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I. Introduction

Dynamics in the labor market are an integral component of business cycles. More than 10

percent of U.S. workers separate from their employers each quarter. Some move directly to a

new job with a different employer, some become unemployed and some exit the labor force.

These large flows are costly for firms because they need to spend resources to search for and

train new employees.1

Building on the seminal contributions of Diamond (1982), Mortensen (1982), and Pis-

sarides (1985), we show that labor search frictions are an important determinant of the cross-

section of equity returns.2 In search models, firms post vacancies to attract workers, and

unemployed workers look for jobs. The likelihood of matching a worker with a vacant job is

determined endogenously and depends on the congestion of the labor market which is mea-

sured as the ratio of vacant positions to unemployed workers. This ratio, termed labor market

tightness, is the key variable of our analysis. Intuitively, a higher ratio indicates tighter labor

markets so that recruiting new workers becomes more costly.

We begin by studying the empirical relation between labor market conditions and the

cross-section of equity returns. We measure aggregate labor market tightness as the ratio of

the monthly vacancy index published by the Conference Board to the unemployed population

(cf. Shimer (2005)). To measure the sensitivity of firm value to labor market conditions, we

estimate loadings of equity returns on log changes in labor market tightness controlling for

the market return. We use rolling regressions based on three years of monthly data to allow

for time variation in the loadings. Using the panel of U.S. stock returns from 1954 to 2012,

we show that the loadings on changes in the labor market tightness robustly and negatively

relate to future stock returns in the cross-section. Sorting stocks into deciles on the basis

of the estimated loadings, we find an average return spread between firms in the low- and

high-loading portfolios of 6% per year. We emphasize that this return differential is not due to
1According to the U.S. Department of Labor, it costs one-third of a new hire’s annual salary to replace

them. Direct costs include advertising, sign on bonuses, headhunter fees and overtime. Indirect costs include
recruitment, selection and training and decreased productivity while current employees pick up the slack.

2The importance of labor market dynamics for the business cycle has long been recognized, e.g., Merz (1995)
and Andolfatto (1996).
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mispricing. While it cannot be attributed to differences in loadings on commonly considered

risk factors, such as those of the CAPM or the Fama and French (1993) three-factor model,

it arises rationally in our theoretical model due to risk associated with labor market frictions

as we describe in detail below.

To ensure that the relation between labor search frictions and future stock returns is

not attributable to firm characteristics that are known to relate to future returns, we run

Fama-MacBeth (1973) regressions of stock returns on lagged estimated loadings and other

firm attributes. We include conventionally used control variables such as a firm’s market

capitalization and recently documented determinants of the cross-section of stock returns

that may potentially correlate with the estimated loadings, such as hiring rates studied by

Belo, Lin, and Bazdresch (2013). The Fama-MacBeth analysis confirms the robustness of

results obtained in portfolio sorts. The coefficients on the labor market tightness loadings

are negative and statistically significant in all regression specifications. The magnitude of

the coefficients suggests that the relation is economically important: For each one standard

deviation increase in the loading, subsequent annual returns decline by approximately 1.5%.

Unlike many cross-sectional predictors of equity returns that are priced within rather than

across industries, labor market tightness loadings contain valuable information about future

returns when considered both within and across industries. In other words, the 6% return

differential we observe when allowing for industry heterogeneity across portfolios sorted on

labor market tightness loadings is a convex combination of firm-specific and industry-wide

components. We estimate that the firm-specific element reaches 4.0% per year whereas the

industry component stands at 3.1%. Fama-MacBeth regressions confirm that labor market

tightness loadings have significant predictive power for the cross-section of industry returns.

To interpret the empirical findings, we propose a labor market augmented capital as-

set pricing model. Building on the search framework pioneered by Diamond-Mortensen-

Pissarides, we build a partial equilibrium labor search model and study its implications for

firm employment policies and stock returns. For tractability we do not model the supply of

labor as an optimal household decision; instead we assume an exogenous pricing kernel. Our
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model features a cross-section of firms with heterogeneity in their idiosyncratic profitability

shocks and employment levels.3 Under this pricing kernel, firms maximize their value either

by posting vacancies to recruit workers or by firing workers to downsize. Both firm policies

are costly at proportional rates.

In the model, the fraction of successfully filled vacancies depends on labor market con-

ditions as measured by labor market tightness (the ratio of vacant positions to unemployed

workers). As more firms post vacancies, it becomes less likely that vacant positions are filled,

thereby increasing the expected recruiting costs to hire new workers. Since labor market

tightness is a function of firms’ vacancy policies, it has to be consistent with firm policies and

is thus determined as an equilibrium outcome. In equilibrium, the matching of unemployed

workers and firms is imperfect which results in both equilibrium unemployment and rents.

These rents are shared between each firm and its workforce according to a Nash bargaining

wage rate.

Our model is driven by two aggregate shocks, both of which are priced. The first shock is an

aggregate productivity shock which proxies for the market return. The second shock is a shock

to the efficiency of the matching technology which was first studied by Andolfatto (1996). The

literature has shown that variation in matching efficiency can arise for many reasons, and we

are agnostic about the exact source. For example, Pissarides (2011) emphasizes that matching

efficiency captures the mismatch between the skill requirements of jobs and the skill mix of the

unemployed, the differences in geographical location between jobs and unemployed, and the

institutional structure of an economy with regard to the transmission of information about

jobs.

Both aggregate productivity and matching efficiency are not directly observable in the

data. Since we would like to quantitatively compare the model with the data, we map aggre-

gate productivity and matching efficiency into the market return and labor market tightness

which are observable in the data. As a result, we show that expected excess returns obey a

two factor structure in the market return and labor market tightness. We call the resulting
3The canonical search and matching model is Mortensen and Pissarides (1994). More recently, firm hetero-

geneity in the search framework has been introduced by Cooper, Haltiwanger, and Willis (2007), Mortensen
(2010), Elsby and Michaels (2013), and Fujita and Nakajima (2013).
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model the Labor Capital Asset Pricing Model.

Quantitatively, our model replicates the negative relation between loadings on labor mar-

ket tightness and future returns. Firms ideally would like to expand their workforce when

the labor market is not congested, i.e., after positive shocks to the matching efficiency. These

are times when the expected hiring costs are low. We assume that shocks to matching ef-

ficiency carry a negative price of risk, implying procyclical discount rates. This assumption

is consistent with the general equilibrium view that positive efficiency shocks lead to lower

consumption growth.

As an equilibrium outcome of the labor market, labor market tightness is positively related

to matching efficiency shocks because in the model the cost channel dominates the discount

rate effect. Consequently, firms with negative loadings on labor market tightness also have

negative return exposure to matching efficiency shocks. Intuitively, firms that have to recruit

workers after a negative matching efficiency shock have strongly countercyclical cash flows as

higher recruiting costs reduce profits. As a result, these firms are riskier and require higher

risk premia as their cash flows are not hedged against variation in matching efficiency.

Our paper builds on the production-based asset pricing literature started by Cochrane

(1991) and Jermann (1998). Pioneered by Berk, Green, and Naik (1999), a large litera-

ture studies cross-sectional asset pricing implications of firm real investment decisions (e.g.,

Gomes, Kogan, and Zhang (2003), Carlson, Fisher, and Giammarino (2004), Zhang (2005),

and Cooper (2006)). More closely related are Papanikolaou (2011), and Kogan and Papaniko-

laou (2012, 2013) who highlight that investment-specific shocks are related to firm risk premia.

We differ by studying frictions in the labor market and specifically shocks to the efficiency of

the matching technology.

The impact of labor market frictions on the aggregate stock market has been analyzed by

Danthine and Donaldson (2002), Merz and Yashiv (2007), and Kuehn, Petrosky-Nadeau, and

Zhang (2012). A related line of literature links cross-sectional asset prices to labor-related

firm characteristics. Gourio (2007), Chen, Kacperczyk, and Ortiz-Molina (2011) and Favilukis

and Lin (2012) consider labor operating leverage arising from rigid wages; Donangelo (2012)
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focuses on labor mobility; and Eisfeldt and Papanikolaou (2013) study organizational capital

embedded in specialized labor input. We differ by exploring the impact of search costs on

cross-sectional asset prices.

Closest to our paper is Belo, Lin, and Bazdresch (2013) who also emphasize that firms’

hiring policies affect cross-sectional risk premia. They find that hiring growth rates predict

returns in the data and explain this finding with a neoclassical Q-theory model on labor

and capital adjustment costs. In contrast, we highlight the importance of search frictions in

equilibrium labor markets. Recruiting workers in congested labor market is costly and firms’

sensitivity to congested labor markets affects their valuation.

II. Empirical Results

In this section, we document a robust negative relation between stock return loadings on

changes in labor market tightness and future equity returns. We establish this result by

studying portfolios sorted by loadings on labor market tightness and confirm it using Fama-

MacBeth (1973) regressions. We also show that loadings on the factor explain average industry

returns.

A. Data

Our sample includes all common stocks (share code of 10 or 11) listed on NYSE, AMEX, and

Nasdaq (exchange code of 1, 2, or 3) available from CRSP. To obtain meaningful risk loadings

at the end of month t, we require each stock to have non-missing returns in at least 24 of the

last 36 months (t−35 to t). Availability of data on vacancy and unemployment rates restricts

our tests to the 1954-2012 period. Fama-MacBeth regressions additionally require Compustat

data on book equity and other firm attributes. Consequently, the analysis based on those

data is conducted for the 1960-2012 sample. In Appendix A we list the exact formulas for all

of the firm characteristics used in our tests.
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B. Labor Market Tightness Factor

We obtain the monthly vacancy index from the Conference Board and the monthly labor force

participation and unemployment rates from the Current Population Survey of the Bureau of

Labor Statistics.4 We define labor market tightness as the ratio of total vacancy postings

to total unemployed workers. The total number of unemployed workers is the product of

the unemployment rate and the labor force participation rate (LFPR).5 Hence labor market

tightness is given by

θt =
Vacancy Indext

Unemployment Ratet × LFPRt
. (1)

Figure 1 plots the monthly time series of θt and its components. Labor market tightness

is strongly procyclical and autocorrelated as in Shimer (2005). The cyclical nature of θt is

driven by procyclicality of vacancies (the numerator of equation (1)) and countercyclicality

of the number of unemployed workers (the denominator).

We define the labor market tightness factor in month t as the change in logs of the

vacancy-unemployment ratio θt:

ϑt = log(θt)− log(θt−1). (2)

The time series properties of ϑt, its components and other macro variables are summarized

in Table I. The labor market tightness factor is more volatile than any of the considered

variables and has a mean that is statistically indistinguishable from zero. As expected, it

is strongly correlated with its components. The factor also exhibits high correlations with

default spread and changes in industrial production, which motivates us to conduct robustness

tests (described below) to confirm that our empirical results are driven by changes in labor

market tightness rather than by these other variables.
4The respective websites are http://www.conference-board.org/data/helpwantedonline.cfm and

http://www.bls.gov/cps. Help Wanted Advertising Index was discontinued in October 2008 and re-
placed with the Conference Board Help Wanted OnLine index. We concatenate the two time series to obtain
the vacancy index. The index is not available after 2009 as the Conference Board replaced it with the actual
number of online advertised vacancies. Barnichon (2010) proposes the methodology to construct the index
through 2012 and maintains the data on his website, https://sites.google.com/site/regisbarnichon/research.
We use his data to extend our sample until 2012.

5We use the seasonally adjusted unemployment rate to reduce predictable variation in the rate.

6



To study the relation between stock return sensitivity to changes in labor market tightness

and future equity returns, we estimate loadings βθi,τ on the ϑ factor for each stock i at the

end of each month τ from rolling two-factor model regressions

Ri,t −Rf,t = αi,τ + βMi,τ (RM,t −Rf,t) + βθi,τϑt + εi,t, (3)

where Ri,t denotes the return on stock i, Rf,t the risk-free rate, and RM,t the market return

in month t ∈ {τ − 35, τ}.

C. Portfolio Sorts

At the end of each month τ , we rank stocks into deciles by loadings on the labor market

tightness factor βθi,τ computed from regressions (3). We skip a month to allow information on

the vacancy and unemployment rates to become publicly available and hold the resulting ten

value-weighted portfolios without rebalancing for one year (τ + 2 through τ + 13, inclusive).

Consequently, in month τ each decile portfolio contains stocks that were added to that decile

at the end of months τ − 13 through τ − 2. This design is similar to the approach used to

construct momentum portfolios and ensures that noise due to seasonalities is reduced. We

show robustness to alternative portfolio formation methods in the next section.

Table II presents average firm characteristics of the resulting decile portfolios. Average

loadings on the labor market tightness factor range from −0.80 for the bottom decile to 0.91

for the top group. Firms in the high and low groups are on average smaller with higher market

betas than firms in the other deciles, as is often the case when firms are sorted on estimated

factor loadings. No strong relation emerges between loadings on the labor market tightness

factor and any of the other considered characteristics: book-to-market ratios, stock return

runups, asset growth rates, investment rates, and hiring rates. The lack of a relation between

loadings on the labor market tightness factor and hiring rates is of particular interest, as it

provides the first evidence that our empirical results are distinct from those of Belo, Lin, and

Bazdresch (2013).

For each decile portfolio, we obtain monthly time series of returns from January 1954 until

December 2012. Table III summarizes raw returns of each decile and of the portfolio that is
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long the decile with low loadings on the labor market tightness factor and short the group

with high loadings. Table III also shows loadings on market, value, size, and momentum betas

of each group. Firms in the high decile have somewhat larger size betas and lower momentum

loadings. To control for differences in risk across the deciles, we also present unconditional

alphas from market, Fama and French (1993), and Carhart (1997) models. Finally, to account

for the possible time variation in betas and risk premiums, we calculate conditional alphas

following either Ferson and Schadt (1996) or Boguth, Carlson, Fisher, and Simutin (2011).6

Both raw and risk-adjusted returns of the ten portfolios indicate a strong negative relation

between loadings on the labor market tightness factor and future stock performance. Firms

in the low βθ decile earn the highest average return, 1.12% monthly, whereas the high-beta

group performs most poorly, generating on average just 0.65% per month. The difference in

performance of the two deciles, at 0.46%, is economically large and statistically significant (t-

statistic of 3.41). The corresponding differences in both unconditional and conditional alphas

are similarly striking, ranging from 0.41% (t-statistic of 2.99) for Carhart four-factor alphas

to 0.52% (t-statistic of 3.83) for Fama-French 3-factor alphas.

Results of portfolio sorts thus strongly suggest that loadings on the labor market tightness

factor are an important predictor of future returns. To evaluate robustness of this relation

over time, Panel A of Figure 2 plots cumulative returns of the portfolio that is long the low

decile and short the high group. The cumulative return is steadily increasing throughout the

sample period, indicating that the relation between the loadings on the labor market tightness

factor and future stock returns persists over time. Table IV presents summary statistics for

returns on this portfolio and for market, value, size, and momentum factors. The long-short

labor market tightness factor portfolio is as volatile as the market or the momentum factors

(see also Panel B of Figure 2) and achieves a Sharpe ratio (0.13) comparable to that of the
6More specifically, we calculate conditional alphas as intercepts from regression

Rj,t −Rf,t = αj + βj
ˆ

1 Zt−1

˜′
(RM,t −Rf,t) + ej,τ , (4)

where j indexes portfolios, t indexes months, βj is a 1×(k+1) parameter vector, and Zt−1 is a 1×k instrument
vector. Ferson and Schadt (FS) conditional alpha is computed using as instruments demeaned dividend yield,
term spread, T-bill rate, and default spread. Boguth, Carlson, Fisher, and Simutin (BCFS) conditional alpha is
computed by additionally including as instruments lagged 6- and 36-month market returns and average lagged
6- and 36-month betas of the portfolios.
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market or the value factors.

We emphasize that although the difference in returns of firms with low and high loadings

on the labor market tightness factor cannot be explained by the commonly considered factor

models, this difference should not be interpreted as mispricing. It arises rationally in our

theoretical framework as compensation for risk associated with labor market frictions. The

commonly used factor models such as the CAPM do not capture this type of risk. Conse-

quently, alphas from such models are different for firms with different loadings on the labor

market tightness factor.

D. Robustness of Portfolio Sorts

We now demonstrate robustness of the relation between stock return loadings on changes in

labor market tightness and future equity returns. We consider alternative portfolio formation

approaches, exclude micro cap stocks, use modified definitions of the labor market tightness

factor, and modify regression (3) to also include size, value, and momentum factors. Table V

summarizes the results of the robustness tests.

Portfolio formation design employed in the previous section is motivated by investment

strategies such as momentum studied the prior literature. It involves holding 12 overlapping

portfolios and ensures that noise due to seasonalities is reduced. We consider two alterna-

tives: forming portfolios only once a year and holding the portfolios for one month. Both

alternatives ensure that no portfolios overlap. Panels A and B of Table V show that each of

these approaches results in even more dramatic differences in future performance of low and

high βθ deciles. For example, the difference in average returns of the low and high groups

reaches 0.55% monthly when portfolios are formed once a year, compared to 0.46% reported

in Table III.

We next explore the sensitivity of the results to the length of time between calculation

of βθ and beginning of the holding period. Our base-case results in Table III are obtained

by assuming that all variables needed to compute labor market tightness (vacancy index,

unemployment rate, and labor force participation rate) are publicly available within a month.

The assumption is well-justified in the current markets, where the data for any month are
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typically available within days after the end of that month. To allow for a slower dissemination

of data in the earlier sample, we consider a two-month waiting period. Panel C of Table V

shows that the results are not sensitive to this change in the methodology. The difference

in future returns of stocks with low and high loadings on the labor market tightness factor

reaches 0.47% per month.

To account for the possibility that the negative relation between stock return loadings on

changes in labor market tightness and future equity returns is driven by stocks with very high

or low loadings, we confirm robustness to sorting firms into quintile portfolios rather than

into deciles. Panel D of Table V shows that the difference in future returns of quintiles with

low and high loadings is economically and statistically significant.

Panel E of Table V shows that the results are also robust to excluding microcaps, which we

define as stocks with market equity below the 20th NYSE percentile. Microcaps on average

represent just 3% of the total market capitalization of all stocks listed on NYSE, Amex, and

Nasdaq, but they account for about 60% of the total number of stocks. Excluding these stocks

from the sample does not meaningfully impact the results.7

We also evaluate robustness to two alternative definitions of the labor market tightness

factor. Table I shows that ϑt as defined in equation (2) is correlated with changes in industrial

production and other macro variables. To ensure that the relation between stock return

loadings on the labor market tightness factor and future equity returns is not driven by these

variables, our first alternative specification involves re-defining the labor market tightness

factor as the residual ϑ̃t from a time-series regression

ϑt = γ0 + γ1IPt + γ2CPIt + γ3DYt + γ4TBt + γ5TSt + γ6DSt + ϑ̃t, (5)

where IPt, CPIt, DYt, TBt, TSt, and DSt are changes in industrial production, changes in

the consumer price index, the dividend yield, the T-bill rate, the term spread, and the default

spread, respectively. Our second alternative definition calls for computing the labor market

tightness factor as the residual from fitting the log of labor market tightness to an ARMA(1,1)
7Untabulated results also confirm robustness to imposing a minimum price filter and to excluding Nasdaq-

listed stocks.
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model. The disadvantage of both of these approaches is that they introduce a look-ahead bias

as the entire sample is used to estimate the labor market tightness factor. Yet, the first

alternative definition allow us to focus on the component of labor market tightness that is

unrelated to other macro variables that might have non-zero prices of risk. And the second

definition allows us to focus on the unpredictable component of labor market tightness. Panels

F and G of Table V show that our results are little affected by the changes in the definition

of the labor market tightness factor. The difference in future raw and risk-adjusted returns

of portfolios with low and high loadings on the factor are always statistically significant and

economically important, ranging between 0.41% and 0.51% monthly.

In Table III, we compute alphas from multi-factor models to ensure that the relation be-

tween loadings on the labor market factor and future equity returns is not driven by differences

in loadings on known risk factors. For robustness, we also consider modifying regression (3)

to include size, value and momentum factors. Panel H of Table V shows that our results are

not sensitive to this alternative method of estimating βθ.

Finally, we also evaluate the relation between loadings βθ on the labor market tightness

factor and future equity returns conditional on stocks’ market betas βM . We sort firms

into quintiles based on their βθ and βM loadings and study subsequent returns of each of

the resulting 25 portfolios. Table ?? of the Appendix shows that irrespective of whether

we consider independent sorts or dependent sorts (e.g., first on βM and then by βθ within

each market beta quintile), stocks with low loadings on the labor market tightness factor

significantly outperform stocks with high loadings.

E. Fama-MacBeth Regressions

The empirical evidence from portfolio sorts provides a strong indication of a negative relation

between the stock return loadings on changes in labor market tightness, βθ, and subsequent

equity returns. However, such univariate analysis does not account for other firm characteris-

tics that have been shown to relate to future returns. We compare the loadings on the labor

market tightness factor to other well-established determinants of the cross-section of stock

returns. Our goal is to evaluate whether the ability of βθ to forecast returns is subsumed by
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other firm characteristics. To this end, we run annual Fama-MacBeth (1973) regressions

Ri,T = γ0
T + γ1

Tβ
θ
i,τ +

K∑
j=1

γjTX
j
i,T + ηi,T , (6)

where Ri,T is stock i return from July of year T to June of year T + 1, βθi,τ is the loading from

regressions (3) with τ corresponding to May of year T , and Xi,T are K control variables all

measured prior to the end of June of year T . The timing of the variable measurement in the

regression follows the widely accepted convention as in Fama and French (1992).

We include in the Fama-MacBeth regressions commonly considered control variables such

as a firm’s market capitalization (ME), book-to-market ratio (BM) and return runup (RU)

(Fama and French (1992); Jegadeesh and Titman (1993)). We also consider other recently

documented determinants of the cross-section of stock returns, including the asset growth rate

(AG) of Cooper, Gulen, and Schill (2008) as well as the labor hiring (HN) and investment

rates (IK) of Belo, Lin, and Bazdresch (2013). We winsorize all independent variables cross-

sectionally at 1% and 99%.

Table VI summarizes the results of the Fama-MacBeth regressions. The coefficient on βθ is

negative and statistically significant in each considered specification, even after accounting for

other predictors of the cross-section of equity returns. The magnitude of the coefficient implies

that for a one standard deviation increase in βθ (0.49), subsequent annual returns decline by

approximately 1.5%. Average loadings of firms in the bottom and top decile portfolios are 3.5

standard deviations apart, suggesting that the difference in future stock returns of the two

groups exceeds 5% per year, in line with the results presented in Table III.

The labor market tightness factor is highly correlated with its components and with

changes in industrial production (see Table I). To ensure that our results are not driven by

either of these macro variables, we first estimate loadings βLFPR, βUnemp, βV ac, and βIP from

a two-factor regression of stock excess returns on market excess returns and log changes in

either labor force participation rate, unemployment rate, vacancy index, or industrial produc-

tion, respectively. These loadings are estimated in the same manner as is βθ in equation (3).

We next run Fama-MacBeth regressions of annual stock returns on lagged loadings βLFPR,

βUnemp, βV ac, and βIP and on other control variables. Table ?? of the Appendix shows that
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none of the considered loadings are robustly related to future equity returns, suggesting that

the relation between loadings on the labor market tightness factor and future stock returns

is not driven by one particular component of the labor market tightness or by changes in

industrial production.

F. Industry-Level Analysis

The ability of commonly considered firm characteristics to predict stock returns is known to be

stronger when these characteristics are computed relative to industry averages. In other words,

many determinants of the cross-section of stock returns are priced within rather than across

industries (e.g., Cohen and Polk (1998), Asness, Burt, Ross, and Stevens (2000), Simutin

(2010), Novy-Marx (2011)). We now show that unlike many other cross-sectional predictors

of stock returns, βθ contains better information about future returns when considered across

rather than within industries. Our goal in this section is to understand how much of the

negative relation between βθ and future stock returns is due to industry-specific vs firm-

specific (non-industry) components.

We begin our analysis by modifying the portfolio assignment methodology used above to

ensure that all βθ decile portfolios have similar industry characteristics. To achieve this, we

sort firms into deciles within each of the 48 industries as defined by Ken French and then

aggregate firms across industries to obtain ten industry-neutral portfolios. Panel A of Table

VII shows that the differences in future performance of firms with low and high loadings on the

labor market tightness factor are slightly muted relative to those in Table III. For example,

the return of the Low-High portfolio reaches 0.36% monthly when portfolio assignment is

done within industries whereas the corresponding figure is 0.46% when industry composition

is allowed to vary across deciles.

Larger difference in future performance of low and high βθ stocks when we allow for

industry heterogeneity across decile portfolios is particularly interesting given that many

known premiums are largely intra-industry phenomena. This result suggests that the labor

market tightness factor may be priced in the cross-section of industry portfolios. To investigate

this conjecture, we assign 48 value-weighted industry portfolios into deciles on the basis of
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their loadings on the labor market tightness factor and study future returns of the resulting

decile portfolios. Panel B of Table VII shows that industries with low loadings outperform

industries with high loadings by between 0.35% per month.8

III. Model

The goal of this section is to provide an economic model which explains the empirical link

between labor market frictions and the cross-section of equity returns. To this end, we solve

a partial equilibrium labor market model and study its implications for stock returns. For

tractability we do not model endogenous labor supply decisions from households; instead we

assume an exogenous pricing kernel.

A. Revenue

To focus on labor frictions, we assume that the only input to production is labor. We thus

abstract from capital accumulation and investment frictions. Firms generate revenue, Yi,t,

according to a decreasing returns to scale production function

Yi,t = ext+zi,tNα
i,t, (7)

where α denotes the labor share of production and Ni,t is the size of the firm’s workforce.

Both the aggregate productivity shock xt and the idiosyncratic productivity shocks zi,t follow

AR(1) processes

xt = ρxxt−1 + σxε
x
t , (8)

zi,t = ρzzi,t−1 + σzε
z
i,t, (9)

where εxt , εzi,t are standard normal i.i.d. innovations. Firm-specific shocks are independent

across firms, and from aggregate shock.

The dynamics of firms’ workforce are determined in a Kydland-Prescott time-to-build

fashion. Firms can expand the workforce by posting vacancies, Vi,t, to attract unemployed

workers. The key friction of search markets is that not all the posted vacancies are filled in a
8Industry portfolios are from Ken French’s data library. Table ?? of the Appendix provides summary

statistics for the industry portfolios.
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given period. Instead, the rate q at which vacancies are filled is endogenously determined in

equilibrium and depends on the tightness of the labor market, θt, and an exogenous efficiency

shock, pt, to the matching technology. Once workers and firms are randomly matched, a

constant fraction s of workers quit voluntarily and Fi,t of them are laid off by the firm. Taken

together, this implies the following law of motion for the firm workforce size

Ni,t+1 = (1− s)Ni,t + q(θt, pt)Vi,t − Fi,t. (10)

The matching efficiency shock pt follows an AR(1) process with autocorrelation ρp and i.i.d.

normal innovation εpt which is uncorrelated with aggregate productivity innovations εxt

pt = ρppt−1 + σpε
p
t . (11)

This matching efficiency shock is common across firms and thus represents aggregate risk.

This shock was first studied by Andolfatto (1996) who argued that it can be interpreted as a

reallocative shock, distinct from disturbances that affect production technologies. In search

models, the efficiency of the economy’s allocative mechanism is captured by the technological

properties of the aggregate matching function. Changes in this function can be thought

of as reflecting mismatches in the labor market between the skills, geographical location,

demography or other dimensions of unemployed workers and job openings across sectors,

thereby causing a shift in the so-called aggregate Beveridge curve.

Several recent studies empirically analyze different channels that can explain changes in

matching efficiency. Using micro-data Barnichon and Figura (2011) show that fluctuations in

matching efficiency can be related to the composition of the unemployment pool, such as a

rise in the share of long-term unemployed or fluctuations in participation due to demographic

factors, and dispersion in labor market conditions; Herz and van Rens (2011) and Sahin,

Song, Topa, and Violante (2012) highlight the role of skill and occupational mismatch between

jobs and workers; Sterk (2010) focuses on geographical mismatch exacerbated by house price

movements; and Fujita (2011) analyzes the role of reduced worker search intensity due to

extended unemployment benefits.
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B. Matching

Labor market tightness, θt, determines how easily vacant jobs can be filled. It is measured as

the ratio of aggregate vacancies, V̄t, to the aggregate unemployment level, Ūt, i.e., θt = V̄t/Ūt.

The aggregate number of vacancies is simply the sum of all firm-level vacancies

V̄t =
∫
Vi,tdµt, (12)

where µt denotes the time-varying distribution of firms over the firm-level state space (zi,t, Ni,t).

The mass of firms is normalized to one. The labor force is defined as the sum of employed

and unemployed with mass one. Thus, the total number of unemployed equals

Ūt = 1−
∫
Ni,tdµt. (13)

Following den Haan, Ramey, and Watson (2000), vacancies are filled according to a con-

stant returns to scale matching function

M(Ūt, V̄t, pt) =
eptŪtV̄t

(Ū ξt + V̄ ξ
t )1/ξ

, (14)

and the rate at which vacancy are filled per unit of time can be computed from

q(θt, pt) =
M(Ūt, V̄t, pt)

V̄t
= ept

(
1 + θξt

)−1/ξ
. (15)

The matching rate is decreasing in θ, meaning that an increase in the relative scarcity of

unemployed workers relative to job vacancies makes it more difficult for a firm to fill a vacancy,

and increasing in p, as a positive efficiency shock makes finding a worker easier.

C. Wages

In equilibrium, the matching of unemployed workers and firms is imperfect, which results in

both equilibrium unemployment and rents. These rents are shared between each firm and

its workforce according to a Nash bargaining wage rate. Following Stole and Zwiebel (1996),

we derive the Nash bargaining wage in multi-worker firms with decreasing returns to scale

production technology. Specifically, firms renegotiate wages every period with its workforce

based on individual (and not collective) Nash bargaining.
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In the bargaining process, workers have bargaining weight η ∈ (0, 1). If workers decide

not to work, they receive unemployment benefits b, which represent the value of their outside

option. They are also rewarded the saving of hiring costs that firms enjoy when a job position

is filled, κhθt, where κh is the unit cost of vacancy posting. As a result, wages are given by

wi,t = η

[
α

1− η(1− α)
Yi,t
Ni,t

+ κhθt

]
+ (1− η)b. (16)

Firms benefit from hiring the marginal worker not only through an increase in output by the

marginal product of labor but also through a decrease in wage payment to all the existing

workers, Yi,t/Ni,t. The term α/(1 − η(1 − α)) represents a reduction in wages coming from

decreasing returns to scale. At the same time, workers can extract higher wages from the firm

when labor market are tighter. Unemployment benefits provide a floor to wages.

D. Firm Value

We do not model the supply side of labor coming form households. This would require to

solve a full general equilibrium model. Instead, following Berk, Green, and Naik (1999), we

specify an exogenous pricing kernel and assume that both the aggregate productivity shock

xt and efficiency shock pt are priced. The log of the pricing kernel is given by

lnMt+1 = lnβ − γx(σxεxt+1 + φxt)− γp,t(σpεpt+1 + φpt) (17)

where β is the time discount rate, γx the constant price of aggregate productivity shocks,

γp,t = γp,0e
γp,1pt the time-varying price of efficiency shocks, and φ measures the sensitivity of

interest rates.

The objective of the firm is to maximize its value Si,t either by posting vacancies Vi,t to

hire workers or by firing Fi,t employed workers to downsize. Both adjustments are costly at

a rate κh for hiring and κf for firing. Firms also pay fixed f0 and proportional f1 operating

costs. Dividends to shareholders are given by revenues net of operating, hiring, and firing

costs as well as wage payments

Di,t = Yi,t − f0 − f1Nt − wi,tNi,t − κhVi,t − κfFi,t. (18)
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The firm’s Bellman equation solves

Si,t = max
Vi,t≥0,Fi,t≥0

{Di,t + Et[Mt+1Si,t+1]}, (19)

subject to equations (7)–(17). Notice that the firm’s problem is well-defined given labor

market tightness θt and an expectation about how it evolves. Given optimal (cum-dividend)

firm value Si,t, expected stock returns are

Et[Ri,t+1] =
Si,t+1

Si,t −Di,t
. (20)

E. Equilibrium

Optimal firm employment policies depend on the dynamics of the labor market equilibrium.

More specifically, the probability q, of a vacancy being filled with a worker, is a function of

aggregate labor market tightness θ and matching efficiency p. Each individual firm is atomistic

and takes labor market tightness as exogenous.

Let Ωi,t = (Ni,t, zi,t, xt, pt, µt) be the vector of state variables and Γ be the law of motion

for the time-varying firm distribution µt,

µt+1 = Γ(µt, xt+1, xt, pt+1, pt). (21)

A given distribution µt of the firm-level state space together with the aggregate shocks implies

a value for labor market tightness θt. Hence, equilibrium in the labor market requires that

labor market tightness θt at each date is determined as a fixed point satisfying

θt =
∫
V (Ωi,t)dµt

L−
∫
Ni,tdµt

. (22)

The recursive competitive equilibrium is characterized by: (i) labor market tightness θt,

(ii) optimal firm policies V (Ωi,t), F (Ωi,t), and firm value function S(Ωi,t), (iii) a law of motion

of firm distribution Γ, such that: Optimality: Given the pricing kernel (17), Nash bargaining

wage rate (16), and labor market tightness θt, V (Ωi,t) and F (Ωi,t) solve the firm’s Bellman

equation (19) where S(Ωi,t) is its solution; Consistency: θt is consistent with the labor market

equilibrium (22), and the law of motion of firm distribution Γ is consistent with the optimal

firm policies V (Ωi,t) and F (Ωi,t).
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F. Approximate Aggregation

The firm’s hiring and firing decisions trade off current costs and future benefits, which depend

on the aggregation and evolution of the firm distribution. Rather than solving for the high

dimensional firm distribution µt exactly, we follow Krusell and Smith (1998) and approximate

the firm-level distribution with one moment. In search models, labor market tightness θt is a

sufficient statistic to solve the firm’s problem (19) and thus enters the state vector replacing

µt, i.e., Ωi,t = (Ni,t, zi,t, xt, pt, θt).

To approximate the law of motion Γ in equation (21), we assume a log-linear functional

form

log θt+1 = τ0 + τθ log θt + τx(xt+1 − ρxxt) + τp(pt+1 − ρppt). (23)

Under rational expectations, the perceived labor market outcome equals the realized one at

each date of the recursive competitive equilibrium. In equilibrium, we can express the labor

market tightness factor ϑ as the change in logs of labor market tightness

ϑt+1 = τ0 + (τθ − 1) log θt + τx(xt+1 − ρxxt) + τp(pt+1 − ρppt). (24)

This definition is consistent with our empirical exercise in Section II.

Our application of Krusell and Smith (1998) differs from Zhang (2005) along two dimen-

sions. First, we model future labor market tightness, θt+1, as a function of the firm distribution

at time t + 1; hence, it is not in the information set of date t. The forecasting rule (23) at

time t does not enable firms to learn θt+1 perfectly, but rather to form a rational expectation

about θt+1. In contrast, Zhang (2005) assumes that firms can perfectly forecast next period’s

industry price given time t states. If firms could perfectly forecast next period’s labor market

tightness, it would not carry a risk premium.

Second, at each period of the simulation, we impose labor market equilibrium by solving

θt as the fixed point in Equation (22). Hence, there is no discrepancy between the forecasted

θt+1 and the realized θt+1.
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G. Equilibrium Risk Premia

The model is driven by two aggregate shocks: aggregate productivity and matching efficiency.

To test the model’s cross-sectional return implications on data, it is advantageous to derive an

approximate linear pricing model. Based on the Euler equation for expected excess returns,

we can apply a log-linear approximation to the pricing kernel (17) implying

Et[Rei,t+1] ≈ βxi,tλx + βpi,tλ
p
t (25)

where βxi,t and βpi,t are loadings on aggregate productivity and matching efficiency shocks and

λx and λpt are their respective factor risk premia.9

Both aggregate productivity and matching efficiency are not directly observable in the

data. Since we would like to take the model to the data, it is necessary to express expected

excess returns in terms of observable variables such as the return on the market and labor

market tightness. To this end, we also approximate the return on the market as an affine

function of the aggregate shocks

ReM,t+1 = ν0 + νx(xt+1 − ρxxt) + νp(pt+1 − ρppt). (26)

As a result, we can show that expected excess returns obey a two-factor structure in the

market return and labor market tightness which is summarized in the following proposition.

Proposition 1 Given a log-linear approximation to the pricing kernel (17) and laws of mo-

tion (24) and (26), the log pricing kernel satisfies

mt+1 = −γM,tR
e
M,t+1 − γθ,tϑt+1, (27)

where the prices of market risk γM and labor market tightness γθ are given by

γM,t =
τpγx − τxγp,t
τpνx − τxνp

γθ,t =
νxγp,t − νpγx
τpνx − τxνp

. (28)

The pricing kernel (27) implies a linear pricing model in the form of

Et[Rei,t+1] = βMi,tλ
M
t + βθi,tλ

θ
t , (29)

9All proofs of this section can be found in Appendix C.
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where βMi,t and βθi,t are the loadings on the market return and log-changes of labor market

tightness

βMi,t =
τp

τpνx − τxνp
βxi,t +

−τx
τpνx − τxνp

βpi,t (30)

βθi,t =
−νp

τpνx − τxνp
βxi,t +

νx
τpνx − τxνp

βpi,t (31)

and λMt and λθt are the respective factor risk premia given by

λMt = νxλ
x + νpλ

p
t λθt = τxλ

x + τpλ
p
t . (32)

We call relation (29) the Labor Capital Asset Pricing Model.10 The goal of the model is

to endogenously generate a negative factor risk premium of labor market tightness, λθt . We

will explain the intuition behind Proposition 1 after the calibration in Section IV.B.

In the data, the CAPM cannot explain the returns of portfolios sorted by loadings on labor

market tightness, βθi,t. To replicate this failure of the CAPM in the model, we can compute a

mis-specified one-factor CAPM and compare the CAPM implied alphas with the data. The

following proposition summarizes this idea.

Proposition 2 Given a log-linear approximation to the pricing kernel (17) and laws of mo-

tion (24) and (26), the CAPM implies a linear pricing model in the form of

Et[Rei,t+1] = αCAPMi,t + βCAPMi,t λCAPMt , (33)

where the CAPM mispricing alphas are given by

αCAPMi,t = βθi,tγθ,t
(τxνp − νxτp)2σ2

pσ
2
x

ν2
xσ

2
x + ν2

pσ
2
p

, (34)

CAPM loadings on the market return by

βCAPMi,t =
νxσ

2
x

ν2
xσ

2
x + ν2

pσ
2
p

βx +
νpσ

2
p

ν2
xσ

2
x + ν2

pσ
2
p

βp, (35)

and the CAPM factor risk premium λCAPMt = λMt = νxλ
x + νpλ

p
t .

10Note, that the risk loadings (30) and (31) are not univariate regression betas because the market return
and labor market tightness are correlated.

21



IV. Quantitative Results

In this section, we describe our calibration procedure and the benchmark parameterization.

We first present the numerical results of the equilibrium forecasting rules. Given the equi-

librium dynamics for the labor market, we calculate theoretical loadings on labor market

tightness and show that the model is consistent with the inverse relation between loadings

and expected future stock returns in the cross-section. At the end of this section, we discuss

the main mechanism driving our model.

We solve the competitive equilibrium numerically in the discretized state space Ωi,t using

an iterative algorithm described in Appendix D. Given the equilibrium forecasting rule, firms

make optimal employment decisions. We simulate a panel of 5,000 firms for 5,000 periods.

A. Calibration

This section describes how we calibrate the parameter values. We adopt a monthly frequency

because labor market and equity market data are available at that frequency. Table VIII

summarizes the parameter calibration of the benchmark model.

The labor literature provides several empirical studies to calibrate the labor market pa-

rameters. According to Davis, Faberman, and Haltiwanger (2006) and Davis, Faberman,

Haltiwanger, and Rucker (2010), the monthly total separation rate measured in the Job

Openings and Labor Turnover Survey (JOLTS) by the BLS is around 4%. The total separa-

tion rates captures both voluntary quits and involuntary layoffs. As firms in our model can

optimize over the number of worker to be laid off, we calibrate the separation rate only to the

voluntary quit rate which captures workers switching jobs, for instance, for reasons of career

development, better pay or preferable working conditions. We set the monthly exogenous quit

rate s at 2.2% so that the model is consistent in steady state with the hiring and layoff rate

reported by JOLTS.

The elasticity of the matching function determines how quickly the vacancy filling rate falls

as a function of labor market tightness. Based on the structural estimate in den Haan, Ramey,

and Watson (2000), we set the elasticity ξ at 1.27. This number is also in line with Shimer
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(2005) who finds that the aggregate monthly job finding rate f equals 0.45 and the average

vacancy filling rate q = 0.71. In steady state, labor market tightness equals f/q = 0.634 and

the vacancy filling rate is given by q =
(
(f/q)ξ + 1

)−1/ξ which implies ξ = 1.28.

The bargaining power of workers η determines the rigidity of wages over the business

cycle. As emphasized in Hagedorn and Manovskii (2008), the elasticity of aggregate wages

with respect to labor productivity is only 0.45 in the data, meaning, that wages are half

as volatile as labor productivity. Similarly, Gertler and Trigari (2009) find that the relative

volatility of wages to output is 0.52 in the data. We follow their calibration strategy and set

η at 0.10 to match the relative volatility of wages to output.11 It is important to highlight

that our model is not driven by sticky wages as proposed by Hall (2005) and Gertler and

Trigari (2009). In our model, wages are less volatile than productivity but, conditional on

productivity, they are not sticky. This is consistent with Pissarides (2009) who argues that

Nash bargaining wage rates are in line with wages for new hires.

If workers decide not to work, they receive the flow value of unemployment activities

b. Shimer (2005) argues that the outside option for rejecting a job offer are unemployment

benefits and thus sets b = 0.4. Hagedorn and Manovskii (2008), on the other hand, claim

that unemployment activities capture not only unemployment benefits but also utility from

home production and leisure. They calibrate b close to one. As in the calibration of Pissarides

(2009), we follow Hall and Milgrom (2008) and set the value of unemployment activities at

0.75.12

The labor share of income, which Gomme and Rupert (2007) estimate to be around 0.72,

is highly affected by the value of unemployment activities b as well as the labor elasticity of

output α. Since the value of unemployment activities is close to the labor share of income,

we can easily match the labor share by setting the labor elasticity of output α at 0.75. We

assume less curvature in the production function than, for instance, Cooper, Haltiwanger, and

Willis (2007). They, however, do not model wages as the outcome of Nash bargaining.
11Hagedorn and Manovskii (2008) set the bargaining power of workers at 0.054 and Lubik (2009) estimates

it to be 0.03.
12Similarly, Lubik (2009) estimates that unemployment activities amount to 0.74 relative to unit mean labor

productivity.
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The proportional costs of hiring and firing workers, κh and κf , determine both the overall

costs of adjusting the workforce as well as the behavior of firm policies. Since estimates of

hiring costs are sparse, we set κh at 0.4 to match the aggregate hiring rate of workers. Our

parameter choice is close to Hall and Milgrom (2008) who account for both the capital costs

of vacancy creation and the opportunity cost of labor effort devoted to hiring activities.

Employment protection legislations are a set of rules and restrictions governing the dis-

missals of employees. Such provisions impose a firing cost to the firm that has two separate

dimensions: a transfer from the firm to the worker to be laid off (e.g., severance payments),

and a tax to be paid outside the job-worker pair (e.g., legal expenses). As the labor search

literature does not provide guidance for the magnitude of this parameter, we set the flow costs

of firing workers κf to match the aggregate layoff rate.

Without fixed operating costs, the model would overstate the net profit margin of firms.

Similarly, without proportional operating costs, the model implied aggregate unemployment

would be unrealistic small. Consequently, we target the aggregate profit to aggregate output

ratio and the unemployment rate to calibrate fixed f0 and proportional f1 operating costs.

We calibrate the two aggregate shocks following the macroeconomics literature. Since

labor is the only input to production, the aggregate productivity is typically measured as

aggregate output relative to the labor hours used in the production of that output. As such,

labor productivity is more volatile than total factor productivity. Similar to Gertler and

Trigari (2009), we set ρx = 0.951/3 and σx = 0.005. Shocks to the matching efficiency tend to

be less persistent but more volatile than labor productivity shocks. For instance, Andolfatto

(1996) estimates matching shocks to have persistence of 0.85 with innovation volatility of

0.07 at quarterly frequency. We follow more recent estimates by Cheremukhin and Restrepo-

Echavarria (2010) and set ρp = 0.881/3 and σp = 0.025.13

For the persistence ρz and conditional volatility σz of firm-specific productivity, we choose

values close to those used by Zhang (2005), Gomes and Schmid (2010), and Fujita and Naka-

jima (2013) to match the cross-sectional properties of firm hiring policies.
13Similar structural estimates are contained in Furlanetto and Groshenny (2012) and Beauchemin and Tasci

(2012).
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The pricing kernel is calibrated to match financial moments. We choose the time discount

rate β and the pricing kernel parameters γx, γp,0, γp,1, φ so that the model approximately

matches the first and second moments of the risk-free rate and market return. This requires

that β equals 0.9935, γx = 1, γp,0 = −5, γp,1 = 5, and φ = −0.0225. Importantly, shocks

to matching efficiency carry a negative price of risk and are pro-cyclical. A small parameter

value of φ allows for a time-varying but smooth interest rate.

Berk, Green, and Naik (1999) provide a motivation for γx > 0 in an economy with only

aggregate productivity shocks. The assumption of γp < 0 can be motivated as follows. In a

general equilibrium economy with a representative household, a positive matching function

efficiency shock increases the probability that vacant jobs are filled and thereby lowers the

expected unit hiring cost. As a result, job creation becomes more attractive and firms spend

more resources on hiring workers, thus depressing aggregate consumption.14

Table IX summarizes aggregate moments computed on simulated data of the model. The

data for the unemployment rate are from the BLS, the hiring and layoff rates are from the

JOLTS dataset collected by the BLS, the labor share of income is from Gomme and Rupert

(2007), the volatility of aggregate wages to aggregate output is from Gertler and Trigari (2009).

At the firm level, we compute annual employment growth rate, its volatility and skewness

as in Davis, Haltiwanger, Jarmin, and Miranda (2006) for the merged CRSP-Compustat

sample for the period 1980-2012. Similarly, we determine the fraction of firms with no change

in employment as emphasized by Cooper, Haltiwanger, and Willis (2007). We obtain the

monthly series of the value-weighted market return and one-month Treasury bill from CRSP,

and inflation from the Federal Reserve to compute the annualized first and second moments

of the one-month real risk-free rate and real market return.

Overall, the model closely matches firm-level and aggregate employment quantities as well

as financial market moments. In equilibrium, the aggregate unemployment rate is 5.8%, the

monthly aggregate hiring rate is 3.5%, and the layoff rate is 1.3%, close to what we observe

in the data. The model is also in with the average level of labor market tightness and its
14The same intuition is shown to hold in general equilibrium for investment-specific shocks by Papanikolaou

(2011).
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volatility. The labor share of income is 71% and the volatility of wages to output is 52%, close

to empirical estimates.

At the firm level, the model generates the observed high volatility in annual employment

growth, 21.9% in the model relative to 21.6% in the data. Moreover, this volatility is coming

from hiring and not firing, since the excess skewness of annual employment growth is positive

and around 0.12 in both data and model. The proportional cost structure implies the existence

of firms that are neither posting vacancies nor laying off workers. The percentage of CRSP-

Compustat firms with zero net annual employment growth rate is about 9.7%. In the model,

this fraction is 7.7%. This finding lends support for the standard modeling assumption of

proportional costs.

The pricing kernel and its calibration give rise to a realistic annual average market return

(8.8%) and volatility (17.4%). In addition, the average risk-free rate is low (1%) and smooth

(2%) as in the data.

B. Equilibrium Forecasting Rules

The goal of the model and calibration is to endogenously generate a negative relation between

loadings on labor market tightness and expected returns, implying a negative factor risk

premium of labor market tightness, λθt . Given that aggregate productivity shocks carry a

positive and efficiency shocks a negative price of risk, γx > 0 and γp,0 < 0, Proposition 1

(Equation (32)) states that the model only generates a negative factor risk premium of labor

market tightness if labor market tightness reacts positively to efficiency shocks, i.e., τp > 0.

The dynamics of labor market tightness (23) are the equilibrium outcome of firm policies

and the solution to the labor market equilibrium condition (22). In particular, the endogenous

response of labor market tightness to efficiency shocks, τp > 0, depends on two economic

forces, namely, a cash-flow and a discount rate effects, which work in opposite directions. To

illustrate this trade-off, we compute the Euler equation for job creation, which is given by15

κh
q(θt, pt)

= EtMt+1

[
ext+1+zi,t+1αNα−1

i,t+1 − wi,t+1 −Ni,t+1
∂wi,t+1

∂Ni,t+1
+ (1− s) κh

q(θt+1, pt+1)

]
.

(36)
15For simplicity, we ignore the Lagrange multipliers on vacancy postings Vi,t and firing Fi,t.
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The left-hand side is the marginal cost and the right-hand the marginal benefit of job creation.

In Figure 3, we illustrate this trade-off by plotting labor market tightness as a function

of matching efficiency. Consider a positive matching efficiency shock which shifts p0 to p1.

A positive efficiency shock increases the rate at which vacancies are filled and thus reduces

the marginal costs of hiring workers, i.e., the left-hand side of the Euler equation (36). This

cash-flow effect implies that firms are willing to post more vacancies after a positive efficiency

shock. Consequently, the equilibrium moves along the solid black line and shifts from point

A to B, resulting in a higher labor market tightness θ1. This effect causes a positive relation

between labor market tightness and matching efficiency, i.e., τp > 0.

The cash-flow effect would be the only equilibrium effect in a setting in which agents are

risk-neutral. Since we interested in the pricing of labor market risks, we assume that efficiency

shocks carry a negative price of risk. As a result, a positive efficiency shock leads to an increase

in discount rates. This discount rate effect implies that firms reduce vacancy postings, as an

increase in discount rates reduces the value of job creation, i.e., the right-hand side of the

Euler equation (36). In Figure 3, the discount rate effect shifts the equilibrium labor market

tightness schedule downward. If the discount rate channel dominates the cash-flow channel

(blue dotted line), then the new equilibrium is point D, which is associated with a drop in

labor market tightness to θ3 and thus τp < 0.

In line with the equity market data, our benchmark calibration implies that the cash-flow

effect dominates the discount rate effect (dashed red line) such that labor market tightness is

positively related with matching efficiency (point C in Figure 3). Quantitatively, the equilib-

rium labor market tightness dynamics are

log θt+1 = 0.0043 + 0.9725 log θt + 5.6190(xt+1 − ρxxt) + 0.1744(pt+1 − ρppt).

Labor market tightness is highly persistent and firms increase their vacancy postings after

positive aggregate productivity shocks, τx > 0, and after positive efficiency shocks, τp > 0.

Similarly, the equilibrium dynamics of (realized) market excess return are

ReM,t+1 = 0.0080 + 0.8618(xt+1 − ρxxt)− 2.1741(pt+1 − ρppt).
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The average market excess return is 88 basis points per month and market prices increase

after aggregate productivity shocks, νx > 0, and decrease after efficiency shocks, νp < 0,

which is consistent with a positive price of risk for productivity shocks and a negative one for

efficiency shocks.

These two dynamics allow us to compute stock return loadings on labor market tightness,

which we will use in the following section to form portfolios. Proposition 1 (Equation (31))

states the functional form for labor market tightness loadings, βθi,t. As the above discussion

highlights, efficiency shocks and not productivity shocks are the driver of the labor market

tightness premium. So to gain intuition behind Equation (31), we assume that loadings on the

market are constant for simplicity. Labor market tightness loadings are negatively correlated

with expected returns when νx/(τpνx − τxνp) > 0. Because productivity has a positive effect

on job creation, τx > 0, and on market returns, νx > 0, this condition reduces to τp > νp which

again emphasizes that the cash-flow effect of efficiency shocks has to dominate the discount

rate effect.

C. Cross-Section of Returns

In the previous section, we have shown that labor market tightness obtains a negative factor

risk premium in equilibrium. To assess to what extent our model can quantitatively explain

the empirically observed negative relation between loadings on labor market tightness and

future stock returns, we follow the empirical procedure in Section II on simulated data. To

this end, we sort the simulated panel of firms into decile portfolios according to their labor

market tightness loadings, βθi,t, as defined in Proposition 1. Table X compares the simulated

return spread with the data on industry-neutral portfolios summarized in Table VII. As in the

data, we form monthly value-weighted portfolios with annual rebalancing. The table reports

average labor market tightness loadings, returns, and CAPM alphas across portfolios.

The model generates a realistic dispersion in labor market tightness loadings across port-

folios. The average monthly return difference between the low- and high-loading portfolios

is 0.36% relative to 0.37% in the data. Moreover, the CAPM cannot explain the return

differences across portfolios because in the model it does not span all systematic risk. In
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particular, Proposition 2 states that the CAPM alphas are inversely related with loadings on

labor market tightness, as long as the market price of labor market tightness is negative.

The cash-flow channel of hiring costs impacts the cross-section of returns in the following

way. Due to the proportional hiring and firing costs, the optimal firm policy exhibits regions

of inactivity where firms neither hire nor fire workers. Figure 4 illustrates the optimal firm

policy. The black line is the optimal policy when adjusting the workforce is costless. In

the frictionless model, firms always adjust to the target employment size independent of the

current size. The red curve is the optimal policy in the benchmark model. It displays two

kinks. In the middle region where the optimal policy coincides with the 45 degree line, firms

are inactive. In the inactivity region below the frictionless employment target, firms have too

few workers but hiring is too costly. In the inactivity region above the frictionless employment

target, firms have too many workers but firing is too costly.

Due to the time variation in matching efficiency, ideally, firms would like to hire when

marginal hiring costs, κh/q(θ, p), are low. This holds for the majority of firms as vacancy

postings increase with efficiency shocks. However, some firms are hit by low idiosyncratic

productivity shocks such that hiring is not optimal when matching efficiency is high. For

these firms, the employment policy is in the inaction region because the discount rate channel

dominates the cash-flow channel. In addition, wages increase with labor market tightness,

exacerbating low dividend payouts. Consequently, these firms have countercyclical dividends

and valuations with respect to matching efficiency shocks, which renders them more risky.

Since labor market tightness loadings and loadings on matching efficiency are positively re-

lated, our model can quantitatively replicate the negative relation between labor market

tightness loadings and expected returns.

Selecting firms based on loadings on labor market conditions is informative about future

returns whereas sorts based on hiring characteristics are not. In our model, the cost of hiring

depends on labor market tightness but the employment growth rate characteristic does not

control for this. This is why sorting firms by employment growth rates is not informative

about future returns.
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D. Comparative Statics

In Table XI, we shut down different channels of the model to gain a better understanding of

our modeling assumptions. As in the previous table, we form decile portfolios based on labor

market tightness loadings.

In the comparative statics experiments of Models (1) and (2), we change the pricing kernel.

In Model (1), we assume that the matching efficiency shocks are not priced, γp,0 = 0, and

raise the price of productivity shocks to 10, γx = 10. As a result, the Sharpe ratio of the

pricing kernel changes little but the return spread collapses to zero. Thus, the labor market

tightness factor affects valuations via priced variation in matching efficiency. With only the

productivity shocks priced, the cross-sectional spread is small and negative −0.09. In order

to analyze the time-variation of the price of risk of the matching efficiency shock, in Model

(2), we set γp,1 = 0, so that the aggregate p shock has constant price of risk. The simulated

cross-sectional spread reduces from 0.36 to 0.22.

In Models (3) and (4), the matching efficiency shocks p and the aggregate productivity

shocks x are turned off respectively so that Model (3) is only driven by aggregate productivity

shocks and Model (4) only by matching efficiency shocks. Since they are both one factor

models, we do not compute the multi-variate loadings as in Equation (3); rather, we compute

the uni-variate loadings on labor market tightness. Consistent with the fact that labor market

tightness is procyclical, in Model (3), LMT loads positively on aggregate productivity shocks

and thus has a positive price of risk. This implication is inconsistent with the data, that

means, negatively priced matching efficiency shock are crucial for the model mechanism to

work. On the other hand, with only matching efficiency shocks, labor market tightness has

a negative price of risk in Model (4). The portfolio spread has the correct sign but smaller

magnitude, indicating the importance of including productivity shock to generate enough

cross-sectional dispersion among firms.

In Models (5) to (9), we analyze the importance of the search frictions by changing the

parameters related to the labor market. In Model (5), we set θt = θss in the wage process so

that the wage rate does not depend on the labor market equilibrium. As a result, the wage rate
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is less cyclical and the portfolio spread increases to 0.44. In Model (6), we increase the firm’s

bargaining power to η = 0.5 and adjust the size of the labor force to match unemployment

rate of 5.8%. As the wage rate becomes more cyclical, the spread reduces to 0.18. Both

findings indicate that the stickiness of the wage process as a result of the bargaining process

contributes partly to the pricing power of the LMT factor.

To understand to what extent wedges created by search frictions drive the results, in

Model (7), we set κf = 0 so that there is zero cost to downsize. The spread reduces to

0.31, indicating the frictions of downsizing is not the major driving force of the cross-sectional

spread. In Model (8), we reduces κh from 0.4 to 0.3 and adjust the size of the labor force to

match unemployment rate of 5.8%. The spread reduces from 0.36 to 0.32. This shows that

the cost of hiring and not firing is the main driving force of the cross-sectional spread.

To analyze the effect of fixed operation cost, in Model (9), we set f0 = 0. The simulated

dividend to output ratio becomes 0.22, which is twice as large as the observed one. As a

result, the cross-sectional spread reduces 0.15. This shows that matching the profit margin

correctly is important for replicating the cross-sectional portfolio spread.

V. Conclusion

This paper analyzes the cross-sectional asset-pricing implications of a risk factor originat-

ing in the labor market. We first empirically document a robust negative relation between

stock return loadings on changes in labor market tightness and future equity returns in the

cross-section. We then develop a Labor Capital Asset Pricing Model with heterogeneous

firms making dynamic employment decisions under labor search frictions which replicates the

empirical facts.

We add two novel features to the standard labor search model. First, equilibrium labor

market tightness is determined endogenously as the total number of optimal vacancies posted

relative to the number of unemployed workers and depends on the time-varying firm-level

distribution. Second, we assume that the efficiency of the matching technology is stochastic.

As an equilibrium outcome, labor market tightness is positively related with efficiency shocks.
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Consequently, firms with low labor market tightness loadings are very sensitive to labor market

conditions that originate from matching efficiency shocks. These firms have cash flows which

are not hedged against positive efficiency shocks and hence require a high expected stock

returns.
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Appendix

A. Data

We describe the definitions of control variables in the Fama-MacBeth regressions of section

II.E. The regressions use stock returns from July of year t to June of year t+ 1 as dependent

variables. We also provide definitions for firm characteristics studied in section II. Compustat

data items are listed in parentheses where appropriate.

ME is the natural logarithm of market equity of the firm, calculated as the product of its

price per share and number shares outstanding at the end of June of calendar year t.

BM is the natural logarithm of the ratio of book equity to market equity for the fiscal

year ending in calendar year t− 1. Book equity is defined following Davis, Fama, and French

(2000) as stockholders’ book equity (SEQ) plus balance sheet deferred taxes (TXDB) plus

investment tax credit (ITCB) less the redemption value of preferred stock (PSTKRV). If the

redemption value of preferred stock is not available, we use its liquidation value (PSTKL).

If the stockholders’ equity value is not available in Compustat, we compute it as the sum of

the book value of common equity (CEQ) and the value of preferred stock. Finally, if these

items are not available, stockholders’ equity is measured as the difference between total assets

(AT) and total liabilities (LT). Market equity used to compute the book-to-market ratio is

the product of the price and the number of shares outstanding at the end of December of

calendar year t− 1.

RU is the stock return runup over twelve months ending in June of year t.

HN is the hiring rate, calculated following Belo, Lin, and Bazdresch (2013) as (Nt−1 −

Nt−2)/((Nt−1 + Nt−2)/2), where Nt is then number of employees (EMP) at the end of the

fiscal year ending in calendar year t.

AG is the asset growth rate, calculated following Cooper, Gulen, and Schill (2008) as

At−1/At−2− 1, where At is then value of total assets (AT) at the end of the fiscal year ending

in calendar year t.

IK is the investment rate, calculated following Belo, Lin, and Bazdresch (2013) as the ratio

of capital expenditure (CAPX) during the fiscal year ending in calendar year t− 1 divided by
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fiscal year t− 2 capital stock (PPENT).

Cash Flow 1 is defined following Cooper, Gulen, and Schill (2008) as [operating income

before depreciation (OIBDP) - interest expenses (XINT) - taxes (TXT) - preferred dividends

(DVP) - common dividends (DVC)] / total assets (AT).

Cash Flow 2 is defined by modifying Cooper, Gulen, and Schill (2008) definition to exclude

dividends: [operating income before depreciation (OIBDP) - interest expenses (XINT) - taxes

(TXT)] / total assets (AT).

Return on assets is defined following Cooper, Gulen, and Schill (2008) as operating income

before depreciation (OIBDP) scaled by total assets (AT).

B. Wages

In this section, we derive the Nash bargaining wage equation, in the spirit of Stole and Zwiebel

(1996) and Kuehn, Petrosky-Nadeau, and Zhang (2012). Denote SVi,t
the marginal value of

a vacancy posting for a firm that posts positive vacancies. Let ∂SH
i,t

∂Ni,t
, ∂SI

i,t

∂Ni,t
, and ∂SF

i,t

∂Ni,t
be

respectively the marginal values of an incumbent worker to a hiring firm, an inaction firm,

and a firing firm. For a hiring firm, take the first order condition with respect to Ni,t+1, and

apply the free entry conditions SVi,t
= 0, we obtain

∂Si,t
∂Vi,t

= − κh
q(θt, pt)

+ Et
[
Mt+1S

H
Ni,t+1

]
= 0. (37)

We consider a stable outcome profile characterized in Stole and Zwiebel (1996). If the

marginal worker leaves, the firm immediately loses the marginal product net of her wage

payment. In addition, a wage renegotiation ensues with the remaining employee, which leads

to a change in wage payment. In other words, the firm not only benefits from hiring the

marginal worker through an increase in output by the marginal product of labor, but also an

adjustment in the wage payment to all the existing workers. That is

∂Si,t
∂Ni,t

=
∂Yi,t
∂Ni,t

− wi,t −
∂wi,t
∂Ni,t

Ni,t + (1− s)Et
[
Mt+1SNi,t+1

]
, (38)

where SNi,t+1 denote the marginal value of an incumbent worker at time t+ 1.
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In order to perform Nash bargaining over the total surplus of a match, we need to specify

the marginal utilities to an employed and an unemployed worker. Since we do not model the

household size, let us assume a hypothetical representative family that makes decisions on

the extensive margin. φt is the marginal utility of the family that transforms money benefit

to utils. Denote JNi,t
the marginal utility of an employed worker to the representative family,

and JVi,t
the marginal value of an unemployed worker to the family. An unemployed worker

receives the unemployment benefit b for the current period. She has a probability f(θt) of

finding a job at a hiring firm next period. We can write the following recursive form for JUi,t

JUi,t

φt
= b+ Et

[
Mt+1

(
f(θt)

JHNi,t+1

φt+1
+ (1− f(θt))

JUi,t+1

φt+1

)]
. (39)

Given workers’ bargaining power η, Nash bargaining at time t + 1 between the newly

matched worker and the hiring firm satisfies the following

JNi,t+1 − JUi,t+1

φt+1
= η

[
JNi,t+1 − JUi,t+1

φt+1
+ SHNi,t+1

− SVi,t+1

]
. (40)

Combine (40) with (37), and plug in (39), we have

JUi,t

φt
= b+ E

[
Mt+1

JUi,t+1

φt+1

]
+ f(θt)

η

1− η
κh

q(θt, pt)
. (41)

An employed worker receives wi,t for period t, and has probability s of quitting the job

next period. We can write JNi,t
recursively

JNi,t

φt
= wi,t + Et

[
Mt+1

(
(1− s)JNi,t+1

φt+1
+ s

JUi,t+1

φt+1

)]
= wi,t + Et

[
Mt+1

JUi,t+1

φt+1

]
+ η

1−η (1− s)Et
[
Mt+1SNi,t+1

]
.

(42)

The last step follows from Nash bargaining at time t + 1 between the remaining worker and

her firm, which is potentially hiring, firing or neither of the two.

Plug (38), (41), (42) into
JNi,t

−JUi,t

φt
= η

1−η
[
SNi,t

− SVi,t

]
, and notice θt = f(θt)

q(θt,pt)
. We

conclude that the wage rate wi,t must satisfy the differential equation

wi,t − b = η

[
∂Yi,t
∂Ni,t

− ∂wi,t
∂Ni,t

Ni,t + κhθt

]
+ (1− η)b. (43)

The wage rate is solved as

wi,t = η

[
α

1− η(1− α)
Yi,t
Ni,t

+ κhθt

]
+ (1− η)b (44)
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C. The Labor CAPM

Proof of Proposition 1: A log-linear approximation of a pricing kernel is given by

Mt+1

EtMt+1
= emt+1−ln(EtMt+1) ≈ 1 +mt+1 − ln(EtMt+1).

Given the Euler equation Et[Mt+1R
e
t+1] = 0, this implies

Et[Rei,t+1] = −Covt(mt+1, R
e
t+1) (45)

For the pricing kernel (17), this implies

Et[Rei,t+1] = γxCovt(xt+1, R
e
i,t+1) + γpCovt(pt+1, R

e
i,t+1) (46)

= βxi,tλ
x + βpi,tλ

p
t (47)

where risk loadings are given by

βxi,t =
Covt(xt+1, R

e
i,t+1)

σ2
x

βpi,t =
Covt(pt+1, R

e
i,t+1)

σ2
p

, (48)

and factor risk premia are

λx = γxσ
2
x λpt = γp,tσ

2
p. (49)

Given the pricing kernel (27) and laws of motions (24) and (26), it follows from (45) that

Et[Rei,t+1] = (γM,tνx + γθ,tτx)Covt(xt+1, R
e
i,t+1) + (γθ,tτp + γM,tνp)Covt(pt+1, R

e
i,t+1). (50)

Thus, by matching coefficients in terms of covariance of (46) and (48), it follows that

γx = γM,tνx + γθ,tτx γp,t = γθ,tτp + γM,tνp

implying (28) holds.

Since xt and pt are uncorrelated, the factor loadings βx and βp satisfy the regression

Rei,t+1 − Et[Rei,t+1] = βxi,t(xt+1 − ρxxt) + βpi,t(pt+1 − ρppt) + εi,t+1, (51)

with loadings defined in equation (48). Similarly, the loadings on the market return and labor

market tightness satisfy the regression

Rei,t+1 − Et[Rei,t+1] = βMi,t
(
ReM,t+1 − Et[ReM,t+1]

)
+ βθi,t(ϑt+1 − Et[ϑt+1]) + εi,t+1. (52)
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Notice that since ReM,t+1 and ϑt+1 are not independent, it follows that

βMi,t 6=
Covt(Rei,t+1, R

e
M,t+1)

Vart(ReM,t+1)
βθi,t 6=

Covt(Rei,t+1, ϑt+1)
Vart(ϑt+1)

To compute the loadings on the market return and labor market tightness, equate equa-

tions (51) and (52) and substitute in laws of motion (24) and (26), thus,

βxi,t(xt+1 − ρxxt) + βpi,t(pt+1 − ρppt) + εi,t+1 =

βMi,t (νx(xt+1 − ρxxt) + νp(pt+1 − ρppt)) + βθi,t(τx(xt+1 − ρxxt) + τp(pt+1 − ρppt)) + εi,t+1.

By matching the coefficients in terms of (xt+1 − ρxxt) and (pt+1 − ρppt), we get

βxi,t = βMi,t νx + βθi,tτx βpi,t = βMi,t νp + βθi,tτp

implying that (30) and (31) hold.

Next, substitute (30) and (31) into (29)

Et[Rei,t+1] =
τxβ

p
i,t − τpβxi,t

νpτx − νxτp
λMt +

νpβ
x
i,t − νxβ

p
i,t

νpτx − νxτp
λθt (53)

and matching the coefficients of βxi,t and βpi,t with (47) implies

λx(νpτx − νxτp) = νpλ
θ
t − τpλMt

λpt (νpτx − νxτp) = τxλ
M
t − νxλθt

Solving for λθt and λMt confirms (32).

Proof of Proposition 2: Given (26), univariate loadings on the market return can be

computed via

βCAPMi,t =
Covt

(
Rei,t+1, R

e
M,t+1

)
Vart

(
ReM,t+1

)
=

νxCovt
(
Rei,t+1, xt+1

)
+ νpCovt

(
Rei,t+1, pt+1

)
Vart

(
ReM,t+1

) =
νxσ

2
xβ

x
i,t + νpσ

2
pβ

p
i,t

ν2
xσ

2
x + ν2

pσ
2
p

.

Notice that the CAPM factor risk premium stays the same in the factor or multi-factor

models, that is, λCAPMt = λMt = νxλ
x + νpλ

p
t . Given the pricing of expected excess returns in
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terms of independent aggregate risks, Et[Rei,t+1] = βxi,tλ
x
t +βpi,tλ

p
t , we can calculate the CAPM

mispricing as

αCAPMi,t = βxi,tλ
x
t + βpi,tλ

p
t − βCAPMi,t λCAPMt =

(
βxi,tνp − β

p
i,tνx

)
(νpγx − νxγp)σ2

xσ
2
p

ν2
xσ

2
x + ν2

pσ
2
p

.

Using the definition of βθi,t in (31) and γθ,t in (28), it follows that (34) holds.

D. Computational Algorithm

To solve the model numerically, we discretize the state space. All shocks (x, z, p) follow finite

states Markov chains according to Rouwenhorst (1995) with 5 states for x, 11 for z and 5 for

p. We create an evenly spaced grid of 50 points for employment N in the interval [0.01, 5.0].

The lower and upper bounds of N are set such that the optimal policies are not binding in

the simulation16. The space of the labor market tightness θ needs to be transformed into a

discrete space as well. We use an evenly spaced grid in the interval [0.25, 1.25] with 30 points.

The upper bound for θ is chosen such that the simulated paths of equilibrium labor market

tightness never step outside the bounds. The choice variable N ′ is a vector containing 5000

elements evenly spaced on the interval [0.01, 5.0]. We use linear interpolation to obtain the

value function off grid points. Our results are robust to a higher numbers of the grid points,

non-evenly spaced grids, and nonlinear interpolation methods.

The computation algorithm amounts to the following iterative procedure:

1. Initial guess: Take an initial guess for the coefficient vector τ in the law of motion

(23). Since the time series of θt is procyclical and highly persistent, we start from

τ = (−0.23; 0.5; 0; 0; 1; 0). At steady state, τ0 = (1− τθ) log θss = −0.23.

2. Optimization: Solve the firm’s optimization problem (19) given the forecasting rule

coefficients τ . For this step we use value function iteration. Specifically, the firm value

function solves

S(N, z, x, p, θ) = max{S(N, z, x, p, θ)h, S(N, z, x, p, θ)f}, (54)
16In this heterogeneous firms model, as long as the aggregate employment rate is well-defined in [0, 1],

individual firm size is not bounded by 1 as in the case of representative firm models.
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where

S(N, z, x, p, θ)h = max
N ′≥(1−s)N

{(1− η)ex+zNα − [ηκhθ + (1− η)b]N−

κh
q(θ)

[N ′ − (1− s)N ] + E[M ′S(N ′, z′, x′, p′, θ′)|z,N, x, p, θ]}, (55)

and

S(N, z, x, p, θ)f = max
N ′≤(1−s)N

{(1− η)ex+zNα − [ηκhθ + (1− η)b]N−

κf [(1−)N −N ′] + E[M ′S(N ′, z′, x′, p′, θ′)|z,N, x, p, θ]}. (56)

3. Simulation: Use the firm’s optimal employment policies V (N, z, x, p, θ) and F (N, z, x, p, θ)

to simulate a panel of N = 5000 firms over T = 5300 periods. Here we emphasize that

at each period, we impose labor market equilibrium by solving θt as the fixed point in

Equation (22). In this fashion, we obtain a time series of realized θt.

4. Update coefficients: we truncate the initial 300 months as burn-in periods, and use the

stationary region of the simulated data to estimate the vector τ by OLS. Update the

forecasting coefficients, and restart from the optimization step. Continue the outer loop

iteration until the coefficients converge and the goodness-of-fit measures are satisfactory.
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Figure 1. Labor Market Tightness and Its Components
This figure plots the monthly time series of the vacancy index, the labor force participation
rate, the unemployment rate, and the labor market tightness.
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Figure 2. Returns of the Labor Market Tightness Factor
This figure plots in Panel A the log cumulative return of the portfolio that longs the decile of
stocks with the lowest exposure to the labor market tightness factor and shorts the decile of
stocks with the highest loadings and plots in Panel B the monthly returns of this portfolio.
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Figure 3. Labor Market Tightness and Efficiency Shock
This figure illustrates the endogenous relation between equilibrium labor market tightness,
θ(p), and efficiency shocks, p, to the matching technology.
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Figure 4. Optimal Employment Policies for a Firm under Search Frictions
This figure demonstrates the optimal labor adjustment policies for a firm under labor search
frictions. The horizontal axis plots the firm’s current employment level N , and the vertical
axis indicates the optimal future employment level N∗, keeping firm’s other state variables
(x, p, θ, z) fixed. The black horizontal line indicates the optimal future employment level in
a frictionless environment, which is independent of the current employment N . In contrast,
the solid red curve N∗ depicts the optimal policies under search frictions. The region Hiring
constraint denotes firms who wish to, but cannot refill their lost workers. The region Excess
labor consists firms who wish to, but cannot discharge its workforce. The sum of the two
regions are referred to as the Inaction region, in which firms do not adjust the employee size
freely.
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Table I
Summary Statistics

This table reports summary statistics for the monthly labor market tightness factor (ϑ),
change in the vacancy index (VAC), change in the unemployment rate (UNEMP), change in
the labor force participation rate (LFPR), change in the industrial production (IP), change
in the consumer price index (CPI), dividend yield (DY), T-bill rate (TB), term spread (TS),
and default spread (DS) calculated for the 1954-2012 period. Means and standard deviations
are in percent.

Correlations

Mean St dev ϑ VAC UNEMP LFPR IP CPI DY TB TS

ϑ 0.02 5.48
VAC -0.10 3.46 0.78
UNEMP 0.16 3.38 -0.83 -0.36
LFPR 0.01 0.30 -0.13 0.04 0.15
IP 0.24 0.89 0.56 0.44 -0.48 0.04
CPI 0.31 0.32 -0.08 -0.04 0.06 0.05 -0.08
DY 3.20 1.13 -0.14 0.00 0.12 0.07 -0.10 0.34
TB 0.39 0.24 -0.12 -0.08 0.04 0.05 -0.09 0.52 0.51
TS 1.45 1.22 0.11 0.10 -0.05 -0.03 0.04 -0.29 -0.12 -0.39
DS 0.99 0.45 -0.26 -0.20 0.22 -0.03 -0.28 0.11 0.33 0.33 0.29

48



Table II
Characteristics of Labor Market Tightness Portfolios

This table reports average characteristics for the ten portfolios of stocks sorted by their
loadings on the labor market tightness factor, βθ. βM is market beta; BM is the book-to-
market ratio; ME is the market equity decile; RU is the 12-month return runup, in percent;
AG, IK, and HN are the asset growth, investment, and new hiring rates, respectively, all
shown in percent. Mean characteristics are calculated in each annual cross-section and then
averaged. The sample period is 1954-2012 except for variables that use Compustat data (BM,
AG, IK, and HN) where it is 1960-2012.

Decile βθ βM BM ME RU AG IK HN

Low -0.80 1.35 0.89 4.84 15.44 12.92 32.59 6.36
2 -0.38 1.16 0.92 5.73 13.68 13.02 29.39 7.16
3 -0.23 1.07 0.91 6.09 12.67 11.01 27.34 5.70
4 -0.12 1.01 0.92 6.27 12.92 11.36 27.05 6.72
5 -0.03 1.00 0.92 6.22 13.37 11.17 26.08 5.00
6 0.06 1.01 0.94 5.99 13.08 11.51 26.44 5.12
7 0.16 1.04 0.94 5.84 13.35 11.30 27.35 5.94
8 0.27 1.08 0.95 5.52 13.55 11.41 28.17 5.50
9 0.45 1.17 0.94 4.98 13.71 12.23 29.54 6.95
High 0.91 1.33 0.92 3.99 16.13 12.63 32.87 6.86
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Table III
Performance of Labor Market Tightness Portfolios

This table reports average raw returns and alphas, in percent per month, and loadings from the four-
factor model regressions for the ten portfolios of stocks sorted on the basis of their loadings on the
labor market tightness factor, as well as for the portfolio that is long the low decile and short the high
group. The bottom row gives t-statistics for the low-high portfolio. Firms are assigned into deciles
at the end of every month τ and the value-weighted portfolios are held without rebalancing for 12
months beginning in month τ + 2. Conditional alphas are intercepts from regression Rj,t − Rf,t =
αj + βj [1 Zt−1]′ (RM,t − Rf,t) + ej,τ , where j indexes portfolios, t indexes months, βj is a 1 × (k + 1)
parameter vector, and Zt−1 is a 1× k instrument vector. Ferson and Schadt (FS) conditional alpha is
computed using as instruments demeaned dividend yield, term spread, T-bill rate, and default spread.
Boguth, Carlson, Fisher, and Simutin (BCFS) conditional alpha is computed by additionally including
as instruments lagged 6- and 36-month market returns and average lagged 6- and 36-month betas of
the portfolios. The sample period is 1954-2012.

Raw Unconditional Alphas Cond. Alphas 4-Factor Loadings

Decile Return CAPM 3-Factor 4-Factor FS BCFS MKT HML SMB UMD

Low 1.12 0.04 0.06 0.04 0.08 0.08 1.16 -0.11 0.38 0.02
2 1.09 0.13 0.13 0.13 0.11 0.11 1.05 0.01 -0.02 0.00
3 1.05 0.13 0.11 0.13 0.11 0.10 0.99 0.06 -0.08 -0.02
4 1.01 0.11 0.09 0.09 0.10 0.10 0.95 0.07 -0.10 -0.01
5 0.98 0.09 0.05 0.03 0.06 0.05 0.96 0.13 -0.11 0.01
6 0.96 0.06 0.03 0.01 0.04 0.04 0.97 0.09 -0.11 0.03
7 0.96 0.05 0.03 0.04 0.03 0.03 0.98 0.04 -0.07 -0.01
8 0.94 -0.01 -0.02 0.03 -0.01 0.00 1.01 0.00 0.02 -0.05
9 0.83 -0.20 -0.19 -0.13 -0.16 -0.14 1.11 -0.08 0.18 -0.07
High 0.65 -0.47 -0.46 -0.37 -0.40 -0.38 1.18 -0.19 0.62 -0.09

Low-High 0.47 0.51 0.52 0.41 0.48 0.47 -0.02 0.07 -0.24 0.11
t-statistic [3.41] [3.78] [3.83] [2.99] [3.56] [3.46] [-0.62] [1.41] [-5.18] [3.30]
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Table IV
Summary Statistics of Risk Factors

This table reports summary statistics for the difference in returns on stocks with low and
high loadings βθ on the labor market tightness factor as well as for market excess return, and
value, size and momentum factors. All data are monthly. Means and standard deviations are
in percent. The sample period is 1954-2012.

Correlations

Standard Sharpe Low-high Mkt excess Value Size
Mean deviation ratio βθ return return factor factor

Low-high βθ return 0.46 3.60 0.13
Market excess return 0.55 4.40 0.13 -0.11
Value factor 0.38 2.75 0.14 0.08 -0.27
Size factor 0.20 2.95 0.07 -0.22 0.28 -0.21
Momentum factor 0.73 4.06 0.12 0.15 -0.13 -0.17 -0.03
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Table V
Robustness of Labor Market Tightness Portfolios

This table reports average raw returns and alphas, in percent per month, four-factor loadings, and corresponding
t-statistics for the portfolio that is long the decile of stocks with low loadings on the labor market tightness
factor and short the decile with high loadings. In Panel A, firms are assigned into deciles at the end of May of
year T and are held from July of year T to June of year T + 1. In Panel B, firms are assigned into deciles at
the end of every month τ and are held during month τ + 2. In Panel C, firms are assigned into deciles at the
end of every month τ and are held without rebalancing for 12 month beginning in month τ + 3. In Panel D,
firms are assigned into quintiles rather than deciles. In Panel E, firms below 20th percentile of NYSE market
capitalization are excluded from the sample. In Panel F, labor market tightness factor is defined as the residual
from a time-series regression of ϑ defined in equation (2) on change in industrial production, change in consumer
price index, dividend yield, T-bill rate, term spread, and default spread. In Panel G, labor market tightness
factor is defined as the residual from fitting log of labor market tightness to an ARMA(1,1) model. In Panel H,
regression (3) is amended to also include size, value, and momentum factors. Conditional alphas are intercepts
from regression Rj,t−Rf,t = αj+βj [1 Zt−1]′ (RM,t−Rf,t)+ej,τ , where j indexes portfolios, t indexes months, βj
is a 1×(k+1) parameter vector, and Zt−1 is a 1×k instrument vector. Ferson and Schadt (FS) conditional alpha
is computed using as instruments demeaned dividend yield, term spread, T-bill rate, and default spread. Boguth,
Carlson, Fisher, and Simutin (BCFS) conditional alpha is computed by additionally including as instruments
lagged 6- and 36-month market returns and average lagged 6- and 36-month betas of the portfolios. In all panels,
portfolios are initially value-weighted. The sample period is 1954-2012.

Raw Unconditional Alphas Cond Alphas 4-Factor Loadings

Decile Return CAPM 3-Factor 4-Factor FS BCFS MKT HML SMB UMD

A. Non-overlapping portfolios
Low-High 0.55 0.59 0.51 0.47 0.50 0.50 0.01 0.24 -0.25 0.04
t-statistic [3.42] [3.68] [3.19] [2.89] [3.16] [3.11] [0.29] [3.92] [-4.50] [0.94]
B. One-month holding
Low-High 0.51 0.58 0.61 0.46 0.54 0.52 -0.06 0.04 -0.28 0.16
t-statistic [2.99] [3.44] [3.63] [2.67] [3.35] [3.23] [-1.42] [0.67] [-4.84] [3.85]
C. Two-months waiting
Low-High 0.47 0.52 0.52 0.42 0.48 0.47 -0.02 0.07 -0.24 0.11
t-statistic [3.49] [3.84] [3.90] [3.08] [3.62] [3.52] [-0.58] [1.35] [-5.17] [3.23]
D. Quintile portfolios
Low-High 0.32 0.39 0.39 0.30 0.35 0.32 -0.06 0.07 -0.19 0.09
t-statistic [2.82] [3.44] [3.44] [2.60] [3.13] [2.90] [-2.29] [1.61] [-4.91] [3.33]
E. Excluding micro caps
Low-High 0.45 0.49 0.51 0.35 0.49 0.46 -0.05 0.01 -0.01 0.17
t-statistic [3.72] [4.05] [4.15] [2.84] [4.08] [3.88] [-1.79] [0.31] [-0.22] [5.54]
F. Alternative definition 1 of ϑ
Low-High 0.44 0.48 0.50 0.46 0.47 0.46 -0.04 0.02 -0.19 0.04
t-statistic [3.22] [3.55] [3.65] [3.32] [3.53] [3.46] [-1.30] [0.44] [-4.08] [1.06]
G. Alternative definition 2 of ϑ
Low-High 0.45 0.51 0.49 0.41 0.45 0.44 -0.03 0.11 -0.24 0.09
t-statistic [3.28] [3.68] [3.58] [2.87] [3.29] [3.20] [-0.80] [2.13] [-4.92] [2.70]
H. Alternative computation of βθ

Low-High 0.29 0.36 0.38 0.30 0.32 0.31 -0.08 0.03 -0.08 0.20
t-statistic [2.36] [2.90] [3.04] [2.55] [2.62] [2.54] [-2.55] [0.70] [-1.82] [6.46]
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Table VI
Fama-MacBeth Regressions of Annual Stock Returns

This table reports the results of annual Fama-MacBeth regressions. Stock returns from July of
year T to June of year T + 1 are regressed on βθ, loading on the labor market tightness factor
measured as of the end of May of year T ; βM , market beta measured as of the same time; ME,
log of market equity measured as of the end of June of year T ; BM, log of the ratio of book
equity to market equity measured following Davis, Fama, and French (2000); RU, 12-month
stock return ending in June of year T ; and HN, IK, and AG, the new hiring, investment,
and asset growth rates, respectively, defined as in Belo, Lin, and Bazdresch (2013). Reported
are average coefficients and the corresponding Newey and West (1987) t-statistics. Details of
variable definitions are in Appendix A. The sample period is 1954-2012.

Reg βθ βM ME BM RU HN IK AG

(1) -0.028 0.000 -0.015
[-2.46] [-0.01] [-2.70]

(2) -0.030 0.009 -0.011 0.035
[-2.30] [0.67] [-1.95] [4.20]

(3) -0.040 0.010 -0.012 0.037 0.066
[-2.85] [0.72] [-2.22] [4.65] [3.46]

(4) -0.043 0.010 -0.012 0.032 0.067 -0.050
[-3.01] [0.72] [-2.29] [4.09] [3.38] [-3.48]

(5) -0.048 0.011 -0.013 0.033 0.066 -0.017
[-2.94] [0.78] [-2.30] [4.37] [3.32] [-1.54]

(6) -0.040 0.012 -0.011 0.032 0.066 -0.075
[-2.75] [0.83] [-2.13] [4.10] [3.36] [-5.02]

(7) -0.046 0.011 -0.012 0.028 0.068 0.004 0.014 -0.091
[-3.01] [0.77] [-2.25] [3.67] [3.36] [0.26] [1.16] [-4.66]
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Table VII
Performance of Labor Market Tightness Portfolios: Industry-Level Analysis

This table reports in Panel A average raw returns and alphas, in percent per month, and loadings
from the four-factor model regressions for the ten portfolios of stocks sorted within each of the 48
Ken French-defined industries on the basis of their loadings on the labor market tightness factor.
Each of the ten portfolios thus has similar industry composition. Panel B repeats the analysis for
the ten portfolios obtained by sorting 48 value-weighted industry portfolios from Ken French’s data
library on the basis of their loadings on the labor market tightness factor. The table also shows
returns, alphas, and loadings for the portfolio that is long the low decile and short the high group.
The bottom row of each panel gives t-statistics for the low-high portfolio. Firms (in Panel A) or
industries (in Panel B) are assigned into deciles at the end of every month τ and are held without
rebalancing for twelve months beginning in month τ + 2. Conditional alphas are intercepts from
regression Rj,t − Rf,t = αj + βj [1 Zt−1]′ (RM,t − Rf,t) + ej,τ , where j indexes portfolios, t indexes
months, βj is a 1× (k+1) parameter vector, and Zt−1 is a 1×k instrument vector. Ferson and Schadt
(FS) conditional alpha is computed using as instruments demeaned dividend yield, term spread, T-bill
rate, and default spread. Boguth, Carlson, Fisher, and Simutin (BCFS) conditional alpha is computed
by additionally including as instruments lagged 6- and 36-month market returns and average lagged
6- and 36-month betas of the portfolios. The sample period is 1954-2012.

Raw Unconditional Alphas Cond. Alphas 4-Factor Loadings

Decile Return CAPM 3-Factor 4-Factor FS BCFS MKT HML SMB UMD

A. Portfolios of Stocks Sorted by Labor Market Tightness Loadings Within Industries
Low 1.10 0.09 0.04 0.02 0.10 0.09 1.10 0.06 0.20 0.03
2 1.06 0.10 0.06 0.07 0.09 0.09 1.03 0.06 0.06 -0.01
3 1.01 0.08 0.07 0.11 0.07 0.07 0.99 0.01 -0.05 -0.04
4 0.99 0.08 0.07 0.08 0.06 0.07 0.97 0.03 -0.07 -0.01
5 0.97 0.06 0.06 0.07 0.04 0.04 0.98 0.03 -0.12 -0.02
6 0.99 0.08 0.08 0.08 0.06 0.05 0.98 0.02 -0.12 0.00
7 0.93 0.01 0.00 0.00 -0.01 -0.01 0.99 0.03 -0.08 0.00
8 0.92 -0.01 -0.03 -0.03 -0.01 -0.01 1.00 0.05 -0.05 0.00
9 0.91 -0.06 -0.09 -0.06 -0.04 -0.03 1.05 0.05 0.04 -0.04
High 0.73 -0.27 -0.34 -0.31 -0.25 -0.25 1.08 0.09 0.27 -0.03

Low-High 0.37 0.36 0.39 0.33 0.35 0.34 0.02 -0.03 -0.07 0.06
t-statistic [3.84] [3.76] [4.01] [3.36] [3.79] [3.63] [0.96] [-0.78] [-1.98] [2.40]

B. Portfolios of Industries Sorted by Labor Market Tightness Loadings
Low 1.30 0.34 0.23 0.13 0.29 0.27 1.03 0.22 0.25 0.11
2 1.14 0.19 0.10 0.10 0.15 0.14 1.00 0.16 0.16 0.01
3 1.13 0.18 0.08 0.07 0.15 0.14 1.00 0.16 0.21 0.02
4 1.11 0.17 0.08 0.05 0.14 0.13 0.99 0.17 0.23 0.03
5 1.08 0.13 0.04 0.05 0.11 0.10 1.00 0.14 0.20 -0.01
6 1.05 0.09 0.00 0.04 0.06 0.06 1.03 0.14 0.17 -0.04
7 1.04 0.07 -0.03 0.01 0.03 0.03 1.03 0.16 0.18 -0.04
8 1.09 0.12 0.00 0.05 0.06 0.06 1.05 0.19 0.17 -0.06
9 0.90 -0.08 -0.21 -0.11 -0.15 -0.14 1.05 0.19 0.21 -0.11
High 0.96 -0.03 -0.16 -0.13 -0.09 -0.10 1.05 0.19 0.32 -0.03

Low-High 0.34 0.37 0.39 0.26 0.38 0.37 -0.02 0.03 -0.07 0.13
t-statistic [2.37] [2.55] [2.60] [1.71] [2.54] [2.45] [-0.48] [0.56] [-1.41] [3.67]



Table VIII
Benchmark Parameter Calibration

This table lists the parameter values of the benchmark calibration. The model is based on a
monthly frequency.

Parameter Symbol Value

Labor Market

Workers quit rate s 0.022
Matching function elasticity ξ 1.27
Bargaining power of worker η 0.1
Benefit of being unemployed b 0.75
Returns to scale of labor α 0.75
Flow cost of vacancy posting κh 0.4
Flow cost of firing κf 0.2
Fixed operating costs f0 0.13
Proportional operating costs f1 0.045

Shocks

Persistence of aggregate productivity shock ρx 0.951/3

Cond. volatility of aggregate productivity shock σx 0.005
Persistence of matching efficiency shock ρp 0.881/3

Cond. volatility of matching efficiency shock σp 0.025
Persistence of idiosyncratic productivity shock ρz 0.96
Cond. volatility of idiosyncratic productivity shock σz 0.072

Pricing Kernel

Time discount rate β 0.9935
Price of risk of aggregate productivity shock γx 1
Price of risk of matching efficiency shock γp,0 −5
Sensitivity of matching efficiency shock γp,1 5
Interest rate sensitivity φ −0.0225
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Table IX
Aggregate and Firm-specific Target Moments

This table summarizes the empirical aggregate and firm-specific moments used to calibrate
model parameters.

Moment Data Model

Aggregate Labor Market

Unemployment rate 0.058 0.058
Hiring rate 0.035 0.035
Layoff rate 0.014 0.013
Labor market tightness 0.634 0.635
Volatility of labor market tightness factor 0.055 0.053
Labor share of income 0.717 0.706
Volatility of aggregate wages to aggregate output 0.520 0.517
Aggregate profits to aggregate output 0.110 0.110
Firm-Level Employment

Volatility of annual employment growth rates 0.236 0.219
Skewness of annual employment growth rates 0.123 0.140
Fraction of firms with zero annual employment growth rates 0.097 0.077

Asset Prices

Average risk-free rate 0.010 0.010
Volatility of risk-free rate 0.021 0.021
Average market return 0.081 0.088
Stock market volatility 0.176 0.174
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Table X
Portfolio Returns of the Benchmark Model

This table compares our benchmark model performance with data. All numbers are expressed
in percentage terms. Return refers to future portfolio equity return. Under benchmark
calibration, we simulate panels of firms and compute their theoretical loadings on the labor
market tightness factor. We sort portfolios according to their LMT loadings and calculate
the realized and expected future annualized equity returns. The benchmark model produces
monotonically decreasing portfolio returns, which resembles the data.

Data Model

Decile βθ Return αCAPM βθ Return αCAPM

Low -0.74 1.10 0.09 -0.84 1.09 0.23
2 -0.39 1.06 0.10 -0.64 1.02 0.19
3 -0.23 1.01 0.08 -0.48 0.99 0.16
4 -0.12 0.99 0.08 -0.39 0.96 0.15
5 -0.03 0.97 0.06 -0.23 0.91 0.13
6 0.06 0.99 0.08 -0.18 0.92 0.12
7 0.16 0.93 0.01 0.00 0.86 0.00
8 0.28 0.92 -0.01 0.08 0.85 -0.01
9 0.45 0.91 -0.06 0.29 0.79 -0.04
High 0.85 0.73 -0.27 0.61 0.73 -0.08

Low-High -1.59 0.37 0.36 -1.45 0.36 0.31
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Table XI
Portfolio Returns across Alternative Calibrations

This table compares the model-simulated expected future equity returns of 10 portfolios sorted
by the loadings on labor market tightness factor across alternative calibrations. Benchmark
stands for the benchmark labor capital asset pricing model that we propose in this paper. In
the comparative statics experiments, Model (1) - (2) change the pricing kernel; Model (3) - (4)
change the shock process; Model (5) - (9) change the parameters or model related to the labor
market. In Model (1), we assume that matching efficiency shocks are not priced, γp,0 = 0,
and raise the price of productivity shocks to 10, γx = 10. In Model (2), we set γp,1 = 0, so
that the aggregate p shock has constant price of risk. The cross-sectional spread becomes
0.22. In Model (3) - (4), p shock and x shock are turned off respectively. In Model (5), we
set θt = θss in the wage process so that the wage rate does not depend on the labor market
equilibrium. In Model (6), we increase the firm’s bargaining power to η = 0.5 and adjust the
labor force scaler to match unemployment rate at 5.8%. In Model (7), we set κf = 0 so that
there is zero cost to downsize. In Model (8), we reduces κh from 0.4 to 0.3 and adjust the
labor force scaler to match unemployment rate at 5.8%. In Model (9), we remove the fixed
operation cost f0 = 0.

Decile (1) (2) (3) (4) (5) (6) (7) (8) (9)
Low 0.89 1.00 0.86 1.08 1.13 0.99 1.05 1.06 0.94
2 0.91 0.97 0.87 1.03 1.10 0.96 1.00 1.01 0.92
3 0.91 0.95 0.85 1.00 1.08 0.94 0.96 0.97 0.91
4 0.93 0.94 0.87 0.98 1.05 0.94 0.95 0.95 0.90
5 0.93 0.91 0.87 0.94 1.03 0.91 0.90 0.91 0.88
6 0.94 0.91 0.87 0.94 0.99 0.91 0.90 0.91 0.88
7 0.97 0.88 0.88 0.89 0.96 0.88 0.86 0.86 0.86
8 0.97 0.87 0.87 0.88 0.93 0.88 0.84 0.85 0.85
9 0.96 0.84 0.86 0.83 0.85 0.85 0.80 0.80 0.83
High 0.98 0.78 0.88 0.77 0.69 0.80 0.74 0.74 0.79

Low-High -0.09 0.22 -0.02 0.31 0.44 0.18 0.31 0.32 0.15

58


	Introduction
	Empirical Results
	Data
	Labor Market Tightness Factor
	Portfolio Sorts
	Robustness of Portfolio Sorts
	Fama-MacBeth Regressions
	Industry-Level Analysis

	Model
	Revenue
	Matching
	Wages
	Firm Value
	Equilibrium
	Approximate Aggregation
	Equilibrium Risk Premia

	Quantitative Results
	Calibration
	Equilibrium Forecasting Rules
	Cross-Section of Returns
	Comparative Statics

	Conclusion
	Data
	Wages
	The Labor CAPM
	Computational Algorithm



