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Abstract

Estimates of climate policy costs have been constrained by limited policy experience to date.

This paper develops an empirical method that combines prediction market prices with stock

returns to estimate the expected cost to firms of the Waxman-Markey climate bill proposed

in 2009. My results suggest that Waxman-Markey would have reduced the value of listed

firms by $150 billion with greater losses for carbon and energy intensive sectors. A regression

discontinuity design finds sectors entitled to free allowances under the bill experienced larger

stock returns. For unlisted firms, I use lobbying expenditures to bound costs within a partial

identification framework.
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1 Introduction

The debate on climate change policy is informed by estimates of policy costs and benefits. Recent
empirical studies have strengthened our understanding of the benefits of climate policy.1 However,
the limited number of regulations to date has restricted efforts to estimate the costs of climate pol-
icy. Instead, evaluation of climate policy has traditionally relied on computable general equilibrium
models which employ parameters that may be difficult to constrain. This challenge is particularly
relevant for the United States which, despite being the largest cumulative emitter of greenhouse
gases, has yet to implement policies that reveal the shadow price of carbon.

This paper develops and applies a novel method for estimating the cost to firms of proposed
climate policy. I combine data from prediction markets with stock prices and lobbying expendi-
tures to estimate the expected cost to firms of the Waxman-Markey bill, a cap-and-trade policy that
passed the U.S. House of Representatives in 2009 but failed passage in the U.S. Senate and thus
was never implemented. Importantly, this method acknowledges the general uncertainty behind
climate policy costs by turning to the public and private information revealed by market partici-
pants and firms within a relatively transparent, structurally minimal framework.

Market beliefs over the likelihood of an event occurring can be approximated by prediction
market prices (Snowberg, Wolfers and Zitzewitz, 2007; Wolfers and Zitzewitz, 2009; Snowberg,
Wolfers and Zitzewitz, 2011, 2012). When combined with stock prices, prediction markets can
be used in an event study to estimate the abnormal stock returns associated with a probable event,
even if this event is never realized. This paper examines changes in firm values in response to
price fluctuations for a cap-and-trade prediction market available from 2009 to 2010. I find that the
expected incidence of Waxman-Markey would have reduced the market values of U.S. listed firms
by a total of $150 billion.

In addition to estimating the cost to firms of climate policy, this paper contributes to the lit-
erature by developing a general framework for use of prediction markets in event studies. This
approach may be applied to forecasting the cost to firms of other proposed, and perhaps unre-
alized, policies with available prediction markets. Recent examples include U.S. legislation on
immigration, social security, and health care policy. My framework addresses common concerns
such as selection of benchmark controls and error structure restrictions as well as those specific to
prediction market such as contract expiration. Importantly, I also provide indirect tests for biases
that may be generated from thin trading and potential price manipulation. In particular, a series of
statistical tests employing transactions-level data from the cap-and-trade prediction market finds
that my main result is robust to concerns about trading volume, individual large volume traders,

1See, for example, Schlenker, Hanemann and Fisher (2005), Deschênes and Greenstone (2007), Schlenker and
Roberts (2009), Feng, Oppenheimer and Schlenker (2012), Graff Zivin and Neidell (2010), Deschênes and Greenstone
(2011), Hsiang, Meng and Cane (2011), Dell, Jones and Olken (2012), and Hsiang, Burke and Miguel (2013).
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and the overall competitiveness of the bidding environment as captured by a Herfindahl index.
As further validation of my approach, I find heterogeneity in sectoral effects that reflects both

broad concerns about climate policy incidence and specifically to a critical feature of the Waxman-
Markey bill. Specifically, I find the strongest effects in sectors with greater carbon intensity and
energy intensity, import penetration, and exposure to U.S. product markets. Second, Waxman-
Markey allocated free allowances to manufacturing sectors with historic energy intensity greater
than 5%. Using this threshold rule as the basis for a regression discontinuity design, I find that
firms expecting an allocation of free allowances experience a relative gain in value. This result
implies that markets responded not only generally to climate policy prospects, but also to the
specific distributional consequences of the Waxman-Markey bill. Thus, while the available data
does not allow me to completely rule out biases due to thin trading or market manipulation, the
combined weight of robustness checks at the aggregate and sectoral levels suggests it is unlikely
that any remaining bias would substantially alter my main result.

A proposed cap-and-trade system should also affect unlisted firms, whose market values are
not observed. Using a partial identification framework with missing outcomes following Manski
(2003), I augment my analysis with information that bounds the cost of cap-and-trade expected by
unlisted firms. My particular solution employs Congressional lobbying expenditures, a variable
for which information related to Waxman-Markey is available for both listed and unlisted firms.
The procedure enlists the observation that lobbying expenditures may reveal the magnitude of cap-
and-trade costs but not the sign of these costs. I first show that lobbying expenditures strongly
predict estimated absolute Waxman-Markey costs for listed firms. I then match listed and unlisted
firms according to lobbying expenditures to predict the absolute Waxman-Markey costs borne by
unlisted firms. Through this procedure, I recover conservative bounds between $70 and $240
billion for the total cost borne by all firms.

The approach adopted by this paper is well-suited for estimating the cost of climate policy for
two reasons. First, the induced innovation hypothesis (Hicks, 1932) suggests that climate policy
could trigger significant technological advances (Jaffe, Newell and Stavins, 2003). While this has
been explored theoretically (Goulder and Schneider, 1999; Nordhaus, 2002; Buonanno, Carraro
and Galeotti, 2003; Acemoglu et al., 2012), induced technological change presents modeling dif-
ficulties for many computable general equilibrium (CGE) models of climate policy (Jacoby et al.,
2006). Furthermore, dispersed private information regarding the potential for low-carbon tech-
nologies may play a critical role in determining the eventual cost of climate policy. By being
agnostic about the structure, direction, and rate of technological change, and instead relying on
the expectations of market participants, my approach incorporate a broad information set on the
potential technological frontier. Second, climate policy is likely to trigger a political response by
affected stakeholders. Because climate policy is typically designed to last several political cycles,
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future rent-seeking behavior will likely alter the policy’s distributional consequences and thus the
policy itself. Estimates from this paper incorporate such political dynamics as revealed by the
expectations of market participants.

Conversely, using market expectations has certain drawbacks. While my estimates capture the
expected cost of the implemented policy, I am unable to confirm that this policy corresponds ex-
actly to the Waxman-Markey bill. As such, this paper provides an important but fundamentally
different estimate from that offered by CGE models which evaluate costs for a known policy. In
Section 6, I qualify the assumptions needed for comparing estimates from the two methods and
argue that these two methods should be complementary in the policy process. It is also important
to note that estimates from this paper do not capture the welfare effects of the policy. My method
only recovers the expected cost to firms and not its impact on consumers. Regardless, estimat-
ing the policy cost to firms and its distribution across various firm characteristics is important for
understanding the political economy of climate policy in which firms have historically played a
crucial role in policy formation. In particular, the heterogeneity analysis performed in this paper
can help inform future discussions regarding the allocation of free allowances used to secure po-
litical support. My analysis also does not address questions of policy optimality. Such an analysis
requires not just an examination of international mitigation costs but also a realistic approximation
of global damages under future climate change scenarios. Thus, the estimates from this paper can-
not be directly compared to those generated by integrated assessment models of optimal climate
policy (Stern, 2006; Nordhaus, 2008).

To the best of my knowledge, this paper provides the first forecast of the cost to firms of a cap-
and-trade policy outside CGE modeling efforts. This is also among the first papers in which the
prediction market event study presented by Snowberg, Wolfers and Zitzewitz (2007) and Wolfers
and Zitzewitz (2009) is used to forecast the cost of an unrealized event. There is, however, a
long tradition of employing traditional event study methodology to evaluate, ex-post, the costs of
realized regulation which includes recent event studies examining the cost of realized U.S. (Linn,
2010) and E.U. (Bushnell, Chong and Mansur, 2012) environmental regulations. Using a similar
context, Lemoine (2013) conducts a traditional event study to evaluate the response of financial
markets to a political event related to the Waxman-Markey bill. However, Lemoine (2013) does
not normalize estimates according to changes in Waxman-Markey probabilities, which is necessary
for recovering the effects of the policy.

In the next section, I provide institutional details on cap-and-trade and the Waxman-Markey
bill. Section 3 develops a general empirical framework which details how a potential cap-and-
trade policy can be estimated using prediction markets. Section 4 providing the main event study
estimates along with validity checks for key assumptions as well as heterogeneity results. Section
5 details a partial identification framework to bound costs for unlisted firms using lobbying expen-
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ditures and presents the lower and upper bound for the aggregate effect on all firms. In Section
6, I discuss how my approach and estimates compare with forecasts by prevailing CGE models
of climate policy and is followed by a brief conclusion. The online appendix provides a general
theoretical framework, details on a couple of numerical simulation exercises, data description, and
further background on the Waxman-Markey bill and CGE climate policy models.

2 Background: Waxman-Markey

Over the past two decades, emissions trading, known popularly as “cap-and-trade”, has become
an increasingly important regulatory instrument for controlling regional and global pollutants such
as greenhouse gases (Stavins, 1998; Aldy et al., 2010). In a typical cap-and-trade system, a limit
on cumulative emissions is set for the lifetime of the policy allowing the regulator to issue annual
emission allowances. Regulated firms are then either given, or must purchase, allowances to cover
their annual emissions. Following the success of the U.S. SO2 trading system introduced in the
Clean Air Act Amendments of 1990, variants of cap-and-trade have been implemented domes-
tically and internationally. Well-known systems currently in operation include provisions of the
Kyoto Protocol, the European Unions Emissions Trading System (EU-ETS), the U.S. Regional
Greenhouse Gas Initiative (RGGI), and the California cap-and-trade system. Economically, the
compliance flexibility provided by cap-and-trade has been shown to yield lower costs than tradi-
tional command-and-control policies (Carlson et al., 2000; Ellerman et al., 2000). Politically, and
in particular for the United States, this regulatory tool is considered more palatable than compara-
ble Pigouvian tax schemes.

This backdrop has made cap-and-trade the centerpiece of U.S. domestic climate policy efforts
over the last decade. After a series of failed Senate cap-and-trade bills in the early 2000s, the
Democratic-led 111th House of Representatives introduced the American Clean Energy and Se-
curity Act in the spring of 2009. Known informally as the Waxman-Markey bill after its primary
sponsors, the legislation specified a declining annual limit on aggregate emissions eventually cov-
ering 85% of greenhouse gas emitting sectors (see Figure A.1). Waxman-Markey required that
covered emissions decline by 17% in 2020, 42% in 2030, and 83% in 2050, all relative to 2005
levels. As cost containment measures, Waxman-Markey included generous provisions for inclu-
sion of domestic and international offsets credits2 and the banking and borrowing of past and future
allowances. To further build political support for the policy, the bulk of the annual allowances were
to be freely distributed in the early years of the regulation. In particular, manufacturing industries

2Offsets are defined as reductions achieved outside the emissions system. They are typically project-based reduc-
tions below a business-as-usual baseline. Common sources of offsets are domestic sectors that are difficult to include
under a national cap such as agricultural and forestry and credits from international abatement projects.
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deemed both energy intensive and trade sensitive were to be granted free allowances for the initial
years of the policy.3 Altogether, 60% of cumulative allowances were to be distributed freely over
the lifetime of the policy. While central to Waxman-Markey, cap-and-trade was not the only com-
ponent of the legislation. Alongside emissions trading were supply-side interventions such as a
renewable energy portfolio standard, incentives for carbon capture and storage and nuclear power,
as well as demand-side interventions such as incentives for electric vehicles, efficient building
codes, and consumer advocacy programs. This analysis, therefore, evaluates the joint effect of
cap-and-trade in conjunction with other components of Waxman-Markey.

The Waxman-Markey bill passed the House of Representatives on June 26, 2009, marking
the first time cap-and-trade legislation had passed either Houses of Congress.4 Despite President
Obama’s support for a Senate bill with a similar cap schedule, prospects for cap-and-trade declined
shortly after House passage. With the exception of Republican Senator Lindsay Graham joining
Senate cap-and-trade efforts on Nov 4, 2009, the rest of 2009 and 2010 witnessed the gradual
demise of cap-and-trade. Prospects for cap-and-trade were affected by the failure to reach a new
binding international agreement at the UNFCC Copenhagen negotiations and further declined fol-
lowing Scott Brown’s Senate victory which weakened the filibuster-proof supermajority needed by
the Democrats. On April 23, 2010, Senator Lindsay Graham withdrew support for cap-and-trade.
Three months later, on July 22, 2010, a little over a year after House passage of Waxman-Markey,
the Senate formally dropped deliberation over a comparable cap-and-trade bill (see Appendix F
for a summary of these events). As prima-facie evidence that these events affected stock prices,
Figure 1 plots the cumulative stock returns for several prominent companies during four of these
major events. These companies, which were the seven highest spenders on Waxman-Markey re-
lated lobbying (see Table A.7), generally exhibited negative abnormal stock returns on June 26,
2009 and Nov 4, 2009 and positive abnormal returns on Apr 23, 2010 and July 22, 2010.5

This politically turbulent period provides a suitable setting to study the market effects of cap-
and-trade regulation for two reasons. First, as documented above, political developments within
this period provided large variation in cap-and-trade prospects from its peak in the summer of 2009
to its eventual decline one year later. Second, in contrast to earlier periods in which Congress con-
sidered several cap-and-trade bills simultaneously, the 111th Congress only seriously deliberated

3Specifically, Waxman-Markey deemed a 3-digit NAICS manufacturing or iron and steel production related sector
as eligible for free allowances if for that sector both 1) energy intensity (measured as cost of energy inputs over total
output) or carbon intensity (measured as 20 times sum of direct and indirect tons of CO2 emissions over total output)
was over 5% and 2) trade intensity (measured as sum of import and export value over sum of output and import value)
was over 15%. The number of free allowances were initially set based on recent output levels and designed to decline
in later years.

4In the bicameral U.S. legislative system, a piece of legislation must pass both Houses of Congress before being
sent to the President. Thus, passage of Waxman-Markey by the House of Representatives needed to be followed by a
similar cap-and-trade bill approved by a Senate filibuster-proof supermajority.

5General Motors returns were excluded because it was not continuously listed during period of interest.
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over the Waxman-Markey bill and its Senate variant. Without the potentially confounding effects
of other climate and energy-related legislation, estimates from this period should better reflect
direct concerns over Waxman-Markey incidence.

3 Empirical methodology

3.1 Prediction market event studies

Traditional event studies examine abnormal stock returns in response to an unexpected release of
information. Isolating the moment when markets become aware of this information is a central
challenge. This is typically manifested in the selection of an event window in which one assumes
that the probability of policy realization is 0 prior to the window. Any “fuzziness” in the release of
information may violate this assumption and result in estimates that are sensitive to event window
selection as demonstrated in Snowberg, Wolfers and Zitzewitz (2007) and Snowberg, Wolfers and
Zitzewitz (2011) in their analysis of the macroeconomic effects of U.S. presidential elections.

To avoid event window selection, Snowberg, Wolfers and Zitzewitz (2007) employ prediction
markets data. The typical prediction market contract is a bet on the realization of a particular event
at a certain date. When that date is reached, holders of a contract receive $1 if the event is realized
and zero otherwise with contract prices fluctuating within the unit interval prior to the termination
date.6 Under certain assumptions about prediction market participants,7 the price of the contract
can be interpreted as the real-time average market belief over event realization. Thus, prediction
market prices obviate the need to specify event windows in event studies. Instead, each trading day
in which a prediction market price is observed can be treated as an “event” such that the estimated
effect is the change in abnormal returns normalized over changes in market beliefs. This is referred
to as the “event period”.

Availability of prediction market prices provides two important advantages over traditional
event studies. First, it mitigates concern over fuzzy information release while increasing the sample
size for estimating abnormal returns. Second, and more importantly, prediction market prices allow
researchers to estimate abnormal returns for a probable event even if this event is never realized.
In other words, the use of prediction markets can transform event studies into a tool for policy
forecasting, a feature that is widely applicable to different policy issues but has thus far been little

6Actual Intrade contract prices range from $0 - $10. I normalize prices to match probabilities.
7Wolfers and Zitzewitz (2006) show that two assumptions are required in order for prediction market prices to

equal mean beliefs: 1) utility has a log form and 2) trader wealth and beliefs are independent. For other standard
utility functions, the divergence between prediction market prices and mean beliefs is shown generally to be quite
small when 1) traders are risk averse, 2) prices are within the $0.20− $0.80 range, and 3) the distribution of beliefs
exhibit relatively low dispersion. In the case where trader wealth and belief are correlated, the prediction market price
reflects the wealth weighted average belief in the trading population.
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explored in the literature (Wolfers and Zitzewitz, 2009; Snowberg, Wolfers and Zitzewitz, 2012).
There are, during any legislative period, a number of important policies that fail to become law but
whose costs remain of interest, perhaps to inform future legislative efforts. Prediction markets have
been offered for recent efforts to reform immigration, social security, and health care regulation in
the U.S.8 Unfortunately, for many of these policies, use of many prediction markets are often only
available at the daily-level and may be thinly traded. As demonstrated in the empirical framework
below, these attributes affect estimation procedure and necessitate a specific set of robustness tests.

3.2 Intrade cap-and-trade market

From May 1, 2009 to Dec 31, 2010,9 the online trading exchange Intrade hosted a prediction
market contract on the prospects of a U.S. cap-and-trade system. This contract was titled: “A cap
and trade system for emissions trading to be established before midnight ET on 31 Dec 2010.”
Intrade further defined this contract by noting:

“A cap and trade system will be considered established once federal legislation au-

thorizing the creation of such a system becomes law, as reported by three independent

and reliable media sources. Emissions trading under the system does not need to begin

for the contract to be expired.”

Figure 2 plots the price time series for this contract. A price of $0.50 indicates that market partic-
ipants believed, on average, that cap-and-trade had a 50% chance of being realized before the end
of 2010. Each solid red line identifies a major political event mentioned in Section 2 that had direct
effects on the prospects of cap-and-trade passage in the U.S. Senate. Dashed gray lines indicate
events with indirect effects. Importantly, Figure 2 shows that this prediction market was responsive
to major cap-and-trade political developments (see Appendix F for a summary of these events). To-
tal trading volume during these 9 major events constitutes 17% of all contracts transacted prior to
Senate withdrawal of cap-and-trade legislation on July 22, 2010.

Two aspects of this prediction market make it fall short of the ideal. First, the contract de-
scribes a generic cap-and-trade system without explicit mention of Waxman-Markey, its particular
abatement levels, and associated auxiliary policies. However, one can be reasonably confident
that prediction market participants were reacting primarily to Waxman-Markey. First, President
Obama explicitly supported a cap-and-trade bill with a cap schedule similar to Waxman-Markey
during the event period, a point that was noted on Intrade’s cap-and-trade message board at the

8A list of all Intrade prediction markets is available here:www.intrade.com/v4/reports/special/
all-intrade-markets/all-intrade-markets.xlsx

9Intrade began offering this contract on March 25, 2009. However, trading began only on May 1, 2009, which
marks the start of the event period.
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time.10 Secondly, whereas some details of a legislation can vary across House and Senate ver-
sions, important features such as the abatement schedule are usually unaltered in order for the two
bills to be reconciled without additional floor votes. Thus, Senate efforts were likely constrained
by the abatement levels specified in Waxman-Markey.11

A second, and potentially more troubling concern, is the relative thinness of this market. During
the event period, 11,260 contracts were traded for a total value of $190,000. An average of 30
contracts were transacted every 2 days. By comparison, the prediction market used in Snowberg,
Wolfers and Zitzewitz (2007) had an average of 129 trades for every 10-minute interval during
election night. Transaction-level data acquired privately from Intrade indicates that there were
143 unique traders participating in the market.12 It also reveals the presence of two large volume
traders. Figures A.3 and A.4 plot the buying and selling volumes of Large Traders 1 and 2 relative
to the total traded volume for the event period. Large Trader 1, a major buyer, was responsible for
38% of all contracts sold before the contract expired. Conversely, Large Trader 2 was responsible
for 22% of all contracts purchased.

Thinly traded prediction markets might be vulnerable to manipulation. Specifically, one may
worry that Large Trader 1 wanted to inflate prediction prices whereas Large Trader 2 targeted
lower prices. In Section 4.2, I conduct a series of increasingly demanding statistical tests that fail
to detect the effects of price manipulation. Specifically, I show that my main estimate is robust
to interactions with trading volume, presence of either large traders, and the overall competitive
bidding environment as captured by a Herfindahl index. This confirms several lines of graphical
evidence shown in A.3 and A.4. First, the direction of Intrade price fluctuations shown in Figure
2 for major event days intuitively match the cap-and-trade implications of those political devel-
opments. In particular, Large Trader 1’s buying activity could not prevent the fall in prediction
market prices following Senator Graham’s exit. Second, the buying and selling patterns of Large
Traders 1 and 2 respectively do not appear to be consistent with active price manipulation. That is,
one would expect the buying volume of Large Trader 1 to be largest on the major event days, as
indicated by vertical dashed lines in Figures A.3 and A.4, and similarly for the selling activity of
Large Trader 2. With the exception of Senator Graham’s exit, the observed pattern of transactions
appears to suggest noise trading rather than price manipulation. While I am unable to directly

10Intrade cap-and-trade message board available here: http://bb.intrade.com/intradeForum/posts/
list/4343.page

11Nonetheless, one cannot eliminate the possibility of Intrade participants betting on different cap-and-trade sys-
tems. Indeed, a cursory examination of Intrade’s cap-and-trade message board reveals that some participants, though
perhaps not those involved in betting, thought sectoral-level emissions trading schemes were more plausible in 2010.

12While Intrade does not provide information on where traders are located, Intrade has said in a public letter to the
U.S. CFTC that “our 82,000 plus membership are predominantly resident in the United States” and that “78% of traffic
to Intrade.com in the period 1 January to 30 June [2008] was from the U.S.” Available here: http://www.intrade.
com/news/misc/CFTC_Intrade_Comment_Reg_Treatment_Event_Mkts.pdf
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test for the presence of biases of thin trading and price manipulation, the weight of evidence from
available tests suggests such concerns may be reasonably minor.

This stability of prediction market prices to the activity of individual traders is consistent with
several prior empirical findings. Camerer (1998) places temporary bets designed to manipulate
racetrack markets and concludes that successful long-term manipulation was unlikely even when
considering efforts to distort relatively thinly traded markets. A similar conclusion is reached for
both historical presidential betting markets (Rhode and Strumpf, 2004) and recent presidential
prediction markets (Rhode and Strumpf, 2008). In particular, Rhode and Strumpf (2008) find that
experimental efforts to manipulate the 2000 Iowa Electronic Market during thinly traded moments
and observed efforts to manipulate the 2004 Tradesport market had effects that dissipated hours af-
terwards. Similarly, recent experimental work shows that price manipulators in prediction markets
were unable to distort price accuracy (Robin, Oprea and Porter, 2006) nor influence the beliefs of
third party observers (Hanson et al., 2011). A notable exception is Rothschild and Sethi (2013)
who find evidence of possible manipulation in the 2012 Intrade presidential prediction market. In
the following section, I formally develop an empirical framework to illustrate the implications that
thinly traded prediction markets have on estimation procedure and choice of robustness tests.

3.3 Estimation framework

Let i = 1...L index a listed firm and denote the difference in discounted present value of firm i at
time t under Waxman-Markey and business-as-usual as ∆vit = vit(R)− vit(Ro) (see Appendix A
for the full theoretical framework). Unfortunately, neither is directly observed because the U.S.
government has never passed cap-and-trade legislation nor was the probability of cap-and-trade
realization ever zero within the event period. Instead, at each date t I observe the pair [ṽit ,θt ],
denoting the actual market value of firm i and the prediction market price. Observed market value
lies between my two values of interest, that is ṽit ∈ [vit ,vo

it ], and is a function of the prediction
market price.

To show this formally, suppose there are three policy states, p∈ [w,a,o], indicating the Waxman-
Markey, alternative, and no-policy states respectively. For simplicity, I define the alternative policy
as all possible climate mitigation policies that are not Waxman-Markey and should include a pol-
icy with identical abatement parameters but with a later implementation date. Define the random
variable qp

t ∈ [0,1] as the true average population belief at time t that potential climate policy p will
be realized. Applying the law of total probability for a risk-neutral representative trader, I write:

ṽit = qw
t vit +qa

t va
it +(1−qw

t −qa
t )v

o
it

where va
it is firm value under the alternative policy. Thus, the observed market value of firm i at
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time t is the expected value given uncertainty about climate policy passage. Defining the effect of
Waxman-Markey as γi = vit−vo

it
vo

it
and likewise for the alternative policy effect, γa

i , results in:13

ṽit = vo
it(1+ γiqw

t + γ
a
i qa

t ) (1)

Taking logs and first differences of Equation 1 yields an expression for stock returns, rit :

rit = ln(1+ γiqw
t + γ

a
i qa

t )− ln(1+ γiqw
t−1 + γ

a
i qa

t−1)+(lnvo
it− lnvo

it−1)

Note that for sufficiently small γiqw
t + γa

i qa
t , ln(1+ γiqw

t + γa
i qa

t )≈ γiqw
t + γa

i qa
t , and thus:14

rit = γi∆qw
t + γ

a
i ∆qa

t +∆ lnvo
it (2)

To obtain an econometric specification, I enlist the two assumptions. The first assumption states:

Assumption 1 ∆θt is an unbiased estimate of ∆qw
t

Assumption 1 allows for the prediction market price to be used as a proxy for changes in aver-
age market beliefs over Waxman-Markey realization. In particular, the earlier noted concerns over
whether the prediction market proxies for Waxman-Markey beliefs and biases due to thin trading
would represent violations of Assumption 1. Assumption 1 would also be violated if prediction
market prices reflect some degree of concern over contract expiration prior to the expected re-
alization of the event and any behavioral biases from low and high probability events (Wolfers
and Zitzewitz, 2006). Section 4.2 provides tests for each of these possible violations. A second
assumption states:

Assumption 2 E[∆θt∆qa
t |∆ lnvo

it ] = 0, within the event period

That is, changes in average market beliefs on Waxman-Markey prospects are uncorrelated with
beliefs over other plausible climate policy within the event period after controlling for normal
market performance. Possible violations of Assumption 2 are tested in Section 4.3. Assumption 2
allows me to replace ∆qa

t with an error term εit which together with Assumption 1 yields:

rit = γi∆θt +∆ lnvo
it + εit (3)

I am primarily interested in estimating the aggregate effect of Waxman-Markey on all listed
firms. However, the thinly traded nature of prediction markets imply a fundamental tradeoff be-
tween identification and precision in the estimation of Equation 3. To see this, suppose we write

13The definition of the policy space implies that γi is time-invariant within the event period.
14During the event period, the average θt = 0.24 while the average estimated Waxman-Markey effect is γ =−0.02.

Average beliefs and effects for alternative climate policies are likely even lower. Such small values allow the approxi-
mation to be reasonable. Econometrically, this results in attenuation bias.
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∆ lnvo
it = αi + βiηt . The most natural procedure for estimating the aggregate effect is to run the

following value-weighted time series regression on aggregate market returns:

mktt = α̃ + β̃ηt + γ̃∆θt + εt (4)

where mktt = ∑i
vo

i
∑i vo

i
rit , and β̃ = ∑i

vo
i

∑i vo
i i

βi and vo
i is average firm value under the no-policy sce-

nario. The aggregate coefficient of interest is γ̃ = ∑i
vo

i
∑i vo

i
γi, which is the aggregate value-weighted

effect of Waxman-Markey across all firms. However, as Roll (1977) has noted, ηt is not directly
observed. Instead, one can run the following feasible bivariate time series regression:

mktt = α̇ + γ̇∆θt + ε̇t (5)

Observe that because normal market performance is excluded in Equation 5, estimates of γ̇ will
typically suffer from omitted variable bias unless one has cause to believe cov(ηt ,∆θt) = 0. This
assumption may be plausible during the night of a presidential election which allows Snowberg,
Wolfers and Zitzewitz (2007) to run bivariate regressions similar to Equation 5 at 10-minute inter-
vals. Thin trading in the cap-and-trade prediction market prevents me from using high-frequency
returns during major event periods. Instead, I estimate Equation 5 using longer return periods
which include the five days with major political developments directly affecting Waxman-Markey
prospects as shown in Figure 2. Table 1 provides summary statistics for various indicators of cap-
and-trade interest for both the full event period and the subset of major event days. The average
absolute 2-day change in Intrade price during these five days is three times larger than changes
across the full sample. Similarly, the average number of traded contracts during these major days
is nearly double the full sample average. When examining changes in media and internet interest,
Google news headlines and Google search volume indicating “cap-and-trade” jump by over 9%
and 1% in weeks when major events occurred compared to the full sample average of 3% and
-0.002% respectively. While this is cursory evidence, Table 1 together with the context in which
these political developments occurred as discussed in Section 2 suggests that it is plausible for
changes in cap-and-trade prospects to be exogenous to stock returns during these major events.

While point estimates from Equation 5 may be unbiased during these major events, precision
of my estimates is low given the small sample size. To increase precision of my estimates, I
also perform firm-level regressions for the entire event period with benchmarks for normal market
performance to mitigate concerns about omitted variable bias in the full sample. A firm-level
approach would also allow me to explore heterogeneity of Waxman-Markey effects across firms.
My general firm-level specification is:

rit = γi∆θt +Ftβi + εit (6)
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where Ft is a vector of controls for normal market performance discussed below. I estimate Equa-
tion 6 for all firms continuously listed on NYSE, AMEX, and NASDAQ during the policy period.15

However, with over 5,000 listed firms, panel regression of Equation 6 requires joint estimation of
between 10,000 - 20,000 parameters depending on the controls for normal market performance
which is computationally demanding. Instead, I estimate Equation 6 firm-by-firm using a seem-
ingly unrelated regression (SUR) model and report both the equally and value-weighted average
effect for all listed firms.16 In the standard SUR framework, errors are correlated across firms but
are iid over time and block homoscedastic.17 Thus, the resulting standard errors are not robust to
serial correlation and heteroscedasticity. To address this concern, I also perform panel regressions
for a random subsample of firms imposing both heteroscedastic-robust and sector-level clustered
standard errors to examine whether the SUR error structure is too restrictive.

I use several benchmarks for normal market performance because none is ideal on its own. The
finance literature provides two standard benchmark models. The CAPM model includes a firm
fixed effect and an aggregate market return index. The seminal work of Fama and French (1993)
advises the use of returns from a value-based portfolio and a size-based portfolio as additional con-
trols in a 3-factor model to account for common risk factors associated with book-to-market ratio
and firm size. These two standard models, however, have one major drawback in this context. An
implicit assumption in event studies is that benchmark controls are not affected by the treatment of
interest. While this may be likely for firm or sector specific treatments, cap-and-trade is expected
to affect the entire economy. It is therefore possible that changes in Waxman-Markey prospects
directly affect benchmark indices in the CAPM and 3-factor Fama-French models in the same
direction as most firms which would bias my estimates towards zero. To address this concern,
I employ separate benchmarks using the value-weighted returns of listed firms with low carbon
intensity. Specifically, I construct value-weighted indices for all firms in 6-digit NAICS sectors in
which 2006 carbon intensity from own operations and inputs was below 0.05, 0.10, and 0.15 mton
CO2 per billion dollar output.18 Because these firms are likely to experience smaller direct effects
from cap-and-trade regulation via changes in input prices and compliance costs, including low car-
bon intensity benchmarks should alleviate concerns over treatment spillover. Controlling for the
performance of low carbon intensive firms would also provide a cleaner control for the no-policy
scenario if one believes that the prospects of alternative climate policies are priced into aggregate
benchmarks used by the CAPM and 3-factor Fama-French models. However, low carbon intensive

15I exclude firms that are not continuously listed during this period because firm entry and exit in response to
cap-and-trade regulation is not explicitly modeled.

16In a system of equations, if regressors are identical, firm-by-firm SUR is identical to systems GLS and achieves
any efficiency gains provided by GLS (see (Greene, 2003, p. 341-344))

17Specifically, denoting Σ as the NT xNT variance-covariance error matrix from Equation 6, the element σit, js =
E[εiε

′
j|Ft ] ∀ t = s and 0 otherwise.

18There are 5, 23, and 82 6-digit NAICS sectors that are below 0.05, 0.10, and 0.15 carbon intensity in 2006.
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benchmarks can also be problematic. First, estimating abnormal returns relative to the performance
of low carbon intensive firms would not eliminate all concerns over treatment spillover. Low car-
bon intensity firms would still experience the indirect effects of cap-and-trade regulation through
general equilibrium changes in input and output prices. Furthermore, because low carbon intensity
benchmarks are constructed for a subsample of firms, low carbon intensity benchmarks may not
fully capture common risk factors that are correlated with cap-and-trade prospects and may lead to
omitted variable bias.

In light of these empirical limitations, my finding rely on multiple lines of evidence in order to
claim both identification and precision is obtained. My aggregate time series approach following
Equation 5 using major event days provides arguably unbiased point estimates but at the cost of low
precision. On the other hand, my full sample, firm-level SUR approach using various benchmarks
for normal market performance provides potentially precise estimates that may be biased due to
treatment spillover and omitted variables. If, however, point estimates from both approaches are
similar, it is possible that my second approach yields estimates that are both identified and precise.

A number of additional estimation choices are worth noting. Assumption 1 fails when predic-
tion market prices are a biased estimate of the average market belief over Waxman-Markey real-
ization. Wolfers and Zitzewitz (2006) show that with certain utility functions, a favorite-longshot
bias and reverse favorite-longshot bias can occur for prediction market prices below $0.20 and ex-
ceeding $0.80 respectively. To address this concern, my benchmark specification uses only trading
days when prediction prices lie between $0.20-$0.80. Thin trading in the cap-and-trade predic-
tion market may violate Assumption 2 due to price volatility arising from market overreactions
or transitory distortions from price manipulation. I partially address these concerns by estimating
Equations 5 and 6 using 2-day intervals. The use of longer time intervals also account for Intrade
prediction markets having later closing hours than the primary U.S. stock exchanges as well as the
occurrence of after-hours stock trading.19

4 Listed firms: prediction market event study

This section presents event study results for listed firms (see Appendix E for a data summary).
First, I discuss estimates from both the aggregate time series regression on major events and firm-
level SUR regressions for the full event period. Next, I provide a series of robustness results
designed to test the validity of Assumptions 1 and 2. Finally, to further validate my use of predic-
tion market prices, I present heterogeneity results along several dimensions that are both consistent

19Intrade closing prices are observed 2am on weekdays and 3am on weekends. If after-hours stock trading were to
occur, the effect of information released after 4pm ET on trading days or over weekends would not be picked up using
observed daily returns.
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with general climate policy incidence as well as to a particular feature of the Waxman-Markey bill.

4.1 Main result

Table 2 shows the equally-weighted average effect, value-weighted average effect, and total ag-
gregate cost of the Waxman-Markey bill for all continuously listed firms on NYSE, AMEX, and
NASDAQ from May 01, 2009 to December 31, 2010. All variables are in 2-day intervals to address
possible concerns about price volatility, investor overreaction, price manipulation, and the different
closing hours for stock and Intrade markets. To avoid favorite-longshot bias and reverse favorite-
longshot bias in the prediction market prices, I only include trading days for which θt ∈ [0.2,0.8].

In Panel (a), I estimate a time series regression of aggregate market returns on the difference
in prediction market price following Equation 5. The sample includes only the five major events
with political developments that directly affected Waxman-Markey prospects and are plausibly
uncorrelated with macroeconomic shocks.20 My point estimate shows that had Waxman-Markey
been implemented, listed firms would have lost a total of $160 billion. However, because the time
series is conduct over a small sample, precision of these estimates are very low.

To obtain more precise estimates, I estimate firm-level SUR regressions using Equation 6 in
Panel (b) of Table 2 with different benchmarks for normal market performance. In Rows (2)
and (3), I use the standard CAPM and 3-factor Fama-French models. To address concerns about
treatment spillover, in Rows (4)-(6) I use benchmarks constructed from the value-weighted returns
of listed firms with carbon intensity below 0.05, 0.10, and 0.15 mton CO2 per billion dollar output.

All models in Panels (b) show negative and statistically significant effects. Across the five
models, the equally-weighted average effect for listed firms range from -1.4% to -2.2% while the
value-weighted effect range from -0.66% to -0.1%. This translates to a total cost ranging from
-$120 to -$190 billion with a mean of -$150 billion. A few points are worth noting. The CAPM
model yields slightly greater losses than the 3-factor Fama-French model but do not fall outside
the latter’s 95% confidence interval. This suggests that cap-and-trade prospects may be positively
correlated with the profitability of small market cap and high book-to-market firms. As discussed
in Section 3.3, treatment spillover using standard models of normal market performance may lead
to estimates that are biased towards zero. Benchmarks based on the performance of low-carbon
intensive firms help partially alleviate concerns over treatment spillover but possibly at the cost of
introducing omitted variable bias. Indeed, estimates in Rows (4)-(6) using low-carbon intensity
benchmarks exhibit larger losses than those shown in Rows (1) and (2) thought this difference is

20These special events, corresponding to the red vertical lines in Figure 2, were 11/4/2009, 12/20/2009, 1/27/2010,
4/23/2010, and 7/22/2010. I exclude the day of Waxman-Markey passage, 6/26/2009, because prediction price activity
in response to that event occurred entirely over the weekend during which stock markets were closed. The events
marked with dotted gray lines in Figure 2 likely affected the prospects of other policies in addition to cap-and-trade
and thus are excluded. See Appendix F for a summary of these events.
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small with estimates in Rows (4) and (5) being within the confidence interval of the estimate from
the 3-factor Fama-French model.

The critical comparison is between the point estimates in Panels (a) and (b). The similarity in
point estimates between the aggregate approach for major events and the firm-level approach for
the full sample suggests that the aforementioned tradeoff between identification and precision is
addressed by the joint presentation of these two estimation approaches. Finally, Figure A.2 presents
the 3-factor Fama-French model result in a scatterplot of abnormal returns averaged across all firms
against the change in prediction market price. It shows that abnormal returns are roughly linear in
prediction market changes within the support of observed prediction price changes.

I now turn to a few important points regarding the standard errors shown in Table 2. While
the point estimates are similar across the two approaches, standard errors are much lower for the
firm-level regressions in Panel (b). There are three possible reasons for this difference in estima-
tion precision. First, models in Panel (b) have a larger sample size. Second, the firm-level SUR
estimation procedure in Panel (b) explicitly models the variance-covariance error structure across
firms. Garrett (2003) and Veredas and Petkovic (2010) have shown that the firm-level regressions
can result in different standard errors from aggregate-level regressions in the presence of non-zero
covariance in the error structure across firms. In particular, if the sum of the covariance terms are
positive as is the case with each SUR model in Panel (b), estimates from firm-level regressions
would have greater precision than those from aggregate regressions. Finally, models in Panel (b)
include controls for normal market performance which also increases estimation precision. In Ap-
pendix C, I detail a numerical simulation procedure to determine the relative contribution made
by each of these three statistical properties and find that 85% of the difference in the uncertainty
between the two methods can be attributed to increased sample size from 5 to 111 days.

Within Panel (b), it is apparent that standard errors from the equally-weighted average effect
is much larger than standard errors from the value-weighted affected, or identically from the es-
timated total cost which is the product of the value-weighted effect and market value. Figure
A.5 plots the estimated mean squared error for each firm against its market value showing that
larger firms tend to have less volatile residual stock returns as is expected given that large cap
firms tend to be more heavily traded. This implies that the equally-weighted average effect, which
does not scale estimates by firm size, would overstate the aggregate uncertainty. Finally, Section
3.3 noted concerns about block heteroscedasticity and serial correlation in SUR standard errors.
In Table A.1, I conduct a joint panel regression for a 2% random sample of firms allowing for
heteroscedastic- and cluster-robust standard errors at the 3-digit NAICS level. The latter allows
arbitrary forms of cross-sectional and serial correlation within the same 3-digit NAICS sector. I
find that concerns over a restrictive SUR error structure are not warranted as the alternative stan-
dard errors displayed in Table A.1 are similar to SUR standard errors in Table 2. Furthermore, it
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appears that 3-digit NAICS clustered standard errors yield more precise estimates possibly due to
the presence of negative cross sectional and serial correlation within a 3-digit NAICS sector.

4.2 Addressing validity of Assumption 1

In the robustness checks for this section, I present the equally-weighted average Waxman-Markey
effect for all listed firms. My robustness results will be compared against the SUR regression using
the 3-factor Fama-French benchmark model as shown in Row (3) of Table 2. The sample is again
restricted to just trading days in which θt ∈ [0.2,0.8].

Assumption 1 fails when prediction market prices are a biased estimate of the average market
belief over Waxman-Markey realization. Table 3 presents a sequence of tests designed to explore
whether thin trading and price manipulation might generate bias. Column (1) replicates the main
result. To examine whether thin trading affects my estimates, I restrict the sample in Column (2)
to days in which trading volume exceeded the sample mean and find that the point estimate is little
affected. In Column (3), I conduct a less arbitrary test by interacting the daily trading volume with
the prediction market variable. The interacted coefficient is small and statistically insignificant
while the uninteracted coefficient becomes slightly smaller in magnitude.

As an initial test of price manipulation, I restrict in Column (4) the sample to just trading
days in which neither Large Traders 1 nor 2 were participating in the prediction market. While the
sample size drops by one-third, the Waxman-Markey effect falls within the 95% confidence interval
of my main result. Simply examining days without the involvement of Large Traders 1 and 2,
however, does not preclude other trading days in which the market was dominated by relatively few
traders. Using transaction-level data with unique trader identifiers, I construct a daily buyer-based
normalized Herfindahl-Hirshman Index (HHI).21 This index captures the relative competitiveness
of the prediction market for any given day. In Column (5), I restrict the sample to just days with
HHI<0.25. The standard error for Column (5) is large as the sample is reduced to only 9 days but
the point estimate is similar to my main result in Column (1). The HHI cutoff used in Column (5)
is nonetheless arbitrary. My final and most stringent test interacts the prediction market variable
with the daily HHI. The uninteracted prediction market term in Column (6) can be interpreted as
the average effect of Waxman-Markey after removing the influence of prediction market bidding
competitiveness. The Waxman-Markey effect in Column (6) is larger, but still within the 95%
confidence interval of my main result in Column (1). However, because the interacted coefficient
is not statistically significant, one cannot rely on the functional form modeled used in Column (6).

Another possible violation of Assumption 1 concerns Intrade contract expiration. The cap-and-

21Formally, for trading day t, there are j = 1...Jt traders each purchasing s jt share of all contracts transacted that day.
The normalized Herfindahl-Hirshman Index is H∗t = Ht−1/Jt

1−1/Jt
where H is the Herfindahl-Hirshman Index, Ht = ∑ j s2

jt .
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trade prediction market used for this analysis expired on December 31, 2010, regardless of whether
cap-and-trade regulation were to eventually pass Congress. Thus, while the prospects of cap-and-
trade realization might indeed be declining in 2010, a component of the price movements shown
in Figure 2 might also reflect expectations that policy realization is unlikely to occur before the
end of 2010. In practice this was unlikely, as any legislation, having failed in the current Congress,
is rarely reintroduced with identical features in a subsequent Congress. However, it is difficult
to ascertain whether markets expected Waxman-Markey prospects to exist following the end of
the 111th Congress. If so, a bias is introduced between the prediction market price and average
market beliefs which increases as the expiration date nears. In Appendix B, I detail an adjustment
procedure to separate average market beliefs, the true variable of interest, from concerns over
contract expiration. This procedure uses information from a similar Intrade prediction market with
an earlier expiration date at the end of 2009 (see Figure A.6). Under certain assumptions, I can
use the period of overlap between the 2009 and 2010 expiring contracts to separate the effects of
concerns over contract expiration with the true market belief in cap-and-trade prospects.

In Table A.2, I find that adjusting for contract expiration yields a coefficient similar to my main
result. While using the adjusted prediction market price in general yield smaller effects, they fall
well within the uncertainty of my main results shown in Table 2. This is because whereas the
adjustment procedure illustrated in Figure A.8 inflates prediction market price levels to account
for concerns of impending contract expiration, much of this adjustment is already removed from
the unadjusted prediction market price after the data was first-differenced.

4.3 Addressing validity of Assumption 2

Assumption 2 requires that Waxman-markey beliefs, as approximated by prediction market prices,
are uncorrelated with alternative climate policies after controlling for normal market performance.
As discussed in Section 2, cap-and-trade dominated climate policy debates in the United States
during the event period. Figure A.9 plots the number of U.S. news article compiled by Google that
contained the term “cap-and-trade” and terms capturing several alternative climate policies during
the event period.22 Observe that the U.S. media cited cap-and-trade far more than alternative
climate policies during the event period. However, it also appears that media interest in cap-and-
trade declined in 2010 as coverage of alternative policies intensified.

To see whether this poses a violation of Assumption 2, I augment the controls for normal market
performance to include indices that possibly capture the contemporaneous prospects of alternative
climate policies in Table 4. Column (1) replicates my main result. Column (2) shows that the
estimated Waxman-Markey effect is unperturbed by the inclusion of a linear trend, suggesting that

22Google News tabulates any news articles containing a particular term of interest. Thus, it is possible that an
article about “cap-and-trade” would also include mention of “energy policy”.
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first-differencing effectively removes common trends in the data. 2009-2010 was a particularly
volatile period for oil prices, witnessing both a historic high and decline in global prices. Given
the tight coupling between oil prices and carbon emissions, one might be concerned that prediction
market prices were driven by daily oil price movements. In Column (3), I include oil price returns
as a control which has little effect on the coefficient of interest. EU-ETS allowances (EUA) prices
provide another proxy for alternative climate policy prospects. In particular, EU-ETS allowance
prices might capture beliefs over an international climate policy which might be correlated with
Waxman-Markey prospects. Column (4) shows that the Waxman-Markey effect is relatively un-
affected after controlling for changes in 2015 futures EUA prices. In Column (5), I control for
beliefs over alternative climate policies by including changes in the frequency of alternative cli-
mate policy headlines from Google News as shown in Figure A.9. These controls have little effect
on the coefficient of interest. Finally, in Column (6) a kitchen sink regression is performed using a
vector of monthly macroeconomic indicators commonly used in the finance literature to predict the
aggregate market risk premium (see Welch and Goyal (2008)).23 Unsurprisingly, given the known
low predictive power of these variables, the estimated effect differs little from Column (1).

Previous prediction market event studies noted concerns about reverse causality with time se-
ries analyses (Snowberg, Wolfers and Zitzewitz, 2011). My panel approach partly addresses this
concern by removing common risk factors. Table 5 explores this further by adding lead and lag
terms to my 3-factor Fama-French specification. Across all models, my main result attenuates
slightly but remain statistically significant at the 5% level. Column (1) replicates my main re-
sult while for Column (2) a 1-period lagged return is included and is not statistically significant.
This result also mitigates concerns about serial correlation in the residuals. Column (3) includes a
lagged prediction market term which is not statistically significant suggesting that markets incor-
porate information on policy prospects within a 2-day window, obviating the need for longer return
intervals. In Column (4), a lead prediction market term is not statistically significant implying there
is no evidence of stock markets anticipating future prediction market activity.

Finally, in Table 6, I consider different trading day subsamples. Figure A.9 and Intrade’s
message board suggest that media and investor beliefs over alternatives climate policy prospects
were increasing at the start of 2010 as Waxman-Markey beliefs were declining, possibly violating
Assumption 2. In Columns (2) and (3), I estimate my model for trading days in 2009 and 2010
showing that the coefficient is relatively stable across the two years. In Columns (4) and (5), I
test whether market participants responded asymmetrically to the direction of prediction market

23Due to computational limits, I am unable to control for the entire set of Welsh-Goyal variables, instead only
choosing those with predictive power (Welch and Goyal, 2008). These controls include the variance of returns on the
S&P 500 (svar), the book-to-market value of the DJIA (bm), the long-term yield (lty) and rate of return (ltr) on U.S.
government bonds, a 12-month moving sum of net NYSE issues over total capitalization (ntis), and inflation from the
CPI (infl).
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changes by restricting the sample to trading days in which ∆θt ≥ 0 and ∆θt < 0 respectively. I find
no evidence of asymmetric effects and is consistent with the linear response shown in Figure A.2.

4.4 Heterogeneity

Heterogeneity analysis along various firm characteristics serves two purposes. First, it can help
validate that the aggregate effects shown in Section 4.1 reflect concerns over Waxman-Markey
incidence. If prediction market prices were heavily biased, it would be unlikely that one would pick
up specific features of Waxman-Markey incidence across different dimensions of heterogeneity.
Second, understanding the expected distribution of costs across sectors can help inform policy
debates about how best to allocate free allowances under a cap-and-trade system. To motivate my
heterogeneity analyses, I specify the following static profit function at the optimal emissions level:

v∗i = pqi(e∗i )−Ci(qi(e∗i ),w)+ τ(A f
i − e∗i ) (7)

where Ci() is a cost function separable in output qi and input prices wi with ∂Ci
∂qi

> 0 and ∂Ci
∂wi

> 0.
The marginal impact of cap-and-trade on profits can be obtained via the envelope theorem:

dv∗i
dτ

=− ∂Ci

∂w
dw
dτ︸ ︷︷ ︸

input costs

+ qi(e∗i )
d p
dτ︸ ︷︷ ︸

pass-through

+ A f
i︸︷︷︸

allowances

− e∗i (8)

Cap-and-trade affects profit through changes in input and output prices. The first term, which is
negative, suggests that firms with carbon and energy intensive inputs would exhibit greater losses.
The second term summarizes the pass-through effect. Firms that can pass-through a greater portion
of regulatory costs onto output markets should experience lower losses. High pass-through is cap-
tured directly by a low elasticity of demand or indirectly by low rates of import penetration. The
third term captures the positive effect from the distribution of free allowances. Finally, Equation 8
does not capture the regulatory exposure of a firm with both domestic and international operations.
Intuitively, all else equal, firms with a greater share of overall exposure to U.S. output markets
would experience greater losses than firms with higher international market exposure. I now ex-
amine whether the pattern of heterogeneity in estimated effects conform to these predictions as
validation that the aggregate effects shown earlier reflect concerns not only about the imposition
of climate policy generally but more specifically the Waxman-Markey bill.

Table A.3 displays the equally-weighted and value-weighted Waxman-Markey effect for each
2-digit NAICS sector. As expected, large negative, though not statistically significant effects,
are observed for the mining, utilities, and construction sectors. Interestingly, the overall impact
on manufacturing is small, a point I return to below. Statistically significant and large negative
effects are experienced by the information, finance, real estate, management, waste remediation,
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and accommodation sectors. With the exception of the accommodation and finance sectors, this
sectoral heterogeneity largely resembles the findings in Bushnell, Chong and Mansur (2012).

Carbon and energy intensive sectors have cap-and-trade sensitive input costs and should ex-
perience higher relative losses. Unfortunately, carbon intensity cannot be easily compared across
2-digit NAICS sectors.24 For more valid comparisons, I examine 3-digit NAICS manufacturing
sub-sectors for which I observe both average carbon and energy intensity.

Figure 3 plots coefficients estimated separately for each 3-digit NAICS manufacturing sector
against average carbon intensity, defined as mton of CO2 per billion output, obtained from the U.S.
Department of Commerce for 2006. A clear negative relationship is shown. A similar relationship
is shown in Figure A.10 using average energy intensity, which is defined as cost of energy inputs
over value of total output and is provided by the NBER-CES Manufacturing Industry Database for
2005. Table 7 supports this evidence showing analogous firm-level regression results. Coefficients
appear unaffected by the inclusion of 2-digit fixed effects in Columns (2) and (4). Interpreting these
coefficients, a one unit increase in CO2 per billion output increases the estimated Waxman-Markey
effect by 3%. Similarly, a one percentage increase in energy input share increases the estimated
Waxman-Markey effect by about 30%.

Equation 8 indicates that cap-and-trade effects are lower for firms that pass-through a greater
share of regulatory costs onto output markets. One proxy for pass-through is the import share for
a firm’s output market. All things equal, higher import shares imply lower pass-through rates as
households can more readily substitute regulated domestic goods with unregulated international
goods. In Table A.4, I estimate the average Waxman-Markey effect separately for firms with
different 4-digit NAICS import shares. All estimated firm effects are first demeaned at the 3-digit
NAICS level to account for the heterogeneity shown in Table A.3 and Figures 3, and A.10. While
the standard errors are large given the reduced sample size, point estimates in Table A.4 for each
10% import share bin display a generally negative relationship. That is, sectors with higher import
shares experience greater losses from Waxman-Markey incidence.

A U.S. climate policy should have different effects for firms operating primarily in the U.S. than
firms with more internationally oriented portfolios. Intuitively, in the absence of equally stringent
climate regulation in other major emitting countries, cap-and-trade regulation in the U.S. will have
either zero or even slightly positive effects for firms with greater non-U.S. market exposure in the
presence of regulatory leakage. To examine heterogeneity as a function of U.S. product market
exposure, I use firm-level geographic business segment data which subdivide firms into country
and region-specific segments allowing construction of a U.S. market exposure index. Table A.5
estimates the average effects for firms within different bins of average U.S. revenue share in 2009-

24In most standard carbon accounting frameworks, emissions associated with the utilities sector are considered
indirect emissions and thus not comparable to direct emissions generated by other sectors.
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2010 after removing 3-digit NAICS means. Columns (1)-(4) show estimates for bins widths of
0.25. Column (5) includes firms with only US-based revenue. Point estimates generally decrease
with increased U.S. market exposure though coefficients are not significant due to the reduced
sample size. Interestingly, firms with low U.S. product market exposure in Column (1) yield small
positive effects hinting at potential gains due to international leakage of a U.S. cap-and-trade policy.

My strongest validation exercise tests for the presence of a specific feature of the Waxman-
Markey bill. Under Waxman-Markey, manufacturing sectors with historic energy intensity greater
than 5% were granted free allowances. Using 6-digit NAICS energy intensity data from the NBER-
CES database, I examine whether there is a discontinuity in estimated Waxman-Markey effects at
5% energy intensity. Figure 4 provides graphical evidence by plotting my estimated Waxman-
Markey effects as local polynomial functions of energy intensity on both sides of the 5% cutoff
suggesting that a discontinuity exists. Sectors with energy intensity slightly higher than 5% expe-
rience greater abnormal returns from the expected allocation of free allowances than sectors with
energy intensity immediately less than 5%. A density continuity test using the McCrary (2008)
procedure do not find a discontinuity in the distribution of firms at the 5% cutoff (not shown) sug-
gesting that markets did not expect firms to sort around the discontinuity. Turning to regression
results, Table 8 shows estimates from the following local linear model for manufacturing firm i in
sector s within various bandwidths around the cutoff value:

γ̂is = α1 +α21[EnIntis > .05]+α3(EnIntis− .05)+α41[EnIntis > .05](EnIntis− .05)+ cs + µis

(9)
where EnIntis is the 6-digit NAICS energy intensity matched to the firm, and cs are 3-digit NAICS
fixed effects. Standard errors are clustered at the 6-digit NAICS level. The discontinuity of interest
is captured by α2 and is displayed in Table 8. In Column (1), I estimate a discontinuity of 6%
regardless using the optimal bandwidth selected by the Imbens and Kalyanaraman (2012) proce-
dure. In Columns (2)-(5) I estimate Equation 9 for a range of bandwidths and find coefficients that
do not differ statistically from Column (1).25 Furthermore, placebo tests shown in Figure A.11
indicates that discontinuities are not present at other energy intensity cutoffs. Remarkably, this ev-
idence implies that market participants were anticipating the benefits of free allowance distribution
in their valuation of Waxman-Markey effects. This provides confidence that my method is picking
up concern over the imposition of Waxman-Markey. Furthermore, market anticipation of gains
from free allowances may also explain why the average effect for the manufacturing sector overall
is relatively small in Table A.3. This implies that the relationship between estimated Waxman-

25The standard errors presented in Table 8 do not explicitly use the uncertainty associated with my estimated
Waxman-Markey effects. Regressions using a parametric bootstrap procedure drawing from the estimated variance-
covariance matrix of Waxman-Markey effects were also conducted. Resulting standard errors are nearly identical to
those shown in Table 8.
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Markey effects and carbon and energy intensity shown in Figures 3 and A.10 may be steeper if not
for the distribution of free allowances.

Finally, in Table A.6, I present the equally-weighted and value-weighted average effect for
firms in each market cap decile defined as market value at the end of 2009 with 3-digit NAICS
means removed. I find that relative effects are more negative for medium-sized firms. Relative to
their 3-digit NAICS sector, small and large sized firms appear to exhibit small positive gains.

5 Unlisted firms: bounding analysis

It is unlikely that cap-and-trade would only affect publicly listed firms. Cap-and-trade should alter
the profitability of firms regardless of ownership structure. According to the U.S. Department of
Commerce, unlisted firms represent 9% of annual U.S. corporate profits. The challenge, however,
is that the market value of unlisted firms is typically not observed. As I demonstrate below, this
maps naturally into a partial identification framework with missing outcomes.

5.1 Lobbying expenditure data

The objective of the bounding analysis is to obtain information that might possibly reveal the
cost of cap-and-trade expected by unlisted firms. My solution employs Congressional lobbying
expenditures, a variable for which cap-and-trade related information is available for both listed
and unlisted firms. I identify all firms that have explicitly lobbied on Waxman-Markey and related
climate bills during the 111th Congress as indicated in lobbying records collected by the Senate
Office of Public Records.26 Special care was taken to drop lobbying firms, trade organizations, and
advocacy organizations that lobbied on Waxman-Markey but represent industry-level interests and
not that of individual firms.27 These records reveal that 456 separate firms lobbied on Waxman-
Markey of which 225 were unlisted.

Overall, $1.5 billion worth of lobbying records indicated Waxman-Markey lobbying of which

26Each lobbying form indicates the lobbying institution (a private company if internal lobbying or lobbying firm if
external lobbying), the client served, names of lobbyists employed, a list of lobbying issues, and the total amount paid
by the client to the lobbying institution (see Appendix E for further details). To isolate cap-and-trade related lobbying,
I extract the names of clients from lobbying records that indicate either H.R. 2454, H.R. 587, H.R. 2998, S.1733, or
S.1462 in the “specific lobbying issues” entry on the lobbying form. If multiple issues are noted on a lobbying form,
total lobbying expense will include all issues. This would mean that not all amount indicated was spent on cap-and-
trade lobbying. However, a spot check of lobbying records showed that most forms noting cap-and-trade lobbying
largely included issues that were closely related.

27In general, it is difficult to identify which firms are associated with certain trade or advocacy organizations.
Fortunately, expenditures by trade and advocacy organizations constitute only 5% of total Waxman-Markey lobbying
expenditures.
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9% was spent by unlisted firms.28 Table A.7 lists the firms with the highest lobbying expenditure.
As expected, this list is dominated by the energy sector. Observe also that besides two firms,
all high spending firms are publicly listed companies. There are two important features to note
regarding the distribution of listed and unlisted firms that lobby. First, roughly one quarter of
firms lobbying on Waxman-Markey spend between $6,000 - $125,000 suggesting that the cost of
entry into the lobbying market is fairly low. This partly alleviates concerns about free-riding in the
lobbying market. Second, unlisted firms lobbying on cap-and-trade spend an average of $647,000
which is an order of magnitude less than the average $5,792,000 spent by listed firms.

My bounding procedure relies on the following observation. Lobbying expenditure may reveal
the magnitude of cap-and-trade costs borne by firms but does not indicate the effect sign. For
example, a firm expecting $1 million in cap-and-trade costs might spend the same amount lobbying
as another firm expecting $1 million in cap-and-trade benefits. Thus, I can match listed and unlisted
firms according to lobbying expenditure to predict the absolute cost of cap-and-trade. Without
knowing the distribution of positive or negative effects borne by unlisted firms, the conservative
approach is to assign costs to be either positive or negative for all unlisted firms.

5.2 Partial identification framework

I formalize this exercise by adopting the partial identification framework with non-random missing
outcomes introduced by Manski (2003). Continuing with prior notation, I describe L listed and U

unlisted firms, with N = L+U , by the random variables (∆v,Z,X), where ∆v is the cost of Waxman-
Markey, Z is a binary variable equaling unity if a firm is listed and X is a scalar denoting lobbying
expenditures on Waxman-Markey in a space Ω ⊂ R≥0. ∆v is only observable when Z = 1. The
total cost of the policy is:

N ·E[∆v] = E[∆v|Z = 1] ·L+E[∆v|Z = 0] ·U (10)

E[∆v|Z = 0] is not observed. Importantly, in this context and others, it would be unreasonable
to assume that E[∆v|Z = 0] = E[∆v|Z = 1]. That is, the distribution of cap-and-trade costs dif-
fers for listed and unlisted firms. One could bound E[∆v|Z = 0] using the empirically observed
lower bound, ∆v = minZ=1 ∆v, and upper bound, ∆v = maxZ=1 ∆v, for listed firms such that
∆v ≤ E[∆v|z = 0] ≤ ∆v. However, as Lee (2009) has argued, in applications where the range
of observed costs are large, this “worst-case” scenario procedure generates bounds that may be
too wide to be informative. In my context, it would be unreasonable to assign unlisted firms with
bounds equalling the lowest and highest cost estimated for a listed firm.

28Because of the structure of the lobbying records, it is unclear if $1.5 billion was spent only lobbying on Waxman-
Markey. For the purposes of the bounding procedure, what matters is the order of lobbying expenses for firms and not
its actual value.
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I make two assumptions in order to perform the bounding analysis. First, I assume that unlisted
firms that do not lobby are on average unaffected by Waxman-Markey. Second, the absolute cost
of Waxman-Markey for an listed firm weakly bounds that of a unlisted firm conditional on positive
lobbying expenditure. The first assumption can be written:

Assumption 3 Revealed preference: E[|∆v| |Z = 0,X = 0] = 0

In words, Assumption 3 states that unlisted firms that did not lobby on average will not experi-
ence cap-and-trade costs. While this assumption might appear strong, it is fairly innocuous as
the bounds I estimate for unlisted firms that lobbied are relatively wide given the overall value of
unlisted firms in the U.S. economy. My second assumption states:

Assumption 4 Bounding: E[|∆v| |Z = 0,X = x,X > 0]≤ E[|∆v| |Z = 1,X = x,X > 0] ∀ x ∈Ω

Assumption 4 states that conditional on positive lobbying expenditures, the absolute costs of
Waxman-Markey for a listed firm weakly bounds the costs absolute costs borne by an unlisted
firm. Because both assumptions are based on the costs borne by unlisted firms which is unob-
served, they are fundamentally non-refutable. In Figure A.12 and Table A.8, I provide suggestive
evidence that Assumption 4 is reasonably valid. Figure A.12 shows that lobbyists hired exclusively
by listed firms to lobby on Waxman-Markey have higher average total lobbying revenue (across all
lobbying activity) than lobbyists hired exclusively by unlisted firms. Table A.8 shows that this is
largely true even conditional on the sector of the hiring firm.29

I can now rewrite the second term in Equation 10:

E[∆v|Z = 0] ·U ≤ E[|∆v| |Z = 0] ·U

= ∑
x∈Ω

E[|∆v| |Z = 0,X = x] ·Ux

= ∑
x∈Ω,x>0

E[|∆v| |Z = 0,X = x,X > 0] ·Ux

≤ ∑
x∈Ω,x>0

E[|∆v| |Z = 1,X = x,X > 0] ·Ux (11)

where Ux is the number of unlisted firms spending x amount on lobbying. The first line applies
the property of the absolute value, the second line uses the law of total probability, the third line
employs Assumption 3, and the final line uses Assumption 4. The expression above illustrates why
Assumption 3 is needed. While the overall value of unlisted firms in the U.S. economy is only 9%,
they make up 97% of all incorporated firms according to the Bureau Van Dijk Orbis database. This
implies a large value for U0 and thus large uninformative bounds in the absence of Assumption 3.

29This is suggestive evidence. Because I only observe total lobbying revenue and not lobbying wages, I cannot
infer units of lobbying effort purchased by each firm.
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Implicit in Assumption 4 is the notion that absolute Waxman-Markey costs can be predicted
by lobbying expenditures. Figure 5 provides evidence by plotting the log absolute firm-level cost
of cap-and-trade obtained from Section 4 against the log lobbying expenditure for all listed firms
appearing in the lobbying record. Table 9 confirms a statistically significant linear relationship
showing regressions of the form:

log
∣∣∣γ̂iv̂o

i

∣∣∣= α +η logLobbyExpensei + cs + µis (12)

where γ̂i is the estimated effect of Waxman-Markey from Section 4 and v̂o
i is the predicted market

value under business-as-usual.30 LobbyExpense is the total amount spend lobbying on Waxman-
Markey and cs are sector fixed effects. Columns (1) and (2) of Table 9 show that η is positive and
statistically significant regardless of sector fixed effects inclusion. Interpreting this cross-sectional
elasticity, a 1% increase in lobbying expenditures is associated with a 0.48% increase in absolute
cap-and-trade related costs.

Applying the property of the absolute value, I can now recover an identification region for the
total cost of cap-and-trade:

H{N ·E[∆v]}=[E[∆v|Z = 1] ·L− ∑
x∈Ω,x>0

E[|∆v| |Z = 1,X = x,X > 0] ·Ux,

E[∆v|Z = 1] ·L+ ∑
x∈Ω,x>0

E[|∆v| |Z = 1,X = x,X > 0] ·Ux]

=[
L

∑
i=1

γ̂iv̂o
i −

U

∑
u=1
|∆̂vu|,

L

∑
i=1

γ̂iv̂o
i +

U

∑
u=1
|∆̂vu|] (13)

To summarize, the bounding analysis is performed in three steps. First, I estimate the relationship
between absolute cap-and-trade costs and lobbying for listed firms that appear in the lobbying
records using Equation 12. In a second step, I predict out-of-sample absolute cap-and-trade costs
for unlisted firms lobbying on Waxman-Markey. Finally, I assign predicted costs to be either
negative or positive for all unlisted firms. As an illustration of these generated bounds, Figures
A.13 and A.14 plot the distribution of firm-level costs estimated for all listed firms in the lobbying
record (red) along with the predicted negative and positive costs for matched unlisted firms (gray).

5.3 Aggregate costs

Panel (a) of Table 10 displays the total change in firm value according to the various benchmark
models shown in Panel (b) of Table 2. Averaging across the five benchmark models, Waxman-
Markey is expected to lower the value of listed firms by $150 billion. Using Equation 13 to bound
costs for unlisted firms, total losses due to Waxman-Markey have a lower bound of $70 billion

30Obtained by rearranging Equation 1 so that v̂o
i = Ṽi

θ γ̂i+1
, where the bar denotes the average over the event period.
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and an upper bound of $240 billion. The large width of these bounds is due to the difficulty of
determining the sign of predicted costs for unlisted firms. They are also sufficiently wide such
that Assumption 3 seems reasonable. My conservative upper bound estimate attributes 35% of the
upper bound total Waxman-Markey cost to unlisted firms that lobbied. This value is large relative
to the 9% share of annual U.S. corporate profits attributed to unlisted firms and suggests that my
bounds may be wide enough to include all unlisted firms and not just those that lobbied.

To conduct statistical inference on the lower and upper bounds of the identification region, I
follow the principle developed by Imbens and Manski (2004) for a confidence interval that asymp-
totically covers the true parameter with fixed probability. This is implemented using a parametric
bootstrap procedure which draws from the estimated listed firm effects and associated variance-
covariance matrix (see Appendix D for further details). Figure A.15 plots the two layers of uncer-
tainty associated with the estimates shown in Table 10. For each model, I plot the estimated loss
for all listed firms along with a 90% confidence interval in thick black lines corresponding to Panel
(b) of Table 2. The interval shown by thin brown lines indicates the identification region for the
effect on all listed and unlisted firms with dashed gray lines showing the 90% confidence interval
for the lower and upper bounds of the identification region.

6 Comparing with CGE models

Unfortunately, direct benchmarks for my estimates are not available because Waxman-Markey
was never implemented. To date, multi-sector computational general equilibrium (CGE) models
are the prevailing technique for evaluating the cost of cap-and-trade policy (see Appendix G for a
summary) and thus serve as a potential benchmark for my estimates. Such comparisons, however,
require a degree of caution. In particular, CGE estimates may differ from this paper for reasons
relating to the structural assumptions of CGE models as well as the scope of their analyses.

CGE forecasts are based on structural representations of the economy with parameters that
capture expected future prices, demand elasticities, and technological change. Parameters assumed
for CGE models may differ from market expectations. In particular, while demand elasticities may
be well-approximated using available empirical evidence, expectations over the prospects of low-
carbon technologies may diverge widely if there is disperse information regarding the technological
frontier. Furthermore, technological change is typically modeled within the CGE environment as
autonomous trends and substitution across input factors and may not adequately capture various
dynamics of induced technological change (Kolstad et al., 2010; Jacoby et al., 2006).

The scope of analysis also differ across these two methods. CGE models typically analyze
the total costs of a specific, stand-alone cap-and-trade policy at the domestic sectoral level. This
differs from my estimates which excludes the household sector but includes the entire suite of poli-
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cies under Waxman-Markey, and not just the cap-and-trade component. In using firms as the unit
of analysis, I also cannot exclude non-U.S. effects on firms with international operations nor can I
capture the dynamics of future firm entry within a sector. Ryan (2011) shows that the latter is par-
ticularly relevant for estimating the cost of the 1990 Clean Air Act Amendments on the US cement
industry. Second, while my analysis focuses on the cost to firms of climate policy, I am unable to
exclude the possibility that markets also anticipated benefits from climate policy that may result
from implementation of the Waxman-Markey bill. Expecting markets to anticipate benefits from
climate policy, however, requires strong assumptions on investor foresight. In particular, while the
U.S. is one of the world’s largest emitters, reductions from the U.S. alone is unlikely to have a
significant impact on global atmospheric greenhouse gas concentrations. Market participants re-
sponding to benefits from the policy must therefore forecast not just U.S. emissions reductions but
also the likelihood that U.S policy triggers carbon mitigation elsewhere.

Finally, insofar as market participants expected political activity to alter final policy details
before implementation, my estimates may correspond to a slightly different policy than that exam-
ined by CGE models which do not endogenize political dynamics. This final point should draw the
most pause when considering any comparison exercise. The estimates from this paper correspond
to the cost of a policy that markets expected to be implemented. While the heterogeneity analysis
in Section 4.4 gives confidence that this policy resembles the Waxman-Markey bill, I am unable to
confirm that markets expected the eventual policy to follow Waxman-Markey line for line.

For these reasons, the following comparison exercise should be interpreted with caution. In Ta-
ble 10 Panel (b), I display comparable estimates from the IGEM and EPPA models, the two most
prominent academic CGE climate policy models. The statistic provided is the CGE forecasted
change in net-present discounted capital income which is the closest proxy for firm profits within
the CGE environment.31 Unfortunately, capital income reflects accounting and not economic prof-
its.32 To produce a more valid comparison across the two methods, I consider a scenario whereby
capital investments within the CGE environment are adjusted for the market cost of capital.33

Using this measure for comparison, my lower and upper bound estimates are 16% - 54% of
the average CGE estimate for the IGEM and EPPA models as shown in Figure 6. Though it is
difficult to isolate which of the reasons noted above may explain the difference in estimates be-
tween these two methods, it is illustrative to explore why actual costs of environmental policies

31I am grateful to Larry Goulder for this suggestion.
32Constant returns to scale and perfect competition in most CGE models implies a zero-profit condition.
33Discounting within a CGE model is conducted using the risk-free interest rate. The discount rate for stock

prices, on the other hand, is the sum of the risk-free interest rate and a risk premium associated with holding the risky
asset. IGEM uses an endogenous risk-free interest rate of 2.63%. EPPA has an exogenous risk-free interest rate of
4%. I increase the discount rate used for net present value calculations for CGE outputs to the sum of the risk-free
interest rate inherent in each model and 3.3% equity risk premium obtained from Robert Shiller’s data (data available:
http://www.econ.yale.edu/~shiller/data.htm).
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may have diverged from ex-ante structural forecasts in the past. In the case of the Montreal Pro-
tocol, overestimates were attributed to a failure in forecasting the development of CFC substitutes
(Cook, 1996). For the U.S. SO2 cap-and-trade system, models did not foresee the lowering of
transport costs for low-sulfur coal following railroad deregulation (Carlson et al., 2000; Ellerman
et al., 2000). The blue bars in Figure 6 indicate the ratio of actual costs to ex-ante structural fore-
casts for the Montreal Protocol, U.S. SO2 cap-and-trade system, and the E.U. Emissions Trading
System (EU-ETS). An evaluation of structural forecasts for these past major environmental poli-
cies suggests that actual costs were between 30% - 75% of ex-ante forecasts.34 In this light, CGE
modeling choices regarding future input prices and technological change may explain some of the
difference between Waxman-Markey estimates from this paper and CGE models. Future research
aims to better understand which of these features are driving the divergence in estimates produced
by these two methods.

7 Conclusion

This paper develops and applies a novel method for forecasting the cost to firms of proposed cli-
mate policy. Through an event study using prediction markets, I estimate the expected cost to firms
of the Waxman-Markey cap-and-trade bill, had it been implemented. Information from lobbying
records augments the analysis to bound costs for unlisted firms. To the best of my knowledge,
this paper provides the first forecast of the cost of climate policy to firms outside CGE modeling
efforts. More generally, the method developed in this paper can serve as a framework for using
prediction markets as a forecasting tool for other polices.

Because of methodological differences, estimates from this paper and CGE models may be
fundamentally different and thus provide complementary roles in the policy process. The main ad-
vantage of this method is that it accesses the broad information set revealed by market participants
and firms within a structurally minimal framework. However, while this method recovers the ex-
pected cost of the implemented policy, I am unable to confirm that this policy corresponds exactly
to the Waxman-Markey bill, which limits my method from informing debates on alternative policy
options. CGE models, on the other hand, structurally evaluate cap-and-trade policies for a known
policy. They are valuable for the policy process as they allow for counterfactual policy evaluations.
CGE models also provide details about disaggregate impacts such as household consumption, en-
ergy input mix, and commodity prices, which all have important distributional consequences. It is
likely, given the complementary nature of these two methods, that both CGE models and prediction
market event studies will be valuable inputs for the next round of climate policy debates.

34Not all prior structural forecasts of environmental regulations were performed using CGE models. See Appendix
G for more details on prior forecasts.
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Deschênes, Olivier, and Michael Greenstone. 2007. “The Economic Impacts of Climate Change:
Evidence from Agricultural Output and Random Fluctuations in Weather.” American Economic
Review, 97(1): 354–385.
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Figures
Figure 1: Stock returns for prominent firms during major events
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Notes: Each plot shows cumulative returns before and after a major event for the aggregate value-weighted market
index and stock returns of firms with the highest Waxman-Markey lobbying spending.

Figure 2: Cap-and-trade Intrade market prices
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Notes: Red solid (gray dashed) lines mark days with events directly (indirectly) related to cap-and-trade prospects.
(1) 6/26/2009: House passes Waxman-Markey. (2) 11/4/2009: Graham joins Senate effort. (3) 12/20/2009: Copen-
hagen negotiations concluded. (4) 1/19/2010: Scott Brown wins Mass. Senate seat. (5) 1/27/2010: Graham-Kerry-
Lieberman seeks non cap-and-trade alternatives. (6) 3/31/2010: Obama supports offshore drilling. (7) 4/23/2010:
Graham drops support. (8) 6/15/2010: Obama oval office speech. (9) 7/22/2010: Senate drops cap-and-trade legisla-
tion. See Appendix F for further detail.
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Figure 3: Manufacturing subsector effects vs. carbon intensity
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Notes: Average W-M effects for firms within a 3-digit NAICS manufacturing sector plotted against carbon intensity
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Figure 4: Regression discontinuity of Waxman-Markey effects at 5% energy intensity
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Notes: Discontinuity of estimated Waxman-Markey effects at 5% energy intensity with 3-digit NAICS average re-
moved. Local polynomial regression using an Epanechikov kernel with optimal bandwidth (Fan and Gijbels, 1996).
90% confidence intervals shown.
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Figure 5: Firm-level cost of cap-and-trade versus lobbying expenditure
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Figure 6: Comparing with past structural forecasts
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Tables

Table 1: Cap-and-trade related activity for full sample and major event days

Full sample Major events
Number of obs 111 5

2-day interval

Absolute change in Intrade price (|∆θ |) 0.024 0.078
[.032] [.033]

Intrade volume 30 69
[89] [100]

Weekly interval

Google News Headlines: 0.031 0.094
“cap and trade” (% change) [0.70] [0.51]

Google search volume: -0.0016 0.011
“cap and trade” (% change) [0.12] [0.0073]

Notes: Standard deviation in brackets.

Table 2: Prediction market event study: Main result

Model Controls Days equal-wt. avg. eff. value-wt avg. eff. total cost
1
L ∑` γ̂` ∑`

vo
`

∑` vo
`
γ̂` ∑` vo

` γ̂`

Panel (a): Dep. var. is 2-day value-weighted market returns
(1) Aggregate 5 -0.011 -163.77

[0.18] [2741.73]

Panel (b): Dep. var. is 2-day firm-level returns
(2) Firm-level CAPM 111 -0.020* -0.0080*** -146.74***

[0.011] [0.0024] [43.40]
(3) Firm-level 3-factor FF 111 -0.014** -0.0066*** -120.54***

[0.0067] [0.0022] [40.42]
(4) Firm-level < 0.05 CI 111 -0.020* -0.0086** -157.12**

[0.012] [0.0041] [75.30]
(5) Firm-level < 0.10 CI 111 -0.020* -0.0085** -154.47**

[0.012] [0.0043] [77.90]
(6) Firm-level < 0.15 CI 111 -0.022* -0.010** -190.99**

[0.012] [0.0046] [84.21]
Notes: Panel (a) from a bivariate time series of aggregate value-weighted market returns on change
in prediction market price for 5 major event days (see Equation 5). Panel (b) from firm-level SUR
regressions of 5,342 firm-level returns on change in prediction market price with CAPM, 3-factor
Fama-French model, and value-weighted returns of low carbon intensive firms (below 0.05, 0.10
and 0.15 mton CO2 per billion output) as benchmark controls (see Equation 6) . Only days with
θt ∈ [.2, .8]. SUR standard errors with correlation across firms. *** p<0.01, ** p<0.05, * p<0.1
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Table 3: Prediction market event study: thin trading and price manipulation
Dep var is 2-day stock return

(1) (2) (3) (4) (5) (6)
high volume without high HHI

main volume interaction big trader concentration interaction

∆θt -0.014** -0.018* -0.011 -0.022** -0.017 -0.027*
[0.0067] [0.0097] [0.0082] [0.011] [0.027] [0.016]

∆θt x volume -0.000072
[0.00014]

∆θt x HHI 0.019
[0.021]

Number of days 111 21 111 37 9 111
Equally weighted average effect shown for 5,342 firms. Only days with θt ∈ [.2, .8]. Column (1)
replicates 3-factor Fama-French result. Column (2) includes only high volume trading days (>
sample mean volume of 30 trades). Column (3) adds an interaction of prediction market price
with trading volume. Column (4) includes only trading days without top 2 influential traders.
Column (5) includes only days with HHI<0.25. Column (6) adds an interaction of prediction
market price with daily HHI index. SUR standard errors with correlation across firms. ***
p<0.01, ** p<0.05, * p<0.1

Table 4: Prediction market event study: additional controls
Dep var is 2-day stock return

(1) (2) (3) (4) (5) (6)
main trend oil price EUA Google News Welsh-Goyal

∆θt -0.014** -0.013* -0.015** -0.013** -0.014** -0.017**
[0.0067 ] [0.0067] [0.0066] [0.0067] [0.0069] [0.0072]

Number of days 111 111 111 111 111 111
Equally weighted average effect shown for 5,342 firms. Only days with θt ∈ [.2, .8]. Column
(1) replicates 3-factor Fama-French result. Column (2) includes a linear trend. Column (3)
includes change in crude oil price. Column (4) includes change in EU-ETS 2015 futures price.
Column (5) includes Google News volume for “climate change”, “carbon tax”, “energy policy”,
and “nuclear policy”. Column (6) includes monthly Welsh-Goyal controls. SUR standard errors
with correlation across firms. *** p<0.01, ** p<0.05, * p<0.1
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Table 5: Prediction market event study: leads and lags

Dep var is 2-day stock return
(1) (2) (3) (4)

lagged lagged lead
main returns prediction prediction

∆θt -0.014** -0.013** -0.013** -0.013**
[0.0067] [0.0064] [0.0064] [0.0066]

ri,t−1 -0.0027
[0.0096]

∆θt−1 0.0021
[0.0064]

∆θt+1 0.0068
[0.0066]

Number of days 111 110 110 110
Equally weighted average effect shown for 5,342 firms. Only days
with θt ∈ [.2, .8]. Column (1) replicates 3-factor Fama-French re-
sult. Column (2) includes lagged stock returns. Column (3) in-
cludes lagged prediction price. Column (4) includes lead predic-
tion price. SUR standard errors with correlation across firms. ***
p<0.01, ** p<0.05, * p<0.1

Table 6: Prediction market event study: other trading day samples

Dep var is 2-day stock return

(1) (2) (3) (4) (5)
main 2009 2010 ∆θt ≥ 0 ∆θt < 0

∆θt -0.014** -0.017* -0.010 -0.014 -0.013
[0.0067] [0.0091] [0.010] [0.011] [0.016]

Number of days 111 84 27 81 30
Equally weighted average effect shown for 5,342 firms. Only days
with θt ∈ [.2, .8]. Column (1) replicates 3-factor Fama-French main
result. Column (2) includes only 2009 trading days. Column (3) in-
cludes only 2010 trading days. Column (4) includes only days with
∆θt ≥ 0. Column (5) includes only days with ∆θt < 0. SUR standard
errors with correlation across firms. *** p<0.01, ** p<0.05, * p<0.1
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Table 7: Prediction market event study: carbon intensity and energy input share

Dep var is 3-digit manufacturing coefficient

(1) (2) (3) (4)

carbon intensity -0.0364*** -0.033***
[0.0112] [0.0096]

energy input share -0.31*** -0.24*
[0.11] [0.12]

Observations 1,663 1,663 1,663 1,663
2-digit NAICS fixed effect NO YES NO YES
Regressions of estimated firm-level cap-and-trade effects on 2005 sectoral car-
bon intensity (CO2 per billion output) and energy input share (% of output)
at the 3-digit NAICS manufacturing level. Only includes manufacturing firms.
Columns (2) and (4) include 2-digit NAICS2 fixed effects. Standard errors clus-
tered at 4-digit NAICS level in brackets. *** p<0.01, ** p<0.05, * p<0.1

Table 8: Prediction market event study: discontinuity at 5% energy intensity

(1) (2) (3) (4) (5)

Discontinuity 0.058* 0.064 0.078** 0.071** 0.057*
[0.030] [0.045] [0.038] [0.032] [0.029]

Bandwidth 0.044 ± 0.02 0.03 0.04 0.05
Number of firms 1,647 203 411 1,122 1,678
Regression discontinuity of estimated firm-level Waxman-Markey
effects at 5% energy intensity in 2005. Local linear model with tri-
angular kernel and 3-digit NAICS sector fixed effects. ± in Column
(1) indicates bandwidth obtained from the Imbens and Kalyanara-
man (2012) optimal bandwidth selection procedure. Columns (2)-(5)
show estimated discontinuity with different bandwidths. 13σ outlier
firm dropped (permno=88729). Standard errors clustered at 6-digit
NAICS level. *** p<0.01, ** p<0.05, * p<0.1
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Table 9: Cost of cap-and-trade vs. lobbying expense

Dep var is log absolute cap-and-trade cost
(1) (2)

log lobby expense 0.468*** 0.477***
[0.0399] [0.0383]

constant 12.53*** 12.40***
[0.543] [0.550]

Observations 231 231
R2 0.214 0.274
Sector FEs NO YES
Regressions of log absolute value of cap-and-
trade on log Waxman-Markey lobbying expendi-
ture. Robust standard error clustered at aggregate
sector level. *** p<0.01, ** p<0.05, * p<0.1

Table 10: Estimated change in profits for listed and unlisted firms

Panel (a) Event study aggregate cost estimates

(1) (2) (3) (4) (5) (6)
CAPM 3FF <0.05 CI <0.10 CI <0.15 CI Avg.

Listed firms -146.74 -120.54 -157.12 -154.47 -190.99 -153.97
Unlisted firms (absolute cost) 82.04 78.52 86.21 87.87 81.87 83.30

Listed & unlisted firms (lower bnd) -64.7 -42.02 -70.91 -66.59 -109.12 -70.67
Listed & unlisted firms (upper bnd) -228.78 -199.06 -243.33 -242.35 -272.86 -237.28

Panel (b) CGE model estimates
CGE model
MIT EPPA -410

Harvard IGEM -460
All values in billion 2009 dollars. Listed firm estimates based on Panel (b) of Table 2. Each column in
Panel (a) uses a different benchmark model. Unlisted firm bounds based on estimated relationship shown
in Table 9. For CGE models in Panel (b), change in risk-adjusted NPV capital income is shown obtained
from private communication with IGEM and EPPA modeling teams. See Section 6 on construction of
risk-adjusted NPV capital income.
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Appendix A Theoretical framework for cap-and-trade

This section presents a theoretical framework which maps market values onto the marginal abate-
ment cost under a cap-and-trade system. Following the modeling framework of Montgomery
(1972) and Rubin (1996), I first explore the joint cost minimization problem for firms and house-
holds which solves for an aggregate marginal abatement cost. In practice, however, the regulator
can never implement the joint cost problem, but can instead set up a cap-and-trade system. To that
end, I analyze the cost minimization problem under emissions trading in which the equilibrium
allowance price equals the aggregate marginal abatement cost. An extension of this equivalence
result yields an expression approximating the aggregate marginal abatement cost for the policy.
Because I do not observe the impact of the policy on households, I can only recover the portion of
the aggregate marginal abatement cost attributed to firms. Throughout, I use a general objective
function to avoid specifying market structure and production technology.

Joint-cost minimization

Banking and borrowing provisions in most cap-and-trade legislations allow aggregate annual
emissions caps to be ostensibly treated as a cumulative stock.35 This insight allows one to trans-
late the dynamic setting of a cap-and-trade policy into the canonical Hotelling model of optimal
extraction for a known stock of nonrenewable resource (Hotelling, 1931). This was explored in
Rubin (1996)’s dynamic model of emissions trading which extended the canonical static model of
Montgomery (1972) first establishing the cost effectiveness of emissions trading. Following this
framework, I explore a joint cost minimization problem in which N−1 firms and a representative
household choose annual emissions eit to optimally deplete a fixed known stock of R emissions
over t ∈ [0,T ], the lifetime of the policy.36 For simplicity, firms and the representative household
are treated identically within this framework, a point I return to later.

I define a concave, twice-differentiable, general profit function with emissions eit . The optimal
control problem with choice variable eit and state variable st is written as:

35Waxman-Markey permits unlimited banking and limited borrowing of future allowances. Specifically, borrowing
of allowances vintage 2 to 5 years into the future are subject to a 15% interest. Such constraints result in allowance
price increases below the rate of interest (Rubin, 1996; Schennach, 2000). Because I am primarily interested in
estimating the allowance price during the first year of the policy, for simplicity, this model sets allowance prices to
follow Hotelling’s rule.

36This setup differs from the Montgomery (1972) model along three dimensions. First, I introduce a household
production sector in which the representative agent maximizes “profit” from the household production of a utility good.
Second, the objective function is written in terms of firm profits and not the difference between unconstrained and
constrained profits. Lastly, I deviate from Rubin (1996)’s setup by writing an equation of motion in terms of depletion
rather than accumulation. These choices were made for expository simplicity but are mathematically immaterial.
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V = max
eit

∫ T

0
e−δ t

N

∑
i=1

πi(eit)dt

s.t. ṡt =−
N

∑
i=1

eit

s0 = R, sT ≥ 0, eit ≥ 0 ∀i

where δ is the exogenously determined rate of interest.37 Solving the current value Hamiltonian
yields the following first order conditions:

π
′
i (eit) = Λt ∀i (A.1)

Λ̇t−δΛt = 0 (A.2)

ΛT sT e−δT = 0 (A.3)

where Λt is the positive current value shadow price at year t and can be naturally interpreted as the
marginal abatement cost as it corresponds to the marginal profit associated with an extra unit of
allowed emissions. Equations A.2-A.3 summarizes two well-established features of the Hotelling
problem. First, a simple rearrangement of Equation A.2 yields Hotelling’s rule, Λt = Λ0eδ t , which
states that the marginal abatement cost rises at the rate of interest. Second, observe that Hotelling’s
rule together with the transversality condition in Equation A.3 yield

∫ T
0 ∑

N
i=1 eitdt = R. That is,

total emissions must equal R by the end of the policy period. Define the optimal allocation of
emissions for the joint problem E∗∗t = (e∗∗1t ...e

∗∗
Nt). The value function at the optimum can be

written as a single-valued function of the cumulative cap, such that V (R) =
∫ T

0 e−δ t
∑

N
i=1 πi(e∗∗it )dt.

An envelope theorem-type argument implies:38

Λ0(R) = V ′(R) (A.4)

Furthermore, a concave, nondecreasing, and nonnegative value function, together with a positive
shadow price, yields Λ0 ≥ 0 and dΛ0(R)

dR < 0. That is, the marginal abatement cost rises as the
cumulative cap under the policy tightens. Now consider a linear approximation for Λ0 between the
optimum value for a no-policy, business-as-usual scenario with cumulative emissions Ro, and the
optimum value under a policy with cumulative emissions constrained at R:

Λ0(R)≈ V (R)−V (Ro)
R−Ro (A.5)

37I assume that cap-and-trade regulation ends in 2050 as written in Waxman-Markey to avoid explicit assumptions
about both business-as-usual emissions and cap-and-trade regulation beyond 2050.

38See (Weitzman, 2003, p. 159)
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Observe that given the concavity of V (R) and since R < Ro, a linear approximation understates
Λ0(R) to a degree that depends on the concavity of V (R).

Cap-and-trade
In practice, however, the regulator never solves the joint cost problem, but can introduce a cap-
and-trade system. Here, the regulator’s role is to create R cumulative allowances such that in each
period A f

it is given freely to firm or household i and Aa
t is auctioned off.39 Denote yit as the number

of allowances sold (>0) or purchased (<0). The firm or household’s dynamic problem is to choose
eit and yit with allowance banking:

vi = max
yit ,eit

∫ T

0
e−δ t [πi(eit)+ τtyit ]dt

s.t. ṡit = A f
it− eit− yit

si0 = 0, siT ≥ 0, eit ≥ 0 ∀i

where τt is the allowance price. The first order conditions from the current value Hamiltonian are:

π
′
i (eit) = λit (A.6)

τt =−λit (A.7)

λ̇it−δλit = 0 (A.8)

λiT sT e−δT = 0 (A.9)

where λit is the positive current value shadow price. Defining the market equilibrium as E∗t =
(e∗1t ...e

∗
Nt), Y ∗t = (y∗1t ...y

∗
Nt), and τ∗t , I further impose market clearing and terminal conditions:

∑
N
i=1 y∗it +Aa

t = 0 ∀t (A.10)

τ∗T

[∫ T
0 ∑

N
i=1(A

f
it− e∗it− y∗it)dt

]
= 0 (A.11)

Rubin (1996) shows that the market equilibrium satisfying Equations A.6 - A.11 achieves E∗∗t = E∗t
and −Λt = τ∗t . That is, the decentralized emissions trading solution yields the same efficient
emissions allocation as the joint cost problem and the marginal abatement cost obtained from
the joint cost problem equals the equilibrium allowance price. Now, suppose one could observe
the aggregate difference in optimal firm and household values under a cap-and-trade policy and
business-as-usual scenario, ∑

N
i=1 ∆vi = ∑

N
i=1(vi(R)− vi(Ro)). This can be written:

39Observe that Montgomery (1972) and Rubin (1996) assume that all allowances are distributed freely, that is
Aa

t = 0 ∀t. This is inconsistent with Waxman-Markey.
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N

∑
i=1

∆vi =
∫ T

0
e−δ t

N

∑
i=1

[πi(e∗it)+ τ
∗
t y∗it−πi(eo

it)]dt (A.12)

=
∫ T

0
e−δ t

N

∑
i=1

[πi(e∗∗it )−πi(eo
it)]dt−

∫ T

0
e−δ t

Λt

N

∑
i=1

y∗itdt (A.13)

= V (R)−V (Ro)+ΛoAa (A.14)

where the second line uses Rubin (1996)’s equivalence result. The third line employs the definition
for the current value shadow price, uses Equation A.10, sets Aa =

∫ T
o Aa

t dt, and substitutes the
optimal value from the joint cost problem. Dividing Equation A.14 by the cumulative abatement
under Waxman-Markey, R−Ro, applying Equation A.5, and after some rearranging, yield:

Λo(R)≈ ∑
N
i=1 ∆vi

R−Ro +Aa (A.15)

Equation A.15 states that the marginal abatement cost can be recovered by estimating the dif-
ferences in firm and household values under business-as-usual and Waxman-Markey scenarios.
Furthermore, it requires no further assumptions on the function πi(eit). The numerator can be in-
terpreted as the total level of abatement adjusted for the number of auctioned allowances. Observe
that the Coase independence property, whereby the equilibrium allowance prices are unaffected by
the initial distribution of allowances, holds throughout this framework (Coase, 1960; Montgomery,
1972; Hahn and Stavins, 2010). However, recovering the policy’s underlying marginal abatement
price using potentially observable market values requires specifying the cumulative number of
auctioned allowances. This is because, as evident from the objective function, changes in market
values depend on the share of total allowances that are freely distributed.40 Because ∆vi and R−Ro

are both negative, a greater share of free allowances Aa would lower losses due to the policy which
increases the numerator in Equation A.15. Thus, neglecting allowance auctioning would understate
the true marginal abatement cost.

Thus far, I have treated firms and the representative household alike. However, notice that
I cannot recover the aggregate marginal abatement cost because I do not observe cap-and-trade
effects on households. Instead, I can only recover the total cost to firms, which is simply denoted
as ∑

N−1
i=1 ∆vi.

40I thank Michael Greenstone for raising this point.
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Appendix B Adjusting for contract expiration

Intrade prediction markets are traded up to a certain date upon which contract holders are paid $1 if
the event is realized for each contract held. For the cap-and-trade prediction market, that expiration
date was December 31, 2010, coinciding with the end of the 111th Congress. Because it is rare that
a piece of legislation, having failed passage in the current Congress, is reintroduced with identical
features in a subsequent Congress, this expiration date should coincide with the expected final
possible date of Waxman-Markey approval.

However, it is difficult to ascertain whether markets expected Waxman-Markey prospects to
exist following the end of the 111th Congress. If so, this introduces a bias between the prediction
market price and average market beliefs which would increase as the expiration date nears. One
solution to this problem is to estimate Equation 6 in first-differences, which removes a linear time
trend from the price time series. However, one might still be concerned about nonlinearities in this
bias as a function of remaining trading days not fully captured by a linear trend. To remove this
bias, one would like to weight prediction price levels using a kernel that varies with the number of
remaining trading days.

Formally, the true variable of interest is qt(T ) where T = 12/31/2011, the date in which the
cap-and-trade system begins under the policy. I do not observe qt(T ). Instead, I observe a pre-
diction market price for a contract expiring on date T 1 = 12/31/2010 < T . I now define this as
θt(d,T 1), where d = T 1− t, the number of remaining days until expiration. Specifically, it has the
following piece-wise form:

θt(d,T 1) =

k(d)qt(T ), if d < D̂

qt(T ), otherwise
(B.1)

where k(d) is a weighting kernel which is a function of d and exists only when the remaining
number of days is less than some threshold D̂. In other words, k(d) captures any concerns about
an impending contract expiration. Importantly for this exercise, I assume k(d) to be discontinuous
such that prediction market participants only become concerned about contract expiration after a
certain point when there are fewer than D̂ days remaining.

The problem lies in estimating k(d). Fortunately, the availability of additional Intrade data
allows for an empirical estimate of k(d). The prediction market contract shown in Figure 2 was
not the first cap-and-trade contract offered by Intrade. Around the same time that the 2010-expiring
contract begin trading, InTrade offered an identical contract with an earlier expiration date set for
T 2 = 12/31/2009 < T 1 < T . This contract, with prices denoted as θt(d,T 2), lasted only eight
months and is shown as a dashed line in Figure A.6.

Estimating k(d) requires the following assumption: for all trading days in which both contracts
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exist, d ≥ D̂ for θt(d,T 1) and d < D̂ for θt(d,T 2). That is during 5/1/2009-12/31/2009, prices from
the 2010-expiring contract were unadulterated by concerns over contract expiration while prices
from the 2009-expiring contract incorporated such concerns. Thus:

k(d) =
θt(d,T 2)
θt(d,T 1)

∀t ∈ [5/1/2009,12/31/2009] (B.2)

The solid line in Figure A.7 plots k(d) and appears trend stationary. To remove noise in k(d), the
following linear regression is performed:

k(d) = α0 +α1d + εd (B.3)

where εd is a mean zero disturbance. The predicted kernel, k̂(d), is shown as the dashed line in
Figure A.7. The threshold D̂ is defined as the point at which k̂(d) = 1. To recover qt , I simply
rewrite Equation B.1 to obtain:

qt(T ) = adjusted θt(d,T 1) =


θt(d,T 1)

k̂(d)
, if d < D̂

θt(d,T 1), otherwise
(B.4)

Figure A.8 plots the original θt(d,T 1) against the adjusted θt(d,T 1) using the predicted kernel
from Equation B.3. Observe that the two time series begin diverging at the beginning of 2010
when d < D̂. This divergence, which increases until the end of the 2010, inflates the original
price series to remove any concerns about contract expiration. Thus, while the prospects for cap-
and-trade indeed collapsed when the Senate formally withdrew cap-and-trade legislation on July
23, 2010, market beliefs over cap-and-trade prospects were actually higher than what the original
prediction market indicated.

Table A.2 replicates Panel (a) of Table 2 using the adjusted Intrade prices. These estimates are
slightly smaller but are not statistically different than those presented in Table 2.
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Appendix C Standard error simulations
The two estimation procedures presented in Section 4 yield similar point estimates but different
uncertainty. The procedures differ in sample size, unit of analysis, and inclusion of controls. In this
section, I use a numerical simulation to explore the relative contribution of these three properties in
explaining the difference in estimated uncertainty. To start, I assume that the true data generating
process follows the CAPM model:

DGP : rit = α
o
i + γ

o
i ∆θt +β

o
i mktt + εit

To mimic actual stock returns I assume the parameters estimated in my firm-level CAPM model
(Row (2) in Table 2) are the true parameters so that αo

i = α̂i, γo
i = γ̂i, β o

i = β̂i, and εit ∼ N(0, Σ̂).
Predictors are drawn to match empirical distributions such that ∆θt ∼ N(0.0028,0.0016) and
mktt ∼N(0.0028,0.00029). The exercise includes four statistical models designed to incrementally
examine each of the three properties that differ across the two approaches. Model (1) is identical
to the aggregate time series model for major event days shown in Row (1) of Table 2. Model
(2) examines the implication of larger sample size by estimating Model (1) for 111 days. Model
(3) estimates a firm-level SUR regression to examine the implications of covariance in residuals
(Garrett, 2003; Veredas and Petkovic, 2010). Model (4) includes a control for normal market per-
formance which matches the true DGP and corresponds to results shown in Row (2) in Table 2.
Specifically, for each iteration b = 1...500, the procedure is:

i) Draw: ε
(b)
it ∼ N(0, Σ̂)

ii) Apply DGP: r(b)
it = α̂oi + γ̂o

i∆θt + β̂ o
imktt + εit

iii) Calculate aggregate returns: r̃(b)
t = ∑i

vo
i

∑i vo
i
r(b)

it

iv) Obtain γ̂1
(b) from Model (1): r̃(b)

t = α
(b)
1 + γ

(b)
1 ∆θt + ε1t for random draw of T=5.

v) Obtain γ̂2
(b) from Model (2): r̃(b)

t = α
(b)
2 + γ

(b)
2 ∆θt + ε2t for T=111.

vi) Obtain γ̂3
(b) = ∑i

vo
i

∑i vo
i

ˆγ3i from Model (3): r(b)
it = α

(b)
3i + γ

(b)
i3 ∆θt + ε3it for T=111.

vii) Obtain γ̂4
(b) = ∑i

vo
i

∑i vo
i

ˆγ4i from Model (4): r(b)
it = α

(b)
4i + γ

(b)
4i ∆θt +β4imktt + ε4it for T=111.

Table A.9 shows the mean and standard deviation for the value-weighted Waxman-Markey effect
for the four models. Both the mean and standard devision for Models (1) and (4) closely match
estimates in Rows (1) and (2) of Table 2 suggesting that parameters for the simulation are well
calibrated. When the sample size increases to 111 in Model (2), uncertainty decreases dramatically,
accounting for 85%41 of the difference in uncertainty between Models (1) and (4). The firm-level
analysis in Model (3) explicitly estimates the covariance in error terms across firms which further
decreases the difference in uncertainty between Models (1) and (4) by 5%. Finally, inclusion of
a control for normal market performance in Model (4) covers the remaining 10% difference in

410.85=(0.11-0.018)/(0.11-0.0022)
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uncertainty between Models (1) and (4). Thus, simulations suggest that most of the precision gain
in the firm-level, full sample analysis comes from the increased number of trading days.

Appendix D Aggregate cost uncertainty
In this section, I detail how uncertainty is incorporated into the bounding analysis. In Section 5, I
constructed the following identification region using i = 1...L listed and u = 1...U unlisted firms:

H{N ·E[∆v]}=[
L

∑
i=1

γ̂iv̂o
i −

U

∑
u=1
|∆̂vu|,

L

∑
i=1

γ̂iv̂o
i +

U

∑
u=1
|∆̂vu|]

=[L̂B, ÛB] (D.1)
Because L̂B and ÛB are estimated, one can conduct statistical inference on the identification region.
I follow the principle developed by Imbens and Manski (2004) and extended by Stoye (2009) which
provide a confidence interval for a general partial identification framework that asymptotically
covers the true parameter of interest with fixed probability. Specifically, a (1−α) confidence
interval has the general form:

CIα = [L̂B− cLB · se(L̂B), ÛB+ cUB · se(ÛB)] (D.2)

where se(L̂B) and cLB are the standard errors and critical values for the estimated lower bound
and analogously for the estimated upper bound. Unfortunately, I am unable to use the critical
values suggested by Stoye (2009) because the bounds for unlisted firms are estimated using the
particular functional form shown in Equation 12 and generates covariance terms between listed
and unlisted firms that are not analytically tractable. Instead, I perform a parametric bootstrap
procedure. In Section 4, I used a seemingly unrelated regression procedure to estimate γ̂ , the vector
of Waxman-Markey effects for all listed firms, and an associated L x L variance-covariance matrix
Ω̂. The parametric bootstrap procedure begins by drawing from this L x L multinominal normal
distribution and follows the steps described in the bounding analysis of Section 5. Specifically, for
each iteration b = 1...250:

i) Draw: γ̂(b) from N(γ̂,Ω̂)

ii) Calculate: v̂o(b)
i = Ṽi

θ γ̂
(b)
i +1

and ∆v(b)
i = γ̂

(b)
i v̂o(b)

i

iii) Regress: log|∆v(b)
i |= α +η logLobbyExpensei + µi for listed firms that lobbied.

iv) Predict: |∆v̂(b)
u |= eα̂+η̂ logLobbyExpenseu for unlisted firms.

v) Calculate: L̂B
(b)

= ∑
L
i=1 γ̂

(b)
i v̂o(b)

i −∑
U
u=1 |∆̂vu

(b)
|, ÛB

(b)
= ∑

L
i=1 γ̂

(b)
i v̂o(b)

i +∑
U
u=1 |∆̂vu

(b)
|

This procedure produces an empirical distribution for both the lower and upper bounds of the
identification region. The (1−α) confidence interval can now be written as:

ĈIα = [L̂B
(α/2)

, ÛB
(1−α/2)

] (D.3)
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Appendix E Data summary
Prediction market event study
Individual daily stock returns obtained from the Center for Research in Security Prices (CRSP).
Intrade provides daily closing prices and trading volume for the contract “A cap and trade system
for emissions trading to be established before midnight ET on 31 Dec 2010” as well as the contract
ending on 31 Dec 2009. Transaction-level data for the 2010-expiring contract acquired privately
from Intrade. Fama-French factors and monthly Welsh-Goyal variables were downloaded from
Kenneth French’s42 and Amit Goyal’s43 websites respectively. Daily crude oil prices come from
the U.S. DOE Energy Information Agency.44 EU-ETS 2015 future prices obtained from Bluenext
Exchange.45 The 3-digit manufacturing NAICS energy intensity was constructed from the NBER-
CES Manufacturing Industry Database.46 Recent sectoral level carbon intensity was provided by
the U.S. DOC Economics and Statistic Administration.47 4-digit NAICS trade import data ob-
tained from U.S. Census Bureau’s Foreign Trade Division48 with related output from U.S. DOC’s
Bureau of Economic Analysis.49 Geographic business segment level revenue data constructed
from the merged CRSP-Compustat database. Business-as-usual emissions obtained from the U.S.
Department of Energy Information Agency’s Annual Energy Outlook 2009.

Lobbying expenditure bounding analysis
Since the passage of the Lobbying and Disclosure Act of 1995, all individuals engaged in lobbying
members of the federal government are required to register with the Clerk of the House of Rep-
resentatives and the Senate Office of Public Records (SOPR).50 Each lobbying record indicates
lobbyist name (or names in the case of a team of lobbyists), the name of the firm hiring lobbying
services, the amount spent, and in some cases the specific issue or legislation that is the target
of lobbying efforts (see Blanes i Vidal, Draca and Fons-Rosen (2012) for further background on
reports). A copy of these publicly available records are maintained and organized by the Cen-
ter for Responsible Politics which has examined the records allowing the data to be collapsed to
the lobbying firm level.51 To standardize company names for matching with CRSP data, I use
Bronwyn Hall’s name standardization code developed originally for patent data. Spot checks were
subsequently employed to check that listed firms match CRSP data.

42Available: www.mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
43Available: www.hec.unil.ch/agoyal/
44Available: www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm
45Available: http://www.bluenext.eu/statistics/downloads.php
46Available: www.nber.org/data/nbprod2005.html
47Available: www.esa.doc.gov/Reports/u.s.-carbon-dioxide
48Available: http://data.usatradeonline.gov/usatrade/Browse/browsetables.aspx
49Available:http://www.bea.gov/iTable/index_industry.cfm
50The Lobbying and Disclosure Act defines a lobbyist “any individual who is employed or retained by a client

for financial or other compensation for services that include more than one lobbying contact, other than an individual
whose lobbying activities constitute less than 20 percent of the time engaged in the services provided by such individual
to that client over a six month period.” From 1998-2006, lobbyists were required to file reports on a semi-annual basis.
Since the Honest Leadership and Open Government Act of 2007, reports are required every quarter.

51The SOPR does not require lobbying firms to provide standard company identifiers used in other databases. There
is thus a problem of whether firms filing lobbying reports are truly separate entities. For example in 2009, General
Electric, General Electric Transportation, and General Electric Healthcare all filed lobbying records. CRP manually
identifies the subsidiaries of a parent company so that aggregation can be performed at the parent company level.
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Appendix F Specific cap-and-trade related events
The period between the passage of Waxman-Markey on June 26, 2009 and the withdrawal of cap-
and-trade from the Senate on July 23, 2010 marked the peak and decline of cap-and-trade prospects
in the US. A number of important events during this period were instrumental in defeating cap-and-
trade. This section provides a short summary of each event along with a news link. Some important
events probably affected stock returns for other reasons besides Waxman-Markey prospects. For
example, Scott Brown’s election affected the likelihood of various policies. An asterisk (*) notes
that this event is likely to have only affected cap-and-trade policy prospects and hence was exam-
ined separately in this paper. As shown by the vertical lines in Figure 2, these events were well
captured by prediction market price movements.

June 26, 2009: House passes Waxman-Markey52

Initial hearings on draft legislation were held on the week of April 20, 2009 with the full bill
introduced into the House shortly thereafter on May 15, 2009. The bill was approved on June 26,
2009 by a vote of 219-212 with 8 supporting Republicans and 44 Democrats opposed.53

November 4, 2009: Lindsay Graham joins Senate climate effort (∆θt = 0.05)*
After passage of Waxman-Markey, efforts to pass legislation in the Senate were lead by Senators
Lieberman, an independent, and Kerry, a Democrat. The arrival of Lindsay Graham, a Republican
Senator from South Carolina buoyed cap-and-trade prospects.54

December 20, 2009: UNFCCC Copenhagen negotiations concluded (∆θt =−0.07)*
With the Kyoto Protocol expiring in 2012, countries were expected to negotiate a new international
climate treaty at Copenhagen. While a general agreement was reached in the final hour, the agree-
ment was non-binding and was generally regarded as not substantial enough to succeed the Kyoto
Protocol.55

January, 19, 2010: Scott Brown wins Mass Senate seat
The Democrat’s tenuous supermajority in the Senate was lost when Scott Brown won Edward
Kennedy’s Massachusetts Senate seat in a special election.56

January 27, 2010: Graham, Kerry, Lieberman seek cap-and-trade alternatives (∆θt =−0.073)*
With cap-and-trade looking unlikely, Senate sponsors look for alternative policy ideas.57

March 31, 2010: Obama supports offshore drilling

52No prediction market price movement recorded because all related fluctuations occurred during the weekend
when stock markets were closed.

53Article:www.nytimes.com/2009/06/27/us/politics/27climate.html
54Article:abcnews.go.com/blogs/politics/2009/11/graham-joins-dems-wh-to-write-new-climate-change-bill/
55Article:nytimes.com/cwire/2009/12/21/21climatewire-obama-negotiates-copenhagen-accord-with-senat-6121.

html
56Article:www.denverpost.com/latin/ci_14337907
57Article:nytimes.com/cwire/2010/01/27/27climatewire-got-ideas-about-a-climate-bill-kerry-graham-64375.

html
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After months of political pressure, President Obama agrees to expand domestic oil production.58

April 20, 2010: BP Deepwater Horizon spill begins
An explosion on the Deepwater Horizon oil platform spills up to 4.9 million barrels of oil. Sen-
ator Graham had pushed for offshore drilling as part of the Senate climate bill to engage Senate
Republicans.

April 23, 2010: Lindsay Graham drops support of Senate bill (∆θt =−0.06)*
After political pressure from his constituents and party, Senator Graham criticizes Senate Demo-
cratic Leadership over disagreements regarding immigration reform on April 23, 2010. Graham
formally withdrew from Senate climate efforts on April 24, 2010.59

June 15, 2010: Obama oval office speech
President Obama focuses on energy issues in his first oval office speech.60

July 22, 2010: Senate drops cap-and-trade legislation (∆θt =−0.14)*
Without a filibuster-proof supermajority, Senate democrats drop consideration of cap-and-trade
bill.61

Appendix G Structural models for environmental policy

CGE models for cap-and-trade regulations
During deliberations for Waxman-Markey, several CGE modeling groups were contracted by orga-
nizations and government agencies. The Environmental Protection Agency hired RTI and Dale W.
Jorgenson Associates to run the ADAGE and IGEM models respectively.62 Kolstad et al. (2010)
provide a detailed peer review of ADAGE and IGEM commissioned by the EPA. With the ex-
ception of IGEM which estimates parameters econometrically, parameters within CGE models are
calibrated to match observed macroeconomic activity. The offset usage assumptions adopted in
this paper were based on EPA analysis (EPA, 2009). The EPPA model is run by the Joint Program
on the Science and Policy of Climate Change at MIT. 63 Model runs were also commissioned by
several advocacy organizations. The American Council for Capital Formation (ACCF) and Na-
tional Association for Manufacturers (NAM) hired SAIC to run the U.S. EIA’s National Energy
Modeling System (NEMS).64 The National Black Chamber of Commerce hired CRA international

58Article:nytimes.com/gwire/2010/03/31/31greenwire-obama-proposes-opening-vast-offshore-areas-to-74696.
html

59Article: nytimes.com/2010/04/25/us/politics/25graham.html
60Article: nytimes.com/2010/06/16/us/politics/16obama.html
61Article: www.nytimes.com/2010/07/23/us/politics/23cong.html
62Available: www.epa.gov/climatechange/economics/economicanalyses.html
63Available: globalchange.mit.edu/files/document/MITJPSPGC_Rpt173_AppendixC.pdf
64Available: www.accf.org/news/publication/accfnam-study-on-waxman-markey-bill
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to run the MRN-NEEM model.65 The Heritage foundation hired Global Insight to run its IHS
model.66

These models differ along many dimensions (see Fawcett, Calvin and de la Chesnaye (2009)
for a recent review). One important distinction pertinent for this analysis is whether agents in the
models are myopic or exhibit perfect foresight. Myopic CGE models are solved iteratively at each
time step while in models with perfect foresight agents optimize simultaneously over the entire
policy time-horizon. The Hotelling model introduced in Section Appendix A exhibits perfect
foresight. Of the CGE models analyzing Waxman-Markey, IGEM, ADAGE, and MRN-NEEM
have perfect foresight whereas EPPA, NEMS, and IHS are myopic.

Another important area of distinction is whether the CGE models incorporated non-cap-and-
trade components of the Waxman-Markey bill. ADAGE, NEMS, and MRN-NEEM models include
many non-cap-and-trade provisions. IGEM and EPPA do not model those provisions. It is not clear
from available IHS documentation whether non-cap-and-trade provisions are modeled.

Models for previous environmental regulations
Most of the EU-ETS modeling forecasts summarized in Convery et al. (2010) are similar to the
models used for evaluating the Waxman-Markey policy described above. Structural models for
earlier environmental regulations were primarily partial equilibrium linear dynamic optimization
models and thus not directly comparable to modern CGE models. For many of the ex-ante Title IV
SO2 forecasts under the 1990 Clear Air Act Amendments, the EPA hired ICF consulting to run the
Integrated Planning Model (IPM).67 A similar methodology was used by the EPA for forecasting
costs under the Montreal Protocol. Cook (1996) notes that ex-ante EPA estimates for a 50% phase-
out of CFCs by 1998 was $3.55 per kg while ex-post estimates for a 100% phase-out of CFCs
by 2000 was $2.20 per km. To make ex-ante and ex-post estimates comparable, I conservatively
assume that abatement costs are linear implying an ex-ante forecast cost of $7.1 per kg for a 100%
phase-out by 1998.

65Available: www.nationalbcc.org/images/stories/documents/CRA_Waxman-Markey_Aug2008_
Update_Final.pdf

66Available: www.heritage.org/research/reports/2009/08/the-economic-consequences-of-waxman-markey-an-analysis-of-the-american-clean-energy-and-security-act-of-2009
67A summary of IPM available: http://pdf.usaid.gov/pdf_docs/PNACE423.pdf
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Appendix Figures
Figure A.1: Waxman-Markey annual cap versus AEO2009 business-as-usual
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Notes: Dark solid line shows annual cap under Waxman-Markey for covered sectors. Gray solid line shows Waxman-
Markey cap with offsets set at 1,400 mton per year. Coverage of emissions cap is 68.2% in 2012, 75.7% in 2014 and
84.5% in 2016. Dotted line shows business as usual under U.S. DOE Annual Energy Outlook 2009 projection.

Figure A.2: Average abnormal return vs 2-day Intrade price difference
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Notes: Average 2-day abnormal returns with 3-factor Fama-French normal returns removed plotted against change
in cap-and-trade prediction market price. Only trading days with θt ∈ [0.2,0.8]. Linear model (solid) with 90%
confidence interval shown along with local linear model (dashed).
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Figure A.3: Large Trader 1 versus total market trading volume
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Notes: Time series of trading volume for entire cap-and-trade prediction market (red), shares bought by Large Trader
1 (dark blue), and shares sold by Large Trader 1 (light blue).

Figure A.4: Large Trader 2 versus total market trading volume
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Notes: Time series of trading volume for entire cap-and-trade prediction market (red), shares bought by Large Trader
2 (dark blue), and shares sold by Large Trader 2 (light blue).
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Figure A.5: Estimated mean square error vs. firm value
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Notes: Estimated using 3-factor Fama-French model shown in Row (3) of Table 2

Figure A.6: Price for Intrade 2009-expiring and 2010-expiring cap-and-trade contracts
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Notes: Time series of daily prices for Intrade cap-and-trade contracts expiring at end of 2009 (dashed) and 2010
(solid). Red vertical line marks start of 2010.
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Figure A.7: Empirical and estimated weighting kernel for expiring cap-and-trade contracts
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Notes: Time series of empirical (solid, blue) and predicted (dashed, red) weighting kernel, k̂(D) as a function of D
days remaining until contract expiration.

Figure A.8: Price for Intrade 2010-expiring contract with termination date adjustment
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Notes: Time series of daily prices for Intrade cap-and-trade contracts expiring in 2010 (solid) and with adjustment for
termination date using predicted weighting kernel in Figure A.7.
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Figure A.9: Google News volume for climate policy terms
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Notes: U.S. Google News volume for climate policy related terms from May 1, 2009 - July 31, 2010. Values normal-
ized by “cap-and-trade” volume.

Figure A.10: Manufacturing subsector effects vs. energy input share
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Notes: Average cap-and-trade effects for firms within a 3-digit NAICS manufacturing subsector plotted against energy
intensity (% per output) in 2005. See Figure 3 for sector codes.
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Figure A.11: Placebo discontinuity tests at different energy intensity levels
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Notes: Estimated effects at different placebo discontinuities using a local linear model with 0.03 wide bins. 90%
confidence intervals shown.

Figure A.12: Distribution of lobbying revenue for lobbyists hired by listed and unlisted firms
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Notes: Kernel density shows distribution of total lobbying revenue for lobbyists hired by unlisted and listed firms to
lobby on Waxman-Markey.
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Figure A.13: Distribution of cap-and-trade costs with negative bounds for unlisted firms
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Notes: Stacked histogram of estimated firm-level cap-and-trade costs for listed firms and negative bound costs for
unlisted firms that lobbied on Waxman-Markey. Distribution truncated at ± $2 billion.

Figure A.14: Distribution of cap-and-trade costs with positive bounds for unlisted firms
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Notes: Stacked histogram of estimated firm-level cap-and-trade costs for listed firms and positive bound costs for
unlisted firms that lobbied on Waxman-Markey. Distribution truncated at ± $2 billion.
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Figure A.15: Aggregate cost uncertainty
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Notes: Blue dot shows mean change in profit from Waxman-Markey for all listed firms with associated 90% confidence
interval shown as solid thick black lines. Solid thin brown lines indicate identification region for total change in profit
for listed and unlisted firms with thin dashed gray lines representing the associated 90% confidence interval for the
identification region (from 250 bootstrap draws).
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Appendix Tables

Table A.1: Prediction market event study: standard errors

Dep var is 2-day stock return
(1) (2)
mkt 3 FF

∆θt -0.029 -0.026

Std. Errors
SUR [0.015]* [0.013]*
OLS [0.013]** [0.013]**
ROBUST [0.013] ** [0.014]**
NAICS3 CLUSTER [0.0091]*** [0.0093]***

Number of firms 104 104
Number of days 111 111
Comparison of firm-by-firm SUR standard errors and panel re-
gression standard errors using a 2% random sample of firms.
Only days with θt ∈ [.2, .8]. Uncertainty shown using firm-by-firm
SUR, panel OLS, panel OLS with heteroscedasticity-robust stan-
dard errors, and panel OLS with 3-digit NAICS clustered stan-
dard errors. Column (1) uses the CAPM model with an aggregate
value-weighted market index. Column (2) uses a 3 factor Fama-
French model. *** p<0.01, ** p<0.05, * p<0.1
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Table A.2: Prediction market event study: using expiration adjusted prices

Model Controls Days equal-weighted avg. eff. value-weighted avg. eff. total cost
1
L ∑` γ̂` ∑`

vo
`

∑` vo
`
γ̂` ∑` vo

` γ̂`

(1) Panel CAPM 111 -0.016 -0.0063*** -114.81***
[0.0096] [0.0020] [36.62]

(2) Panel 3-factor FF 111 -0.011* -0.0051*** -92.5.54***
[0.0057] [0.0018] [34.15]

(3) Panel < 0.05 CI 111 -0.016 -0.0066* -120.87*
[0.099] [0.0035] [63.32]

(4) Panel < 0.10 CI 111 -0.016 -0.0064* -118.29*
[0.0098] [0.0036] [65.50]

(5) Panel < 0.15 CI 111 -0.018* -0.008** -153.73**
[0.0098] [0.0039] [70.73]

Specification using expiration adjusted prediction market prices (see Appendix B). Each row from
panel regressions (see Equation 6) of 5,342 firm-level returns on change in prediction market price
with CAPM, 3-factor Fama-French, and value-weighted returns constructed from firms with carbon
intensity below 0.05, 0.10 and 0.15 mton CO2 per billion output as benchmark controls. Only days
with θt ∈ [.2, .8]. SUR standard errors with correlation across firms. *** p<0.01, ** p<0.05, * p<0.1
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Table A.3: Prediction market event study: sectoral effects

2-digit NAICS sector equal-wt value-wt Number
avg. eff. avg. eff of firms

Agriculture (11) 0.024 0.0045 11
[0.041] [0.16]

Mining (21) -0.012 -0.0085 307
[0.033] [0.032]

Utilities (22) -0.017 -0.021 123
[0.016] [0.020]

Construction (23) -0.018 -0.018 47
[0.025] [0.026]

Manufacturing (31-33) -0.0028 0.0060 1,663
[0.0094] [0.0048]

Wholesale trade (42) -0.0038 0.0022 76
[0.015] [0.018]

Retail trade (44-45) 0.0058 0.015 210
[0.018] [0.019]

Transportation & Warehousing (48-49) -0.0034 0.012 161
[0.018] [0.017]

Information (51) -0.027** -0.011 403
[0.012] [0.011]

Finance and Insurance (52) -0.023*** -0.011 1,399
[0.0087] [0.018]

Real Estate (53) -0.049* -0.038 147
[0.026] [0.035]

Professional, Scientific, & Technical Services (54) -0.0093 -0.021* 279
[0.013] [0.011]

Company management (55) -0.048** -0.038 124
[0.02322] [0.035]

Administrative, Waste Mgmt & Remediation Services (56) -0.035** -0.027* 76
[0.016] [0.015]

Education Services (61) 0.016 0.033 24
[0.037] [0.053]

Health Care and Social Assistance (62) -0.0011 -0.014 75
[0.022] [0.029]

Arts, Entertainment, & Recreation (71) -0.011 -0.048 37
[0.025] [0.034]

Accommodation & Food Services (72) -0.052** -0.034 72
[0.026] [0.025]

3-factor Fama-French model using 2-day returns. Only days with θt ∈ [.2, .8]. Each row shows
a separate seemingly unrelated regression for firms within a 2-digit NAICS sector. Includes only
firms continuously listed within the same NAICS category during event period. SUR standard
errors with correlation across firms. *** p<0.01, ** p<0.05, * p<0.1
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Table A.4: Prediction market event study: import share heterogeneity

Dep var is 2-day stock return

(1) (2) (3) (4) (5)
imp share imp share imp share imp share imp share
∈ [0, .1) ∈ [.1, .2) ∈ [.2, .3) ∈ [.3,4) >=.4

∆θt 0.0050 0.013 0.0022 0.00081 -0.0032
[0.013] [0.012] [0.010] [0.016] [0.012]

Number of firms 468 239 410 567 268
Number of days 111 111 111 111 111
Equally weighted average effect shown. 3-factor Fama-French model. Only
days with θt ∈ [.2, .8]. All regressions with 3-digit NAICS average removed.
Import share variation at 4-digit NAICS level. Column (1) just firms with im-
port share ∈ [0, .1). Column (2) just firms with import share ∈ [.1, .2). Column
(3) just firms with import share ∈ [.2, .3). Column (4) just firms with import
share ∈ [.3, .4). Column (5) just firms with import share ≥ .4. SUR standard
errors with correlation across firms. *** p<0.01, ** p<0.05, * p<0.1

Table A.5: Prediction market event study: US revenue share

Dep var is 2-day stock return

(1) (2) (3) (4) (5)
US share US share US share US share US share
∈ [0, .25) ∈ [.25, .5) ∈ [.5, .75) ∈ [.75,1) =1

∆θt 0.020 0.0018 0.0070 -0.0027 -0.0048
[0.016] [0.0089] [0.0081] [0.0072] [0.0091]

Number of firms 238 361 457 556 1203
Number of days 111 111 111 111 111
Equally weighted average effect shown. 3-factor Fama-French model. Only
days with θt ∈ [.2, .8]. All regressions with 3-digit NAICS average removed.
US revenue share variation at 4-digit NAICS level. Column (1) just firms with
US revenue ∈ [0, .25). Column (2) just firms with US revenue ∈ [.25, .5). Col-
umn (3) just firms with US revenue ∈ [.5, .75). Column (4) just firms with US
revenue ∈ [.75, .1). Column (5) just firms with US revenue=1. SUR standard
errors with correlation across firms. *** p<0.01, ** p<0.05, * p<0.1
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Table A.6: Prediction market event study: cap size

Market cap decile equal-weighted value-weighted Number
avg. eff. avg. eff of firms

1 -0.014 -0.027 534
0.020 0.025

2 0.0065 -0.012 529
0.017 0.021

3 -0.0071 -0.020 532
0.013 0.017

4 -0.032** -0.047*** 534
0.013 0.015

5 -0.037*** -0.046*** 531
0.0099 0.011

6 -0.021*** -0.035*** 531
0.0083 0.010

7 -0.0166** -0.029*** 533
0.0065 0.0082

8 -0.0095 -0.014* 533
0.0069 0.0075

9 -0.0038 -0.0075 528
0.0080 0.0085

10 -0.0007 -0.0033 528
0.0050 0.0021

Each row shows a separate seemingly unrelated regression for
firms within cap size decile (10=largest). Equally weighted av-
erage effect shown. 3-factor Fama-French model. Only days with
θt ∈ [.2, .8]. All regressions with 3-digit NAICS average removed.
SUR standard errors with correlation across firms. *** p<0.01,
** p<0.05, * p<0.1
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Table A.7: Top 40 firms lobbying on Waxman-Markey by expenditure

Lobby expenses ($) Listed
GEN ELECTRIC 89,650,000 1
PG&E 55,140,000 1
FEDEX 50,037,074 1
EXXON MOBIL 49,580,000 1
CHEVRON 41,729,000 1
SOUTHERN 36,940,000 1
GEN MOTORS 36,351,000 1
FORD MOTOR DEL 34,769,000 1
KOCH IND 34,613,000 0
BOEING 31,286,000 1
MARATHON OIL 29,830,000 1
AMERICAN ELECTRIC POWER 28,152,466 1
BP 25,560,000 1
UNITED TECH 24,963,415 1
NORFOLK SOUTHERN 22,545,177 1
PEABODY ENERGY 21,266,000 1
JP MORGAN CHASE 20,800,000 1
LOCKHEED MARTIN 19,710,000 1
ROYAL DUTCH SHELL 19,390,582 1
UNITED PARCEL SERVICE 19,220,828 1
DUKE ENERGY 18,987,464 1
CONOCOPHILLIPS 18,372,210 1
WAL MART STORES 17,890,000 1
TOYOTA MOTOR 17,729,578 1
MONSANTO 16,800,000 1
ALTRIA 16,390,000 1
DELTA AIR LINES 16,105,879 1
UNION PACIFIC 16,039,854 1
JOHNSON & JOHNSON 16,015,000 1
DOW CHEM 16,007,000 1
DU PONT EI DE NEMOURS 15,793,514 1
EXELON 15,106,248 1
BERKSHIRE HATHAWAY 15,027,438 1
HEWLETT PACKARD 15,015,720 1
PRUDENTIAL FINANCIAL 14,430,000 1
ENERGY FUTURE HLDGS 12,591,447 0
HONEYWELL INT 12,492,000 1
CSX 11,512,078 1
PROCTER & GAMBLE 10,375,530 1
PUBLIC SERVICE ENTERPRISE 10,010,000 1
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Table A.8: Lobbying revenue for lobbyists hired by listed and unlisted firms by sector

Listed Unlisted Difference
All sectors 456,101 353,290 -102,810***

N=952 N=461 [28517]

Agribusiness 483,269 220,956 -262,313***
N=54 N=42 [57998]

Comm/Elec 302,308 222,183 -80,125
N=97 N=15 [49476]

Construction 326,005 355,777 29,772
N=34 N=23 [82877]

Energy 551,979 342,697 -209,282***
N=310 N=180 [63040.24]

Finance 516,820 392,577 -124,243**
N=83 N=95 [38,444]

Health 496,607 351,135 -145,472
N=14 N=12 [71106]

Trans 478,796 373,606 -105,120
N=132 N=26 [58373]

Misc 366,404 428,873 62,469
N=228 N=68 [65130]

Each row conducts a t-test for differences in means al-
lowing unequal variance. Standard errors in brackets,
*** p<0.01, ** p<0.05, * p<0.1

Table A.9: Simulations for comparing uncertainty across models

Model Obs Parameter Mean Std. Dev.

(1) Aggregate time series 5 γ̂1
(b) -0.012 0.11

(2) Aggregate time series 111 γ̂2
(b) -0.0075 0.018

(3) Firm-level SUR w/out control 111 γ̂3
(b) -0.0087 0.013

(4) Firm-level SUR w/ control 111 γ̂4
(b) -0.0079 .0022

Simulations described in Section Appendix C. 500 draws.
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