closing prices, and all returns are

from close to close.

To form the momentum portfolios, we begin by calculating ranking period returns for all

firms. The ranking period returns are the cumulative returns from close of the last trading

day of each month. Firms are ranked on their cumulative return from 12 months before to

one month before the formation date (e.g., cumulative returns from month t − 12 to t − 2),

where, consistent with the literature (Jegadeesh and Titman (1993), Asness (1995), Fama and

French (1996)), we use a one month gap between the end of the ranking period and the start

of the holding period to avoid the short-term one-month reversals documented by Jegadeesh

(1990) and Lehmann (1990).
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All firms meeting the data requirements are placed into one of ten decile portfolios on the basis

of their cumulative returns over the ranking period. The firms with the highest ranking period

returns go into portfolio 10 – the “[W]inner” decile portfolio – and those with the lowest go into

portfolio 1, the “[L]oser” decile. We also evaluate the returns for a zero investment Winner-

Minus-Loser (WML) portfolio, which is the difference of the Winner and Loser portfolio each

period.

The holding period returns of the decile portfolios are the value-weighted returns of the firms

in the portfolio over the one month holding period from the closing price of the last trading

day of the previous month through the last trading day of the current month. Given the

monthly formation process, portfolio membership does not change within a month, except in

the case of delisting. This means that except for cash infusions and payouts and delistings,

the portfolios are buy and hold portfolios within each month.

The market return is the value weighted index of all firms meeting our data requirements, and

the risk free rate series is the one-month Treasury bill rate.6

2.2 Momentum Portfolio Performance

Figure 1 presents the cumulative monthly returns over a 60-year period from 1947:01-2006:12

for investments in: (1) the risk-free asset; (2) the market portfolio; (3) the bottom decile

“past loser” portfolio; and (4) the top decile “past winner” portfolio. Recall that our market

portfolio is the CRSP value-weighted index, and that the loser and winner portfolios are

both value weighed. On the right side of the plot, we present the final dollar values for each

of the four portfolios, given a $1 investment in January, 1947 (and, of course, assuming no

transaction costs).

This particular 60-year period is chosen purposely because it avoids the turbulent great-

depression and WW-II periods before 1947, and the great recession after 2007. Also, this

period spans the original momentum studies’ sample periods. Consistent with the existing

6The source of the market return and of the one-month Treasury-bill rate is Ken French’s data library. Per
the description on Ken French’s website, the market return in month t is the value weighted return of all firms
incorporated in the US, listed on the NYSE, AMEX, or NASDAQ, having a CRSP share code of 10 or 11 at
the beginning of month t, and having a valid number of shares, price and return data for month t. Again per
the description on Ken French’s website, the source of the one month treasury bill rate is Ibbotson associates.
We convert the monthly risk-free rate series to a daily series by converting the risk-free rate at the beginning
of each month to a daily rate, and assuming that that daily rate is valid through the month.
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Figure 1: Momentum Components, 1947-2006
Over the the 60-year period from 1947:01 through 2006:12, we plot the cumulative returns for four assets: (1)
the risk-free asset; (2) the CRSP value-weighted index; (3) the bottom decile “past loser” portfolio; and (4)
the top decile “past winner” portfolio. On the right side of the plot, we present the final dollar values for each
of the four portfolios, given a $1 investment in January, 1947

literature, there is a strong momentum premium over this 60-year period. Table 1 presents

return moments for the momentum decile portfolios over this period. The winner decile excess

return averages 16.0% per year, and the loser portfolio averages -6.1% per year. In contrast

the average excess market return is 7.5%. The Sharpe ratio of the WML portfolio is 1.08,

and that of the market is 0.52. Over this period, the beta of the WML portfolio is slightly

negative, -0.25, giving it an unconditional CAPM alpha of 28.6% per year (t-stat = 9.0). As

one would expect given the high alpha, an ex-post optimal combination of the market and

WML portfolios has a Sharpe ratio more than double that of the market. A pattern that we

will explore further is the skewness of these portfolios. The winner portfolios are considerably

more negatively skewed (monthly and daily) than the loser portfolios, even over this relatively

benign period.
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Table 1: Momentum Portfolio Characteristics, 1947:01-2006:12

This table presents characteristics of the monthly momentum portfolio excess returns over the 60 year period
from 1947:01-2006:12. The mean return, standard deviation, and alpha are in percent, and annualized. The
Sharpe ratio is annualized. The α, t(α), and β are estimated from a full-period regression of each decile
portfolio’s excess return on the excess CRSP-value weighted index. For all portfolios except WML, sk denotes
the full-period realized skewness of the monthly log returns (not excess) to the portfolios. For WML, sk is
the realized skewness of log(1+rWML+rf ).

Momentum Decile Portfolios
1 2 3 4 5 6 7 8 9 10 WML Mkt

r − rf -6.1 1.5 2.8 5.5 6.7 6.5 8.4 10.2 11.5 16.0 26.7 7.5
σ 28.2 22.0 18.7 16.4 15.2 14.7 14.9 15.5 17.1 21.9 24.6 14.5
α -17.2 -7.7 -5.4 -1.9 -0.5 -0.6 1.2 2.8 3.6 6.7 28.6 0
t(α) (-7.2) (-4.5) (-4.1) (-1.9) (-0.5) (-0.8) (1.7) (3.5) (3.7) (4.1) (9.0) (0)
β 1.48 1.22 1.08 0.99 0.95 0.94 0.96 0.98 1.05 1.23 -0.25 1
SR -0.22 0.07 0.15 0.34 0.44 0.44 0.57 0.66 0.68 0.73 1.08 0.52
sk(m) -0.29 -0.35 -0.37 -0.19 -0.58 -0.61 -0.59 -0.57 -0.80 -0.62 -2.01 -0.71
sk(d) -0.23 -0.06 0.03 -0.24 -0.41 -0.93 -1.19 -1.26 -0.86 -0.80 -0.60 -0.71

2.3 Momentum Crashes

Since 1926, however, there have been a number of long periods over which momentum under-

performed dramatically. Figure 2 plots the cumulative (monthly) log returns to an investment

in the WML portfolio over the entire sample period from 1927:01 to 2013:03.7 As the figure

shows, there are several momentum “crashes,” despite the fact that the momentum strategy

generates substantial profits over time.

Zeroing in on these crash periods, Figures 3 and 4 show the cumulative daily returns to

the same set of portfolios from Figure 1—risk-free, market, past losers, past winners—from

March 8, 2009 through March 28, 2013, and over a period starting in June 1932 and continuing

through December 1939. These two periods represent the two largest and sustained drawdown

periods for the momentum strategy and are selected purposely to illustrate the crashes we

study more generally in this paper. As both figures indicate, over both of these periods, the

loser portfolio strongly outperforms the winner portfolio. From March 8, 2009 to March 28,

2013, the losers produce more than twice the profits as the winners, which also underperform

the market over this period. From June 1, 1932 to December 30, 1939 the losers outperform

the winners by 50 percent.

Table 2 presents sample return moments for the momentum decile portfolios over the full

7The calculation of cumulative returns for long-short portfolios is described in Appendix A.1.
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Figure 2: Cumulative Momentum Returns
This plot shows the value of an investment in the WML portfolio over the full sample period of 1927:01 to
2013:03, calculated as described in Appendix A.1

sample period from January 1927 to March 2013 that includes these momentum crash periods.

While the winners still outperform the losers over time, a WML portfolio delivers a smaller

positive Sharpe ratio and market alpha due to these crash episodes. However, the Sharpe

ratio and alpha understate the significance of these crashes. Looking at the skewness of the

portfolios, we see that the winners become more negatively skewed as we move to more extreme

deciles. For the top winner decile portfolio, the monthly (daily) skewness is -0.82 (-0.61), while

for the most extreme bottom decile losers the skewness is 0.09 (0.12). The WML portfolio

over this full sample period has a monthly (daily) skewness of -4.70 (-1.18), compared to only

-2.01 (-0.60) over the 1947 to 2007 period that did not contain these crashes.

Table 3 presents the worst monthly returns to the WML strategy, as well as the lagged two-

year returns on the market, and the contemporaneous monthly market return. Several key

points emerge from Table 3 as well as from Figures 2 through 4 that we will examine more

formally in the remainder of the paper:
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Figure 3: Momentum Following the 2008-09 Financial Crisis
Plotted are the cumulative daily returns to the same set of portfolios from Figure 1 from March 8, 2009
through March, 28 2013.
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Figure 4: Momentum During the Great Depression
Plotted are the cumulative daily returns to the same set of portfolios from Figure 1 from June, 1932 through
December 1939.
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Table 2: Momentum Portfolio Characteristics, 1927:01-2013:03

The calculations for this table are similar those in Table 1, except that the time period is 1927:01-2013:03.
sk(m) is the skewness of the monthly log returns, and sk(d) is the skewness of the daily log returns.

Momentum Decile Portfolios
1 2 3 4 5 6 7 8 9 10 WML Mkt

r − rf -2.5 2.9 2.9 6.4 7.1 7.1 9.2 10.4 11.3 15.3 21.3 7.6
σ 36.5 30.5 25.9 23.2 21.3 20.2 19.5 19.0 20.3 23.7 30.1 18.8
α -14.8 -7.8 -6.5 -2.2 -0.9 -0.7 1.7 3.2 3.8 7.5 25.7 0
t(α) (-6.7) (-4.8) (-5.3) (-2.2) (-1.1) (-1.0) (2.7) (4.5) (4.3) (5.1) (8.5) (0)
β 1.61 1.41 1.24 1.13 1.06 1.03 0.99 0.95 0.99 1.04 -0.58 1
SR -0.07 0.09 0.11 0.28 0.33 0.35 0.47 0.54 0.56 0.65 0.71 0.40
sk(m) 0.09 -0.05 -0.19 0.21 -0.13 -0.30 -0.55 -0.54 -0.76 -0.82 -4.70 -0.56
sk(d) 0.12 0.29 0.22 0.27 0.10 -0.10 -0.44 -0.66 -0.67 -0.61 -1.18 -0.56

1. While past winners have generally outperformed past losers, there are relatively long
periods over which momentum experiences severe losses or “crashes.”

2. Every one of the 15 worst momentum returns occurs when the lagged two-year market
return is negative. The worst 14 occur in months where the market rose, often in a
dramatic fashion.

3. The clustering evident in this table, and the daily cumulative returns in Figure 3 and 4,
make it clear that the crashes have relatively long duration. They do not occur over the
span of minutes or days—a crash is not a Poisson jump. They take place slowly, over
the span of multiple months.

4. Similarly, the extreme losses are clustered: The two worst months for momentum are
back-to-back, in July and August of 1932, following a market decline of roughly 90% from
the 1929 peak. March and April of 2009 are the 7th and 4th worst momentum months,
respectively, and April and May of 1933 are the 6th and 12th worst. Three of the ten
worst momentum monthly returns are from 2009—over a three-month period in which
the market rose dramatically and volatility fell. While it might not seem surprising that
the most extreme returns occur in periods of high volatility, the effect is asymmetric for
losses versus gains: the extreme momentum gains are not nearly as large in magnitude,
or as concentrated in time.

5. Closer examination reveals that the crash performance is mostly attributable to the
short side or the performance of losers. For example, in July and August of 1932, the
market actually rose by 82%. Over these two months, the winner decile rose by 30%,
but the loser decile was up by 236%. Similarly, over the three month period from March
to May of 2009, the market was up by 29%, but the loser decile was up by 156%.
Thus, to the extent that the strong momentum reversals we observe in the data can
be characterized as a crash, they are a crash where the short side of the portfolio—the
losers—are “crashing up” rather than down.
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Table 3: Worst Monthly Momentum Returns

This table presents the 15 worst monthly returns to the WML portfolio over the 1927:01-2013:03 time period.
Also tabulated are Mkt-2y, the 2-year market returns leading up to the portfolio formation date, and Mktt,
the market return in the same month. The dates in black are between 1932-07 and 1939-09; blue are between
April and August of 2009; and red are from January 2001 and November 2002. Green is the remainder.

Rank Month WMLt Mkt-2y Mktt
1 1932-08 -74.36 -69.39 36.49
2 1932-07 -60.98 -76.22 33.48
3 2001-01 -49.19 -9.95 2.58
4 2009-04 -45.52 -46.33 10.18
5 1939-09 -43.83 -21.34 16.64
6 1933-04 -43.14 -60.33 37.67
7 2009-03 -42.28 -50.61 8.93
8 2002-11 -37.04 -43.85 5.84
9 1938-06 -33.36 -28.29 23.69
10 2009-08 -30.54 -32.15 3.31
11 1931-06 -29.72 -53.25 13.61
12 1933-05 -28.90 -39.39 21.26
13 2001-11 -25.31 -34.50 7.37
14 2001-10 -24.98 -32.27 2.25
15 1974-01 -24.04 -23.71 -0.80

2.4 Risk of Momentum Returns

Table 3 also suggests that large changes in market beta may help to explain some of the

large negative returns earned by momentum strategies. For example, as of the beginning of

March 2009, the firms in the loser decile portfolio were, on average, down from their peak

by 84%. These firms included the firms that were hit hardest in the financial crisis: among

them Citigroup, Bank of America, Ford, GM, and International Paper (which was levered).

In contrast, the past-winner portfolio was composed of defensive or counter-cyclical firms

like Autozone. The loser firms, in particular, were often extremely levered, and at risk of

bankruptcy. In the sense of the Merton (1990) model, their common stock was effectively

an out-of-the-money option on the underlying firm value. This suggests that there were

potentially large differences in the market betas of the winner and loser portfolios.

To investigate the time-varying betas of winners and losers, Figure 5 plots the market betas

for the winner and loser momentum deciles, estimated using 126 day (≈ 6 month) rolling
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Figure 5: Market Betas of Winner and Loser Decile Portfolios
These three plots present the estimated market betas over our full sample, and over the periods 1931-1940
and 1999-2013. The betas are estimated by running a set of 126-day rolling regressions. Each regression uses
10 (daily) lagged market returns in the estimations of the beta as a way of accounting for the lead-lag effects
in the data.
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market model regressions with daily data.8

Figure 5 presents three plots of these time-varying betas. The first plots the rolling six-month

betas over the full sample period from June 1927 to March 2013. As the plot shows, the betas

move around substantially, especially for the losers portfolio, whose beta tends to increase

dramatically during volatile periods. The second and third plots zoom in on these crash

episodes by plotting the betas several years before, during, and after the crashes, from 1927-

1940 and from 1999-2013, respectively. These plots both show that in volatile market times

betas of the winner and loser portfolios move above and below one (generally, the average is

close to, but a bit above, one as expected). The beta of the winner portfolio is sometimes

above 2 following large market rises. However, for the loser portfolio, the betas reach far higher

levels. The widening beta differences between winners and losers, coupled with the facts from

Table 3 that these crash periods are characterized by sudden and dramatic market upswings,

means that the WML strategy will experience huge losses. In the next few subsections, we will

examine these patterns more formally by characterizing the beta variation and investigating

how the apparent variation in the mean return of the momentum portfolio is linked to the

time variation in market risk.

2.5 Hedging the Market Risk in the Momentum Portfolio

To begin, we note that Grundy and Martin (2001) explore this same question, and argue that

the poor performance of the momentum portfolio in the pre-WWII period noted by Jegadeesh

and Titman (1993) is a result of the time varying market and size beta. Specifically, they

argue a hedged momentum portfolio – for which conditional market and size exposure is zero –

has a high average return and a high Sharpe-ratio in the pre-WWII period when the unhedged

momentum portfolio suffers.

At the time that Grundy and Martin (2001) undertook their research, daily stock return

8We use 10 daily lags of the market return in estimating the market betas. Specifically, we estimate a daily
regression specification of the form:

r̃ei,t = β0r̃
e
m,t + β1r̃

e
m,t−1 + · · ·+ β10r̃

e
m,t−10 + ε̃i,t

and then report the sum of the estimated coefficients β̂0 + β̂1 + · · · + β̂10. Particularly for the past loser
portfolios, and especially in the pre-WWII period, the lagged coefficients are strongly significant, suggesting
that market wide information is incorporated into the prices of many of the firms in these portfolios over the
span of multiple days. See Lo and MacKinlay (1990) and Jegadeesh and Titman (1995).

15



data was not available through CRSP in the pre-1962 period. Given the dynamic nature of

momentum’s risk-exposures, estimating the future hedge coefficients ex-ante is problematic.

As a result they investigate the efficacy of hedging primarily based on an ex-post estimate of

the portfolio’s market and size betas, estimated using monthly returns over the current month

and the future five months.

However, to the extent that the future momentum-portfolio beta is correlated with the future

return of the market, this procedure will result in a biased estimate of the returns of the hedged

portfolio. Boguth, Carlson, Fisher, and Simutin (2010) critique the Grundy and Martin (2001)

test, and argue that this “overconditioning” can lead to biased results. In Section 2.6, we will

show there is in fact a strong correlation of this type which indeed results in a large upward

bias in the estimated performance of the hedged portfolio.

We first estimate the performance of a WML portfolio which hedges out market risk using

an ex-post estimate of market beta, following Grundy and Martin (2001). We construct the

ex-post hedged portfolio in a similar way, though using daily data. Specifically, the size of the

market hedge is based on the future 42-day (2 month) realized market beta of the portfolio

being hedged. Again, to calculate the beta we use 10 daily lags of the market return.

Figure 6 plots the performance of the ex-post hedged WML portfolio over the period 1928 to

1945, and that of the unhedged portfolio. The ex-post hedged portfolio exhibits considerably

improved performance, consistent with the results of Grundy and Martin (2001).

2.6 Option-like Behavior of the WML portfolio

We show that the strong realized performance of the ex-post hedged portfolio is an upward

biased estimate of the ex-ante performance of the portfolio. The source of the bias is that in

down markets, the market beta of the WML portfolio is strongly negatively correlated with

the contemporaneous realized performance of the portfolio. This means that the ex-post hedge

will have a higher market beta when future market returns are high, and a lower beta when

future market returns are low.

We also show that the return of the momentum portfolio, net of market risk, is significantly

lower in bear markets. Both of these results are linked to the fact that, in bear markets, the

momentum strategy returns behave as if the momentum portfolio is effectively short a call
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Figure 6: Ex-post Hedged Momentum Portfolio Performance
This figure presents the cumulative returns to the baseline WML strategy as well as the WML strategy that
conditionally hedges the market exposure using the ex-post hedged procedure of Grundy and Martin (2001),
but using daily data. Specifically, the size of the market hedge is based on the future 42-day (2 month) realized
market beta of the WML portfolio.

option on the market.

We first illustrate these issues with a set of monthly time-series regressions, the results of

which are presented in Table 4. The variables used in the regressions are:

1. R̃WML,t is the WML return in month t.

2. R̃e
m,t is the CRSP value-weighted index excess return in month t.

3. IB,t−1 is an ex-ante Bear-market indicator that equals 1 if the cumulative CRSP VW
index return in the 24 months leading up to the start of month t is negative, and is zero
otherwise.

4. ĨU,t is the contemporaneous – i.e., not ex-ante – Up-market indicator variable. It is 1 if
the excess CRSP VW index return is greater than the risk-free rate in month t, and is
zero otherwise.9

9Of the 1,035 months in the 1927:01-2013:03 period, there are 183 bear market months by our definition.
Also, there are 618 Up-months, and 417 down-months.
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Table 4: Market Timing Regression Results
This table presents the results of estimating four specifications of a monthly time-series regressions run over
the period 1927:01 to 2013:03. In all cases the dependent variable is the return on the WML portfolio. The
independent variables are described in Section 2.5.

Estimated Coefficients
(t-statistics in parentheses)

Coeff. Variable (1) (2) (3) (4)
α̂0 1 0.019 0.020 0.020 0.020

(7.3) (7.7) (7.8) (8.4)
α̂B IB−1 -0.021 0.005

(-3.5) (0.6)

β̂0 R̃e
m,t -0.577 -0.032 -0.032 -0.034

(-12.5) (-0.5) (-0.5) (-0.6)

β̂B IB,t−1 ·R̃e
m,t -1.136 -0.668 -0.710

(-13.4) (-5.0) (-6.2)

β̂B,U IB,t−1·IU,t ·R̃e
m,t -0.810 -0.734

(-4.5) (-5.7)
R2

adj 0.130 0.271 0.284 0.285

Regression (1) in Table 4 fits an unconditional market model to the WML portfolio:

R̃WML,t = α0 + β0R̃m,t + ε̃t

Consistent with the results in the literature, the estimated market beta is somewhat negative,

-0.577, and the intercept, α̂, is both economically large (1.9% per month), and statistically

significant (t-stat = 7.3).

Regression (2) in Table 4 fits a conditional CAPM with the bear market IB indicator as an

instrument:

R̃WML,t = (α0 + αB,t−1IB,t−1) + (β0 + βBIB,t−1)R̃m,t + ε̃t. (1)

This specification is an attempt to capture both expected return and market-beta differences

in bear markets. First, consistent with Grundy and Martin (2001), we see a striking change

in the market beta of the WML portfolio in bear markets: it is -1.136 lower, with a t-statistic

of −13.4 on the difference. The intercept is also lower: the point estimate for the alpha in

bear markets – equal to α̂0 + α̂B – is now −1 basis point per month.

Regression (3) introduces an additional element to the regression which allows us to assess the
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Table 5: Momentum Portfolio Optionality in Bear Markets

This table presents the results of a regressions of the excess returns of the 10 momentum portfolios and the
Winner-Minus-Loser (WML) long-short portfolio on the CRSP value-weighted excess market returns, and a
number of indicator variables. For each of these portfolios, the regression estimated here is:

R̃ei,t = [α0 + αBIB,t−1] + [β0 + IB,t−1(βB + ĨU,tβB,U )]R̃m,t + ε̃t

where Rm is the CRSP value-weighted excess market return, IB,t−1 is an ex-ante Bear-market indicator
and IU,t is a contemporaneous UP-market indicator, as defined in the text on page 17. The time period is
1927:01-2013:03.

Momentum Decile Portfolios – Monthly Excess Returns
Coef. (t-statistics in parentheses)
Est. 1 2 3 4 5 6 7 8 9 10 WML
α̂0 -0.014 -0.008 -0.005 -0.002 -0.001 -0.000 0.002 0.003 0.003 0.006 0.020

(-7.3) (-5.7) (-4.9) (-2.4) (-0.7) (-0.9) (2.7) (4.1) (3.8) (4.6) (7.8)
α̂B -0.002 0.004 -0.001 -0.006 -0.003 -0.002 -0.000 -0.001 0.004 0.003 0.005

(-0.3) (0.9) (-0.4) (-2.0) (-1.4) (-1.2) (-0.1) (-0.3) (1.6) (0.8) (0.6)

β̂0 1.339 1.153 1.014 0.956 0.924 0.953 0.975 1.020 1.114 1.307 -0.032
(30.4) (35.8) (42.7) (49.5) (55.7) (72.2) (72.4) (70.0) (62.7) (46.2) (-0.5)

β̂B 0.229 0.332 0.361 0.158 0.178 0.082 0.026 -0.128 -0.157 -0.440 -0.668
(2.3) (4.5) (6.6) (3.6) (4.7) (2.7) (0.9) (-3.8) (-3.9) (-6.8) (-5.0)

β̂B,U 0.596 0.346 0.176 0.350 0.165 0.121 -0.011 -0.029 -0.183 -0.214 -0.810
(4.4) (3.5) (2.4) (5.9) (3.2) (3.0) (-0.3) (-0.6) (-3.3) (-2.4) (-4.5)

extent to which the up- and down-market betas of the WML portfolio differ. The specification

is similar to that used by Henriksson and Merton (1981) to assess market timing ability of

fund managers:

r̃WML,t = [α0 + αB · IB,t−1] + [β0 + IB,t−1(βB + ĨU,tβB,U)]R̃m,t + ε̃t. (2)

If βB,U is different from zero, this suggests that the WML portfolio exhibits option-like be-

havior relative to the market. Specifically, a negative βB,U would mean that, in bear markets,

the momentum portfolio is effectively short a call option on the market. In months when the

contemporaneous market return is negative, the point estimate of the WML portfolio beta

is -0.74 (β̂0 + β̂B). But, when the market return is positive, the market beta of WML is

considerably more negative – specifically, the point estimate is β̂0 + β̂B + β̂B,U = − 1.44.

The predominant source of this optionality turns out to be the loser portfolio. Table 5 presents

the results of the regression specification in equation (2) for each of the ten momentum port-

folios. The final row of the table (the β̂B,U coefficient) shows the strong up-market betas

for the loser portfolios in bear markets. For the loser decile, the down-market beta is 1.568

19



Table 6: Momentum Portfolio Optionality in Bull Markets

This table presents the results of a regressions of the excess returns of the 10 momentum portfolios and the
Winner-Minus-Loser (WML) long-short portfolio on the CRSP value-weighted excess market returns, and a
number of indicator variables. For each of these portfolios, the regression estimated here is:

R̃ei,t = [α0 + αLIL,t−1] + [β0 + IL,t−1(βL + ĨU,tβL,U )]R̃m,t + ε̃t

where Rm is the CRSP value-weighted excess market return, IL,t−1 is an ex-ante bulL-market indicator and
IU,t is a contemporaneous UP-market indicator, as defined in the text on page 17. The time period is 1927:01-
2013:03.

Momentum Decile Portfolios – Excess Monthly Returns
Coef. (t-statistics in parentheses)
Est. 1 2 3 4 5 6 7 8 9 10 WML
α̂0 -0.001 0.003 -0.003 0.002 0.000 -0.000 0.001 0.001 0.002 0.005 0.006

(-0.2) (0.9) (-1.5) (1.0) (0.2) (-0.0) (1.1) (1.1) (1.3) (1.9) (1.1)
α̂L -0.013 -0.010 -0.002 -0.006 -0.002 -0.000 -0.002 0.001 0.002 0.005 0.019

(-2.6) (-2.8) (-0.8) (-2.7) (-1.3) (-0.2) (-1.2) (0.5) (0.9) (1.7) (2.8)

β̂0 1.880 1.655 1.453 1.301 1.187 1.095 0.997 0.880 0.861 0.765 -1.115
(41.1) (49.3) (58.9) (64.4) (69.3) (80.4) (72.8) (59.1) (47.0) (26.3) (-18.4)

β̂L -0.537 -0.490 -0.446 -0.407 -0.304 -0.138 -0.080 0.127 0.282 0.664 1.201
(-5.9) (-7.3) (-9.0) (-10.0) (-8.9) (-5.0) (-2.9) (4.3) (7.7) (11.4) (9.9)

β̂L,U 0.007 -0.009 0.028 0.141 0.092 -0.002 0.123 0.028 -0.062 -0.272 -0.279
(0.0) (-0.1) (0.4) (2.3) (1.7) (-0.0) (2.9) (0.6) (-1.1) (-3.0) (-1.5)

(= 1.339 + 0.229) and the point estimate of the up-market beta is 2.164 (= 1.568 + 0.596).

Also, note the slightly negative up-market beta increment for the winner decile (= −0.214).

This pattern also holds for less extreme winners and losers, such as decile 2 versus decile 9 or

decile 3 versus 8, with the differences between winners and losers declining monotonically for

less extreme past-return sorted portfolios.

2.7 Asymmetry in the Optionality

It is interesting that the optionality associated with the loser portfolios that is apparent in

the regressions in Table 5 is only present in bear markets. Table 6 presents the same set of

regressions as in Table 5, only now instead of using the Bear-market indicator IB,t−1, we use

the BulL market indicator IL,t−1 = (1−IB,t−1). The key variables here are the estimated

coefficients and t-statistics on βL,U , presented in the last two rows of Table 6. Unlike in

Table 5, no significant asymmetry is present in the loser portfolio, while the winner portfolio

asymmetry is comparable to what is shown in Table 5. For the winner portfolios, we obtain

the same slightly negative point estimate for the up-market beta increment. There is no
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Figure 7: Ex-Ante Hedged Portfolio Performance
Plotted along with the two series from Figure 6—the static momentum strategy returns and the ex post hedged
momentum strategy returns—are the cumulative log return to an ex-ante hedged momentum portfolio, where
betas are estimated using the lagged 42 days of returns on the portfolio and the market from equation (8).

apparent variation associated with the past market return. Finally, the WML portfolio shows

no statistically significant optionality in bull markets, unlike what is seen in bear markets.

2.8 Ex-ante Hedge of the market risk in the WML Portfolio

The results of the preceding analysis suggest that calculating hedge ratios based on future

realized betas, as in Grundy and Martin (2001), is likely to produce strongly upward biased

estimates of the performance of the hedged portfolio. As we have seen, the realized market

beta of the momentum portfolio tends to be more negative when the realized return of the

market is positive. Thus, the hedged portfolio – where the hedge is based on the future realized

portfolio beta – buys the market (as a hedge) when the future market return is high, leading

to a strong upward bias in the estimated performance of the ex-post hedged portfolio.

Figure 7 adds the cumulative log return to an ex-ante hedged momentum portfolio, where

betas are estimated using the lagged 42 days of returns of the portfolio on the market. The

strong bias in the ex-post hedge is clear here, as the ex ante hedged portfolio performs no
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Table 7: Momentum Returns and Estimated Market Variance

Each column of this table presents the estimated coefficients and t-statistics for a time-series regression based
on the following regression specification:

r̃WML,t = γ0 + γB · IB,t−1 + γσ2
m
· σ̂2

m,t−1 + γint · IB,t−1 · σ̂2
m,t−1 + ε̃t

Here, IB,t−1 is the bear market indicator described on page 17. σ̂2
m,t−1 is the variance of the daily returns on

the market, measured over the 126-days preceding the start of month t. The regression is monthly, over the
period 1927:07-2013:03.

(1) (2) (3) (4) (5)
γ̂0 0.020 0.036 0.033 0.021 0.022

(6.6) (6.6) (6.0) (7.1) (3.3)
γ̂B -0.027 -0.014 0.025

(-3.8) (-1.8) (1.5)
γ̂σ2

m
-0.009 -0.007 -0.001
(-4.4) (-2.9) (-0.5)

γ̂int -0.009 -0.013
(-5.2) (-2.8)

better than the unhedged WML portfolio in the overall 1928-1939 period.

2.9 Market Stress and Momentum Returns

One very casual interpretation of the results presented in Section 2.6 is that there are option

like payoffs associated with the past losers in bear markets, and that the value of this option

is not adequately reflected in the prices of past losers. This interpretation further suggests

that the value of this option should be a function of the future variance of the market.

In this section we examine this hypothesis. Using daily market return data, we construct

an ex-ante estimate of the market volatility over the next one month. In Table 7, we use

this market variance estimate in combination with the bear-market indicator IB previously

employed to forecast future WML returns. Specifically, we run the following regression:

r̃WML,t = γ0 + γB · IB + γσ2
m
· σ̂2

m,t−1 + γint · IB · σ̂2
m,t−1 + ε̃t (3)

where IB is the bear market indicator described on page 17 and σ̂2
m,t−1 is the variance of the

daily returns of the market over the 126-days just prior to the start of month t.
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Table 7 shows that both estimated market variance and the bear market indicator indepen-

dently forecast future momentum returns. Columns (1) and (2) report regression results for

each market stress variable—the bear market indicator and volatility—separately and column

(3) reports results using both variables simultaneously. The direction is as suggested by the

results of the previous section: in periods of high market stress, as indicated by bear markets

and high volatility, momentum returns are low. Finally, the last two columns of Table 7 report

results for the interaction between the bear market indicator and volatility, where momentum

returns are shown to be particularly poor during bear markets with high volatility.

3 Dynamic Weighting of the Momentum Portfolio

Using the insights from the previous section, we next evaluate the performance of a strat-

egy which dynamically adjusts the weight on the basic WML strategy using the forecasted

return and variance of the WML strategy. We show that the dynamic strategy generates a

Sharpe ratio more than double that of the baseline $1-long/$1-short WML strategy of the

sort typically utilized in academic studies, and which we have so far employed in this paper.

We begin with the design of a strategy which dynamically weights WML depending on its

forecasted return and volatility. We show in Appendix B that, for the objective function of

maximizing the in-sample unconditional Sharpe ratio, the optimal weight on the risky asset

(WML) at time t− 1 is:

w∗
t−1 =

(
1

2λ

)
µt−1

σ2
t−1

(4)

where µt−1 ≡ Et−1[rWML,t] is the conditional expected return on the (zero-investment) WML

portfolio over the coming month, σ2
t−1 ≡ Et−1[(r

2
WML,t − µt−1)

2] is the conditional variance

of the WML portfolio return over the coming month, and λ is a time-invariant scalar that

controls the unconditional risk and return of the dynamic portfolio.

We use the insights from our previous analysis to provide an estimate of µt, the conditional

mean return of WML. The results from Table 7 provide us with an instrument for the time

t conditional expected return on the WML portfolio. As a proxy for the expected return, we

use the interaction between the bear-market indicator IB,t−1 and the market variance over the

preceding 6-months as estimated in the last column of Table 7.
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Then, to estimate the volatility of the WML series, we first fit a GARCH model as proposed

by Glosten, Jagannathan, and Runkle (1993, GJR) to the WML return series. The process is

defined by:

rWML,t = µ+ εt, (5)

where εt ∼ N (0, σ2
t ) and where the evolution of σ2

t is governed by the process:

σ2
t = ω + βσ2

t−1 + (α + γI(εt−1 < 0)) ε2t−1 (6)

where I(εt−1 < 0) is an indicator variable which is one if εt−1 < 0, and zero otherwise.10 We

use maximum likelihood to estimate the parameter set (µ, ω, α, γ, β) over the full time series.

Maximum likelihood estimates of the parameters and standard errors are given in Appendix

C.

We then form a linear combination of the forecast of future volatility from the fitted GJR-

GARCH process with the realized standard deviation of the 126 daily returns preceding the

current month. We show in Appendix C that both components contribute to forecasting

future daily realized WML volatility.

Our analysis in this section is also related to work by Barroso and Santa-Clara (2012), who

argue that momentum crashes can be avoided with a momentum portfolio which is scaled by

the trailing volatility of the momentum portfolio. They further show that the unconditional

Sharpe ratio of the constant-volatility momentum strategy is far better than the $1-long/$1-

short strategy typically used in academic studies.

Equation (4) shows that our results would be approximately the same as those of Barroso and

Santa-Clara (2012) if it were the case that the Sharpe ratio of the momentum strategy were

time-invariant, i.e., that the forecast mean was always proportional to the forecast volatility.

If this were the case then the conditional Sharpe ratio would be equal to the unconditional

Sharpe ratio, and the optimal dynamic strategy would be a constant volatility strategy like

the one proposed by Barroso and Santa-Clara (2012).

However, this is not the case for momentum. In fact, the return of WML is slightly negatively

related to the forecast of WML return volatility. This means that the volatility of the optimal

10Engle and Ng (1993) investigate the performance of a number of parametric models in explaining daily
market volatility for Japan. They find that the GJR model that we use here best fits the dynamic structure
of volatility for that market.
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Figure 8: Dynamic Momentum Strategy Performance
Plotted are the cumulative returns to the dynamic strategy from equation (4), where λ is chosen so that the
in-sample annualized volatility of the strategy is 19%—the same as that of the CRSP value-weighted index
over the full sample. For comparison, we also plot the cumulative log returns of the static WML strategy, and
a constant volatility strategy similar to that of Barroso and Santa-Clara (2012).

dynamic portfolio varies over time, and indeed is lowest when WML’s volatility is forecast to

be high (and it’s mean return low). This is precisely why, in the next subsection, we will show

that the performance of the dynamic strategy is higher than the constant volatility strategy.

3.1 Dynamic Strategy Performance

Figure 8 plots the cumulative returns to this dynamic strategy, where λ is chosen so that the

in-sample annualized volatility of the strategy is 19%—the same as that of the CRSP value-

weighted index over the full sample. For comparison, we also plot the cumulative log returns

of the static WML strategy, and a constant volatility strategy similar to that of Barroso

and Santa-Clara (2012). As Figure 8 shows, the dynamic portfolio outperforms the constant

volatility portfolio, which in turn outperforms the basic WML portfolio.
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Figure 9: Cumulative Log Returns – Subperiod Analysis
Plotted are the cumulative log10 returns of the static and dynamic WML strategies, by subsample from: 1927-
1950, 1950-1975, 1976-2000, and 2000-2013. Returns for each of the three strategies are scaled so as to make
the annualized volatility in each subsample 19%, for ease of comparison.

3.2 Subsample Performance

As a check on the robustness of our results, we perform this same analysis over a set of

approximately quarter century subsamples: 1927-1950, 1950-1975, 1976-2000, and 2000-2013.

We use the same mean and variance forecasting equation and the same calibration in each

of the four subsamples. Table 8 presents the strategy Sharpe ratios and monthly skewness

(in parentheses) by subsample, and Figure 9 plots the cumulative log returns by subsample.

For this plot, returns for each of the three strategies are scaled so as to make the annualized

volatility in each subsample 19%, for ease of comparison.

In each of these subsamples, the ordering of the strategy cumulative performance remains the

same: the dynamic strategy outperforms the constant volatility strategy, which outperforms
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Table 8: Dynamic Strategy Performance by Subsample

This table presents the annualized Sharpe Ratios and skewness (in parentheses) of the three monthly strategies
over the full sample (first row), and over four non-overlapping subsamples. The strategy labeled “WML” is our
baseline $1-long/$1-short WML portfolio. The strategy labeled “const. σ.” is a zero-investment strategy for
which the long- and short- weights are scaled by the WML strategy’s forecast return volatility. The strategy
labeled “dynamic” is the dynamic strategy described in Section 3. Here the portfolio weights each month
are proportional to the forecast mean return of the WML strategy, dividend by the square of the forecast
volatility. Details on the volatility estimation are given in Appendix C.

Strategy Sharpe Ratio (skewness)
Subperiod WML const. σ dynamic

1927:01-2013:03 0.60 1.01 1.18
(-4.70) (-0.76) (0.09)

1927:01-1949:12 0.27 0.63 0.68
(-3.38) (-1.25) (-0.99)

1950:01-1974:12 1.31 1.51 1.67
(-1.16) (-0.54) (-0.05)

1975:01-1999:12 1.48 1.69 1.85
(-0.78) (-0.41) (0.18)

2000:01-2013:03 0.27 0.59 0.96
(-1.50) (-0.68) (0.14)

the $1-long/$1-short static WML strategy.11 The skewness numbers in Table 8 also show that

the dynamic and constant volatility strategies significantly reduce the negative skewness of

returns relative to the constant weight $1 long-$1 short strategy in every subsample. Hence,

part of the improved performance of the constant volatility and especially dynamic strategy

over the static WML portfolio is the amelioration of the big crashes, but even over sub-periods

devoid of those crashes, there is still some improvement.

4 Exposure to other risk factors

We have shown that the time varying exposure to market risk cannot explain the low re-

turns of the momentum portfolio in “crash” states. Here, we explore whether the conditional

risk associated with either the size and value factors as defined by Fama and French (1993)

or exposure to volatility risk can help to explain the conditional returns of the momentum

11For comparison, we also show the subsample performance of the constant volatility strategy, where the
strategy is scaled to a constant level each period. However, in Figure 8 and Figure 9 the constant volatility
strategy is also scaled ex-post to make the realized volatility equal to 19% (annualized).
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Table 9: Regression of WML returns on Variance Swap Returns

This table presents the results of three daily time-series regressions of the zero-investment WML portfolio
returns on an intercept α, on the normalized ex-ante forecasting variable IB,t−1σ̂

2
m, described in the text, and

on this forecasting variable interacted with the excess market return and the return on a (zero-investment)
variance swap on the S&P 500 (See Appendix D) The sample is January 2, 1990 to March 28, 2013. The
coefficients for α and IB,t−1σ̂

2
m,t−1 are converted to annualized, percentage terms by multiplying by 252 · 100.

RHS vars. (1) (2) (3)
α 31.48 29.94 30.39

(4.7) (4.8) (4.9)
IBσ2 -58.62 -49.26 -55.01

(-5.2) (-4.8) (-5.3)
r̃em,t 0.109 0.105

(4.5) (3.3)
IBσ2 · r̃em,t -0.518 -0.629

(-28.4) (-24.7)
r̃vs,t -0.008

(-0.2)
IBσ2 · r̃vs,t -0.101

(-4.8)

portfolios in crash states.

4.1 Exposure to Volatility Risk

The option-like behavior of the momentum portfolio raises the intriguing question of whether

the premium associated with momentum might be related to exposure to variance risk: the

results of Section 2.6 show that, in panic states, a long-short momentum portfolio behaves

like a short (written) call option on the market. We know, historically, shorting options (i.e.,

selling variance) has earned a large premium.12 Hence, we investigate whether the premium

earned by momentum can be attributed to it’s exposure to variance, and whether this premium

changes in panic states.

To assess the dynamic exposure of the momentum strategy to variance, we regress daily WML

returns on the daily returns to a variance swap on the S&P 500, which we calculate using the

VIX and S&P 500 returns. Appendix D provides details of the calculation of the variance

swap return.

As before, we run a time-series regression with a conditioning variable designed to capture

12See Christensen and Prabhala (1998) and Carr and Wu (2009).
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the time-variation in factor loadings on the market, and potentially on other variables. The

conditioning variable is the interaction variable used earlier—IBσ2 ≡ (1/v̄B)IB,t−1σ̂
2
m,t−1—but

with a slight twist:

• IB is the bear market indicator defined earlier, where IB = 1 when the cumulative 2

year market return is negative, through the end of the preceding month, and is zero

otherwise.

• σ̂2
m is the variance of the market excess return over the preceding 126 days, as defined

earlier.

• (1/v̄B) is the the inverse of the full-sample mean of σ̂2
m over all months in which IB,t−1 =

1.

Normalizing the interaction term with the constant 1/v̄B does not affect the statistical signifi-

cance of the results. Rather, it gives the coefficients above a simple interpretation. Specifically,

given this scaling: ∑
IB,t−1=1

IBσ2 = 1.

This means that the coefficients on either IBσ2 or on variables interacted with IBσ2 can be

interpreted as the average change in the corresponding coefficient when in a bear market.

Table 9 presents the results of this analysis. Regression (1) in the first column is essentially

the same regression as before in equation (1): In periods where IB,t−1 = 0, the WML portfolio

experiences an average annual return of about 33% per year. However, the weighted average

return when IB,t−1 = 1 falls by almost 60% per year. Regression (2) controls for the market

return and conditional market risk. Consistent with our earlier results, we find that the WML

beta becomes substantially lower in panic periods. However, the change in the WML premium,

given by the coefficient on IBσ2 , changes very little, dropping from 32.9 to 31.2 percent per

annum.

In regression (3), we add the return on the variance swap and its interaction with panic

states. The coefficient on r̃vs,t shows that outside of panic periods (i.e., when IB,t−1 = 0), the

WML return does not covary significantly with the variance swap. However, the coefficient

on IBσ2 · r̃vs,t shows that in panic periods, WML has a significant negative loading on the

variance swap return. That is, WML is effectively “short volatility” during these periods.
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Table 10: Conditional Estimation of WML, HML and SMB premia

This table presents the results of monthly time-series regressions. The dependent variable is indicated at the
head of each column, and is either: (1) WML; (2) the HML–devil portfolio proposed by Asness and Frazzini
(2011); the SMB portfolio return of Fama and French (1993); or (4) a portfolio which is 50% WML and
50% HML-devil. The independent variables are: intercept α, on the normalized ex-ante forecasting variable
IBσ2 ≡ (1/v̄B)IB,t−1 · σ̂2

m, and on this forecasting variable interacted with the excess market return and the
Fama and French (1993) HML and SMB returns. The sample is January 1927 through March, 2013 for the
WML and SMB regressions, and January 1927-December 2012 for the HML-d and WML+HML-d portfolios.
The coefficients for α and IB,t−1σ̂

2
m are converted to annualized, percentage terms by multiplying by 12 · 100.

Dependent Variable – Return Series
Vars. WML HML-d SMB WML+HML-d
intercept 24.93 26.95 2.96 3.14 1.91 0.34 13.41 14.08

(8.6) (9.4) (1.8) (2.2) (1.5) (0.3) (10.0) (11.0)
IBσ2 -28.80 -26.94 9.32 6.57 5.33 5.44 -12.01 -11.13

(-5.8) (-5.4) (3.3) (2.7) (2.4) (2.6) (-5.2) (-5.1)
rem -0.17 -0.15 -0.02 0.21 -0.09

(-3.3) (-2.7) (-0.6) (9.4) (-4.0)
IBσ2 · rem -0.54 -0.44 0.33 -0.01 -0.11

(-12.9) (-7.8) (16.3) (-0.4) (-5.8)
rSMB -0.16

(-1.9)
IBσ2 · rSMB -0.18

(-2.2)
rHML -0.38

(-4.8)
IBσ2 · rHML 0.05

(0.7)

This is consistent with the results in Section 2.6, where we showed that WML behaves like a

short call option, but only in panic periods.

However, in regression (3), the intercept (α) and IBσ2 terms, which give the estimated momen-

tum premium in calm and panic periods, are essentially unchanged, even after controlling for

the variance swap return. The estimated WML premium in non-panic states remains large,

and the change in this premium in panic states is just as negative as before, indicating that

although momentum returns are related to variance risk, they are not explained by it.

4.2 Exposure to Size and Value Factors

The first two columns of Table 10 present the results of regressing the WML momentum

portfolio returns on the three Fama and French (1993) factors consisting of the CRSP VW
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index return in excess of the risk-free rate, a small minus big (SMB) stock factor, and a

high BE/ME minus low BE/ME (HML) factor, all obtained from Ken French’s website. In

addition, we interact each of the factors with the panic state variable IBσ2 .

The first two columns show that the abnormal performance for WML continues to be sig-

nificantly more negative in bear market states, whether we measure abnormal performance

relative to the market model or to the Fama and French (1993) three-factor model, with little

difference in the point estimates.

The next two columns of the table repeat the market model regressions using HML as the

dependent variable instead of WML. For these regressions, we use the modified HML portfolio

of Asness and Frazzini (2011). Specifically, Asness and Frazzini show that the Fama and French

(1993) HML construction, by using lagged market prices in its BE/ME calculations, inherently

induces some positive covariance with momentum. They advocate using the most recent (last

month’s) price to compute BE/ME ratios in constructing their HML factor, which they term

HML-devil (HML-d), in order to examine the value effect separately from momentum. As

Table 10 shows, the abnormal return of the HML portfolio increases in the panic states,

the opposite of what we find for momentum. This is not surprising for several reasons. First,

momentum strategies buy past winners and sell past losers, while value strategies typically buy

longer-term past losers and sell winners (see DeBondt and Thaler (1987) and Fama and French

(1996)). Also, the correlation between HML-d and UMD is approximately -0.50. Finally, this

result is consistent with the intuition for why the market-beta of the WML portfolio changes

with past market-returns. Since growth (low book-to-price) stocks have generally had high

past returns and value stocks low past returns, the same intuition discussed earlier suggests

that HML’s beta should be high when IB,t−1 = 1, and it is. Specifically, HML’s market beta

is higher by 0.33 when IB,t−1 = 1 (t-stat = 16.3), as indicated by the interaction term. More

directly, the correlation of HML with the excess return on the market during panic states is

0.59, but during normal times it is −0.10. Conversely, for the WML portfolio, the correlation

with the market is 0.02 during normal times and -0.71 when IB,t−1 = 1.

The next two columns of Table 10 repeat this exercise using SMB as the dependent variable.

The premium on SMB is statistically significantly higher in panic states as well, but its beta

does not change significantly during these states. This makes sense since size is a poor proxy

for recent short-term performance.
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Finally, the last two columns run regressions for a 50-50 equal combination of WML and

HML-d following Asness, Moskowitz, and Pedersen (2013), who show that a combination of

value and momentum diversifies away a variety of exposures including aggregate market and

liquidity risks. Given the opposite-signed results for WML and HML-d on the panic state

variables, it is not surprising that a combination of WML and HML-d hedges some of this

risk. However, since the magnitude of the effects on WML are much larger than those of

HML, the net effect is still a reduction in returns and a decrease in beta during panic states

for the momentum-value combination.13

5 International Equities and Other Asset Classes

In the academic literature, momentum effects were first documented in individual equities in

the United States. Subsequent research has demonstrated the existence of strong momentum

effects both among common stocks in other investment regions and in other asset classes.14

We investigate the extent to which the same momentum crash patterns we observe in US

equities are also present in these other asset markets: first in international equity markets and

then in other asset classes.

5.1 Data Construction

5.1.1 International Stock Market Data

The data come from Asness, Moskowitz, and Pedersen (2013). The international stock markets

we analyze are the U.S., U.K., Japan, and Continental Europe. We also examine a global

equity momentum strategy GLB, which weights each region’s equity momentum strategy by

the ex-post volatility of the portfolio over the full sample.

The source for the U.S. data is CRSP. For the other regions, we use the Datastream and

13One possibility for the dominance of momentum here is that the 50-50 momentum-value weighting is based
on equal dollar allocation to both rather than equal risk allocation. Since momentum is more volatile than
value, this may be tilting the overall exposure of the combination portfolio more toward momentum.

14The research on this topic is cited in footnote 1 and a summary of these effects is found in Asness,
Moskowitz, and Pedersen (2013).

32



the BARRA International universes. Data description and construction are identical to those

in Asness, Moskowitz, and Pedersen (2013), and details on both can be found there. The

samples for the U.S. and U.K. begin in January 1972. Continental Europe and Japan begin

in February, 1974. For each market, the last month of our sample is May, 2013.15

The market portfolios we use for each region are from MSCI: specifically the MSCI US, MSCI

UK, MSCI Europe, MSCI Japan indices, and the MSCI World index for the global strategy.

5.1.2 Data for Other Asset Classes

The data, again, come from Asness, Moskowitz, and Pedersen (2013). Specifically, we use

equity country index futures across 18 developed equity markets beginning in January 1978,

10 currencies across developed markets starting in January 1979, 10 country government bonds

beginning January 1982, and 27 different commodity futures beginning in January 1972. All

series end in May 2013.

In addition, we examine two composite portfolios: GA is a global momentum strategy across

the non-equity asset classes, which weights each asset class momentum strategy portfolio by

the ex-post volatility of that portfolio. GAll is a global momentum strategy across all of the

equity and non-equity asset classes, which weights the GLB and GA portfolios by their ex-post

return volatilities over the full sample.

As with our cross-sectional equity strategies, the definition of the market index is different

for each asset class: it is the MSCI World index for country index futures, an equal-weighted

average of all country bonds for bond markets, an equal-weighted average of all currencies for

currency markets, and the Goldman Sachs Commodity Index (GSCI) for commodities.

5.2 Cross Sectional Equity Momentum Outside the US

The portfolio formation procedure here is similar to that used earlier in this paper. Our

momentum measure is each stock’s cumulative return from 12 months prior to the formation

15These data extend beyond the original sample period used in Asness, Moskowitz, and Pedersen (2013),
since the data are updated monthly following the same procedure for portfolio construction in Asness,
Moskowitz, and Pedersen (2013). The data are available from Toby Moskowitz’s website:
(http://faculty.chicagobooth.edu/tobias.moskowitz/research/data.html)
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date to one month prior to the formation date. However in our analysis in Sections 2 and

3, we use the top and bottom decile portfolios, value-weighted. Here, we use the Asness,

Moskowitz, and Pedersen (2013) P3−P1 momentum portfolios. This long-short portfolio is

less extreme: it is long the one-third of the securities with the highest momentum at the

start of each month, and takes short positions in the one-third of the stocks with the lowest

momentum. Both the long- and the short-portfolio are value weighted. As documented in

Asness, Moskowitz, and Pedersen (2013), over this time period there are strong momentum

effects in each of the regions, except Japan. In addition, there is significant co-movement

across the strategies, but they are not perfectly correlated.

Panels A through D of Table 11 present the results of the regressions run in Section 2, but

here for the other universes. Panel A shows the estimated coefficients and t-statistics from

regression equation (1):

R̃P3−P1
t = (α0 + αBIB,t−1) + (β0 + βBIB,t−1)R̃

e
m,t + ε̃t. (7)

As noted earlier, in each regression, the excess market portfolio return R̃e
m,t corresponds to

the US dollar return of the stock market within which the momentum strategy is constructed,

net of the US treasury-bill rate.

Consistent with the results presented earlier, the market betas of the momentum strategy are

dramatically lower in bear markets across the other stock markets as well. The strategies

implemented using European and Japanese stocks have market betas that are approximately

0.5 lower during bear markets (with t-stats of about -7). The UK momentum strategy beta

falls by 0.21. The drop in this period for this US momentum strategy is 0.58 – comparable

to what we observe for the WML portfolio over the longer 1927 to 2013 period. Globally,

averaging across the US, UK, Europe, and Japan, the market betas of the momentum strategy

are markedly lower in bear markets.

The abnormal return of the momentum strategies is significantly positive in bull markets for

all regions except Japan. Consistent with our analysis in Section 2, the abnormal return is

lower in bear markets in each region, though using only the bear market indicator as a proxy

for panic periods none of the differences are statistically significant over this shorter sample

period.

Panel B investigates the optionality in the momentum strategy in bear markets using regres-

34



sion equation (2)

R̃P3−P1
t = (α0 + αBIB,t−1) + (β0 + IB,t−1[βB + ĨU,tβB,U ])R̃e

m,t + ε̃t. (8)

Consistent with the longer period US results, there is statistically significant optionality in

bear markets in the EU, UK, and JP stock markets, and globally across all markets. In-

terestingly, for this subsample and methodology, the optionality is of the right sign, but is

not statistically significant for the US market. The negative beta of long-short momentum

strategies is particularly acute when the contemporaneous market return is positive. That

is, momentum strategies in all regions across the world exhibit conditional betas and payoffs

similar to writing call options on the local market.

In Panel C, we add as a conditioning variable the realized daily market return variance,

annualized, over the preceding 126 trading days (6 months).16

R̃P3−P1
t = [α0 + αBIB,t−1 + αV σ̂

2
m,t−1] + [β0 + βBIB,t−1 + βV σ̂

2
m,t−1]R̃

e
m,t + ε̃t. (9)

Two interesting results emerge. First, higher ex-ante market variance is generally associated

with more negative momentum strategy betas. Second, higher market variance is also asso-

ciated with strongly lower future abnormal returns to momentum, net of the market return.

This last relation is statistically significant in all markets, and again is consistent with our

earlier results for the US market over the longer period.

In Panel D we again use the IBσ2 ≡ (1/v̄B)IB,t−1 ·σ̂2
m measure introduced in Section 4, designed

to capture “panic” periods when the the market has fallen and volatility is high. In addition,

in these regressions we instrument for time variation in market beta using IB,t−1, σ̂
2
m,t−1, and

IBσ2 . Specifically, we run the regression

R̃P3−P1
t = [α0 + αBIBσ2 ] + [βBIB,t−1 + βVσ̂

2
m,t−1 + βIBVIBσ2 ]R̃e

m,t + ε̃t. (10)

The results in Panel D of Table 11 are remarkably consistent with our earlier results for the US

over the longer period. The coefficient on the interaction IBσ2 term is negative, economically

large, and statistically significant in all markets, and for the global strategy. In summary, the

16This is the same market variance measure used earlier in the paper. However, for the EU, JP, and UK
regions we have daily MSCI market return data only for the time period from January 1990 on. Therefore,
over the period from 1972:01-1990:06 in the UK, and 1974:01-1990:06 in the EU and JP, we use the realized
monthly variance over the preceding 6 months, again annualized.
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results in this table suggest that momentum strategies in these different equity markets are also

short volatility, and have significantly lower abnormal returns in panic periods characterized

by poor lagged market returns and high market volatility.

One other point of interest is that, in Panels C and D of Table 11, the α̂ for the Japan

momentum strategy is considerably larger, and in Panel C is in fact significant at a 5% level.

We’ll explore the implications of this further in Section 5.4, where we will explore a dynamic

Japanese momentum strategy which takes into account both the forecastability in the expected

return and the forecastability of the strategy volatilty.

5.3 Momentum in Other Asset Classes

The previous subsection showed that the option-like payoffs of momentum strategies in bear

markets is a feature present outside of US equity markets and indeed in every other equity

market we examined. These findings give credence to this feature of momentum being a robust

phenomenon and not likely due to chance. In addition, because these other markets are all

equity momentum strategies, the results may be consistent with Merton (1974). Common

stocks that have lost significant value, particularly in bear markets, are like out of the money

call options on the firm, and consequently should exhibit option-like behavior.

For further robustness on the optionality of momentum and to further test the Merton (1974)-

type theory for its existence, we examine momentum strategies on the non-equity asset classes

that include government bonds, currencies, and commodity futures. These other asset classes

provide another out of sample test for the option-like payoffs of momentum strategies in bear

markets. However, it is unlikely that a Merton (1974)-type story would explain such a feature

in these asset classes. Hence, finding the same option-like asymmetry in these asset classes

will provide additional robustness, but would also present a challenge to the Merton (1974)

explanation.

We use the zero-investment P3−P1 momentum portfolios in each non-equity asset class from

Asness, Moskowitz, and Pedersen (2013), which are the top third minus bottom third of assets

within each asset class based on their prior 12-month cumulative return, skipping the most

recent month, and where securities are equal-weighted within these asset classes (since there

is no notion of size or market cap for futures or currencies). From Asness, Moskowitz, and
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Table 11: Time Series Regressions for International Equity Markets

This table below reports the estimated coefficients and t-statistics from regressions of the monthly returns
to zero-investment equity momentum strategy in each region on the indicated set of RHS variables. The
estimated intercept, and the coefficients on IB,t−1 and IBσ2 are all multiplied by 12·100 to put them in
annualized, percentage terms. GLB is global equity momentum strategy described in Section 5.1.1.

EU JP UK US GLB
start 1974-02 1974-02 1972-01 1972-02 1972-01
end 2013-05 2013-05 2013-05 2013-05 2013-05

Panel A
α 8.935 1.887 7.409 5.181 5.826

(3.5) (0.5) (2.7) (1.9) (3.6)
IB -3.549 -0.837 -6.827 -2.921 -4.920

(-0.7) (-0.1) (-1.1) (-0.5) (-1.2)
Rem 0.071 0.246 0.015 0.150 0.023

(1.6) (4.8) (0.4) (2.7) (0.7)
IBR

e
m -0.508 -0.527 -0.197 -0.584 -0.275

(-7.1) (-7.0) (-3.1) (-6.2) (-4.6)
Panel B

α 8.935 1.887 7.409 5.181 5.826
(3.6) (0.5) (2.7) (1.9) (3.6)

IB 9.418 11.104 4.249 -0.266 5.019
(1.2) (1.3) (0.5) (-0.0) (0.8)

Rem 0.071 0.246 0.015 0.150 0.023
(1.7) (4.8) (0.4) (2.7) (0.7)

IBR
e
m -0.302 -0.318 0.004 -0.540 -0.098

(-2.7) (-2.5) (0.0) (-3.3) (-1.0)
IBIUR

e
m -0.418 -0.367 -0.306 -0.086 -0.342

(-2.4) (-2.0) (-2.2) (-0.3) (-2.2)
Panel C

α 12.237 12.385 10.856 10.331 8.345
(4.1) (2.5) (3.6) (3.4) (4.8)

IB 1.445 4.554 0.213 6.018 2.254
(0.3) (0.7) (0.0) (0.9) (0.5)

σ̂2
m -0.113 -0.221 -0.078 -0.204 -0.252

(-2.0) (-2.9) (-2.6) (-3.3) (-3.7)
Rem 0.115 0.280 0.020 0.215 0.041

(2.5) (4.2) (0.5) (3.6) (1.2)
IBR

e
m -0.391 -0.512 -0.182 -0.485 -0.206

(-4.8) (-6.5) (-2.5) (-4.8) (-3.2)
σ̂2
mR

e
m -1.755 -0.734 -0.040 -2.361 -1.959

(-2.6) (-0.7) (-0.2) (-2.5) (-2.2)
Panel D

α 10.286 5.333 8.627 7.084 6.720
(4.4) (1.6) (3.4) (2.8) (4.5)

IBσ2 -6.509 -9.910 -11.408 -11.055 -8.704
(-2.0) (-2.2) (-3.2) (-2.6) (-3.6)

IBR
e
m -0.306 -0.180 -0.176 -0.245 -0.177

(-3.7) (-1.8) (-2.6) (-2.4) (-2.8)
σ̂2
mR

e
m -0.295 3.685 -0.600 1.839 -2.798

(-0.2) (3.8) (-0.8) (1.2) (-1.2)
IBσ2Rem -0.056 -0.307 0.073 -0.261 0.036

(-0.7) (-3.2) (0.8) (-2.4) (0.5)
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Pedersen (2013) we know that every momentum strategy (except the bond strategy) produces

returns that are different from zero at conventional significance levels. We also examine the

“all” strategy from Asness, Moskowitz, and Pedersen (2013), which is an equal volatility

weighted average portfolio across the four asset classes and an “all+stock” portfolio which

combines the four asset-class and the four international equity momentum strategies.

Table 12 presents the results of time series regressions for the asset-class momentum strategies

similar to those in Table 11 for the international equity momentum strategies. Panels A, B,

C, and D report the results of estimating equations (7), (8), (9), and (10), respectively.

The patterns revealed in Table 12 are similar to what we see in international equities. First,

the set of IB,t−1 ·R̃e
m coefficients and t-statistics in the last row of Panel A show that, in all asset

classes, the momentum portfolio’s market beta is significantly more negative in bear markets.

The intuition that, following a bear market, the loser side of the momentum portfolio will

have a high market beta is valid for other asset classes as well.

The IB,t−1 coefficients in the second row of Panel A provide evidence weakly consistent with the

earlier finding that market-risk adjusted momentum returns are lower following bear markets.

The point estimates are all negative, except for bonds, but only in the currency market is the

IB,t−1 coefficient statistically significant.

The set of regressions in Panel B help to assess whether the optionality present in cross-

sectional equity momentum strategies is also present here in other asset classes. The IB,t−1ĨU,tR̃
e
m,t

coefficient is negative for each of the four asset classes, and the two composite portfolios, but

is statistically significant at a 5% level only for commodities. This result is intriguing. While

a model such as Merton (1974) would argue that equities would exhibit option-like features,

it is not clear that such a model would easily explain the optionality present in currency and

commodity futures markets.

Panel C of Table 12 estimates equation (9) for the other-asset-class momentum strategies.

Here the signs in the relation between lagged volatility and momentum strategy returns are

again negative in the commodity (CM), currency (FX), and equity (EQ) futures asset classes.

Panel D again uses the interactive variable IBσ2 as an instrument for volatile bear markets.

As in Table 11, we control for variation in market beta associated with IB,t−1, σ̂
2
m, and the

interaction term itself. In all asset classes except FI, the coefficient on this interaction term

is negative, consistent with our previous findings in US and international equity markets.
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Table 12: Time Series Regressions for other Asset Classes

This table below reports the estimated coefficients and t-statistics from regressions of the monthly returns to
zero-investment momentum strategies in each asset class on the indicated set of RHS variables. GA and GAll
are the global strategies described in Section 5.1.2. The estimated intercept, and the coefficients on IB,t−1

and IBσ2 are all multiplied by 12·100 to put them in annualized, percentage terms.

FI CM FX EQ GA GAll
start 1983-02 1973-02 1980-02 1979-02 1973-02 1973-02
end 2013-05 2013-05 2013-05 2013-05 2013-05 2013-05

Panel A
α 0.006 16.302 4.745 8.575 4.653 4.639

(0.0) (3.7) (2.2) (3.8) (4.6) (5.0)
IB 0.798 -10.470 -8.221 -0.575 -2.426 -3.294

(0.3) (-1.4) (-2.5) (-0.1) (-1.1) (-1.3)
Rem 0.186 0.308 0.382 0.272 0.162 0.082

(3.1) (4.1) (4.4) (6.0) (2.7) (1.9)
IBR

e
m -0.362 -0.730 -1.092 -0.620 -0.485 -0.366

(-2.7) (-4.5) (-8.6) (-8.5) (-3.9) (-4.4)
Panel B

α 0.006 16.302 4.745 8.575 4.653 4.639
(0.0) (3.8) (2.2) (3.8) (4.6) (5.1)

IB 1.994 7.014 -4.096 6.248 1.142 3.746
(0.6) (0.7) (-0.9) (1.1) (0.4) (1.1)

Rem 0.186 0.308 0.382 0.272 0.162 0.082
(3.1) (4.1) (4.4) (6.0) (2.7) (1.9)

IBR
e
m -0.278 -0.205 -0.911 -0.485 -0.222 -0.106

(-1.4) (-0.8) (-5.0) (-4.6) (-1.2) (-0.9)
IBIUR

e
m -0.197 -1.102 -0.405 -0.312 -0.563 -0.605

(-0.6) (-2.5) (-1.4) (-1.7) (-1.8) (-2.9)
Panel C

α -0.297 20.050 7.527 9.277 5.835 5.963
(-0.2) (3.5) (2.4) (3.8) (4.9) (5.9)

IB 1.057 -9.022 -7.475 0.634 -0.759 0.554
(0.4) (-1.2) (-2.2) (0.2) (-0.3) (0.2)

σ̂2
m 0.136 -0.211 -0.503 -0.047 -0.756 -0.585

(0.2) (-1.1) (-1.2) (-0.7) (-1.8) (-3.0)
Rem 0.278 0.522 0.429 0.299 0.201 0.104

(2.1) (4.3) (4.0) (6.3) (3.0) (2.3)
IBR

e
m -0.385 -0.712 -1.045 -0.549 -0.374 -0.267

(-2.8) (-4.4) (-8.0) (-6.6) (-2.7) (-2.8)
σ̂2
mR

e
m -55.971 -8.820 -9.702 -2.001 -23.842 -8.605

(-0.8) (-2.2) (-0.8) (-1.7) (-1.2) (-1.5)
Panel D

α 0.218 13.803 3.419 9.240 4.766 4.853
(0.2) (3.7) (1.8) (4.7) (5.1) (5.6)

IBσ2 0.026 -4.808 -4.655 -2.683 -2.308 -4.056
(0.0) (-1.2) (-2.1) (-1.2) (-1.8) (-2.8)

Rem 0.263 0.772 0.672 0.384 0.238 0.128
(1.9) (5.0) (3.0) (5.9) (2.0) (2.0)

IBR
e
m -0.281 -1.207 -1.293 -0.669 -0.424 -0.303

(-0.8) (-4.8) (-5.0) (-6.4) (-2.3) (-2.7)
σ̂2
mR

e
m -46.141 -18.887 -60.175 -8.332 -49.075 -22.030

(-0.6) (-3.4) (-1.4) (-2.4) (-0.7) (-1.0)
IBσ2Rem -0.105 0.344 0.268 0.222 0.074 0.095

(-0.3) (2.5) (1.3) (1.9) (0.4) (0.6)
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However, except for FX and the GAll portfolio, the coefficient is not significant at a 5% level

of significance.

These results are largely consistent with those found for US equities and for all other inter-

national equities, too. However, these findings are more difficult to reconcile under a Merton

(1974)-style theory, which is better suited for equity returns.

5.4 Robustness of Dynamic Strategies in Other Markets and Asset

Classes

Given the robustness of the option-like features to momentum in other equity markets and

other asset classes, we examine the efficacy of the dynamic momentum strategy we employed

in US equity markets internationally and in other asset classes to see how robust its outper-

formance is out of sample.

As in our analysis of the US-equity dynamic momentum strategy, the dynamic strategy em-

ployed in each alternative asset class is rebalanced monthly. Specifically, at the beginning

of each month we buy the value-weighted “winner” portfolio and short the value-weighted

“loser”portfolio. However, while for the static WML strategy we buy and short $1 of each

portfolio, here we buy or sell $wt, where wt is based on the ex-ante expected return and

volatility of the WML portfolio (as in Appendix B) using the instruments from the previous

analysis to forecast the expected return and volatility.

Our forecast of the mean return for the WML portfolio in each asset class is based on a

univariate forecast, using the interaction of the ex-ante bear market indicator for that asset

class, IB,t−1, and the asset-class market volatility over the preceding 6-months.

As in our analysis of the US-equity dynamic momentum strategy, we forecast the WML

volatility by first fitting the GARCH-M process proposed by Glosten, Jagannathan, and Run-

kle (1993) to the WML returns for that asset class. We combine this with a lagged 126 day

(i.e., 6 month) measure of WML volatility. Precise specifications of the forecasting model,

and the GARCH model parameters for each asset class are given in Appendix C.

Table 13 reports the Sharpe ratio and skewness (in parentheses) of the simple $1 long-$1 short

WML momentum strategy in each market and asset class, as well as a constant volatility
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momentum strategy and a dynamic momentum strategy as constructed in Section 3 for each

market and asset class. In addition, we report global combinations of the equity momentum

strategies across all markets (GLB), the non-equity asset classes (GA), and a combination of

all equity markets and non-equity asset classes (GAll).

As Table 13 shows, there is a marked improvement in Sharpe ratio going from the static WML

momentum strategy to a constant volatility momentum strategy to our dynamic momentum

strategy in every single market and asset class we study. In most cases, our dynamic strategy

doubles the Sharpe ratio over the traditional static momentum portfolio. Furthermore, our

dynamic momentum strategy resurrects positive returns in markets where the typical mo-

mentum portfolio has failed to produce positive profits, such as Japan. In Japan, the static,

classic momentum portfolio delivers a 0.07 Sharpe ratio, but our dynamic momentum portfo-

lio in Japan produces a 0.37 Sharpe ratio. (Alas, even the dynamic strategy does not deliver

positive average returns for fixed income.)

The skewness numbers (in parentheses) are also interesting as the predominantly negative

skewness of the static momentum strategies across all markets is apparent, but the dynamic

momentum strategy delivers mostly positive skewness, which is consistent with the improve-

ment in Sharpe ratio we see from the dynamic strategy.

Finally, the last row of Table 13 reports results for a “fully dynamic” portfolio that is a

weighted combination of the individual asset class or market dynamic strategies, where the

weighs are based on the ex-ante conditional volatility of each component strategy. That is,

each of the component strategies is scaled to have equal volatility (ex ante), and then the

strategies are equally weighted. In this way, we are also using cross-sectional information on

the strength of the dynamic signal of each component strategy to build a fully dynamic combi-

nation portfolio across all asset classes. As Table 13 indicates, there is additional Sharpe ratio

improvement from this additional twist on our dynamic momentum strategies, providing an-

other robustness test on the use of conditional mean and variance forecastability in enhancing

the returns to momentum strategies. Overall, the very consistent evidence of the optionality

of momentum strategies, conditional betas and return premia, and improvement from our

dynamic weighting scheme across different markets and vastly different asset classes, provides

a wealth of out of sample evidence for our findings and suggests that momentum crashes and

the ability to forecast these episodes is a reliable feature of momentum-type strategies.17

17Although beyond the scope of this paper, it would be interesting to see if other momentum-type strategies,
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Table 13: Sharpe Ratios of the WML, Dynamic and Constant Volatility strategies

This table presents the annualized Sharpe ratios of momentum strategies each of the different asset class
strategies. For each asset class, WML denotes the baseline $1-long/$1-short momentum strategy. “cst.-σ”
denotes the strategy which is weighted by the ex-ante forecast volatility of the strategy. “dynam.” is the
maximum sharpe ratio strategy described in appendix B. The final row of the table, labeled “full-dyn” is
the Sharpe-ratio of a portfolio which is a weighted combination of the dynamic strategies that make up that
“generalized” strategy, where the weighs are based on the ex-ante conditional volatility of the each component
strategy. That is, each of the component strategies is scaled to have equal volatility, and then the strategies
are equally weighted.

Annualized Strategy Sharpe Ratio (Skewness)
EU JP UK US GE FI CM FX EQ GA GAll

start 06/90 06/90 06/90 07/72 07/72 06/83 02/73 02/80 02/79 02/73 02/73
end 05/13 05/13 05/13 05/13 05/13 05/13 05/13 05/13 05/13 05/13 05/13

Static WML 0.462 0.067 0.465 0.283 0.513 0.004 0.587 0.296 0.705 0.676 0.754
(-0.34) (0.02) (-0.62) (-0.04) (-0.34) (-0.24) (0.01) (-0.54) (-0.18) (-0.48) (-0.33)

Const. σ WML 0.823 0.159 0.737 0.519 0.732 0.016 0.685 0.424 0.797 0.790 0.940
(0.44) (-0.11) (-0.04) (-0.09) (0.12) (-0.47) (-0.07) (-0.47) (0.05) (-0.31) (-0.18)

Dynamic WML 0.931 0.333 0.826 0.658 0.678 -0.065 0.787 0.624 0.825 0.936 1.114
(0.82) (2.08) (0.50) (0.12) (1.22) (0.35) (0.30) (-0.15) (0.30) (-0.11) (0.09)

Full-dynamic WML 0.930 0.980 1.162
(0.60) (-0.20) (0.08)

6 Conclusions

In “normal” environments we see consistent price momentum that is both statistically and

economically strong and manifests itself across numerous equity markets and a wide range of

diverse asset classes.

However, in extreme market environments following a long market downturn, the market prices

of past losers embody a very high premium. When poor market conditions ameliorate and

the market starts to rebound, the losers experience strong gains, resulting in a “momentum

crash” as momentum strategies short these assets. We find that, in bear market states, and

in particular when market volatility is high, the down-market betas of the past-losers are low,

but the up-market betas are very large. This optionality does not appear to generally be

such as earnings momentum in equities (Chan, Jegadeesh, and Lakonishok (1996)), or time-series momentum
in futures contracts (Moskowitz, Ooi, and Pedersen (2012)), or cross-momentum effects (Cohen and Frazzini
(2008)) exhibit similar features.
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reflected in the prices of the past losers. Consequently, the expected returns of the past losers

are very high, and the momentum effect is reversed during these times. This feature does

not apply equally to winners during good times, however, resulting in an asymmetry in the

winner and loser exposure to market returns during extreme times.

These results are shown to be remarkably robust across eight different markets and asset

classes, as well as multiple time periods. Moreover, since part of these crash periods are

predictable, we use bear market indicators and volatility estimates to forecast the conditional

mean and variance of momentum strategies. Armed with these estimates, we create a simple

dynamically-weighted version of the momentum portfolio that approximately doubles the

Sharpe ratio of the static momentum strategy—and does so consistently in every market,

asset class, and time period we study.

What can explain these findings? We examine a variety of explanations ranging from compen-

sation for crash risk to volatility risk, to other factor risks such as the Fama and French (1993)

factors, but find that none of these explanations can account fully for our findings, though

volatility risk goes in the right direction. For equity momentum, a Merton (1974) story for

the option-like payoffs of equities may make sense. However, the existence of the same phe-

nomena and option-like features for momentum strategies in futures, bonds, currencies, and

commodities, makes this story more challenging. Alternatively, these effects may be loosely

consistent with several behavioral findings, where in extreme situations individuals tend to be

fearful and appear to focus on losses, largely ignoring probabilities.18 Whether this behavioral

phenomenon is fully consistent with the empirical results documented here is a subject for

further research and would indicate that the behavior of market participants in each of these

markets and asset classes is affected similarly, despite the fact that the average and marginal

investor in these various markets are quite different along many other dimensions.

18See Sunstein and Zeckhauser (2008), Loewenstein, Weber, Hsee, and Welch (2001), and Loewenstein
(2000).
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Appendices

A Detailed Description of Calculations

A.1 Cumulative Return Calculations

The cumulative return, on an (implementable) strategy is an investment at time 0, which
is fully reinvested at each point – i.e., where no cash is put in or taken out. That is, the
cumulative arithmetic returns between times t and T is denoted R(t, T ).

R(t, T ) =
T∏

s=t+1

(1 +Rs)− 1,

where Rs denotes the arithmetic return in the period ending at time t, and rs = log(1 + Rs)
denotes the log-return over period s,

r(t, T ) =
T∑

s=t+1

rs.

For long-short portfolios, the cumulative return is:

R(t, T ) =
T∏

s=t+1

(1 +RL,s −RS,s +Rf,t)− 1,

where the terms RL,s, RS,s, and Rf,s are, respectively, the return on the long side of the
portfolio, the short side of the portfolio, and the risk-free rate. Thus, the strategy reflects the
cumulative return, with an initial investment of Vt, which is managed in the following way:

1. Using the $V0 as margin, you purchase $V0 of the long side of the portfolio, and short
$V0 worth of the short side of the portfolio. Note that this is consistent with Reg-T
requirements. Over each period s, the margin posted earns interest at rate Rf,s.

2. At then end of each period, the value of the investments on the long and the short side of
the portfolio are adjusted to reflect gains to both the long and short side of the portfolio.
So, for example, at the end of the first period, the investments in both the long and
short side of the portfolio are adjusted to set their value equal to the total value of the
portfolio to Vt+1 = Vt · (1 +RL −RS +Rf ).

Note that, for monthly returns, this methodology assumes that there are no margin calls, etc.,
except at the end of each month. These calculated returns do not incorporate transaction
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costs.

B Maximum Sharpe Ratio Strategy

The setting is discrete time with T periods from 1, . . . , T . We can trade in two assets, a risky
asset and a risk free asset. Our objective is to maximize the Sharpe ratio of a portfolio where,
each period, we can trade in or out of the risky asset with no cost.

Over period t+ 1 – which is the span from t to t+ 1 – the excess return on a risky asset r̃t+1

is distributed normally, with time-t conditional mean µt and conditional variance σ2
t . That is,

µt = Et [r̃t+1] and σ2
t = Et

[
(r̃t+1 − µt)2

]
. (11)

Suppose further that at t = 0 the agent knows µt and σt for t ∈ {0, . . . , T − 1}.

The agent’s objective is to maximize the full period Sharpe ratio of a managed portfolio. The
agent manages the portfolio by placing, at the beginning of each period, a fraction wt of the
value of the managed portfolio in the risky asset, and a fraction 1− wt in the risk-free asset.
The time t expected excess return and variance of the managed portfolio in period t + 1 is
then given by:

r̃p,t+1 = wtr̃t+1 ∼ N
(
wtµt, w

2
tσ

2
t

)
.

The Sharpe ratio over the T periods is:

SR =
E
[
1
T

∑T
t=1 r̃p,t

]
√

E
[
1
T

∑T
t=1(r̃p,t − r̄p)2

]
where the r̄p in the denominator is the sample average per period excess return ( 1

T

∑T
t=1 r̃p,t).

Given the information structure of this optimization problem, maximizing the Sharpe ratio is
equivalent to solving the constrained maximization problem:

max
w0,...,wT−1

E

[
1

T

T∑
t=1

r̃p,t

]
subject to E

[
1

T

T∑
t=1

(r̃p,t − r̄)2
]

= σ2
p.

If the period length is sufficiently short, then E[(r̃p,t− r̄)2] ≈ σ2
t = Et

[
(r̃t+1 − µt)2

]
. With this

approximation, substituting in the conditional expectations for the managed portfolio from
equation (11) gives the Lagrangian:

max
w0,...,wT−1

L ≡ max
wt

(
1

T

T−1∑
t=0

wtµt

)
− λ

(
1

T

T−1∑
t=0

w2
tσ

2
t = σ2

p

)
.

45



The T first order conditions for optimality are:

∂L

∂wt

∣∣∣∣
wt=w∗

t

=
1

T

(
µt − 2λw∗

tσ
2
t

)
= 0 ∀t ∈ {0, . . . , T−1}

giving an optimal weight on the risky asset at time t of:

w∗
t =

(
1

2λ

)
µt
σ2
t

.

That is, the weight placed on the risky asset at time t should be proportional to the expected
excess return over the next period, and inversely proportional to the conditional variance.

C GJR-GARCH Forecasts of Momentum Portfolio Volatil-

ity

The construction of the dynamic portfolio strategy we explore in Sections 3 and 5.4 requires
estimates of the conditional mean return and the conditional volatility of the momentum
strategies. To forecast the volatility we first fit a GARCH process to the daily momentum
returns of each asset class. Specifically, we fit the GARCH model proposed by Glosten,
Jagannathan, and Runkle (1993), and summarized by equations (5) and (6). The maximum
likelihood estimates and t-statistics are:

parameter: µ̂ ω̂ α̂ γ̂ β̂
ML-est 0.86×10−3 1.17×10−6 0.111 -0.016 0.896
t-stat (14.7) (4.2) (14.4) (-1.6) (85.1)

We then regress the future realized 22-day WML return volatility σ̂22,t+1 on the GJR-GARCH
estimate (σ̂GARCH,t) and the lagged 126-day WML return volatility (σ̂126,t), and a constant.
The OLS coefficient estimates and t-statistics are:

coefficient: α̂ σ̂GARCH,t σ̂126,t
coef. est. 0.0010 0.6114 0.2640

t-stat (3.0) (16.7) (7.2)

with a regression R2
adj = 0.617.19 The fitted estimate of σ̂22,t+1 is then used as an input to the

dynamic WML portfolio weight, as discussed in Sections 3 and 5.4.

19The lag one residual autocorrelation is 0.013 (t-stat = 0.44), justifying the use of OLS standard errors.
Also, the t-statistics on the lag 2-5 autocorrelations never exceed 1.14. It is interesting that the autocorrelation
of the dependent variable of the regression (σ̂22,t) is large and statistically significant (ρ̂1 = 0.55, t-stat = 24.5).
This suggests that the autocorrelation in σ̂22,t results from its forecastable component. The residual from its
projection on the forecast variables is uncorrelated at any conventional statistically significant level.
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The same estimation procedure is used to generate a forecast of the future 22-day WML return
volatility in each of the alternative asset classes. The maximum-likelihood GJR-GARCH
parameter estimates and t-statistics, and regression estimates and t-statistics are presented in
Table 14.

The parameters above and in Table 14 tell an interesting story: first, in the regressions, the
coefficient on the GJR-GARCH estimate of volatility is always significant, and the coefficient
on the lagged 126-day volatility is always smaller, but not always statistically significant.
There appears to be a longer-lived component of volatility that σ̂126,t is capturing.

Also interesting is the leverage parameter γ. In each of the asset classes, the maximum-
likelihood estimate of γ is negative: this means that a strong negative return on the WML
portfolio is generally associated with a decrease in the WML return variance. As noted
elsewhere in the literature, this coefficient is positive at high levels of statistical significance
for the market return (see, e.g., Glosten, Jagannathan, and Runkle (1993) and Engle and Ng
(1993).)
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D Calculation of Variance Swap Returns

We calculate the returns to a daily variance swap on the S&P 500 using daily observations
on the SPX and the VIX, and daily levels of the one-month Treasury bill rate. The historical
daily observations on the SPX and the VIX, beginning on January 2, 1990, are taken from the
CBOE’s VIX website.20 The daily one-month interest rate series is taken from Ken French’s
data library.

The VIX is calculated using a panel of S&P 500 index options with a wide range of strike
prices and with two maturity dates – generally the two closest-to-maturity contracts, weighted
in such a way so as to most closely approximate the swap rate for a variance swap with a
constant maturity of 30 calendar days.21 The calculation method used by the CBOE makes
the VIX equivalent to the swap rate for a variance swap on the S&P 500 over the coming
30 calendar days. However, the methodology used by the CBOE is to: (1) annualize this
variance; (2) take the square-root of the variance (to convert to volatility), multiply by 100
to convert to percentage terms.

Given the VIX construction methodology, we can calculate the daily return on a variance
swap, from day t−1 to day t, as:

Rvs,t = Dt

[
1

21

(
252

[
100·log

(
St
St−1

)]2
−VIX2

t−1

)
+

20

21

(
VIX2

t−VIX2
t−1

)]
.

Here Dt is the 20-trading day discount factor. This is calculated as Dt = (1 + r1m,t)
20/252,

where r1m,t is the annualized one-month treasury bill yield as of day t, from Ken French’s
website. VIXt is the level of the VIX as quoted at the end of day t and St is the level of the
S&P 500, adjusted for all corporate actions, at the end of day t. Note that the factors of 252
and 100 in the equation are because the VIX is quoted in annualized, percentage terms.

This equation is given a flat forward variance curve. That is, we are implicitly making the
assumption that the swap rate on 20 trading-day and 21 trading-day variance swap rates on
day t are identical (and equal to VIX2

t ). For the market, this approximation should be fairly
accurate.

20The daily data for the new VIX are available at http://www.cboe.com/micro/VIX/historical.aspx.
21See Chicago Board Options Exchange (2003) for a full description of the VIX calculation.
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