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Abstract: The conventional wisdom in health economics is that large differences in average 
productivity across hospitals are the result of idiosyncratic, institutional features of the healthcare 
sector which dull the role of market forces. Strikingly, however, we find that productivity 
dispersion in heart attack treatment across hospitals is, if anything, smaller than in narrowly 
defined manufacturing industries such as ready-mixed concrete.  While this fact admits multiple 
interpretations, we also find evidence against the conventional wisdom that the healthcare sector 
does not operate like an industry subject to standard market forces. In particular, we find that 
hospitals that are more productive at treating heart attacks have higher market shares at a point in 
time and are more likely to expand over time.  For example, a 10 percent increase in hospital 
productivity today is associated with about 4 percent more patients in 5 years. Taken together, 
these facts suggest that the healthcare sector may have more in common with “traditional” 
sectors than is often assumed. 
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1. Introduction 

A central observation about the U.S. healthcare sector is the existence of substantial 

differences in productivity across regions and across hospitals. For example, annual Medicare 

spending per capita ranges from $6,264 to $15,571 across geographic areas (Skinner, Gottlieb, 

and Carmichael 2011), yet health outcomes do not positively covary with these spending 

differentials (e.g. Fisher et al 2003a,b; Baicker and Chandra 2004; Chandra, Staiger, and Skinner 

2010; Skinner 2011). Similar patterns have been documented across hospitals within geographic 

markets (e.g., Yasaitis et al 2009). These facts have in turn generated substantial academic 

interest in understanding the root causes of the underlying productivity dispersion and what can 

increase productivity at under-performing hospitals (e.g. Skinner, Staiger and Fisher 2006; 

Chandra and Staiger 2007; Staiger and Skinner 2009). Outside of academia, these “Dartmouth 

Atlas” facts have also attracted consider popular attention (see, for example, Gawande’s 2009 

New Yorker article) and were heavily cited by the Obama administration during the discussions 

leading up to the 2010 Affordable Care Act (e.g. Pear’s 2009 New York Times article or Office of 

Management and Budget 2009).  

The conventional wisdom in health economics is that the driving forces behind these 

large average productivity differences are various idiosyncratic, institutional features of the 

healthcare sector that effectively reduce competitive pressures on providers. Oft-cited culprits 

include uninformed consumers who lack knowledge of the quality and price differences across 

providers, generous health insurance that insulates consumers from the direct financial 

consequences of their healthcare consumption decisions, and public sector reimbursement that 

provides little incentive for productive efficiency by providers. These factors are widely believed 

to dull the basic disciplining force of demand-side competition that exists in most other sectors. 
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Echoing and advancing this view, Cutler (2010) notes: 

“There are two fundamental barriers to organizational innovation in healthcare. 
The first is the lack of good information on quality. Within a market, it is 
difficult to tell which providers are high quality and which are low quality… 
Difficulty measuring quality also makes expansion of high-quality firms more 
difficult [emphasis added]… The second barrier is the stagnant compensation 
system of public insurance plans.” 
 

In a similar vein, Skinner (2011) states in his overview article on regional variations in 

healthcare: 

“[low productivity producers are]…unlikely to be shaken out by normal 
competitive forces, given the patchwork of providers, consumers and third-party 
payers each of which faces inadequate incentives to improve quality or lower 
costs…”  
 
This notion of “healthcare exceptionalism” has a long tradition in health economics. It 

dates back at least to the seminal article of Arrow (1963), which started the modern field of 

health economics by emphasizing key features of the health care industry that distinguish it from 

most other sectors and therefore warrant tailored study.  

But when it comes to productivity dispersion, the ostensibly unique features of the 

healthcare sector stand alongside a large empirical literature outside of the health care sector that 

has documented extensively – almost without exception – enormous differences in average 

productivity across producers within narrowly defined industries (see Bartelsman and Doms 

(2000), Syverson (2011), and references therein). For example, on average within narrow US 

manufacturing (4-digit SIC) industries, the 90th productivity percentile plant creates almost twice 

as much output as the 10th percentile plant, given the same inputs (Syverson 2004a).  This 

dispersion exists both within and across geographic markets (e.g. Syverson 2004a,b). 

We estimate that productivity dispersion across hospitals in treating heart attacks is about 

the same order of magnitude as productivity dispersion within narrowly defined manufacturing 
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industries. Figure 1 (whose construction we describe in much more detail later in the paper) 

shows, for example, that productivity dispersion across hospitals for heart attack treatment is 

slightly lower than productivity dispersion across ready-mixed concrete plants.  Ready-mixed 

concrete is, like healthcare, a spatially differentiated good in that it is produced and consumed 

locally, but one in which the product is less differentiated, insurance does not dampen price 

sensitivity, and prices aren’t set administratively. More generally, looking across 450 different 

narrowly defined (4-digit SIC code) manufacturing industries in the US, average within-industry 

productivity dispersion in manufacturing is quite similar to our estimates across hospitals for 

heart attack treatment (Syverson 2004a). 

This finding is striking and, we believe, surprising. But, it admits multiple possible 

explanations. Productivity dispersion has been shown, both theoretically and empirically, to 

shrink with greater competition within and across industries (e.g. Syverson, 2004a,b; Martin 

2008; Balasubramanian and Sivadasan 2009). However, we would not be comfortable drawing 

any direct inferences about the relative roles of competition in these two very different sectors 

from comparisons of their productivity dispersions.   

Rather, these facts serve as a point of departure that motivates us to re-examine 

productivity and allocation within the healthcare sector using the analytical insights from the 

broader productivity literature. In particular, we draw on a long tradition of theoretical and 

empirical work in manufacturing examining whether higher productivity producers are 

systematically allocated greater market shares; in healthcare, the prevailing wisdom captured by 

the Cutler (2010) and Skinner (2011) quotations above is that these re-allocation forces are weak 

or non-existent. 

Our findings suggest otherwise. Figures 2a and 2b (again discussed in more detail later in 
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the paper) give a qualitative flavor of our results. They show that within a market-year, hospitals 

that have higher productivity for heart attack treatment tend to have greater market share (i.e., 

more heart attack patients) at a point in time (Figure 2a) and experience more growth in market 

share over time (Figure 2b). Quantitatively, we find that a 10 percent increase in hospital 

productivity is associated with about a 25 percent higher market share at a point in time and 4 

percent more growth over the next 5 years.  

A finding that the market allocates more market share to more productive firms at a point 

in time and over time is a robust characteristic of US manufacturing industries (Syverson 2011 

provides a recent review) but is noticeably absent from manufacturing in less competitive 

settings such as Central and Eastern European countries at the beginning of their transition to a 

market economy (Bartelsman, Haltiwanger, and Scarpetta 2009), Chile prior to trade reforms 

(Pavcnik 2002), or the US steel industry in the 1960s (Collard-Wexler and de Loecker 2013).  As 

a result, these allocation metrics are often interpreted as “signposts of competition.” As in much 

of this previous work in manufacturing, we do not establish a causal link between competition 

and the signs of competition in the data.  It could be that competitive market forces re-allocate 

market share to higher productivity hospitals, or it could be that higher productivity hospitals 

happen to have other features – such as beautiful lobbies or good managers – which separately 

increase demand. But whatever the driving force behind them, some force or forces in the 

healthcare sector lead it to evolve in a manner favorable to higher productivity producers. This 

finding puts US healthcare on a very different part of the map than, say, Romanian or Slovenian 

manufacturing in the early 1990s, where there appears to have been little (or even negative) 

correlation between a firm’s productivity and its market share (Bartelsman et al, 2009). The 

results are particularly noteworthy given the context of heart attack treatments, where the acute 
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nature of the condition might be expected to generate a smaller role for market forces in 

allocating patients to more productive hospitals than for less time-sensitive conditions such as 

cancer treatment, the management of chronic conditions, or elective procedures. 

Taken together, our results suggest that healthcare may have more in common with 

“traditional” sectors than is commonly recognized in popular discussion and academic research. 

Continued efforts to understand productivity dispersion and uncover what may improve 

productivity in the US healthcare sector may therefore benefit from greater attention to the 

theoretical and empirical insights from the broader productivity literature.  Naturally, the 

converse applies as well. 

The rest of the paper proceeds as follows. Section 2 describes the analytical framework. 

Section 3 discusses our estimation of hospital productivity – the key empirical input to all our 

analyses. Section 4 presents our main results on the relationship between hospital productivity 

and market share. Section 5 discusses some questions of interpretation, including possible 

mechanisms behind the findings and various gauges of their magnitude. Section 6 shows that our 

main findings are robust to a variety of alternative specifications. A concluding section follows. 

2. Analytical Approach: Static and Dynamic Allocation 

Our primary empirical exercise examines the correlation between producer (i.e. hospital) 

productivity and market share at a point in time, and the correlation between producer 

productivity and growth in market share over time. These relationships have been analyzed in a 

variety of industries and countries as a proxy for the role of competition in these settings (e.g., 

Olley and Pakes 1996; Pavcnik 2002; Escribano and Guasch 2005; Bartelsman, Haltiwanger, and 

Scarpetta 2009; Collard-Wexler and De Loecker 2013). Intuitively, competitive forces exert 

pressure on low productivity firms, causing them to either become more efficient, shrink, or exit. 
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Models of such reallocation mechanisms among heterogeneous-productivity producers 

have found applications in a number of fields, including industrial organization, trade, and 

macroeconomics.1 While these models differ considerably in their specifics, they share a 

common intuition: greater competition – as reflected in greater consumer willingness or ability to 

substitute to alternate producers – makes it more difficult for higher-cost (lower-productivity) 

firms to earn positive profits, since demand is more responsive to their cost and price 

differentials relative to other firms in the industry. As substitutability increases, purchases are 

reallocated to more productive firms, raising the correlation between productivity and market 

share at a point in time (“static allocation”) and causing more productive firms to experience 

higher growth over time (“dynamic allocation”). Appendix A describes this archetypical 

mechanism slightly more formally. 

For the static allocation analysis, we will use the following regression framework:  

ln !!,! = !! + !!!!,! + !!,! + !!,!                                (1) 

where !!,! is a measure of the market size of hospital h in year t, !!,!   are market-year fixed 

effects, and !!,! is our estimate of total factor productivity (which we refer to throughout as TFP) 

of hospital h in year t; we discuss in detail below how we estimate !!,! . Thus β1 reflects the static 

relationship between a hospital’s TFP and its market share, within a hospital market-year. If the 

coefficient is positive, as has been found in many U.S. industries (e.g., Olley and Pakes 1996; 

Hortaçsu and Syverson 2007; Bartelsman, Haltiwanger and Scarpetta 2009), it indicates that 

higher productivity producers have a greater share of activity. If β1 is zero or negative, as has 

been found for example in some former Soviet-bloc countries in the early 1990s (Bartelsman, 

Haltiwanger and Scarpetta 2009), in Chile prior to trade reforms (Pavcnik 2002), and in the U.S. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 See, for example, Ericson and Pakes (1995), Melitz (2003), and Asplund and Nocke (2006). 
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Steel industry circa 1960-70 (Collard-Wexler and De Loecker 2013), it indicates that less 

productive industry producers are the same size or larger than their high productivity 

counterparts and suggests that forces beyond standard competition are driving the allocation of 

market activity.2 

The static allocation analysis in equation (1) can reflect the market’s ability to reallocate 

activity from less productive hospitals to more productive ones.  But it shows the outcome of this 

process rather than the process itself. To measure the actual dynamics of the market’s selection 

and reallocation mechanisms, we employ two additional metrics. 

Our first dynamic allocation metric examines the relationship between hospital TFP and 

its probability of closing. We will estimate: 

! !"#$!,!!! = !! + !!!!,! + !!,! + !!,!                                  (2) 

where I[exith,t+1] is an indicator equal to one if hospital h exits at time t+1, and the right hand 

side variables are defined as in equation (1). Thus β1 reflects the relationship between a 

hospital’s TFP and its probability of exit, controlling for any changes in aggregate exit 

probabilities across market-years. A negative relationship between TFP and hospital exit is one 

of the most robust findings in the productivity literature (See Bartelsman and Doms 2000 and 

Syverson 2011 for surveys). It is indicative of a Darwinian selection process at work: less 

productive producers find it more difficult to survive. 

Our second dynamic measure is the relationship between hospital TFP and future hospital 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 A positive correlation between a hospital’s productivity and the number of patients it treats is also consistent with 
increasing returns to scale, in which causality runs from scale to productivity rather than vice versa.  This is a 
general issue for interpreting the static allocation measure in any industry. In the particular context of health care, 
the “volume-outcome” hypothesis conjectures that treating more patients improves provider performance. Not 
surprisingly, it has proven challenging to establish empirically whether an observed positive correlation between 
provider volume and outcomes is causal (see e.g. Epstein 2002 for a discussion of the interpretation difficulties in 
this literature). Moreover, it is harder to understand why scale economies would predict our “dynamic allocation” 
finding that current productivity predicts increases in the number of future patients. 
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growth.  We will estimate: 

∆!,!,!!!= !! + !!!!,! + !!,! + !!,!                                  (3) 

where Δh,t,t+1 is a measure of the hospital’s growth rate (in terms of number of heart attack 

patients treated) between year t and t+1. A positive correlation between TFP and growth 

indicates that more productive hospitals see larger gains in patient traffic, and points to the 

operation of a selection and reallocation process. While not as robust as the negative TFP-exit 

relationship, there is widespread evidence in developed country manufacturing and retail that 

higher TFP producers experience growth in market shares (e.g. Scarpetta, Hemmings, Tressel, 

and Woo 2002; Disney, Haskel, and Heden 2003; and Foster, Haltiwanger, and Krizan 2006).  

Regression equations (1) through (3) form the heart of our empirical analysis. They 

describe the associations between a hospital’s productivity and market share and indicate 

whether forces exist that are favorable to the expansion of higher productivity producers. 

Although motivated by models in which competitive forces create these re-allocation pressures, 

the correlations are naturally not direct evidence of the impact of competition. After presenting 

our results, we discuss possible interpretations in light of other forces that may mimic the effects 

of competition. 

3. Estimation of the Hospital Production Function. 

The key empirical input for estimation of our analytical equations (1) through (3) is a 

measure of a producer’s (i.e. hospital’s) TFP. We estimate hospital TFP in the specific context of 

hospital treatment of heart attacks, analyzing the treatment and outcomes of about 3.5 million 

heart attack patients from 1993 through 2007. TFP is the amount of output a supplier can 

produce per unit input. In our setting, variation in TFP across hospitals reflects differences in 

patient survival (output) conditional on treatments (inputs) the patient receives.  We describe the 
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data and approach we use to estimate hospital TFP, and discuss key estimation challenges. 

 

3.1 Setting: Heart Attack Treatments in US Hospitals 

Heart attacks present an excellent setting for studying hospital productivity for a number 

of reasons. First, cardiovascular disease, of which heart attacks (acute myocardial infarctions, or 

AMIs) are the primary manifestation, is the leading cause of death in the United States. Second, 

the high post-AMI mortality (survival rates at one year are less than 70 percent in our Medicare 

population) provides an accurately measured outcome with a great deal of variation across 

hospitals.  There is broad agreement that for AMIs, survival is the most important endpoint both 

clinically and in terms of patient preferences, and therefore a key measure of output, particularly 

in an elderly population.3 Third, the emergency nature of heart attacks provides a setting in 

which the sorting of patients across providers is likely to be more limited than in many other 

healthcare settings, reducing empirical concerns arising from patients selecting into hospitals on 

the basis of their underlying health. At the same time, the reduced scope for sorting also makes 

the null hypothesis that higher productivity hospitals do not attract greater market share a 

particularly plausible one in this context. Finally, inputs are well measured and there exist rich 

data on the relevant health characteristics of the patients (called risk-adjusters) which can be used 

in the estimation. Not surprisingly, therefore, heart attacks have been the subject of considerable 

study in the medical and economics literature on the value of medical technology and the returns 

to medical spending (e.g. Cutler, McClellan, Newhouse and Remler, 1998; Cutler and 

McClellan, 2001; Skinner, Staiger and Fisher, 2006; Chandra and Staiger, 2007). 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 Clinical trials for heart-attack therapies compare treatments by focusing on survival as the key outcome (see for 
example, Anderson et al., 2003), but this is not true for trials of treatments for more elective coronary conditions 
such as stable coronary disease where quality of life concerns make it more difficult to measure output. A review of 
over twenty-three trials for heart-attack treatments is provided by Keeley, Boura and Grines (2003). 
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3.2 The Hospital Production Function for AMI Patients 

We posit a patient-level health production function of the following form: 

!! = !!,! !!,!!!! !!
!!!!                                           (4) 

where !! is the number of post-AMI survival days of patient p treated at hospital h in year t, and 

xp is a measure of hospital inputs used to treat this patient. All production functions relate outputs 

to inputs; our particular function uses patient survival days as a measure of output and a single 

(dollar-denominated) index of resources spent on the patient as inputs.4 Because patients are 

inherently heterogeneous, survival may also depend on characteristics of the patient, which could 

potentially also be correlated with input choices. In addition, the marginal effect of inputs on 

survival may vary with patient characteristics. To capture both of these effects, we follow the 

literature and adjust inputs for a vector of observable patient-level risk factors, Rp,k, where k 

indexes the factors. The parameters αk capture the influence of these risk factors on health.  Thus 

the expression in the parentheses reflects risk-adjusted inputs on the patient. The parameter µ is 

the elasticity of survival days with respect to risk-adjusted inputs.  Finally, the expression !!! is 

a patient-level error term that accounts for random variations in health outcomes. 

The key input into all of our analyses described in Section 2 is the logarithm of Ah,t, 

which we have previously called ah,t.  Ah,t measures the (exponent of) total factor productivity 

(TFP) of hospital h in year t. It is common across all (risk-adjusted) patients in that hospital in 

that year.5  Holding risk-adjusted inputs constant, differences in Ah,t across hospitals produce 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4!This sort of single-input production function is unusual but convenient; one could reasonably interpret the single 
input as an index of the use of multiple inputs that go into producing health. In Appendix E we show the results are 
robust to the use of a multi-input production function instead.!
5 We allow hospital productivity to vary across years because it allows us to capture intertemporal variation in 
hospitals’ efficiencies, and because it is consistent with standard practice in the broader productivity literature 
outside the healthcare sector. As we discuss below, we find that hospital productivity is highly persistent across 
years within our sample.  
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systematic differences in survival length.  In other words, if it were possible to send a particular 

heart attack patient to two hospitals with different TFP levels, providing him the same level of 

inputs at both, the patient’s expected survival would be greater in the higher TFP hospital than in 

the lower one.    

The hospital production function model in (4) allows variation across providers in the 

marginal health product of inputs (i.e., !!,!! varies across hospital-years) but constrains them to 

have the same elasticity of output with respect to input (i.e., ! is common across hospitals).  Our 

empirical specification therefore allows the “marginal return to inputs” curve to vary across 

hospitals, as suggested by Chandra and Staiger (2007) and Garber and Skinner (2008). Figure 3 

provides a stylized illustration of our production function specification. 

Taking logs, we have our main estimating equation for the hospital production function: 

 ln !! = ln !!,! + ! !!ln !!,!! + !ln !! + !!                   (5) 

To estimate equation (5) we regress the log of patient survival days on a vector of risk factors 

(Rp,k), the inputs applied to each patient (xp), and a set of hospital-year fixed effects. These 

hospital-year fixed effects are in turn our TFP estimates (ah,t ≡ ln(Ah,t)) which we then use as 

inputs to estimate our main analytical equations (1) through (3). 

3.3 Data and Measurement of Key Variables 

Our primary dataset consists of all Medicare Part A (i.e., inpatient hospital) claims for all 

heart attacks (AMIs) in individuals age 66 and over in the United States from 1993 through 

2007. We limit the sample to AMIs in patients who have not had an admission for an AMI in the 

prior year. We have information on mortality through 2008, so we can observe at least one year 

of post-AMI survival for all patients. In order to have enough data to estimate annual hospital 

productivity, we follow standard practice (e.g. Skinner and Staiger 2009) and eliminate any 
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hospital-year with fewer than 5 heart attack patients that year. This restriction eliminates less 

than 1 percent of patients, but about 10 percent of hospital-years and 6 percent of hospitals; 

naturally the dropped hospitals are disproportionately small. 

Tables 1a and 1b present some basic summary statistics on our sample. Our final sample 

consists of about 3.5 million heart attacks in 55,540 hospital-years and 5,346 unique hospitals. 

The average hospital-year has about 65 patients, but the median hospital-year has only 39 

patients. We follow the literature in defining a hospital market (M) for an AMI as a Hospital 

Referral Region (HRR, see e.g. Chandra and Staiger 2007).6 Our sample includes 304 HRRs, and 

on average they have about 12 hospitals in them. The Medicare claims data also include 

information on patient demographics (age, race and sex) and detailed information on co-

morbidities (i.e. admissions for other conditions) during the prior year. We use this information 

as a basis of our risk adjusters Rp,k. 

Our baseline output (survival) measure (!!) is the number of days that the patient 

survives after receiving initial treatment, up through the first year. Survival includes the first day 

of treatment itself, so !! is bounded from below at 1 and above at 367 days. As shown in Table 

1, average survival through 1 year, censoring anyone who survives more than 1 year at 367 days 

of survival, is 268 days; about two-thirds of our sample survives past one year. We show below 

that our core results are robust to alternative time horizons for measuring output (i.e. 30 day or 5 

year survival windows).  

Our baseline input measure defines hospital factor inputs for a patient as the (dollar-
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 The Dartmouth Atlas of Healthcare divides the United States into HRRs which are determined at the zip code level 
through an algorithm that reflects commuting patterns to major referral hospitals. HRRs, which are akin to 
empirically defined markets for healthcare, may cross state and county borders. A complete list of HRRs can be 
found at http://www.dartmouthatlas.org/. Since defining a market is not a straightforward undertaking, in Appendix 
D (Table A4) we also show that our results are robust to defining markets based on Hospital Service Areas (HSAs) 
instead; there are about 10 times as many HSAs as HRRs.  
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converted) sum of diagnostic-related group (or DRG) weights during the first 30 days following 

a heart attack. These DRG weights reflect the Centers for Medicare and Medicaid Services’ 

(CMS’s) assessment of the resources necessary to treat a patient as a function of the patient’s 

comorbidities and procedures received. This approach is standard in the literature and ensures 

that we measure real services rendered to patients, purged of reimbursement (price) variation 

across geographic areas or hospitals (see e.g. Skinner and Staiger 2009, Gottlieb et al 2010). 

Appendix B gives a detailed description of our baseline input measure and the sources of 

variation that contribute to it.7  About 15 percent of the variation is explained by indicator 

variables for whether the patient received one of two surgical procedures: bypass or stent. 

On average, about $16,000 worth of hospital inputs are used on one of our patients in the 

30 days following a heart attack, with a standard deviation of about $12,000. As is typical in 

healthcare, inputs are right skewed; the median is about $12,000 and the 90th percentile is nearly 

$32,000. We show below that our core results are generally robust across a wide range of 

alternative input measures, as well as across alternative time horizons for measuring inputs.  

3.4 Estimation Challenges 

Estimating productivity in any setting is conceptually straightforward but practically 

involves a number of measurement challenges (Syverson 2011). In addition to the measurement 

of output and inputs discussed above, we describe three other challenges to estimating the 

hospital production function: endogeneity of inputs, differences across hospitals in patient 

characteristics related to survival, and estimation error. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 As described in Appendix B, we make an adjustment to the prior literature’s approach to account for the fact that 
some of CMS’s DRGs are defined partly based on subsequent survival status. We purge our measure of this 
outcome-based variation in input measurement by assigning the relevant patients the average weight across the 
DRGs which distinguish otherwise similar treatments based on survival. We also discuss some of the challenges in 
measuring inputs in other settings (such as the handling of intermediate inputs or different qualities across workers) 
that we avoid here, as well as shared challenges such as the appropriate weighting of different inputs. 
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Endogeneity of Inputs. A general econometric concern that pervades production function 

estimation is the potential endogeneity of inputs. In a typical setting, productivity is the residual 

in a firm-level regression of outputs on inputs; therefore, the coefficient on inputs (! in our 

setting) may be biased by a correlation between input choice and the residual (productivity). In 

our setting, however, because we observe production at the unit (patient) level, we can include 

hospital-year fixed effects, estimating ! solely from within-hospital-year variation. By 

identifying the coefficients on inputs only from variation within hospitals, we control for any 

tendency for hospitals with different productivity to use different amounts of inputs on average. 

Of course, any unobserved inputs that do not vary within the hospital (such as, for example, 

whether the hospital requires its staff to use checklists) will load onto our estimate of hospital 

productivity. This is not a problem per se; as in the productivity literature more broadly, we think 

of productivity as the component of output that cannot be explained by observed inputs.   

However, our estimates will be biased if, within hospital-year, hospitals choose different 

observable input levels for patients who differ unobservably in their latent survival, or if their 

choice of unobservable inputs is correlated with observed inputs at the patient level. The sign of 

the bias of the estimate of ! is not obvious. Moreover, our focus is not on estimating µ. Our 

primary concern is what impact any bias in µ will have on our analysis of the relationship 

between estimated productivity and market share, which are the ultimate objects of interest for 

the analysis. We therefore evaluate below the robustness of our main results to imposing, rather 

than estimating, various values for the scale parameter µ. This method amounts to following the 

index number, or Solow residual, approach to measuring productivity in which factor elasticities 

are taken from auxiliary data such as factor cost shares. We are re-assured that our main results 

are quite insensitive to the choice of µ. This insensitivity also has an economic interpretation that 



!
! 15!

we discuss below. 

Differences Across Hospitals in Patient Characteristics. Even if µ is known and imposed based 

on auxiliary information, if patients at different hospitals differ on average in their unobserved 

survival probabilities, this variation will cause us to misestimate hospital productivity. As noted 

earlier, one of the reasons for the focus on heart attacks in the empirical literature is the belief 

that such patient sorting across hospitals may be less of an issue in an emergency setting. But this 

does not mean there is no potential for sorting; indeed, were there no mechanisms by which 

patients (or their surrogates) actively selected hospitals for AMI treatment, it would be difficult 

to view our re-allocation findings as consistent with a role for market forces.  

Therefore, to try to minimize the impact of any unobserved patient health differences 

across hospitals, we follow the standard practice in the literature and include various risk 

adjusters (Rp,k) to control for observable patient characteristics that are related to health. In 

particular, our baseline specification controls for a full set of interactions between age (in five-

year groupings), gender, and whether the patient is white, as well as various co-morbidities. Each 

co-morbidity is included as an indicator for whether the patient has been to the hospital for a 

specific condition in the year prior to the AMI admission. Table 1b shows that on average our 

patients are 78 years old (recall our sample is for the Medicare population), about half are 

female, and about 90 percent are white; it also presents the means for the 17 co-morbidities we 

include in our baseline specification. We show below that our main results are quite insensitive 

to using fewer or more (for a subsample of patients where they are available) risk adjusters. 

Estimation Error in TFP Measures. The median hospital-year in our sample has less than 40 

patients, and for 20 percent of our hospital-years we observe fewer than 15 patients. The 

consequence of a relatively small number of patients in some hospital-years, together with the 
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stochastic nature of our outcome (survival), means that our key object of interest and input into 

all of our productivity metrics – hospital TFP, ah,t – may be estimated with error. Such estimation 

error will cause attenuation bias in our analysis of the relationship between market share and 

hospital productivity in equations (1) through (3).8 

We therefore apply the standard shrinkage or “smoothing” techniques of the empirical 

Bayes literature (e.g. Morris, 1983) to adjust for estimation error in our estimates of hospital 

productivity.9 Appendix C provides a detailed description of this procedure. The intuition behind 

it is that when a hospital’s productivity is estimated to be far above (below) average, it is likely 

to be suffering from positive (negative) estimation error. Therefore, the expected level of 

productivity, given the estimated productivity, is a convex combination of the estimate and the 

mean of the underlying productivity process. The relative weight that the estimate gets in this 

convex combination varies inversely with the noise of the estimate (which is based on the 

standard error of the hospital-year fixed effect). In practice, as we show in Appendix C, our core 

finding that hospitals with higher estimated productivity get allocated more market share at a 

point in time and over time remains statistically significant without the empirical Bayes 

adjustment, although naturally the magnitude is attenuated. All the analyses of hospital TFP use 

the empirical Bayes adjustment unless explicitly noted. 

3.5 Estimates of the Hospital Production Function 

Table 2 presents our estimates of the “returns to scale” parameter (µ) from estimating 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8 This small-sample problem is probably much less of an issue in more traditional settings for estimating 
productivity, since the number of units of output produced (the statistical analog of patients in our context) is much 
larger. Increasingly, however, the productivity literature is also trying to adjust for other sources of measurement 
error in output (e.g. Collard-Wexler, 2011, Dobbelaere and Mairesse, 2013). 
9 McClellan and Staiger (1999) introduced this approach into the healthcare literature when estimating quality 
differences across hospitals, and it has since been widely applied in the education literature for estimating and 
analyzing teacher or school value added measures (e.g. Kane and Staiger 2001, Jacob and Lefgren 2007). 
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equation (5). Column 1 presents our baseline estimates, which use our full set of risk adjusters. 

We estimate a coefficient on log patient inputs (µ) of 0.446 (standard error = 0.005), which 

suggests that every 1 percent increase in inputs per patient is associated with a 0.45 percent 

increase in survival days. A comparison of columns 1 through 3 indicates that our estimate of µ 

increases from 0.45 to 0.59 as we reduce the set of risk adjusters to just age, race and sex 

(column 2) or to nothing (column 3), with the age-race-sex risk adjustment accounting for most 

of the difference between the results with no risk adjusters and with all risk adjusters included. 

Our estimates of µ are in the middle of the (very wide) range of estimates that papers in this 

literature have produced.10 

 The key input into our productivity metrics is not our estimate of µ but rather our 

estimates of TFP, ah,t. These objects are the hospital-year fixed effects from equation (5) and are 

the key right-hand-side variables in our estimating equations (1) through (3). We find a great 

deal of within-hospital persistence in productivity over time, with ah,t exhibiting an AR(1) 

coefficient of about 0.7. 

As a validity check on whether our estimates are picking up differences in hospital 

productivity, we verify that these estimates correlate positively in the cross-section with 

observable and independently gathered hospital quality measures. This exercise is in the spirit of 

Bloom and Van Reenen (2007), who perform the reverse procedure: validating an observable 

measure of management quality by correlating it with estimates of firm level productivity.  
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
10 Skinner and Staiger (2009) note that various papers have used different right hand side specifications or sample 
periods to produce estimates of the “return to spending.” They re-estimate many of these alternative specifications in 
a within-hospital linear probability model of an indicator for one year survival on one year inputs and produce 
estimates ranging from  -0.015 to 0.122. In our data such linear probability models produce estimates of the “return 
to spending” of 0.072 to 0.100, depending on the risk adjusters. Within-hospital estimates of the return to input use 
tend to produce a positive relationship between inputs and survival, in contrast to the cross-region or cross-hospital 
comparisons that tend to find no or negative association between inputs and health-related outcomes. One 
parsimonious explanation for this difference would be if low productivity hospitals tended to compensate by using 
more inputs. 
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The results are summarized in Table 3, and several are presented graphically in Figure 

4.11 The first two columns of Table 3 show the correlation between our estimates of hospital TFP 

and two quality measures that were first collected by the Center for Medicare and Medicaid 

Services (CMS) in 2003; they have been publicly reported by the agency’s “hospital compare” 

website (www.hospitalcompare.hhs.gov) since 2005. They are calculated by hospitals and 

submitted to CMS independently of the data that we use. 

These measures are created to indicate the fraction of patients who received the 

treatment(s) that CMS determined were appropriate for their medical conditions. In the 

regressions, we convert them to z-scores by normalizing their means and variances to 0 and 1, 

respectively. In Table 3 column 1 we look at the hospital’s z-score for beta blockers, which are 

inexpensive drugs that reduce the demands on the heart and are long-established as having 

important benefits for AMI patients after discharge. In column 2 we look at the z-score of a 

combined measure that sums across the number of patients who are given each of eight 

consensus AMI treatments and divides by the sum of patients appropriate for each of these 

treatments.12 All of these measures have been studied in the literature and are considered 

indicative of good quality care (e.g. Higashi et al. 2007, Skinner and Staiger 2009, Jha et al. 

2005, and cites therein). We use the measure in the first year it was collected to minimize the 

chance that hospitals responded to the reporting by changing the measure and thus reducing its 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11 Table 3 and Figure 4 examine regressions of our estimates of hospital TFP in 2003 on various hospital 
characteristics. We omit the EB correction for hospital TFP since classical measurement error on the left-hand side 
does not affect the consistency of a regression. The estimates of a hospital’s 2003 TFP come from our full sample 
estimates of equation (2), but we use only a single year since most of the hospital characteristics are only available 
cross-sectionally. We choose 2003 estimates since that is the first year that the CMS quality measures are available.   
12 The eight measures are 1) given aspirin at arrival, 2) given aspirin at discharge, 3) given ACE inhibitor for left 
ventricular systolic dysfunction (LVSD), 4) given smoking cessation advice/counseling, 5) given beta blockers at 
arrival, 6) given beta blockers at discharge, 7) given fibrinolytic medication within 30 minutes of arrival, and 8) 
given percutaneous coronary intervention (PCI) within 90 minutes of arrival. 
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signal of quality. 

In column 3 we use the Bloom et al. (2012) measure of hospital management quality. 13 It 

is based on a survey of management practices that were administered to a sample of 

approximately 300 hospitals in 2009 and 2010; a higher management z-score indicates closer 

conformance to management best practices. This measure of management quality has been found 

to be significantly negatively correlated with 30 day risk-adjusted mortality for patients in 

cardiac units (McConnell et al. 2013); outside the hospital sector, it has also been found to 

correlate positively and significantly with productivity, profitability, Tobin’s Q, and firm 

survival (Bloom and Van Reenen 2007)  

Reassuringly, the results indicate a positive correlation between these “external” 

measures of the quality of the hospital and our estimates of hospital productivity. For example, 

we estimate that a one standard deviation increase in the hospital’s beta blockers score is 

associated with a 3 percent increase in hospital productivity. The results are statistically 

significant for the beta blockers and composite score; the results for the hospital management 

measure (which are available for only a very small subsample of our hospitals) are significant at 

the 10% level. We also find that teaching hospitals and urban hospitals have higher estimated 

productivity; estimated productivity is higher for non-profit hospitals than for for-profit or public 

hospitals.   

4. Main Results: Static and Dynamic Allocation 

Table 4 presents our central results on the static and dynamic allocation of patients across 

hospitals.  In our discussion, we focus on column 1, which presents our baseline estimates based 

on the full set of risk adjusters (i.e. the same specification as shown in Table 2, column 1); the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
13 We are extremely grateful to Nick Bloom for providing us with these measures. 
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results are not sensitive to the choice of risk adjusters (columns 2 and 3).  

The first row shows our static allocation analysis based on estimation of equation (1), 

examining the correlation between a hospital-year’s productivity, ah,t, and the logged number of 

heart attack patients it treats, ln(!!,!). Because we include market-year (HRR-year) fixed 

effects, this estimate is within market-year, relating a hospital’s market share of heart attack 

patients to its TFP relative to other hospitals in its market-year. Our right-hand side measure of 

ah,t (≡ ln(Ah,t)) is the estimate of productivity from estimation of the hospital production function 

in equation (5). We bootstrap the standard errors, clustering at the market level. 

The results show a statistically significant positive relationship between productivity and 

market share, suggesting that within markets, more market share (patients) tends to be allocated 

to more productive hospitals at a point in time. In particular, our baseline estimate suggests that a 

10 percent increase in a hospital’s productivity is associated with about a 25 percent higher 

market share.14 A visual presentation of the results is given in Figure 2a. 

The second row shows our analysis of the TFP-exit relationship based on estimation of 

equation (2), which examines the within market-year relationship between a hospital-year’s 

productivity ah,t  and an indicator variable for whether the hospital “exits” next year. The 

regression’s right-hand side and standard errors are calculated as in the static allocation analysis. 

We define the dependent variable I[exith,t+1] equal to one if hospital h has less than 5 heart attack 

patients in each year from year t+1 to t+5.15 We measure exit as the lack of more than 5 patients 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
14 Because our sample is limited to hospital-years with at least 5 patients, there is a potential concern about selection 
on the dependent variable in the static analysis. (This is not a concern for the subsequent dynamic analysis). We 
explored the sensitivity of our static allocation results to an alternative, Tobit-style truncated regression and found 
that the static allocation results were slightly strengthened by this adjustment.  
15 There are a non-trivial number of hospital mergers over our time period. If hospital A merges with hospital B and 
physically shuts down, hospital A is coded as having 0 patients in subsequent years. If however, hospital A and B 
!
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in each of five subsequent years to try to ensure that we’ve captured a “permanent” reduction in 

volume, as opposed to measurement error stemming from idiosyncratic fluctuations in the 

number of patients that a hospital receives. 

We find a statistically significant negative relationship between hospital productivity and 

subsequent exit. The baseline results suggest that a 10 percent increase in hospital productivity 

within a market-year is associated with a statistically significant decline in the probability of exit 

next year of about 0.3 percentage points (about an 8 percent decline relative to the baseline exit 

rate of 4.4 percent). 

The bottom row of Table 4 shows our analysis of the TFP-growth relationship based on 

estimation of equation (3), which examines the within market-year relationship between a 

hospital-year’s productivity (ah,t) and its subsequent one-year growth.  The right-hand side and 

standard errors are calculated as in the prior analyses. For our left-hand side measure of the 

hospital’s one-year growth rate Δh,t,t+1  we define 

∆!,!,!!!= !!,!!!!!!,!
!
! !!,!!!!!!,!

                                (6) 

where !!,! is once again the number of heart attack patients treated by hospital h in year t. Our 

measure of the hospital’s one-year growth rate thus divides the change in the number of patients 

between this year and next year by the average number of patients across these two years.16 

Again, the estimates are statistically significantly different from zero. The baseline results 

suggest that a 10 percent increase in hospital productivity within a market-year is associated with 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
both continue to exist physically and admit their own patients (e.g. Beth Israel and Deaconess), they continue to be 
coded as separate hospitals with each still assigned the AMI patients whom they admit. 
16 This monotonic transformation of the standard percentage growth rate metric bounds growth between -2 (exit) and 
+2 (growth from an initial level of 0). An attraction of this transformation is that it reduces the chance that the 
results are skewed by a few fast-growing but initially small hospitals that would have very large percentage growth 
rates. This growth rate transformation has been used in other contexts to avoid unnecessary skewness in the growth 
rate measure; see, for example, Davis, Haltiwanger, and Schuh (1996). 
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over a 1 percent increase in the number of patients the hospital treats in the next year.17 Figure 2b 

gives a visual presentation of this relationship between hospital productivity and growth. 

5. Interpretation and Discussion 

5.1 Mechanisms 

The above findings indicate that more productive hospitals have statistically significantly 

higher market share at a point in time and are more likely to increase that market share over time.  

These findings contrast with the conventional wisdom – summarized in the introductory 

quotations – that there is little in the healthcare sector to encourage the growth of higher 

productivity providers or weed out lower productivity ones. Our findings place US healthcare, at 

least qualitatively, in the same part of the spectrum as US manufacturing, and differentiate it 

from many less competitive manufacturing settings where these relationships have been found to 

not exist or even to have the opposite sign. 

What mechanisms might act to allocate more patients to higher productivity hospitals in 

an emergency setting like heart attacks? A definitive answer is beyond the scope of this paper. 

However, we try in this section to present some initial, suggestive evidence. 

We begin by examining whether the positive relationship between productivity and 

market share is primarily driven by patients choosing hospitals that, for a given amount of inputs, 

are more likely to produce high survival, or hospitals that, for a given amount of survival, use 

fewer inputs. Figures 5a and 5b therefore show the within market-year correlation, respectively, 

between risk-adjusted survival and market share (conditional on risk adjusted inputs) and 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
17 Table 4 reports negative average annual growth; this is primarily due to the fact that our measure conditions on 
the hospital initially being in the market.!
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between risk-adjusted inputs and market share (conditional on risk adjusted survival).18 The 

results suggest that the productivity-market share relationship is primarily driven by the 

relationship between risk-adjusted survival and market share. The positive correlation between 

risk-adjusted survival and market share (Figure 5a) is virtually the same as that between risk-

adjusted productivity and market share in Figure 2a. The negative correlation between risk-

adjusted inputs and market share (Figure 5b) is statistically significant but less than half the 

magnitude.  These findings are consistent with patients and their surrogates primarily seeking out 

hospitals that achieve higher risk-adjusted survival (conditional on risk adjusted inputs) rather 

than seeking out ones that use fewer risk-adjusted inputs (conditional on risk-adjusted survival). 

In practice, we find that risk-adjusted survival and productivity are extremely highly correlated.  

It is not immediately obvious how patients know which hospitals offer longer survival. 

This ambiguity is not unique to our study. Indeed, a long-standing question in the field – dating 

back at least to Arrow (1963) – is how patients can acquire information on provider quality. One 

possibility is some form of market-learning; hospitals acquire a reputation for good outcomes 

and this reputation spreads through physicians’ professional networks and patients’ social 

networks and influences patients, family members, physicians, and ambulance drivers to request 

treatment at hospitals that are better at producing survival. Indeed, in a related setting, Johnson 

(2011) finds that cardiac specialists who have higher risk-adjusted survival rates for their patients 

are less likely to stop practicing. She interprets this and related evidence as consistent with a 

model of market learning by the referring physician. Patients or their family members may also 

obtain such information themselves; there is some evidence, for example, that patients respond to 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
18 As with our productivity estimates, we use an empirical Bayes correction to adjust our estimates of risk-adjusted 
survival and of risk-adjusted inputs for measurement error; our procedure accounts for the correlation in 
measurement error between these two objects.  
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provider report cards (e.g., Dranove et al. 2003 and Dranove and Sfekas (forthcoming)). 

An alternative view, however, is that there is no scope for AMI patients or their 

surrogates to exercise choice over hospitals because in emergency situations all (or most) 

patients simply get taken to the nearest hospital. This hypothesis seems particularly natural given 

the famous McClellan et al. (1994) use of distance as an instrumental variable for which hospital 

treats a given AMI patient. With mechanical assignment of many patients to the nearest hospital, 

our static and dynamic allocation results could be produced spuriously if, for example, within a 

market, more densely populated (e.g. urban) areas have both higher productivity hospitals and 

faster population growth. 

In practice, however, this type of strict mechanical allocation rule does not seem able to 

explain our findings. For one thing, we estimate that slightly over half of AMI patients go to a 

hospital that is not the closest one in their market; In other words, while the McClellan at al. 

(1994) distance instrument has a significant first stage with respect to hospital choice, its  R2 is 

far from 1. There is therefore scope for demand to affect patient allocation to hospitals in the 

AMI context. Moreover, when we produce a counterfactual allocation of patients by assigning 

each patient to his nearest hospital within an HRR instead of the one at which we observe 

treatment, our static and dynamic allocation results either substantially attenuate or actually 

reverse.19  

Of course, the presence of active hospital choice by AMI patients or their surrogates does 

not establish that they are choosing on the basis of hospital productivity or risk-adjusted survival 

as in the speculative discussion of market learning above. It is possible that the correlation 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
19 Specifically, the exit result reverses sign and is statistically insignificant; the growth result is less than 20 percent 
of the baseline estimate and is statistically insignificant; the static allocation result remains statistically significant 
but with a magnitude that is 20 percent of the baseline estimate; see Appendix Table A4 (Columns 1 vs 3) and 
Appendix D for more detail. 
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between productivity and market share reflects omitted factors that independently drive demand 

and correlate with productivity. For example, higher productivity hospitals might also have better 

non-health amenities like nicer lobbies, which would in turn influence hospital demand. 

Alternatively, high productivity hospitals could have better managers who improve both the 

production process and separately increase demand for the hospital.  

As one highly imperfect and indirect way to gauge what may be driving the observed 

correlations between productivity and market share, we briefly examine how the magnitude of 

these static and dynamic relationships varies across hospitals and across markets. The results, 

which are shown in Appendix D (especially Table A5) are mixed. For example, within a market 

the allocation results are stronger for hospitals facing more competition for their patients 

(following Gaynor and Vogt’s (2003) use of distance to nearest hospital as a proxy for hospital 

competition); however, at the market level there is no evidence that the allocation results are 

stronger for more competitive markets (following Syverson’s (2004b)) use of population density 

as a proxy for market competition for a spatially differentiated product.  More work is clearly 

needed to establish to what extent the allocation and re-allocation to more productive hospitals is 

a direct result of competition or the result of other factors that are correlated with both 

productivity and demand. 

5.2 Magnitudes 

For many economic and policy questions, the mechanism by which market share is 

allocated to higher productivity firms is quite important. However, the exact mechanism is less 

important for forecasting whether and to what extent the market is evolving in a manner that 

favors higher productivity firms. Here, the magnitude of the productivity-market share 

relationships we estimate becomes important.  
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To begin to try to shed some light on these magnitudes, we investigate how a hospital’s 

productivity correlates with its within-market growth and exit over longer horizons than the one-

year horizon examined in Table 4. Specifically, we re-estimate equations (2) and (3) replacing 

the dependent variables I[exith,t+1] and Δh,t,t+1 with I[exith,t+k] and Δh,t,t+k, respectively. 

Table 5 shows the results. The first row shows the allocation relationships one year out 

(i.e. the results from Table 4, where k=1), and the subsequent rows show results up to 10 years 

out (k=10).  The relationship between productivity and growth or exit strengthens in absolute 

value over time. For example, a 10% increase in hospital productivity is associated with about 1 

percent more patients next year, 4 percent more patients in 5 years, and almost 6 percent more 

patients in ten years.20 

As another way to provide a sense of magnitude, we calculate the market re-allocation 

associated with a standard deviation change of productivity. Our baseline estimate of the national 

standard deviation of hospital productivity is 0.17.21 Thus a hospital that has one standard 

deviation higher productivity has about 40 percent higher market share at a point in time, and 

grows about 6 percent more over the next five years.  

On the other hand, many other factors besides hospital productivity create the observed 

variation in market share. We estimate a partial R2 on productivity in the static allocation 

regression (1) of about 5 percent, and in the growth regression (3) of about 0.06 percent. Of 

course, noise in our productivity estimate causes us to understate the ability of (precisely 

measured) productivity to explain market share. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
20 Because our data on growth and exit ends in 2007, as k rises, a smaller sample of hospital-years is available for 
these analyses. We verified that the finding that these relationships strengthen over time also holds (with quite 
similar magnitudes) if we restrict our sample to the hospital-years for which we observe at least 10 years of 
subsequent growth data (not shown). 
21!Appendix D (especially Table A6) presents the dispersion estimates and also shows that they are quantitatively 
stable across alternative sets of risk adjusters.  !
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As a final way to provide a sense of the magnitudes of these relationships, we compare 

them to those in other industries. To do so, we produced estimates of the static and dynamic 

allocation analyses for the ready-mixed concrete industry, which produces a physically 

homogenous product. Details on the data, estimation and results can be found in Appendix D. 

Like healthcare, concrete is consumed and produced locally, so that spatial differentiation (i.e. 

physical distance) can be an important barrier to competition. Otherwise, however, concrete 

lacks many of the features deemed to be important impediments to competition in healthcare: 

prices are not set administratively, consumers are likely well informed about their choices, and 

they bear the financial consequences of their decisions.  

Across all of our static and dynamic allocation measures, the results indicate a stronger 

(often an order of magnitude larger) relationship between producer productivity and market 

allocation for hospitals than for concrete plants. Likewise, Figure 1 shows that national 

productivity dispersion appears larger for concrete than for hospitals; we estimate a standard 

deviation of 0.25 in concrete, compared to 0.17 for hospitals.22 

This comparative finding is not limited to concrete. The static and dynamic allocation 

analyses are not easily comparable to pre-existing estimates in other sectors. However, 

productivity dispersion in other U.S. manufacturing industries also tends to be similar to (indeed, 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
22 We follow the tradition of the existing productivity literature and compute productivity dispersion metrics at a 
nationwide (within-year) level, even though the market for treating heart attacks is (like many of the manufacturing 
industries studied) plainly local. This standard practice arose in part because manufacturing industries, the focus of 
the previous literature, are often geographically broad. But the literature has also typically reported nationwide 
numbers even for those industries that are more locally oriented, such as ready-mix concrete (Syverson 2004b), in 
part because geographic differentiation is itself one of the possible causes of productivity dispersion within an 
industry. In practice, we find within-market year dispersion to be only slightly lower (standard deviation about 0.16) 
than our national dispersion estimate. Put another way, we estimate that about 88 percent of the within-year 
variation in hospital productivity is within (rather than across) markets. For concrete, we estimate that about 70 
percent of the variation in productivity is within market. 



!
! 28!

somewhat larger than) our estimates for healthcare.23 

We are not the first to perform such cross-industry comparisons in productivity 

dispersion. For example, looking across narrowly defined manufacturing industries, Syverson 

(2004a) finds that the extent of within-industry productivity dispersion is negatively correlated 

with proxies for the amount of substitutability or competition across firms within that industry. 

We caution, however, against drawing inferences about the extent of competition in such 

different settings as heart attack treatment and manufacturing from comparisons of productivity 

dispersion. Basic measurement differences – such as differences in the output definition (survival 

vs. revenue), how inputs are measured, and estimation error – raise real comparability concerns, 

albeit without creating a clear direction of bias.24 Moreover, as noted earlier, the causal force 

behind reduced dispersion is unclear, and need not be competitive pressure. 

Nonetheless, at a broad level, the comparison may serve as a useful benchmark against 

which to assess the quantitative relationships we have estimated for productivity and allocation 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
23!Compared to our estimate of a standard deviation of hospital productivity of 0.17, Foster, Haltiwanger and 
Syverson (2008) estimate an average within-industry standard deviation of productivity of 0.22 across a dozen 
manufacturing industries in the US selected for having physically homogeneous products (e.g. white pan bread, 
block ice, raw sugar cane, etc.); Bartelsman, Haltiwanger and Scarpetta (2009) estimate an average within-industry 
standard deviation of 0.39 across a broader range of manufacturing industries. Across 450 different narrowly defined 
(4-digit SIC code) US manufacturing industries, Syverson (2004a) estimates an average within-industry interquartile 
range of logged plant productivity of 0.29, compared to our estimate in Table A6 of 0.23 for hospitals. Although 
most of the work in productivity dispersion has focused on the manufacturing sector, the more limited work on 
productivity dispersion in service industries suggests that in general it is roughly similar to that found in 
manufacturing. For example, Fox and Smeets (2011) estimate productivity dispersion in four Danish service 
industries and four Danish manufacturing industries and find generally comparable estimates. Similarly, looking at 
4-digit retail industries, Foster, Haltiwanger and Krizan (2006) estimate an average interquartile range for logged 
labor productivity which is comparable to Syverson (2004a)’s estimate of the interquartile range for logged labor 
productivity in manufacturing.!
24!To take but one example, the extent of measurement error in output – which would serve to attenuate estimates of 
the correlation between productivity and market share and to increase estimated dispersion – is likely different in 
healthcare than in manufacturing, although the sign of the difference is unclear. On the one hand, AMI survival is an 
accurately recorded account of output, in contrast to manufacturing revenue which could be reported with error and 
may confound output variation with price variation (see Foster, Haltiwanger, and Syverson, 2008 and 2012). On the 
other hand, in manufacturing industries output is more-or-less a deterministic function of inputs, while survival in 
our setting is stochastic. As discussed, we use the empirical Bayes “shrinkage” estimator to try to adjust for this 
stochastic element and the relatively small sample size within hospital-years.!
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in the US healthcare sector. They also seem inconsistent with the conventional wisdom that the 

variations in inputs across areas and hospitals without concomitant output gains are unique to 

healthcare and must therefore result from idiosyncratic features of the sector.   

6. Robustness 

We explored the robustness of our allocation and dispersion findings along a number of 

dimensions and were generally quite reassured by the results. Here, we briefly describe some of 

our robustness analysis concerning risk adjustment, measurement of inputs, measurement of 

output, and potential endogeneity of inputs.  Appendix E presents the results in more detail. 

6.1 Controls for Patient Health 

A key concern is whether we have adequately controlled for patient characteristics that 

are correlated with both hospital choice and survival. We have already seen that our core results 

are robust to controlling for fewer observable characteristics than in our baseline specification; 

specifically all of our tables have shown results with no patient covariates and with only 

covariates for age/race/sex interactions, in addition to the “full” set of demographics and co-

morbidities. In addition, for one year of our sample we have access to considerably richer data 

that are abstracted from patients’ medical charts and contain many additionally relevant clinical 

characteristics such as test results and medical histories. We find that our results are not sensitive 

to including this more extensive set of controls (see Table A8). 

6.2 Input Measure 

We face several key choices with the construction of our input measure. One is how 

coarsely or finely to measure inputs. There is a tradeoff between our relatively coarse baseline 

measure of inputs (with its associated measurement error stemming from input variation that we 

do not capture) and more granular measures which suffer from potential survivorship bias (a 
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patient cannot receive many procedures if she does not survive very long); we experimented with 

considerably more granular input measures based on the individual procedures received and the 

length of hospital stay. We also explored using these inputs directly in a multi-input production 

function rather than aggregating them to a single index as in our baseline approach. Finally, our 

baseline measure follows standard practice and defines inputs based only on hospital inpatient 

treatments, thereby excluding physician inputs – which may occur both inside and outside the 

hospital – and other outpatient inputs. We tried an alternative input measure that incorporates 

non-hospital inputs. Again there is a trade-off; some non-hospital inputs may be closely linked 

(or indeed part of) the care received in the hospital, while others may be quite distinct. These 

alternative input measures are each described in more detail in Appendix B and the results are 

presented in Table A9.25 

6.3 Time Horizon 

Another issue concerns the time horizon over which we measure inputs and outputs. Our 

baseline measures use a 30 day window for inputs and a 1 year window for output (survival 

days). We explored the robustness of our results to shorter and longer time horizons – 7 days and 

1 year on the input side, and 30 days and 5 years on the output side. Again, there are tradeoffs in 

the length of time horizon.26 We find our results are generally robust to these alternative input 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
25 Estimation in more traditional settings must also deal with input measurement problems, including issues we do 
not confront here stemming from differential qualities across types of workers and capital, trying to capture the flow 
of capital services using measures of capital stocks, and intermediate inputs typically measured by expenditures 
rather than quantities. Additionally, and more directly to the issue here, these inputs must also be aggregated to a 
single-dimensional input index by weighting the individual inputs appropriately. The theoretically correct weights 
are the elasticities of output with respect to the respective inputs. Estimating these elasticities involves its own set of 
measurement challenges. Our approach in the hospital sector avoids many of these additional issues. 
26 On the input side, a shorter time horizon will miss some of the resources the patient receives, while a longer 
horizon creates greater scope for survival bias as well as treatments that are linked to providers other than the 
original hospital. On the output side, for our baseline measure we chose the relatively standard 1-year horizon since 
it seemed substantively more of interest than shorter-term (e.g. 30 day) survival. Analysis of a shorter horizon might 
capture aspects of hospital productivity that reflect only a slight postponement in death, and might not capture 
!
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and output horizon windows (Table A10). 

6.4 Potential Endogeneity of Inputs 

Finally, as noted earlier, a pervasive concern in the productivity literature is the potential 

endogeneity of inputs to producer productivity. This can bias the estimates of the returns to scale 

parameter µ. There is a wide range of estimates of this parameter in the literature (see e.g. Cutler 

et al. 1998, Fisher et al. 2003b, and Baicker and Chandra 2004) and uncertainty as to the “right” 

estimate. We are therefore reassured that our results are quite robust to imposing (rather than 

estimating) a range of “reasonable” values of µ and then calculating productivity under different 

imposed values (see table A11). The lack of sensitivity of our static and dynamic allocation 

results to alternative values of µ is consistent with the results in Figures 5a and 5b that the 

correlation between market share and estimated productivity is driven primarily by the 

correlation between market share and risk-adjusted survival.27 

7. Conclusion 

 This paper has examined the relationship between productivity and market allocation in 

healthcare, specifically for hospital treatment of Medicare patients’ heart attacks. We have done 

so by drawing on the insights of several decades of theoretical and empirical work in 

productivity more broadly.  Qualitatively, we find that higher productivity hospitals have greater 

market share at a point in time and grow more over time. Quantitatively, a hospital with a one 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
aspects that affect outcomes through long-term mechanisms such as the management of complications due to co-
morbidities and the quality of the hospital’s follow-up care. On the other hand, with a longer output horizon there is 
greater scope for the impact of non-hospital factors – such as patient compliance in terms of diet, smoking and 
medication, and the impact of doctor quality regardless of whether the doctor was associated with the initial hospital 
– on our productivity estimates.  
27 Referring back to the basic estimating equation for hospital productivity (equation (5)), the fact that the market 
share-productivity covariance is not sensitive to µ must mean that there is little variance in risk-adjusted inputs 
and/or a low covariance between risk-adjusted inputs and market share – otherwise, changes in the value of µ, which 
ties risk-adjusted input variation to our estimate of hospital’s productivity levels, would change the correlation 
between estimated productivity and market share.!
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standard deviation higher productivity has about 40 percent higher market share at a point in 

time, and grows about 6 percent more over the next five years. 

These relationships, which are driven primarily by the relationship between risk-adjusted 

survival and market share, mean that over time the healthcare market evolves in a manner 

favorable to higher productivity producers. This qualitative pattern is generally viewed by the 

broader productivity literature as an empirical sign of the workings of competition; it has been 

consistently found within manufacturing industries in the United States but not in less 

competitive settings such as post-Soviet Eastern block countries or Chile prior to trade reforms. 

Our more speculative quantitative comparisons between healthcare and manufacturing industries 

in the US suggest that, if anything, these re-allocation results are stronger, and dispersion similar 

or smaller, in healthcare. 

 Taken together, our qualitative and quantitative findings indicate that the healthcare 

sector may not be as idiosyncratic as the conventional wisdom has claimed. In this sense, our 

results are in the same spirit as Skinner and Staiger’s (2007) finding of a common 

“innovativeness factor” across healthcare and other sectors within a geographic area; they found 

that areas of the country that were early adopters of hybrid corn in the 1930s and 1940s were also 

early adopters of beta blockers for heart attacks at the beginning of the current century.   

Such findings suggest that, going forward, research on the determinants of productivity in 

the health care sector may benefit from more attention to the insights, both theoretical and 

empirical, from research about productivity and allocation in other industries. By the same token, 

insights from the health care sector may likewise be a useful laboratory for thinking about other 

industries. A recent series of papers by Bloom, Van Reenen and co-authors have begun to do just 

this, empirically investigating the role of such factors as management style and labor quality on 
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hospital performance (usually survival rates; see Bloom et al., 2010; Propper and Van Reenen, 

2010; Bloom et al., 2012; and McConnell et al., 2013).  Moreover, in our healthcare setting as in 

the manufacturing setting more broadly, the estimated re-allocation relationships stop far short of 

indicating what economic or policy forces could be unleashed to create still greater reallocation 

to higher productivity producers. We see a great opportunity for further work that tries to 

estimate the causal impact of competition – or other factors – on allocation in healthcare and in 

manufacturing settings. 

Of course, a given amount of re-allocation to higher productivity producers – or a given 

improvement in this re-allocation process – may be much more valuable in healthcare than in 

manufacturing, not to mention of greater consequence for public sector budgets. In this case, 

more than healthcare having different market dynamics, perhaps it is this feature of healthcare 

that makes it exceptional.  
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Figure shows estimated productivity dispersion across hospitals for heart attack treatments
and across concrete plants for the production of ready−mixed concrete. We show the average
within−year fitted normal density for each. Hospital productivity estimates (which reflect the
hospital’s ability to produce patient survival given a fixed set of inputs), are from our baseline
specification (Table 2, column 1); concrete productivity estimates are from Table A7. See text for
more details on the construction of these estimates.
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Dynamic relationship between
productivity and growth in market share

Figure shows relationship between a hospital−year’s market share and productivity after partialing
out market−year fixed effects. Figure 2a shows the static relationship between the hospital’s log
number of heart attack patients in year t and estimated productivity in year t; Figure 2b shows the
dynamic relationship between the hospital’s percent growth in heart attack patients between year t
and t+1 (defined in equation 6) and estimated productivity in year t. Hospital productivity estimates
(which reflect the a hospital’s ability to produce patient survival given a fixed set of inputs) are from
our baseline specification (Table 2, column 1).  Figures show results for a random 5% of hospital−years,
with hospital−years that have less than 11 patients suppressed form the scatter for confidentiality reasons.
In addition, in Figure 2b for visual clarity the y−axis is restricted to the almost 95% of hospital−years
with residual growth between −0.8 and 0.8.  In both graphs, line shows the linear fit based on the whole
sample (prior to any suppression).
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Figure 2
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Management Z−Score

Figure plots the relationship between our estimate of 2003 hospital−year TFP (from our baseline
specification in Table 2, column 1, but without the empirical Bayes adjustment) against specific
observable measures of hospital quality. Left hand panel plots relationship between the hospital’s
TFP and its beta−blockers z−score in 2003 for the 1,045 hospitals where we observe both (6 hospitals
with outlying z−scores are not shown). Right hand panel shows the relationship between the hospital’s
2003 TFP and its management z−score for the 179 hospitals where we observe both. See text for more
detail on both of these z−scores. Hospitals that have less than 11 patients in 2003 are suppressed
from the scatter for confidentiality reasons. Line shows the linear fit based on the whole sample
(prior to any suppression and removal of outliers).

Relationship Between Productivity and Quality

Figure 4
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Figure shows relationship between a hospital−year’s
market share and risk−adjusted survival after partialing out
market−year fixed effects and risk−adjusted inputs. Y−axis
is the log number of heart attack patients in year t; x−axis
is the hospital’s risk−adjusted average log−survival in year
t.  Baseline risk adjusters (shown in Table 1b) are used.
Figure shows results for a random 5% of hospital−years, with
hospital−years that have less than 11 patients suppressed
from the scatter for confidentiality reasons. For visual
clarity, the x−axis is restricted to the 97% of hospital−
years with residual survival between −0.2 and 0.2. Line
shows the linear fit based on the whole sample (prior to
any suppression or restriction).
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Figure shows relationship between a hospital−year’s
market share and risk−adjusted inputs after partialing out
market−year fixed effects and risk−adjusted survival.
Y−axis is the log number of heart attack patients in year
t; x−axis is the hospital’s risk−adjusted average log−input
in year t.  Baseline risk adjusters (shown in Table 1b) are
used. Figure shows results for a random 5% of
hospital−years, with hospital−years that have less than 11
patients suppressed from the scatter for confidentiality
reasons. For visual clarity, the x−axis is restricted to the
99.9% of hospital−years with residual inputs between −0.2
and 0.2. Line shows the linear fit based on the whole sample
(prior to any suppression or restriction).
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Unpacking the Relationship between
Productivity and Market Share

Figure 5

41



(1) (2) (3) (4)

Mean SD Min Max

Hospital-Years (N=55,540)

   Patients 63.57 69.63 5 917

Market-Years (N=4,560)

   Patients 774.2 735.2 63 5,700

   Hospitals 12.18 11.38 1 97

Table 1a - Hospital and market statistics

Note: The number of hospitals is 5,346.

(1) (2)

Mean SD

Outputs

  Survival (days; censored at 365) 268.1 149.4

  Binary: Survival > 365 Days 0.660 0.474

Inputs

   Baseline (30 day) input measure ($) 15,996 12,172

Risk Adjusters

   Age 78.17 7.546

   Female 0.507 0.500

   White 0.906 0.291

   Hypertension 0.207 0.405

   Stroke 0.0232 0.150

   Cerebovascular Disease 0.0398 0.195

   Renal Failure 0.0521 0.222

   Dialysis 0.00670 0.0816

   COPD 0.0981 0.297

   Pneumonia 0.0592 0.236

   Diabetes 0.128 0.334

   Protein Cal Malnut 0.0118 0.108

   Dementia 0.0412 0.199

   Paralysis/FD 0.0256 0.158

   Periph Vasc Disease 0.0639 0.245

   Metastatic Cancer 0.0117 0.107

   Trauma 0.0392 0.194

   Substance Abuse 0.0225 0.148

   Major Psych Disorder 0.0138 0.117

   Chronic Liver Disease 0.00281 0.0529

Table 1b - Patient Summary Statistics

Note: The number of observations is 3,530,401.
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(1) (2) (3)

Risk Adjustment: Baseline Age/Race/Sex None

Parameter

   μ 0.446 0.481 0.589

(0.00511) (0.00523) (0.00552)

Table 2 - Production Function Parameter Estimates

Notes: N = 3,530,401 patients, 55,540 hospital-years, and 

5,346 hospitals.  Standard errors are bootstrapped with 300 

replications and are clustered at the market level (304 

markets). "Baseline" risk-adjustment includes a full set of 

interactions between age (in five year groupings), gender 

and whether the patient is white; it also includes indicators 

for  the various co-morbidities shown in Table 1; column 2 

excludes the co-morbidities and column 3 has no risk 

adjusters.

(1) (2) (3) (4) (5) (6)

ln(Prod) ln(Prod) ln(Prod) ln(Prod) ln(Prod) ln(Prod)

Beta-Blockers Z-Score 0.0299

(0.00667)

Composite Z-Score 0.0299

(0.00676)

Management Z-Score 0.0511

(0.0290)

Teaching Hospital 0.0799

(0.0129)

Urban 0.0696

(0.0160)

For-Profit 0.0228

(0.0266)

Non-Profit 0.101

(0.0221)

Constant 0.0382 -0.0147 -0.0609 -0.0810 -0.102 -0.127

(0.00577) (0.00590) (0.0248) (0.00890) (0.0144) (0.0202)

Observations 1,045 2,183 179 3,361 3,361 3,363

Table 3 - Relationship Between Hospital TFP and Hospital Covariates

Unit of observation is a hospital. Dependent variable is our estimate of 2003 hospital-year TFP from our 

baseline specification (Table 2, column 1) without empirical Bayes adjustment. Right hand side variables 

in columns 1 through 3 are z-scores for hospitals that reported the measure indicated. Data on beta-

blockers and composite scores are from CMS Hospital Compare; beta-blockers score includes hospitals 

with at least 30 patients appropriate for the treatment, while composite score includes hospitals with a 

sum of at least 30 patients appropriate for each of the treatments within the score. Data on management 

score are based on a 2010 survey of management practices adminstered by Bloom et al. (2012); see text 

for more details. Right hand side variables in columns 4 through 6 are indicators for whether the hospital 

is a teaching hospital (Column 4), in an urban area (Column 5), or is a for-profit or non-profit entity 

(Column 6, public is the omitted category). Indicators for hospital characteristcs are coded from CMS 

Provider of Services and Impact files; we define a teaching hospital as one that has residents. Standard 

errors are bootstrapped with 300 replications and are clustered at the market level.
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(1) (2) (3) (A) (B)

Risk Adjustment: All Age/Race/Sex None DV Meana Observations

Static Allocation 2.418 2.496 2.618 3.641 55,540

 (0.0889) (0.0851) (0.0779)

Dynamic Allocation

   Exit Regression -0.0329 -0.0353 -0.0458 0.0438 40,379

(0.00935) (0.00884) (0.00766)

   Growth Regression 0.133 0.154 0.201 -0.126 52,777

(0.0225) (0.0214) (0.0184)

Table 4 - Main Results - Allocation Metrics

Notes: "Static Allocation" reports the results from estimating the relationship between a 

hospital's log(patients) and TFP (i.e. productivity) within a market year given by equation 

(1). "Exit regression" reports the results from estimating the within-market relationship 

between a hospital "exit" as defined in the text and last year's productivity as given by 

equation (2). "Growth regression" reports the results from estimating the within-market 

relationship between a hospital's one-year percent growth and its base year productivity as 

defined in equation (3). Productivity is estimated based on the corresponding 

specifications from Table 2. Standard errors are bootstrapped with 300 replications and are 

clustered at the market level. Observations are hospital-years.

a"DV mean" reports the mean of the dependent variable for the regressions, which is 

ln(Patients) for the static allocation regression, 5-year exit for the exit regression, and 1-

year growth for the growth regression. See text for more detailed definitions of dependent 

variables.

Years (k) Coeff Std Err Mean DVa Obs Coeff Std Err Mean DVa Obs

1 0.133 (0.022) -0.126 52,777 -0.033 (0.009) 0.044 40,379

2 0.207 (0.027) -0.224 49,954 -0.056 (0.014) 0.077 36,864

3 0.270 (0.038) -0.314 46,961 -0.085 (0.019) 0.108 33,163

4 0.345 (0.047) -0.392 43,742 -0.122 (0.023) 0.137 29,338

5 0.365 (0.052) -0.462 40,379 -0.147 (0.028) 0.166 25,359

6 0.397 (0.062) -0.530 36,864 -0.165 (0.030) 0.195 21,320

7 0.477 (0.068) -0.598 33,163 -0.203 (0.037) 0.226 17,226

8 0.526 (0.070) -0.666 29,338 -0.224 (0.040) 0.255 13,050

9 0.573 (0.074) -0.735 25,359 -0.242 (0.049) 0.284 8,761

10 0.587 (0.077) -0.807 21,320 -0.212 (0.060) 0.313 4,412

Table 5 - Dynamic Allocation Varying Time Horizons

Growth from t to t+k Exit in t+k

These results report the coefficient and its standard error from the regressions of growth or 

exit on productivity, controlling for market-year fixed effects. These are modified versions of 

equations (2) and (3) where the time horizon over which growth or exit is measured is now k 

years rather than 1 year. Each row considers a different time horizon k. Longer horizons have 

smaller samples because data on growth ends in 2007 and data on exit ends in 2003. Standard 

errors are bootstrapped with 300 replications and are clustered at the market level.

a "Mean DV" refers to the mean of the dependent variable (growth or exit) in the sample over 

the time horizon indicated. 
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Appendix A: Analytical Framework 
As mentioned in the text, models of reallocation mechanisms among heterogeneous-

productivity producers have found applications in a number of fields, including industrial 
organization, trade, and macro-economics.  While these models differ considerably in their 
specifics, they share an archetypal mechanism that connects the extent of competition in the 
market to the shape of the productivity distribution among market producers. We describe this 
central mechanism here. 

Producers (indexed by i) earn profits which depend positively on their idiosyncratic 
productivity levels Ai – more productive firms earn higher profits due to their lower costs – and 
negatively on the number (or mass, in models with a continuum of firms) of producers in the 
industry N.28 Hence πi = π(Ai,N), with ∂π/∂Ai > 0 and ∂π/∂N < 0. The monotonic relationship 
between productivity and profits implies that, for any given N, there is a critical cutoff 
productivity level A*(N) at which firm profits are zero.  Only producers with productivity levels 
at or above A*(N) will operate in equilibrium. 

The zero-profit cutoff productivity A*(N) is endogenously determined by a free entry 
condition, where ex-ante identical potential entrants consider whether to pay a sunk cost σ to 
take an idiosyncratic productivity draw from a known distribution, G(⋅) with upper bound !.  
The expected value of entry, which equals zero by the free entry condition, is: 

!! = ! !,! ! ! !"
!

!∗ !
− ! = 0 

The expected profits from entry depend upon the equilibrium number of entrants N in two ways.  
First, an increase in N shifts upward the zero-profit cutoff productivity level A*(N), reducing the 
probability that the entrant’s productivity draw is high enough to earn nonnegative profits and 
thus making successful entry less likely.  Second, a higher number of firms N also reduces the 
producer’s profits if it does enter.  Thus expected profits fall monotonically in N.  In equilibrium, 
the number of firms choosing to pay the entry cost yields a number of entrants N that, through 
these two effects, exactly equates the expected profit from taking a productivity draw to the sunk 
entry cost. 

The endogeneity of A*(N) means the industry productivity distribution observed in the 
data is determined in equilibrium.  Specifically, it is a truncation of G(⋅), the underlying 
productivity distribution from which potential entrants take productivity draws, where the 
truncation point is A*(N).  Changes in market primitives that shift the equilibrium location of 
A*(N) therefore shift the observed productivity distribution as well. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
28 Standard presentations of these models consider profit-maximizing firms. Although we keep this terminology to 
be more familiar relative to the existing literature, we note that in the context of hospitals, it might be more 
appropriate to consider firms as earning (and maximizing) “surplus” rather than “profits”. This more general 
terminology recognizes that many hospitals are legally structured as nonprofits and does not affect the qualitative 
comparative statics.  Nonprofit hospitals are often modeled in the literature as having an objective function that is a 
convex combination of profits and other objectives; therefore on the margin they should respond qualitatively the 
same way as for-profit hospitals to factors like competition.  Moreover, even if a hospital’s objective is not profit 
maximization, it is likely that for any given level of output(s) the hospital produces (in order to meet whatever 
outcomes are in its objective function), surplus will be larger if the hospital’s costs are lower. In practice, a large 
empirical literature finds essentially no evidence of differential behavior across for-profit and non-profit hospitals, 
calling into question whether the non-profit label has any substantive meaning for behavioral responses (see Sloan 
2000 for a recent review of this literature).   
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The primitive that we are interested in here is the extent of competition, as reflected in 
how easily consumers can (or how willing consumers are to) substitute to alternate producers.  
The specific mechanism through which primitives map into substitutability may vary, from 
changes in the differentiation of firms’ products, to shifts in openness to trade, to movements in 
the size of transport costs.  The particulars of the mechanism aren’t important here; what matters 
are the effects on the equilibrium. 

Higher substitutability has three effects that can be examined empirically. First, it makes 
it more difficult for higher-cost (lower-productivity) firms to earn positive profits, as demand is 
now more responsive to their cost and price differential relative to other firms in the industry.29   
In turn, the zero-profit cutoff productivity level A*(N) rises: the threshold for operation is greater 
than before.  This truncates the equilibrium productivity distribution, reducing observed 
productivity dispersion.30 Second, higher substitutability means that, among operating firms, 
market shares are more sensitive to productivity differences. Purchases are reallocated to more 
productive firms, raising the correlation between productivity and market share at a point in time 
(“static allocation”). Third, over time more productive firms are likely to grow in market share 
(“dynamic allocation”).31 
  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
29!In the case of hospitals, this demand response can be manifested either directly in patients’ choices in response to 
out-of-pocket costs, or indirectly through insurers’ decisions to include the hospital in its covered network. 
30 This dispersion implication requires some additional regularity assumptions on the underlying productivity 
distribution.  Most “standard” distributions exhibit declining second moments as they are truncated from below.  
The exponential distribution, however, is an example of one that does not.  Nevertheless, if we assume the 
productivity distribution is bounded at the top (i.e., there is some maximum productivity level), as we do here, then 
all distributions will eventually exhibit decreased dispersion as they are truncated from below. 
31 The model just described is static, so the effects of changes in competition on equilibrium should be thought of as 
comparing two different markets or the same market across different long-run steady states.  However, several of the 
models in the literature are explicitly dynamic and have similar predictions about the effect of competition on the 
productivity of entrants and growth of incumbents (e.g., Hopenhayn 1992, Asplund and Nocke 2006).  
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Appendix B: Measuring Inputs 
Our baseline input measure (as well as many of the alternative measures discussed below) is 

derived from the formulas used to determine Medicare's Hospital (Part A) reimbursement. Some 
alternative measures also use information derived from the formulas used to determine Medicare's 
reimbursement of physicians and outpatient facilities (Part B). It is therefore useful to begin with a very 
brief overview of the key features of Medicare hospital reimbursement needed to understand the 
construction and composition of our baseline and alternative input measures. Considerably more detail 
can be found in CMS (2011). 

The amount Medicare reimburses a hospital is determined by the patient's Diagnosis Related 
Group (DRG), national factors, and hospital-specific factors. A patient's DRG is a function of his 
principal diagnosis, procedures performed, and secondary complications and comorbidities. Some DRGs 
also depend on whether the patient died in the hospital. 

Each DRG is assigned a (national) weight based on how much it costs to treat the nationwide 
average patient with that DRG; a national conversion factor is used to convert these DRG weights into 
dollar payments. The weights and the conversion factor are updated annually. The national rate is then 
adjusted for hospital-specific considerations. The major adjustments are due to geographic factors (e.g. 
the local wage rate) and characteristics of the hospital (such as whether it operates a resident training 
program or has a disproportionate share of patients on Medicare or SSI). 

For most stays the hospital will receive payments solely based on the patient’s DRG. However, in 
certain extraordinarily costly cases hospitals receive additional “outlier payments” covering 80 percent of 
costs beyond a threshold level. To compute costs, the hospital’s billed charges are deflated by a hospital-
specific cost-to-charge ratio. If a patient has a short stay and is transferred to another hospital, Medicare 
reduces payments to the transferring hospital but pays the receiving hospital as it would for a standard 
inpatient stay. For our purposes, we assign all inputs for the patient in the time horizon (30 days for our 
baseline measure) back to the initial hospital. 

 
B1. Baseline Input Measure: Part A “Resources”  
  Our baseline input measure follows the approach of Gottlieb et al. (2010) and Skinner and Staiger 
(2009) to purge the “price” variation in the reimbursement formula from the “input” variation. 
Specifically, our starting point is the DRG weight (multiplied by a national conversion factor to convert it 
to a dollar metric) plus outlier payments (also in dollars). It does not reflect any variation in 
reimbursement prices across hospitals due to geographic factors or specific characteristics of the hospital. 

According to this measure, the inputs a patient receives equal the sum of his converted DRG 
weights and outlier payments at all hospital stays in the 30 days following his AMI. Variation across 
patients in the input measure therefore comes from 3 sources: variation in the patient's DRG(s); whether 
there are (and the extent of) outlier payments; and the number of hospital stays during the 30 day window. 
We discuss each in turn. 

 
Variation across Index Event DRGs 

To give a sense of the nature and variation across DRGs, Table A1 lists the top 20 DRGs for the 
index event (initial AMI hospital stay), their patient share and their weights in 2000.32 The top five DRGs 
account for over 90 percent of the index events, and the top 20 account for virtually 100 percent. 

Looking within the top five we see substantial differences in weight based on whether an invasive 
procedure is performed. There are two separate DRGs for invasive procedures (#107, “Coronary Bypass 
with Cardiac Catheterization” and #116, “Other Permanent Cardiac Pacemaker Implant or PTCA with 
Coronary Artery Stent Implant”) and they respectively have weights of 5.46 and 2.47. By contrast, the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
32!For presentation purposes, we limit Table A1 to one year because DRG weights and classifications change slightly 
from year to year.!
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other three DRGs in the top five are medical DRGs (i.e. do not involve invasive procedures) and have 
weights ranging from 1.11 to 1.51.  For the year 2000, two dummies for these two surgical DRGs (bypass 
and stent) explain 15 percent of the total variation in our 30 day input measure.  

Within the three most common medical DRGs, we see that there is variation for a medically 
treated AMI based on whether or not the patient died (#123), survived following a stay with major 
complications (#121) or survived following a stay without major complications (#122). This variation 
has, to our knowledge, not previously been noted by the large empirical literature on the relationship 
between inputs for heart attacks and subsequent survival which has used the variation in inputs stemming 
from survival. However, this source of variation in the standard input measure seems suspect: it partly 
causes in-hospital death – not inputs, per se – to explain survival, an association that must exist trivially. 

Therefore, for these three DRGs that refer to the same diagnosis but differ on the basis of patient 
survival, we eliminate the variation in inputs across DRGs within this group at the hospital-year level. We 
assign each DRG the patient-weighted average of the different DRG weights. The averaging weights are 
equal to the share of patients in the DRG in that year. Almost three-quarters of hospital stays were 
grouped into DRGs that were affected by this fix.33  
     
Variation from Outlier Payments 
  Approximately 8.2% of our patients trigger outlier payments due to unusually costly cases. These 
payments are triggered when a hospital’s cost of treating a patient exceeds a national threshold.  
Conditional on receiving an outlier payment, the average outlier payment as a share of DRG 
reimbursement without outlier payments is 53.9; the standard deviation of outlier payments is 13,154.8. 
(All statistics calculated for patients in the year 2000.) 
 
Variation Due to Number of Hospital Stays 
  Even ignoring outlier payments, the total variation coming from DRGs is in fact larger than that 
indicated in Table A1 because of the possibility of multiple (and potentially non AMI) hospital stays in 
the 30 days following the index event (AMI). Our baseline input measure is constructed for the 30 days 
following the initial AMI, meaning that it includes all hospital stays in these 30 days. On average, an AMI 
patient has 1.07 stays in this window. Conditional on having multiple stays, the average patient visits the 
hospital 2.07 times in the month following the AMI. 

If a hospital stay straddles the end of the time window (e.g. a patient stays in the hospital for 10 
days and is admitted on day 25 days following the heart attack), the inputs attributed to that hospital are 
reduced; in particular, we multiply our input measure by the share of days in the hospital that were inside 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
33 Note that this “fix” also purges the variation across the three most common medical DRGs in whether the patient 
had a major complication or not.  Although the case in question is the only one where different DRGs are assigned 
based on patient survival, there are other cases where separate DRGs are assigned based on the presence of 
complicating conditions (CCs). For example, the 6th-ranked DRG #110, “Major Cardiovascular Procedures with 
CC” (weight 4.16) and the 18th-ranked DRG #111, “Major Cardiovascular Procedures without CC” (weight 2.23) 
differ only on this basis. It is a priori unclear to us whether we want to purge variation due to the presence of CCs. 
On the one hand, conditional on a rich set of patient risk adjusters, the presence of a CC may be a useful measure of 
the intensity of resources required to treat the condition; on the other hand, with imperfect risk adjusters, it may also 
capture correlates of mortality (our outcome of interest). 

As noted, in practice our approach to purging mortality-based variation across DRGs also purges complications-
based variation in the most common DRGs. We experimented with an alternative measure that purged variation due 
to CCs in all DRGs. The procedure took DRGs that were identical but for the CC requirement and assigned them the 
same DRG weight within each hospital-year. This DRG weight was a weighted average of the component DRG 
weights; the averaging weights were the shares of patients in each DRG in the hospital-year. For example, in 2000, 
DRGS #110 and #111 were assigned the same weight in each hospital-year. This correction affected only a few 
percent more patients and made no noticeable difference to our findings (results available on request). 
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the 30 day analysis window. We adjusted all DRGs (not just those associated with index events) to purge 
variation stemming from mortality in the manner described above. 
 Table A2 lists the top 20 DRGs across all stays in the 30 day window following the index event. 
The index events are included in this table. As expected, there is more variation across these DRGs. 
 
Empirical Variation in Baseline Input Measure 
 The panels of Figure A1 show the variation in the input measures across patients for one year 
(2000). Figure A1a shows the variation in the DRG index events (using our “collapsed” DRG measure 
that purges mortality variation). Figure A1b shows the variation from the DRG index events plus outlier 
payments in the index event. Figure A1c shows the total 30 day variation (our baseline input measure), 
which adds in additional hospital stays (their DRGs and outlier payments) within the 30 days. As would 
be expected, the input distribution gets less “lumpy’’ at each step. 
 
 B2. Alternative Input Measures 

We confronted a number of choices in defining our baseline input measure. We therefore 
constructed several other alternative input measures. This section describes them.  
 
Alternative Measures of Hospital Inputs 

A central tension in our choice of input measurement is how coarse or detailed we make our input 
measure. The tradeoff is between the survival bias that can occur with finer input measures—since the 
longer a patient survives, the more can be done to a patient—and the measurement error which occurs at 
coarser definitions of inputs. Our baseline measure, following standard practice, is aggregated to a 
relatively high level, and may therefore measure inputs with a non-trivial amount of error.  

We experimented with two alternative hospital-based input measures. One measures Part A 
spending rather than Part A inputs; it therefore includes variation in reimbursement rates stemming from 
hospital specific factors like geographic location or type of hospital. As shown in Figure A1d the 
distribution of Part A reimbursement is less “lumpy” than our baseline input measure; the correlation 
between the two is 0.90. 
 The other measure is designed to be more detailed than our baseline measure to reflect that fact 
that input use may vary substantially within the relatively coarse DRGs. We used data on the length of 
hospital stay and the procedures performed during the stay (up to six may be listed). Procedure codes are 
themselves available at different levels of granularity; there are 3 levels of CCS procedure codes ranging 
from the least granular level 1 to the most granular level 3; the much larger set of ICD-9 procedure codes 
is more granular still. The ICD-9 codes account for over 3878 possible procedures that may be performed 
on patients.  

To reduce the dimensionality of the set of procedures, we use the following algorithm. We start 
with the coarsest set of procedures (level 1 CCS codes, of which there are 16) and move iteratively to the 
finest set of procedure codes (ICD-9). At each step we aggregate codes that are rare and disaggregate 
codes that are very common. Thus, beginning with CCS level 1 codes, we include indicators for level 1 
procedures that were performed on less than 10% of patients; if the level 1 procedure was performed on 
10% or more of patients, we disaggregate it by looking at CCS level 2 components. 

In similar fashion, if the CCS level 2 procedures were performed on 1-10 percent of patients, we 
include an indicator for it. Within a level 1 code, all level 2 codes performed on less than 1 percent of 
patients are grouped together and included as one indicator.  If the level 2 procedure was performed on 10 
percent or more of patients, we disaggregate by looking at its level 3 components. 

We follow the same process for level 3 components; when we disaggregate these codes we look 
at the component ICD-9 codes. If the ICD-9 code was performed on at least 1 percent of patients we 
include an indicator for it. Within a level 3 code, all ICD-9 codes that were performed on less than 1 
percent of patients are grouped together and included as one indicator.  

This algorithm results in 60 procedure indicators: 18 for ICD-9 codes, 6 for level 3 CCS codes, 
22 for level 2 CCS codes and 14 for level 1 CCS codes. 
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Incorporating Non-Hospital Inputs 

A limitation of our input measures thus far is that, following standard practice in the heart attack 
literature, they reflect only inpatient hospital inputs. Notably, they do not include physician inputs, which 
may occur in an inpatient or outpatient setting. They also do not include outpatient tests and procedures 
like MRIs. 

Many of these inputs are directly related to the treatment of the AMI. For example, the work of 
physicians who treat the patient surgically or medically in the hospital is obviously an input that may bear 
on the patient’s survival. Likewise, an MRI done in an outpatient facility that is closely affiliated with the 
hospital will inform treatment decisions and influence mortality. 

There are two reasons why we follow most of the literature on heart attacks and do not include 
inputs by physicians or outpatient facilities in our baseline measure. First, while some of these inputs are 
closely linked to the care received in the hospital, many of the payments reflect care that is independent of 
the hospital. In particular, doctor visits and outpatient diagnostic tests at long time horizons from the 
initial AMI admission may be less dependent on initial treatment decisions. The second reason is 
practical: data on much of these other input measures are only available for 20 percent of the sample and 
only since mid-2000, reducing the set of hospital-years in which we can observe at least 5 AMI patients 
by 70.0%. 

Still, we sought to evaluate the sensitivity of our results to including physician and outpatient 
services. Medicare reimburses physicians based on their assessment of the “Relative Value Units” 
(RVUs) of the services the physician provided; the RVU of a service is intended to reflect the resources 
required to provide that service. The RVUs attributed to procedures are constant across geographic areas 
and practitioners, although Medicare makes further adjustments based on geography and provider type to 
derive reimbursement rates (see MedPAC [2010a] or Clemens and Gottlieb [2012] for more details). We 
construct our measure of physician inputs by summing all RVUs associated with the patient in the 30 
days following his initial hospital admission. We multiply the RVUs by a national conversion factor to 
convert them to a dollar metric; the national conversion factor eliminates variation due to Medicare’s 
geographic price adjustments. 

Calculating outpatient contributions to the production function is significantly more complicated 
than calculating physician or inpatient contributions. While physician services and inpatient stays are each 
reimbursed using a single payment system that is designed to reflect resource utilization, different 
outpatient services are covered by different types of systems (MedPAC [2010b] provides more details). 
Some outpatient services are covered prospectively – although the payment groups are so fine that 
treatment decisions may be reimbursed at the margin. Providers are paid for other services according to a 
fee schedule that is geographically adjusted. Some services are reimbursed according to local prices. 

For the portion of outpatient services covered prospectively, there is a series of classification 
groups (Ambulatory Payment Classification groups or APCs) which function analogously to DRGs. Each 
APC is given a weight that is based on its expected resource costs; we translate these weights into a dollar 
basis using a national conversion factor that is an analogous to the procedure we use to convert DRG 
weights. For services that are reimbursed on a fee schedule, we mimic the method used for physician 
inputs by applying the fee schedule prior to geographic adjustments. 

These adjustments eliminate much of the variation in outpatient prices that is region- or provider-
specific. Still, some payments, like those for certain prescription drugs and new technologies, do not have 
an associated national fee schedule and are included unadjusted.  
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Alternative Spending Measure

Top row shows the component of our baseline input measure that is attributable to the patient’s "index event",
or initial hospitalization for the AMI. Bottom row shows the distribution of the baseline input measure and
compares it to an alternative measure that captures actual payments to hospitals. Specifically, Figure A1a
shows the component of the baseline measure due to the patient’s index event DRG weight. Figure A1b adds index
event outlier payments. Figure A1c, our baseline input measure, adds inputs (due to DRGs and outlier payments)
from subsequent hospital stays within 30 days of the index event. Figure A1d shows the Part A (hospital−based)
spending measure, an alternative input measure which incorporates the same hospital stays as the baseline
measure but adds in geographic and hospital−specific price adjustments to capture actual Medicare payments to
providers. See Appendix B for more details. All measures are in logarithms and are for the year 2000 only.

Histograms of Input Measures

Figure A1
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Rank Number DRG Namea Weight Share Cum. Share

1 121 Circulatory Disorders with AMI and Major Complications, 
Discharged Alive 1.63 41.2% 41.2%

2 122 Circulatory Disorders with AMI, without Major 
Complications, Discharged Alive 1.11 20.9% 62.1%

3 116 Other Permanent Cardiac Pacemaker Implant or PTCA with 
Coronary Artery Stent Implant 2.47 13.0% 75.1%

4 123 Circulatory Disorders with AMI, Expired 1.51 10.9% 86.0%
5 107 Coronary Bypass with Cardiac Catheterization 5.46 5.4% 91.4%
6 110 Major Cardiovascular Procedures with CC 4.16 2.0% 93.4%
7 112 Percutaneous Cardiovascular Procedures 1.92 1.6% 95.0%

8 115 Permanent Cardiac Pacemaker Implant with AMI, Heart 
Failure or Shock, or AICD Lead or Generator Procedure 3.47 1.0% 96.0%

9 104 Cardiac Valve and Other Major Cardiothoracic Procedure 
with Cardiac Catheterization 7.24 0.8% 96.8%

10 483 Tracheostomy except for Face, Mouth, and Neck Diagnoses 16.12 0.5% 97.3%
11 106 Coronary Bypass with PTCA 7.33 0.4% 97.7%
12 109 Coronary Bypass without PTCA or Cardiac Catheterization 4.04 0.4% 98.1%
13 144 Other Circulatory System Diagnoses with CC 1.15 0.3% 98.4%
14 478 Other Vascular Procedures with CC 2.35 0.3% 98.7%
15 468 Extensive OR Procedure Unrelated to Principal Diagnosis 3.64 0.3% 99.0%
16 120 Other Circulatory System OR Procedures 2.01 0.2% 99.2%
17 108 Other Cardiothoracic Procedures 5.77 0.2% 99.4%
18 111 Major Cardiovascular Procedures without CC 2.23 0.1% 99.5%

19 477 Non-Extensive OR Procedure Unrelated to Principal 
Diagnosis 1.77 0.1% 99.6%

20 145 Other Circulatory System Diagnoses without CC 0.65 0.1% 99.7%

Table A1 - List of Top DRGs for Index Events (Initial Hospital Stays for the AMI Episode) in 2000

Notes: "Rank" refers to the share of patients with the DRG; "Number" refers to CMS's assigned number for that 
DRG; "Weight" is a CMS-assigned value that is designed to be proportional to the average cost of treatment and 
is used to determine reimbursement - the weights are set by CMS so that the average Medicare patient across all 
conditions has a weight of 1.
aAbbreviations: CC - Complicating Conditions, OR - Operating Room, PTCA - Percutaneous Transluminal 
Coronary Angioplasty. 
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Rank Number DRG Namea Weight Share Cum. Share

1 121 Circulatory Disorders with AMI and Major Complications, 
Discharged Alive 1.63 15.1% 15.1%

2 127 Heart Failure and Shock 1.01 8.4% 23.5%

3 116 Other Permanent Cardiac Pacemaker Implant or PTCA with 
Coronary Artery Stent Implant 2.47 8.0% 31.5%

4 122 Circulatory Disorders with AMI, without Major 
Complications, Discharged Alive 1.11 7.3% 38.8%

5 123 Circulatory Disorders with AMI, Expired 1.51 3.8% 42.6%
6 132 Atherosclerosis with CC 0.67 2.8% 45.4%
7 107 Coronary Bypass with Cardiac Catheterization 5.46 2.7% 48.1%
8 462 Rehabilitation 1.36 2.7% 50.8%
9 89 Simple Pneumonia and Pleurisy, Age > 17, with CC 1.09 2.5% 53.3%
10 14 Specific Cerebrovascular Disorders Except TIA 1.19 1.9% 55.2%
11 88 Chronic Obstructive Pulmonary Disease 0.94 1.8% 57.0%
12 144 Other Circulatory System Diagnoses with CC 1.15 1.5% 58.5%
13 174 Gastrointestinal Hemorrhage with CC 1.00 1.2% 59.7%
14 112 Percutaneous Cardiovascular Procedures 1.92 1.2% 60.9%

15 124 Circulatory Disorders Except AMI, with Cardiac Cath and 
Complex Diagnosis 1.40 1.2% 62.1%

16 138 Cardiac Arrhythmia and Conduction Disorders with CC 0.82 1.2% 63.3%
17 143 Chest Pain 0.53 1.2% 64.5%

18 296 Nutritional and Miscelaneous Metabolic Disorders, Age > 
17, with CC 0.86 1.2% 65.7%

19 109 Coronary Bypass without PTCA or Cardiac Catheterization 4.04 1.1% 66.8%

20 182 Esophagitis, Gastroenteritis, and Miscelaneous Digestive 
Disorders, Age > 17, with CC 0.78 1.1% 67.9%

Table A2 - List of Top DRGs for All Claims

Notes: "Rank" refers to the share of patients with the DRG; "Number" refers to CMS's assigned number for that 
DRG; "Weight" is a CMS-assigned value that is designed to be proportional to the average cost of treatment and 
is used to determine reimbursement - the weights are set by CMS so that the average Medicare patient across all 
conditions has a weight of 1.
aAbbreviations: CC - Complicating Conditions, OR - Operating Room, PTCA - Percutaneous Transluminal 
Coronary Angioplasty, TIA - Transient Ischemic Attack. 
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Appendix C: Empirical Bayes Adjustment

Introduction

In this appendix we describe the empirical Bayes (EB) procedure we use to adjust our estimates
of hospital productivity for measurement error. This procedure is based on Morris (1983). For
another example see Jacob and Lefgren (2007).

The exponentiated productivity of hospital h at time t is A
ht

and its productivity is a
ht

= ln (A
ht

).
These objects are the “true” productivities and their distribution is the “underlying” distribution of
productivity. We denote by â

ht

the estimate of productivity;; it equals productivity plus an error
term ⌘

ht

:

â

ht

= a

ht

+ ⌘

ht

The goal of the EB procedure is to adjust the estimates of productivity so that the presence of the
error term does not introduce bias into our regressions, which use our estimate of productivity (â

ht

)
as a key right hand side variable. The procedure adjusts the estimates by shrinking them toward
the mean of the true, underlying productivity distribution.

True productivity is not observable, but we show in this appendix that its distribution is estimable.
We also show how this shrinkage estimator fixes the attenuation bias that measurement error would
otherwise introduce into our regressions.

Background on Empirical Bayes Procedure

Statistical Background

We start with an overview of the EB procedure assuming that all parameters of the distributions are
known, and refer to the EB-­adjusted estimated productivity as aEB

ht

. We then describe the feasible
EB-­adjusted estimate, which we denote aEB(f)

ht

.

Suppose that the estimated productivities are independently normally distributed around the true
productivities with known variance ⇡2

ht

:

â

ht

|a
ht

, ⇡

2
ht

⇠ N

�

a

ht

, ⇡

2
ht

�

independently

One can think of ⇡2
ht

as the variance of the measurement error of the estimate.

We also assume that the true productivities a
ht

are independently normal with underlying mean
x

ht

�

t

(a known, year-­specific linear function of the hospital-­year’s covariates) and underlying vari-­
ance �2

a,t

(known and common across hospitals within a year).

The prior distribution of the productivity a
ht

-­-­ the distribution before conditioning on the estimated
productivity -­-­ is therefore:

a

ht

|x
ht

, �

t

, �

2
a,t

⇠ N

�

x

ht

�

t

, �

2
a,t

�

independently
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Conditioning on the estimated productivity â
ht

produces the posterior distribution of a
ht

:

a

ht

|â
ht

, x

ht

, �

t

, �

2
a,t

, ⇡

2
ht

⇠ N

�

a

EB

ht

, ⇡

2
ht

(1� B

ht

)
�

(A1)

a

EB

ht

denotes the EB adjusted productivity. This object is the expected value of a
ht

conditional on
the estimated value â

ht

and the parameters �
t

, �

2
a,t

, and ⇡

2
ht

and is given by the formula:

a

EB

ht

= (1� B

ht

) â
ht

+ B

ht

x

ht

�

t

B

ht

= ⇡

2
ht

/
�

⇡

2
ht

+ �

2
a,t

�

The adjustment amounts to attenuating the estimate â
ht

toward the mean x
ht

�

t

. As the variance of
the measurement error ⇡2

ht

rises, the EB correction increasingly disregards the value of the estimate
and closes in on the mean.

Feasible Version of Procedure

This section describes how we implement the EB procedure when parameters must be estimated.

The productivity estimate â
ht

is the estimated coefficient on a hospital-­year fixed effect from equa-­
tion (5). The regression that produces the estimated coefficient also yields a standard error for it
-­-­ an estimate of the standard deviation of the asymptotic distribution of â

ht

. We estimate ⇡2
ht

by
squaring the standard error and call this value ⇡̂2

ht

.

We estimate �
t

and �

2
a,t

using a method outlined in Morris (1983, section 5) which we reproduce
here. Fix yearly estimates:

�̂

t

:= (X 0
t

W

t

X

t

)�1
X

0
t

W

t

A

t

�̂

2
a,t
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>
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P
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⇣

N

ht

N

ht

�N

x

⌘⇣
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�̂
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>

>

=

>

>

;

W

ht

:=
1

⇡̂

2
ht

+ �̂

2
a,t

X

t

is the stacked x
ht

for year t,W
t

is a diagonal matrix of theW
ht

for year t, and A
t

is the stacked
â

ht

for year t. N
ht

is the number of hospitals, or equivalently the number of â
ht

, in year t. N
x

is
the number of regressors, i.e. the dimensionality of x

ht

.

�̂

t

is a WLS regression of the â

ht

on x

ht

. �̂

2
a,t

is the weighted average of the squared deviations
of â

ht

from x

ht

�̂

t

less the weighted average of ⇡̂2
ht

. The weights are W
ht

, giving more weight to
observations with less measurement error. Themax operator ensures that �̂2

a,t

is always nonnegative
in finite samples.

�̂

t

and �̂

2
a,t

are simultaneously determined in these equations, so for each year they are estimated
by the following iterative procedure. We by fixing W

ht

= 1 8h, then iterate the following to
convergence:
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1. Compute �̂
t

and then a new estimate �̂2
a,t

2. If �̂2
a,t

has converged, exit. Otherwise, fix new weightsW
ht

and return to step 1

With a degrees of freedom correction, the (feasible) best estimate of the posterior mean aEB(f)
ht

is:

a

EB(f)
ht

=
⇣

1� B̂

ht

⌘
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�̂

t

B̂

ht

=

✓

N

ht

�N

x

� 2

N

ht
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◆✓
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2
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2
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2
a,t

◆

The variance of productivity unconditional on covariates, called &̂

2
a,t

, is given by the following
formula:
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2
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=
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=

P

h
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â
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P

h

W
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Where Ā
t

is the weighted mean productivity.

Implementation of Empirical Bayes Adjustment

We assume that the underlying mean of productivity is equal to a market-­year fixed effect, i.e.
x

ht

�

t

= ⌧

M,t

, whereM indexes markets. Thus x
ht

becomes a vector of 304 indicators for whether
hospital h was in each of the 304 markets and �

t

is a vector of the 304 market fixed effects for year
t.
We perform the EB procedure separately year-­by-­year, producing estimates of the underlyingmarket-­
year means �̂

t

and year-­specific conditional -­-­ i.e. within-­market -­-­ variance �̂

2
a,t

. Running the
procedure also yields EB-­adjusted estimated productivities aEB(f)

ht

and also can be used to produce
the unconditional -­-­ i.e. national -­-­ estimated variance &̂2

a,t

, as described below.
Our procedure ensures that when the EB-­adjusted productivities are used in our main regressions
(equations (1) through (3) in the main text) which have market-­year fixed effects, all regressors are
orthogonal to the measurement error term.

Reported productivity metrics

Standard Deviation

To estimate the standard deviation of productivity using the EB adjusted values, we rely on the es-­
timates of the yearly underlying national variance of productivity &̂2

a,t

that the procedure computes.1

1While it might seem natural to instead estimate the standard deviation of the EB-­adjusted values, this would cause
us to erroneously under-­estimate dispersion. Underlying productivity is composed of a best prediction (the EB-­adjusted
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The root of these estimates is taken, forming &̂
a,t

. The yearly values are then averaged together.

The EB adjustment produces &̂2
a,t

by taking the weighted empirical variance of the â
ht

and subtract-­
ing the weighted average squared standard error ⇡̂2

ht

. Hospital-­years with larger standard errors
receive lower weights. In effect, this process takes the variance of the noisy productivity estimates
and subtracts off the variance due to measurement error.

90:10 and 75:25

Wedefine the 90:10 ratio of productivity asF�1 (0.9)�F

�1 (0.1) and the 75:25 ratio asF�1 (.75)�
F

�1 (.25)where F�1 is the inverse CDF of the productivity distribution. The 90:10 is the 90th per-­
centile value of the distribution minus the 10th percentile value, and likewise for the 75:25. Expo-­
nentiating these ratios would produce the 90:10 ratio of the exponentiated productivity distribution
(that is, an actual ratio: p90 / p10).

As with the standard deviation, it is not possible to estimate these ratios using the distribution of
the aEB(f)

ht

. The EB correction does not produce a variable with the same asymptotic distribution as
the underlying process. The procedure is only intended to estimate the parameters of an underlying
normal distribution and correct for measurement error in regressions.

To estimate these ratios we use the inverse CDF of the underlying normal distribution that the EB
procedure uncovers, so the yearly 90:10 and 75:25 are:

F

�1 (0.9)� F

�1 (0.1) = &̂

a,t

⇥

��1 (0.9)� ��1 (0.1)
⇤

F

�1 (0.75)� F

�1 (0.25) = &̂

a,t

⇥

��1 (0.75)� ��1 (0.25)
⇤

Where � (·) is the standard normal CDF.

Allocation Metrics (Patient, Growth, and Exit Regressions)

The allocation metrics use noisy estimates of productivity on the right-­hand side of regressions,
and rely on EB adjustment to correct for measurement error. Jacob and Lefgren (2007) show that
with the adjustment, these regressions are estimated consistently.

Suppose that there is a relationship between growth g

ht

, market-­year fixed effects �
M,t

, and pro-­
ductivity a

ht

:
g

ht

= �

M,t

+ �a

ht

+ ✏

ht

where E [✏
ht

|x
ht

, a

ht

] = 0 (x
ht

is a vector of indicators for the market-­years -­-­ the design matrix
for the market-­year fixed effects.) The left-­hand side variable could alternatively be the number of
patients or an indicator for hospital exit.

productivity) and the prediction error. These two components are orthogonal. The variance of true productivity is thus
strictly greater than the variance of EB-­adjusted productivity (see Jacob and Lefgren 2007).
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Since we do not observe true productivity a

ht

, we use the estimate â
ht

= a

ht

+ ⌘

ht

, where ⌘
ht

is
measurement error. Then substituting into the equation:

g

ht

= �

M,t

+ �â

ht

+ (✏
ht

� �⌘

ht

)

This regression produces a biased and inconsistent estimate of � due to the correlation between â
ht

and ⌘

ht

in the error term. We use the EB-­adjusted productivity a

EB

ht

to eliminate this correlation.
Equation A1 implies:

E
⇥

a

ht

|â
ht

, x

ht

, �

t

, �

2
a,t

, ⇡

2
ht

⇤

= a

EB

ht

We represent the prediction error of the EB procedure as v
ht

:

a

ht

= a

EB

ht

+ v

ht

By construction the prediction error is orthogonal to a

EB

ht

and any regressor included in x

ht

-­-­ i.e.
the market-­year fixed effects:

E
⇥

v

ht

|aEB

ht

, x

ht

, �

t

, �

2
a,t

, ⇡

2
ht

⇤

= 0

(â
ht

is replaced by aEB

ht

because given the parameters, knowing one determines the other)

The regression of g
ht

on market-­year effects and aEB

ht

adds only v

ht

to the original error term ✏

ht

:

g

ht

= �

M,t

+ �a

EB

ht

+ (✏
ht

� �v

ht

)

Therefore there is no correlation between any of the regressors and the new error term. The con-­
sistency of � follows.

Comparison of estimates

We run all of our regression analyses with the EB-­adjusted productivities a

EB(f)
h,t

and calculate
our dispersion metrics using the EB-­adjusted dispersion estimates as described above. Table A3
explores the impact of the EB correction on our main results. The first column reproduces the
EB-­adjusted main results from Tables 2, 4, and A6. The second column shows the results without
the EB correction.

To produce the uncorrected allocation metrics, we use the estimates â
ht

rather than a

EB(f)
h,t

in our
regressions. Due to measurement error in the estimates, the allocation metrics computed without
the EB correction will be attenuated. We calculate the uncorrected dispersion metrics in the same
manner as the corrected versions, but using uncorrected estimates of productivity. For example, to
calculate the standard deviation, the empirical weighted standard deviation of the estimated pro-­
ductivities -­-­ SD (â

ht

) -­-­ is taken year-­by-­year, then averaged (we use the same weights that were
used to calculate &̂2

h,t

so that the statistics are comparable.) Likewise, the 90:10 and 75:25 ratios are
calculated by fitting a normal distribution to the estimated, uncorrected productivities and reporting
the ratios implied by it (the ratios are calculated year-­by-­year, then averaged). Due to measurement
error, the dispersion metrics computed without the EB correction will overstate the true dispersion.
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The results show that the EB correction has a substantial effect on our baseline estimates, and
moves them in the expected direction. Comparing our baseline (EB-­adjusted) estimates in column
1 with the un-­adjusted version in column 2, we see that the allocation results are substantially
larger and the dispersion estimates are substantially lower with the correction. For example, we
find that measurement error explains nearly half of the dispersion of the productivity estimates;;
without correcting formeasurement error, these estimates have an average yearly standard deviation
SD (â

ht

) of 0.293, while the EB procedure estimates that the underlying productivity process has
an average yearly standard deviation &̂

a,t

of 0.173.

A quantiatively large impact of the EB correction (i.e. a large amount of measurement error) is not
surprising in light of results from other applications. For example, looking at estimates of teacher
fixed effects in value added regressions, Jacob and Lefgren (2007) estimate a ratio of the unadjusted
standard deviation to the EB-­adjusted estimate of the standard deviation of about 1.3 to 1.6. We
find ratios of about 1.7.
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(1) (2)
EB Adjustment: Yes No
Parameter
   μ 0.446 0.446

(0.00511) (0.00511)

Static Allocation 2.418 0.440
(0.0889) (0.0182)

Dynamic Allocation
   Exit Regression -0.0329 -0.0138

(0.00935) (0.00347)
   Growth Regression 0.133 0.0373

(0.0225) (0.00759)
Dispersion
   90:10 0.442 0.751

(0.0112) (0.0136)
   75:25 0.233 0.395

(0.00590) (0.00714)
   Standard Deviation 0.173 0.293

(0.00438) (0.00530)

 

Table A3 - Sensitivity of Results to EB Adjustment

Notes: Column (1) is baseline specification. Column 
(2) shows results without the empirical Bayes 
adjustment. Standard errors are bootstrapped with 
300 replications and are clustered at the market level. 
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Appendix D: Additional Results 

 
Counterfactual allocation rule 

 An alternative explanation for our findings is that patients go the nearest hospital to treat their 
AMI, and it happens that areas with higher productivity hospitals are both higher in population density 
and higher in population growth. If this story held, a mechanical allocation rule that assigned patients to 
their nearest hospital would spuriously produce our static and dynamic allocation results. In practice, 
based on geocoding hospital addresses and patient zip codes to latitudes and longitudes, we estimate that 
less than half of our AMI patients go to the nearest hospital in their market. Moreover, we examined what 
the static and dynamic allocation results would look like if (counter-factually) each AMI patient did go to 
the nearest hospital within his market. We would be concerned if this mechanical rule produced similar 
static and dynamic allocation results, as that would suggest the result could be generated without any role 
for patient demand. In fact, as shown in Table A4 (column 3 vs. column 1), with this assignment rule the 
dynamic allocation results are either the wrong sign or an order of magnitude smaller (and not statistically 
significant) and the static allocation result declines to 20 percent of the baseline estimate. 

Static and Dynamic Allocation For Different Hospitals and Markets 
 
Appendix Table A5 looks at how the static and dynamic allocation results vary across different types of 
hospitals within a market, and how they vary across different markets. The results are mixed. Within a 
market, the allocation results are stronger for hospitals facing more competition for their patients (using 
distance to the nearest hospital as a proxy for competition as in Gaynor and Vogt, (2003)); the allocation 
relationships are also weaker for public (compared to private) hospitals. However, at the market level, 
there is no evidence that the allocation results are stronger in more competitive markets (using population 
density as a proxy for competition for a spatially differentiated product as in Syverson (2004b)); there is 
also no evidence that the allocation result is stronger in markets with more educated consumers. 
 
Productivity Dispersion Across Hospitals 
 
Appendix Table A6 shows our estimates of productivity dispersion across hospitals. The calculation of 
the metrics was described in Appendix C. 
 
Static and Dynamic Allocation in Concrete and Health Care 
 

We use data on ready-mixed concrete from the Census of Manufactures, which we have for every 
five years from 1972 – 1997. We observe approximately 2,500 ready-mixed concrete plants per data year; 
by way of comparison, we have approximately 3,700 hospitals per year. We use these data to estimate 
plants’ physical total factor productivity levels.  A plant’s physical total factor productivity is the number 
of cubic yards of concrete it produces per unit input, where inputs are a weighted composite of labor, 
capital, and intermediates. The weights are the inputs’ cost shares. These weights are theoretically correct, 
equaling the elasticities of output with respect to each input assuming cost minimization and no 
adjustment costs in inputs. Our market definition is the Bureau of Economic Analysis’ Component 
Economic Areas, which are approximately 350 mutually exclusive and exhaustive groupings of 
economically interrelated U.S. counties. (See, e.g., Syverson 2004b for more details on productivity and 
market measurement in ready-mixed concrete.) To reduce the influence of outliers, we trim the top and 
bottom 1% of the industry’s productivity distribution in each Census of Manufactures.  
 Table A7 reports the results. Across all of our static and dynamic allocation measures, the results 
indicate a stronger relationship between market allocation and producer productivity for hospitals than for 
concrete plants. The first row reports the results for static allocation. We estimate a slight variant of 
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equation (1); as before, the specification regresses output on productivity (both measures are in 
logarithms) and market-year fixed effects. However, we now use lagged productivity on the right-hand 
side to facilitate comparisons between hospitals and concrete plants.34 Strikingly, the correlation between 
output and lagged productivity is an order of magnitude larger in healthcare than in concrete.  

The second row reports our exit analysis, based on equation (4) but modified to account for the 
fact that in concrete we only have data every five years; therefore, for purposes of comparability, we look 
at exit five years later for both hospitals and for concrete. However, comparability is limited by the fact 
that “exit” is defined quite differently in the two data sets.35   

The final row reports our growth analysis. To make the analysis comparable across the two 
industries, for both we run the following regression: 

!!,!!!"!!!,!!!
!
! !!,!!!"!!!,!!!

= !! + !!!!,! + !!" + !!!       (A2) 

Here, “size” (N) is defined as the number of patients in hospitals or the amount of physical output for 
concrete plants.36  
  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
34!Due to how productivity is measured for concrete plants, regressing output on contemporaneous productivity 
would yield spuriously expanded coefficients: for concrete, output is effectively the numerator of the productivity 
measure. To fix the bias, we use the productivity measure from 5 years earlier on the right-hand side, rather than 
contemporaneous productivity. The lag is 5 years for both sectors because data for concrete plants is only available 
at that frequency. 
35 In the concrete data, exit is directly observed; in the hospital data we infer “exit” based on the hospital having less 
than 5 patients for five consecutive years. Therefore, for concrete we regress an indicator for whether the firm has 
exited at year t+5 on productivity in year t (and market-year fixed effects). For hospitals, we regress an indicator for 
whether the hospital has less than five patients in every year from year t+5 to year t+9 on productivity in year t (and 
market-year fixed effects). 
36 In order to make the growth analysis comparable for hospitals and for concrete, this regression differs from our 
baseline growth regression (equation 3) in two ways. First, because the concrete data is only available every five 
years, it looks at growth between 5 year periods rather than 1 year periods. Second, it lags the productivity estimate 
on the right hand side back another time period. As in the static allocation metric, we do this because in 
manufacturing, our measure of size is output, which also enters the numerator of the productivity estimate; if there is 
mean reversion in output and we had ah,t+5  on the right hand side instead, this would create a negative bias on the β1 
coefficient. 
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(1) (2) (3)

Risk Adjustment: Baseline Smaller 
Market

Nearest 
Hospital

Static Allocation 2.418 2.816 0.449
 (0.0889) (0.152) (0.0685)
Dynamic Allocation
   Exit Regression -0.0329 -0.0675 0.00407

(0.00935) (0.0189) (0.00889)
   Growth Regression 0.133 0.161 0.0219

(0.0225) (0.0446) (0.0220)

Table A4 - Tests of Robustness of Allocation Results

Notes: The allocation results are produced by estimating the 
specifications given in the notes to Table 4. Column (1) repeats 
the baseline full risk adjustment results. Column (2) reports the 
results from running the same specification with the market 
defined as an HSA (Hospital Service Area; HSAs partition the 
baseline set of markets into approximately 10 times as many 
markets). Since the coefficients are identified by market-years with 
multiple hospitals, this reduces the effective number of 
observations by about half. Column (3) reports the baseline results 
but counterfactually calculates hospital size, growth, and exit by 
assigning all patients to the nearest hospital in their market, rather 
than the hospital at which they were actually treated. Standard 
errors are bootstrapped with 300 replications and are clustered at 
the market level.

63



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
ln(Pats) Growth ln(Pats) Growth ln(Pats) Growth ln(Pats) Growth ln(Pats) Growth

ln(Productivity) 2.418 0.133 2.371 0.143 2.280 0.174 3.644 0.171 3.104 0.202
(0.0889) (0.0225) (0.0931) (0.0236) (0.119) (0.0286) (0.363) (0.0883) (0.357) (0.0627)

   ✕ Government-Run Hospital -0.341 -0.0802
(0.143) (0.0369)

   ✕ ln(Min Distance to Nearest Hospital) -0.150 -0.0392
(0.0537) (0.0118)

   ✕ Share College+ in Market -5.372 -0.166
(1.467) (0.357)

   ✕ ln(Pop/KM2) in Market -0.157 -0.0159
(0.0763) (0.0127)

Government-Run Hospital -0.511 -0.0358
(0.0398) (0.00816)

ln(Min Distance to Nearest Hospital) -0.273 -0.0186
(0.0155) (0.00258)

Observations 55,540 52,777 55,540 52,777 55,540 52,777 55,540 52,777 55,540 52,777

Table A5 - Allocation Metrics By  Hospital- and Market-Level Characteristics

Notes: Columns (1) and (2) replicate our baseline static and dynamic allocation results from Table 4, column 1. Column (1) shows the static allocation relationship between a hosital-year's 
log(patients) and productivity within a market-year (see equation 1). Column (2) shows the dynamic allocation relationship (within a market-year) between a hospital's one year percent 
growth and its base year productivity (see equation 3). In the remaining columns these analyses are augmented to include the specified interactions with market- and hospital-level variables 
(as well as the main effect of these variables as indicated). Standard errors are bootstrapped with 300 replications and are clustered at the market level.
Government-Run is defined using the hospital control field in the CMS Provider of Services file. Min Distance is the distance between the hospital and the nearest hospital to it that 
treated an AMI patient in that year. Share College+ is defined as the share of the population in the hospital's market that had at least a bachelor's degree in the 2000 Census. Pop/KM2 is 
the population density in the hospital's market according to the 2000 Census.
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(1) (2) (3)
Risk Adjustment: All Age/Race/Sex None
90-10 0.442 0.469 0.521

(0.0112) (0.0117) (0.0126)
75-25 0.233 0.247 0.274

(0.00590) (0.00614) (0.00666)
Standard Deviation 0.173 0.183 0.203

(0.00438) (0.00455) (0.00493)

Table A6 - Productivity Dispersion across hospitals. 

Notes: Productivity is estimated based on the corresponding 
specification in Table 2. Dispersion measures in productivity are 
constructed nationally each year, and then averaged across 
years. The top row reports difference in productivity between 
the 90th percentile hospital and the 10th percentile hospital; 
the next row reports the difference in productivity between the 
75th percentile and the 25th percentile hospital; the bottom 
row reports the estimated standard deviation of the productivity 
distribution. Standard errors are bootstrapped with 300 
replications and are clustered at the market level.
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Risk Adjustment: Estimate DV Mean Sample (Approx) Estimate DV Mean Sample
Static Allocation 0.299 5,500 plant-years 2.166 3.585 33,155 hospital-years
 (0.076) (0.094)
Dynamic Allocation
   Exit Regression -0.066 0.20 12,400 plant-years -0.147 0.17 25,359 hospital-years

(0.018) (0.028)
   Growth Regression 0.080 -0.075 2,600 plant-years 0.480 -0.62 18,569 hospital-years

(0.069) (0.069)

Table A7 - Allocation Metrics: Concrete vs Hospitals
Concrete Hospitals

Notes: Estimates for concrete are based on data from the quinquennial Census of Manufactures from 1972-
1992. Estimates for hospitals are based on Medicare AMI patients from 1993-2007 and use our baseline 
specification (see Table 2, column 1). Standard errors are robust analytic (Concrete) or bootstrapped with 300 
replications and clustered at the market level (Hospitals). See text for further details on metrics and data 
(described in more detail in Appendix D).
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Appendix E: Robustness Analysis  

Additional risk adjusters 
 

For approximately one year of patients, we have access to even more detailed information on 
health than in the Medicare claims data. These data comes from the Cooperative Cardiovascular Project 
(CCP), which abstracted information from patient charts to create an extremely detailed dataset of 
clinically relevant characteristics, like test results and medical histories, for a nationally representative 
sample of Medicare AMI patients in 1994 and 1995. These data, which are described in more detail in 
Chandra and Staiger (2007), are considered superior to administrative data because of the much more 
specific and reliable information available on patient charts than in claims data.  In Table A8 we re-run 
our analyses on this subset of the data and show that the results are not sensitive to adding this additional, 
more extensive, set of controls.  

Column (7) shows the results for the CCP sample with the all the information abstracted from the 
patient chart. These results are very similar to results from the CCP data that use fewer risk adjustors 
(columns 8 and 9). Results with fewer risk adjustors in the CCP data (columns 8 and 9) look roughly 
similar to results in one year (1994) of Medicare claims data with the same risk adjustors (column 5 and 
6), which are also roughly similar to the results on our full set of Medicare claims data (columns 1-3). 
 
Alternative Input Measures 
 
 Appendix Table A9 explores the robustness of our results to alternative input measures; more 
detail on their construction is provided in Appendix B. Column 1 replicates our baseline results. As noted 
in Section 6, there is a tradeoff between our relatively coarse baseline measure of inputs (with its 
associated measurement error) and more granular measures which suffer from potential survivorship bias 
(a patient cannot have a lot of procedures done if he does not survive very long). Columns 2 and 3 explore 
the sensitivity of our estimates to more granular measures which use as inputs a series of approximately 
60 indicators for whether various procedures were performed as well as a continuous variable measuring 
the log of the number of days in the hospital during our 30 day window. 
 We incorporate this more granular input measure in two different ways. In column 2 we explore a 
multi-input production function; specifically, we replace our single index measure with all of the 
procedure indicators as well as the log hospital days variable. In column 3 we return to a single-input 
production function but one that is based on this more granular input measure; we create the single input 
by regressing log hospital charges on these same procedure indicators and the log hospital days variable, 
as well as hospital-year fixed effects.37 We use the coefficients from this regression – ignoring the 
hospital-year effects – to produce an estimate of predicted charges for each patient in our data. The 
correlation between this predicted log charges measure and our baseline log input measure is 0.77 (with 
actual log charges it would be 0.75). As would be expected from survivorship bias, the returns to scale 
coefficient�in column 3 is substantially higher than that in our baseline column 1.   

Yet another alternative approach to inputs is to measure Medicare reimbursement to the hospital 
for a patient, rather than the hospital’s use of inputs per se. Like our baseline approach, this approach is 
also often used in the literature (e.g. Cutler et al., 1998, Skinner and Staiger 2009). Medicare 
reimbursement depends not just on the patient’s DRGs (our baseline resource measure) but also 
characteristics of the hospital (such as whether it is a teaching hospital or whether it treats a 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
37 Hospital “charges” are accounting charges for rooms and procedures and do not reflect transacted prices. They 
have been used in the literature as a convenient, price-weighted summary of treatment, albeit at somewhat artificial 
prices (Card et al., 2009, Finkelstein et al., 2012). The hospital-year fixed effects in the log charges regression 
eliminate variation across hospital-years in the charge-to-cost ratio (i.e. differential hospital markups of list prices 
above costs). 
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disproportionate share of low income patients) and its location (MedPAC 2011a). Part A Medicare 
spending per AMI patient is the standard measure used in the economics literature in studying the 
relationship between heart attack treatment and outcomes (e.g. Cutler et al. 1998, Skinner and Staiger 
2009). The results in column 4 use this Medicare reimbursement measure; the returns to scale parameter 
� is therefore interpreted here as the return to federal expenditures (in the form of post-AMI survival) 
rather than real inputs. The correlation between our baseline resources measure and the reimbursement 
measure is 0.90. The main results are all quite robust to this alternative measure. 

A final input measure incorporates physician and outpatient inputs for the subsample of hospital 
years beginning in 2001 (see Appendix B for more details; our sample starts in 2001 because it is the first 
full year with data). Column 5 shows our baseline results limited to the sample where we can observe 
these other input measures; this cuts our sample of hospital-years substantially, by about 70 percent. 
Column 6 shows the results for this same “overlap” sample with our expanded input measure. For the 
overlap sample, the correlation between our baseline input measure and the expanded measure is 0.98.38 

Looking across the columns, the basic qualitative findings concerning the role for competition in 
allocating more market demand to more productive firms both at a point in time and over time are quite 
robust to alternative input measures. In particular, the static allocation analysis and the growth analysis 
remain statistically significant in virtually all alternative specifications. The statistical significance of the 
exit-based regression results is more sensitive to the choice of input measure. Perhaps not surprisingly, 
the magnitudes of the static and dynamic allocation analyses vary somewhat across the specifications. 
The dispersion estimates are remarkably robust to alternative input measures. 
 
Alternative Time Frames for Measuring Inputs and Outputs 
 
 Appendix Table A10 considers how our metrics are affected by alternative time windows for 
measuring survival and inputs. Our baseline specification looks at survival over 1 year and at inputs over 
30 days. A shorter time horizon for inputs will miss some of the resources provided to the patient. There 
is also a practical limitation to very short horizons; we observe resources at the level of a hospital stay, 
not a hospital day or hour; 96% of hospital stays are at most 30 days long, but a measure like 7 day 
utilization would require arbitrary spreading of resources across the 7 days for the 33% of patients who 
spend more than 7 days in the hospital. Longer time horizons have their own limitations: issues of 
survival bias (the longer the patient lives, the more that can be done) and the fact that as time passes since 
the first incident, the treatments that are undertaken are increasingly linked to providers outside the 
original hospital. Columns 2 and 3 show, respectively, that the results are robust to a longer (one year) 
survival horizon and a shorter (7 day) survival horizon, rather than our baseline 30 day time frame. 
 In terms of the time horizon for outcomes, we choose a 1-year survival window because it is of 
more interest than short-term survival, which may reflect only a few days postponement of mortality. As a 
practical matter, censoring is also less prevalent at 1 year than at shorter horizons. Finally, another 
advantage of our 1-year window is that it will pick up aspects of hospital productivity that affect 
outcomes through longer-term mechanisms such as the management of complications due to co-
morbidities like congestive heart failure or diabetes. Longer time windows will also better capture the 
quality of continuing care like the prescribing of statins and the follow up to make sure the patient is 
taking these medications. Such inputs are less likely to affect survival at much shorter horizons but can be 
quite important over longer intervals. On the other hand, the longer measurement horizon introduces 
greater scope for patient autonomy (e.g. in terms of changes in behavior such as diet and smoking, 
compliance with recommended medications, follow-up visits, etc.) and for the impact of doctors 
(regardless of which hospital the patient went to) or admissions to other hospitals to affect survival. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
38 This high correlation reflects the fact that outpatient resources are, on average, about one-fifth the size of the 
inpatient resources devoted to one of our patients; in addition there is a high (about two-thirds) correlation between 
outpatient and inpatient resources devoted to a patient. 
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Longer horizons may therefore attenuate differences across hospitals in measured productivity. Our 
results are robust to moving away from our baseline 1 year survival to 30 day survival (column 4) or to 5 
year survival (column 6); the 5 year horizon requires that we limit the sample to heart attacks through 
2003 so that we observe the patient for 5 subsequent years; column 5 shows our baseline 1 year survival 
measure on this sample.  
 
Alternative Market Definition 
 
 Our analysis looks at within-market static allocation and dynamic re-allocation. The baseline 
results use a Hospital Referral Region (HRR) as the market definition. An alternative definition of the 
hospital market which is sometimes used is a Hospital Service Area (HSA). HSAs are partitions of HRRs; 
there are about 10 times as many HSAs as HRRs.39 Table A4 shows that our core static and dynamic 
allocation results are robust – indeed, they become slightly larger in magnitude – when using this 
alternative market definition. 
 
Imposing scale parameter µ  
 

We evaluated the robustness of our main results to imposing, rather than estimating, various 
values for the scale parameter µ. This method amounts to following the index number, or Solow residual, 
approach to measuring productivity in which factor elasticities are taken from auxiliary data such as 
factor cost shares. We impose a µ of 0.1, 0.3, and 0.9. These results are shown in Table A11.  
  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
39 For more information see http://www.dartmouthatlas.org 
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(1) (2) (3) (4) (5) (6) (7) (8) (9)
Dataset
Risk Adjustment Baseline Age/Race/Sex None Baseline Age/Race/Sex None Entire Chart Age/Race/Sex None
Parameter
   μ 0.446 0.481 0.589 0.456 0.482 0.600 0.282 0.412 0.530

(0.00511) (0.00523) (0.00552) (0.00857) (0.00869) (0.00875) (0.0074) (0.0087) (0.0091)
Static Allocation 2.418 2.496 2.618 2.560 2.540 2.332 1.942 2.104 2.118

(0.0889) (0.0851) (0.0779) (0.268) (0.249) (0.181) (0.3362) (0.3284) (0.2910)

Dispersion
   90:10 0.442 0.469 0.521 0.447 0.465 0.523 0.366 0.401 0.424

(0.0112) (0.0117) (0.0126) (0.0221) (0.0219) (0.0221) (0.0247) (0.0267) (0.0266)
   75:25 0.233 0.247 0.274 0.235 0.245 0.275 0.193 0.211 0.223

(0.00590) (0.00614) (0.00666) (0.0116) (0.0115) (0.0116) (0.0130) (0.0141) (0.0140)
   Standard Deviation 0.173 0.183 0.203 0.174 0.181 0.204 0.143 0.156 0.166

(0.00438) (0.00455) (0.00493) (0.00861) (0.00853) (0.00861) (0.0096) (0.0104) (0.0104)

Patients
Hospitals
Hospital-Years

 

Table A8 - CCP

CCP 1994-1995

Notes: Columns 1-3 reproduce our main results from Tables 2, 4 and 6. Columns 4-6 perform the same analysis on a single year of our data (1994), and 
columns 7-9 show the analysis on the 1994-1995 CCP sample. The CCP sample is smaller than the year of Medicare claims because it only collected data for 
each region of the country for 8 months and because it excluded patients whose charts had been incorrectly coded as showing evidence of AMI. The CCP 
results using age/race/sex adjustment (column 8) look similar to our results for one year of data using age/race/sex adjustment (column 5). (We are unable 
to replicate our baseline set of covariates in the CCP data due to some differences in variable availability). In the CCP, we find that relative to age, race, and 
sex risk adjustment (column 8), using all information that was abstracted from the patient chart (column 7) slightly weakens the static allocation 
relationship and slightly reduces dispersion. Standard errors are bootstrapped with 300 replications and are clustered at the market level

Medicare Claims 1993-2007 Medicare Claims 1994

3,530,401
5,346
55,540

244,070
4,349
4,349

136,434
3,829
3,829
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(1) (2) (3) (4) (5) (6)
Input Measure: Baseline Procedures Fitted Chg Spending Baseline Base+Part B
Sample: Full Full Full Full
Parameter
   μ 0.446 0.714 0.395 0.369 0.399

(0.00511) (0.00652) (0.00508) (0.00699) (0.00715)
Static Allocation 2.418 1.497 0.972 1.749 2.326 2.232

(0.0889) (0.0879) (0.0996) (0.0834) (0.233) (0.232)

Dynamic Allocation
   Exit Regression -0.0329 -0.0199 -0.00661 -0.0245 -0.0330 -0.0347

(0.00935) (0.0106) (0.0106) (0.00943) (0.0450) (0.0476)
   Growth Regression 0.133 0.0611 -0.00515 0.0762 0.220 0.211

(0.0225) (0.0258) (0.0263) (0.0230) (0.0762) (0.0798)
Dispersion
   90:10 0.442 0.431 0.428 0.453 0.353 0.343

(0.0112) (0.00891) (0.00908) (0.0104) (0.0229) (0.0227)
   75:25 0.233 0.227 0.225 0.239 0.186 0.180

(0.00590) (0.00469) (0.00478) (0.00545) (0.0121) (0.0120)
   Standard Deviation 0.173 0.168 0.167 0.177 0.138 0.134

(0.00438) (0.00348) (0.00354) (0.00404) (0.00895) (0.00887)
Patients / 1000 3,530 3,530 3,530 3,525 271.3 271.3
Hospital-Years 55,540 55,540 55,540 55,529 15,039 15,039
Hospitals 5,346 5,346 5,346 5,346 3,092 3,092

 

Table A9 - Comparison of Input Measures

With Part B Data

Notes: Column (1) is baseline specification. All other columns use alternative input measures (described 
in more detail in Appendices B and E). Column 5 and 6 are limited to the sub-sample of approximately 
30 percent of hospital-years for which we observe Part B physician and outpatient data for at least five 
AMI patients in that hospital-year; in column 6 our baseline input measure (which uses only Part A 
inputs) is expanded to include Part B inputs; see text for more details. Standard errors are bootstrapped 
with 300 replications and are clustered at the market level.
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(1) (2) (3) (4) (5) (6)
Survival Horizon: 1 Year 1 Year 1 Year 30 Days 1 Year 5 Years
Input Window: 30 Days 1 Year 7 Days 30 Days 30 Days 30 Days
Sample Thru: 2007 2007 2007 2007 2003 2003
Parameter
   μ 0.446 0.790 0.172 0.292 0.451 0.585

(0.00511) (0.00504) (0.00959) (0.00243) (0.00544) (0.00791)

Static Allocation 2.418 2.694 2.421 3.992 2.347 2.047
(0.0889) (0.0955) (0.0906) (0.146) (0.0938) (0.0811)

Dynamic Allocation
   Exit Regression -0.0329 -0.0317 -0.0372 -0.0660 -0.0221 -0.0201

(0.00935) (0.00969) (0.00918) (0.0173) (0.0105) (0.00815)
   Growth Regression 0.133 0.138 0.147 0.213 0.101 0.101

(0.0225) (0.0230) (0.0220) (0.0409) (0.0251) (0.0189)
Dispersion
   90:10 0.442 0.422 0.450 0.224 0.446 0.583

(0.0112) (0.00981) (0.0117) (0.00626) (0.0119) (0.0146)
   75:25 0.233 0.222 0.237 0.118 0.235 0.307

(0.00590) (0.00516) (0.00617) (0.00330) (0.00628) (0.00770)
   Standard Deviation 0.173 0.164 0.175 0.0874 0.174 0.227

(0.00438) (0.00383) (0.00457) (0.00244) (0.00465) (0.00571)
Patients / 1000 3,530 3,530 3,530 3,530 2,702 2,702
Hospitals 5,346 5,346 5,346 5,346 5,180 5,180

 

Table A10 - Comparison of Results with Varying Survival and Input Horizons

Notes: Column (1) is baseline specification. In other columns the time horizon in which we measure 
survival and/or inputs is modified as indicated in the column headings. Standard errors are bootstrapped 
with 300 replications and are clustered at the market level.
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(1) (2) (3) (4)
Source of μ: Estimated
Value of μ: 0.446 0.1 0.3 0.9
Static Allocation 2.418 2.358 2.399 2.278

(0.0889) (0.0883) (0.0884) (0.0835)

Dynamic Allocation
   Exit Regression -0.0329 -0.0361 -0.0343 -0.0263

(0.00935) (0.00923) (0.00930) (0.00891)
   Growth Regression 0.133 0.144 0.138 0.107

(0.0225) (0.0220) (0.0223) (0.0215)

Dispersion
   90:10 0.442 0.449 0.445 0.457

(0.0112) (0.0116) (0.0114) (0.0104)
   75:25 0.233 0.237 0.234 0.241

(0.00590) (0.00611) (0.00599) (0.00549)
   Standard Deviation 0.173 0.175 0.173 0.178

(0.00438) (0.00453) (0.00444) (0.00407)

 

Table A11 - Sensitivity of Results to μ

Imposed

Notes: Column (1) shows results based on estimation of our baseline 
specification (Table 2, column 1). In the other columns μ is imposed rather 
than estimated. Standard errors are bootstrapped with 300 replications and 
are clustered at the market level.
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