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Abstract

We show that firms’ idiosyncratic volatility in returns and cash flows obeys a strong
factor structure. We find that the stocks of firms with large, negative common idiosyn-
cratic volatility (CIV) factor betas earn high average returns. The CIV beta quintile
spread is 5.6% per year. To explain this spread, we develop a heterogeneous investor
model with incomplete markets in which the idiosyncratic volatility of investor con-
sumption growth inherits the factor structure of firm cash flow growth. In our model,
the CIV factor is a priced state variable, because an increase in volatility represents a
worsening of the investment opportunity set for the average investor. The calibrated
model is able to match the high degree of comovement in idiosyncratic volatilities, the
CIV beta spread, along with a host of asset price moments.
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1 Introduction

This paper presents three central findings. First, we document a strong factor structure

in firm-level volatility, even after removing common variation in returns via factor models.

Second, stocks that tend to lose value when common idiosyncratic volatility (CIV) rises

earn comparatively high average returns. Third, to account for these findings, we develop a

heterogeneous agent model with common idiosyncratic volatility in investors’ consumption

as well as the firms’ cash flow processes, both measured by the CIV factor in stock returns.

In our model, CIV is a priced state variable with a negative risk price. Our model generates

comovement in cash flow and return volatility and a spread in stock returns based on CIV

exposure that are quantitatively consistent with the data.

In our first analysis, we estimate monthly realized return volatilities for over 20,000 CRSP

stocks firms over the 1926-2010 sample. The first principal component explains 39% of the

variation in this panel. At first glance this may not appear surprising. A wide range of finance

theories model returns as linear functions of common factors1 – if the factors themselves have

time-varying volatility, then firm-level volatility will naturally inherit a factor structure as

well.

More surprising is that the firm-level volatility factor structure is effectively unchanged

after accounting for common factors in returns. We examine residuals from factor models

that include the Fama-French (1993) three factor, as well as statistical factor decompositions

using as many as 10 principal components. Stock return residuals from these models possess

an extremely high degree of common variation in their second moments. Residual volatility

accounts for the vast majority (over 90%) of the variation in a typical stock’s volatility, thus

there is little distinction between total and idiosyncratic volatility at the firm level. Total

and idiosyncratic volatility possess effectively the same volatility factor structure.

To emphasize that volatility comovement does not arise from omitted common factors,

1Prominent examples include the CAPM (Sharpe (1964)), ICAPM (Merton (1973)), APT (Ross (1976))
and the Fama and French (1993) model.
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we show that return factor model residuals are virtually uncorrelated. Consider returns on

the 100 Fama-French size and value portfolios. The average pairwise correlation between

returns on these portfolios is 64%. But their residuals from a Fama-French three factor

model or a five factor principal components model have pairwise correlations below 1%

on average. However, correlations among the monthly volatilities of the 100 portfolios is

75% on average, and volatility comovement remains extremely high after removing common

factors from returns. The average correlation among the idiosyncratic volatilities of the 100

portfolios is 54% based on the Fama-French factors and 59% based on a five factor principal

components model. Therefore, omitted factors are not an viable explanation for comovement

in volatilities.

Comovement in volatilities is not only a feature of returns, but also of the volatility of

fundamentals. We estimate volatilities of firm-level sales growth using quarterly Compustat

data. Despite the fact that these volatility estimates are far noisier than the return data, we

again find a strong factor structure among total fundamental volatilities as well as among

volatilities of cash flow factor model residuals. We thus argue that volatility patterns iden-

tified in this paper are not wholly (or even primarily) explicable with investor preferences

or other pure discount rate variation. We know of no extant model in the firm growth or

asset pricing literature that generates a factor structure in both fundamental and return

volatilities through an economic mechanism.

To explore the asset pricing implications of the factor structure in firm-level volatility in

returns and cash flows, we develop a heterogeneous investor model in which the idiosyncratic

volatility of investor consumption growth inherits the same factor structure as firm cash flow

growth. In this model, an increase in idiosyncratic volatility represents a deterioration of the

investment opportunity set for the average investor, whose individual consumption growth

is exposed to the idiosyncratic volatility factor.

In a large class of Breeden-Lucas-Rubinstein representative agent models, aggregate volatil-

ity, albeit of aggregate consumption growth or the market return, can be a priced state vari-
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able provided that she has a preference for early or late resolution of uncertainty, as pointed

by Campbell (1993, 1996).2 An increase in aggregate volatility raises the marginal utility of

wealth for the stand-in investor if she has a preference for early resolution of uncertainty.

The representative agent is willing to sacrifice some portion of her expected returns in ex-

change for insurance against a rise in volatility. However, she does not seek to hedge against

innovations in idiosyncratic volatility (even if idiosyncratic volatility has common factor)

because the idiosyncratic risk can be diversified.

We create a role for the idiosyncratic volatility factor by shutting down some markets.

This breaks the aggregation result that is the foundation for all representative agent models.

Instead, we propose an incomplete markets model in which investors’ post-trade consumption

is exposed to idiosyncratic risk. Our model is motivated by the incompleteness of household

consumption insurance (see, e.g. Cochrane (1991), Attanasio and Davis (1996)). This market

incompleteness implies that an increase in idiosyncratic risk at the firm level will carry over

to the cross-sectional distribution of household consumption growth, via increased labor

income risk, job loss risk and housing price risk that cannot be insured away. The local bias

in households’ financial portfolios (Coval and Moskowitz (1999)) exacerbates the exposure

of their consumption to local, firm-driven shocks.

The main source of common variation in idiosyncratic shocks experienced by households

and investors has to be the the employer, the firm, and the labor income, broadly defined,

that these investors derive from the firm. While there many other sources of idiosyncratic

risk (e.g., illness, divorce), these types of risks are less likely to have a factor structure in the

volatility. A large literature documents an idiosyncratic volatility factor in labor income.3

Motivated by this fact, we exogenously impose the same common factor structure on

the idiosyncratic volatility of consumption growth and on firm dividend growth. Indeed,

2Campbell, Giglio, and Polk (2012) extend the closed-form solutions to handle stochastic volatility.
3Storesletten, Telmer, and Yaron (2004) document evidence of counter-cyclical variation idiosyncratic

labor income variance, while Guvenen, Ozkan, and Song (2012) conclude that the left-skewness is counter-
cyclical.
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Cogley (2002) and Brav, Constantinides, and Geczy (2002) document a counter-cyclical

factor structure in the cross-sectional variance of U.S. household consumption growth.4

In our model, the average investor wants to hedge against an increase in idiosyncratic

volatility, even if she is indifferent about the timing of uncertainty resolution. As a result, the

common component in idiosyncratic volatility is a priced state variable, as in Constantinides

and Duffie (1996).5 Stocks with positive loadings on CIV shocks provide a hedge and earn

a lower risk premium in equilibrium.

In general, exposure to constant uninsurable idiosyncratic risk will not affect equilibrium

risk premia, but it will merely lower the risk-free rate and increase all securities prices in a

large class of incomplete market models (see. e.g. Grossman and Shiller (1982) and Krueger

and Lustig (2010)). Building on Mankiw (1986)’s insight, Constantinides and Duffie (1996)

showed that counter-cyclical variation in idiosyncratic volatility can increase the equity risk

premium in an equilibrium model with heterogeneous agents. It is exposure to the idiosyn-

cratic volatility factor that is priced, not idiosyncratic volatility itself.

Measuring the cross-sectional dispersion in investors’ consumption growth is hard (see

Vissing-Jorgensen (2002) and Brav, Constantinides, and Geczy (2002) for recent examples),

but our model gives us a license to use the CIV factor in stock returns as the priced factor,

because investor consumption growth inherits its factor structure from the firms’ cash flows.

Only the common variation in the dispersion of investors’ consumption growth matters for

cross-sectional asset pricing. We provide empirical evidence that the common factor in

idiosyncratic firm volatility is a priced state variable in the cross-section of U.S. stocks with

a negative risk price, as predicted by the model. This cross-sectional evidence directly lends

support to models with investor heterogeneity, and it cannot be reconciled with standard,

representative agent models.

4Advances in the risk sharing technology could disentangle consumption from labor income risk, a theme
explored by Krueger and Perri (2006), but we abstract from this.

5In a standard representative agent model, aggregate consumption growth volatility is only a priced factor
if the agent has a preference for early or late resolution of uncertainty (Campbell (1993)). Bansal and Yaron
(2004) exploit this mechanism for generating an aggregate volatility risk premium in an endowment economy.
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Our paper complements the evidence in Ang, Hodrick, Xing, and Zhang (2006, 2009) who

find that exposure to market volatility is priced in the cross section of stocks. They also

document that that high idiosyncratic volatility stocks also earn low average returns. Our

finding is distinct from the cross-sectional association between stock returns and exposure to

market volatility or the level of idiosyncratic firm volatility. Instead, we establish that stocks

with positive exposures to CIV earn lower returns, because, according to our model, the

common idiosyncratic volatility in stock returns proxies for uninsurable investor consumption

risk. Our calibrated model matches moments of the investor consumption and firm dividend

distribution, the commonality in idiosyncratic volatility, and the spread in returns associated

with exposures to the idiosyncratic volatility factor.

Other Related Literature Idiosyncratic volatility has been studied in several asset pric-

ing contexts. Campbell, Lettau, Malkiel, and Xu (2001a) examine secular variation in av-

erage idiosyncratic volatility over time, though do not study the cross section properties of

idiosyncratic volatility. This gave rise to several papers that explore this fact in more de-

tail, such as Bennett, Sias, and Starks (2003), Irvine and Pontiff (2009), and Brandt, Brav,

Graham, and Kumar (2010), including analyzing which firm characteristics correlate with

its idiosyncratic volatility. Wei and Zhang (2006) study aggregate time series variation in

fundamental volatility. Bekaert, Hodrick, and Zhang (2010) find comovement in average

idiosyncratic volatility across countries. We analyze comovement among volatilities at the

firm-level for both returns and fundamentals. Our focus is on the joint dynamics of the

entire panel of firm-level volatilities, which we document is a prominent empirical feature of

returns and growth rates that is new to the literature.

Gilchrist and Zakrajsek (2010) also study the time series behavior of the average firm-level

volatility of the idiosyncratic component of returns. They explore the impact of uncertainty

on corporate bond prices in a structural model. Recently, Atkeson, Eisfeldt, and Weill (2013)

study the distribution of volatility across financial and non-financial firms to make inference
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about their financial soundness, and confirm our findings. In closely related work, Engle and

Figlewski (2012) document a common factor in option-implied volatilities since 1996, and

Barigozzi, Brownlees, Gallo, and Veredas (2010) and Veredas and Luciani (2012) examine the

factor structure in realized volatilities of intra-daily returns since 2001. Bloom, Floetotto,

Jaimovich, and Terry (2012) shows that firm-specific sales growth and productivity show

cross-sectional dispersion that fluctuates with the macroeconomy.

As long as cash flow volatility is idiosyncratic, it is valued by stock market investors (see,

e.g., Pastor and Veronesi (2003, 2009)), because of the convex relation between cash flow

growth variance and terminal value. In our model, the stocks of firms which experience

high idiosyncratic cash flow volatility will endogenously inherit a larger exposure to the CIV

factor, because a positive volatility innovation increases the value of the stock more than that

of other stocks. This in turn will lower the stock’s equilibrium risk premium and increase

its valuation, potentially helping to resolve the Ang, Hodrick, Xing, and Zhang (2006, 2009)

idiosyncratic risk puzzle.

In related work, Constantinides and Ghosh (2013) explore the asset pricing implications

of a factor structure not only in the cross-sectional volatility of household consumption

growth, but also in the higher-order moments, but they do not explore the cross-sectional

asset implications, which are the focus of our work, and they do not connect the factor in

the cross-sectional moments of consumption growth to the factor structure in firm-level cash

flow growth.

To account for the factor structure in idiosyncratic volatility, Kelly, Lustig, and Van-

Nieuwerburgh (2013) propose a simple model in which firms are connected to other firms

in a customer-supplier network. Firms’ idiosyncratic growth rate shocks, which are ho-

moskedastic, are transmitted in part to their trading partners. Differences in firms’ network

connections, and evolution of the network over time, impart total firm volatility with cross

section and time series heteroskedasticity. Firm-level volatilities exhibit a common factor

structure where the factor is firm size dispersion in the economy. In the model, each supplier’s
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network is a random draw from the entire population of firms, so that any firm’s customer

network inherits similar dispersion to that of the entire size distribution. An increase in

dispersion slows down every firm’s shock diversification and increases their volatility. In the

data, we find that firm volatilities possess a strong factor structure, and we show that size

dispersion explains 25% of the variation in (realized) firm volatilities, as much as is explained

by average volatility, a natural benchmark.6

The rest of the paper is organized as follows. Section 2 describes the data, section 3

describes the CIV factor in U.S. stock returns and firm-level cash flows, while section 4

establishes that CIV is a priced factor. Section 5 describes the heterogeneous agent model

with CIV as priced state variable. Finally, section 6 calibrates a version of this model.

2 Data

2.1 Data Construction

To document these facts, we present evidence in the form of firm-year volatility panels.

Return volatility is estimated each year for each CRSP stock as the standard deviation of

the roughly 250 daily returns within the year. Fundamental volatility is estimated each

year for all Compustat firms using the four quarterly year-on-year sales growth observations

within the year. We also show that our return volatility results are robust to using twelve

monthly returns within each year rather than daily returns to calculate volatility. Similarly,

we show that our fundamental volatility results are robust to estimating volatility with a

6The factor structure implies strong time series correlations between moments of the size and volatility
distributions. An increase in the size dispersion translates into higher average volatility among firms. It also
raises the cross section dispersion in volatilities. In the time series, size dispersion has a 72% correlation
with mean firm volatility and 79% with the dispersion of firm volatility. Our paper is the first to provide an
economic explanation for the factor structure in firm-level volatility by connecting it to firm concentration.
A persistent widening in the firm size dispersion should lead to a persistent rise in mean firm volatility.
We observe such a widening (increase in firm concentration) between the early 1960s and the late 1990s,
providing a new explanation for the trend in mean firm volatility studied by Campbell et al. (2001)Campbell,
Lettau, Malkiel, and Xu (2001b).
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five-year rolling window of quarterly observations (rather than one year of quarterly data),

which reduces estimation noise.

The focus of our analysis is on idiosyncratic volatility. Idiosyncratic returns are con-

structed within each calendar year τ by estimating a factor model using all observation

within that year (we estimate it for all firms with no missing observations during the year).

Our factor models are of the form

ri,t = γ0,i + γ �
iF t + εi,t (1)

and use all date t return observations in the year (where the frequency of t is either daily

or monthly). A firm’s idiosyncratic volatility is then calculated as the standard deviation of

residuals εi,t within the calendar year. The result of this procedure is a panel of firm-year

idiosyncratic volatility estimates. The first return factor model that we consider specifies F t

as the 3× 1 vector of Fama-French (1993) factors.7 The second return factor model we use

is purely statistical. In this case, F t contains the first K×1 principal components of returns

within the year, where we allow K to range between one and ten.

We estimate idiosyncratic volatility of firm fundamentals analogously. Since there is no

single predominant factor model for sales growth in the literature, we only consider principal

components as factors. The approach is the same as in Equation 1, with the exception that

the left hand side variable is sales growth, and the frequency of t is quarterly. F t contains

the first K × 1 principal components of growth rates within a five-year window ending in

year τ , and residual volatility in year τ is estimated from the four model residuals within

that year. Again, the number of principal components K ranges from one to ten.

7Our estimates diverge slightly from the standard Fama-French model in which returns in excess of the
risk free rate are the left-hand side variables, and the excess market return is the first factor. We use gross
returns on the left-hand side, and the gross market return as the first factor.
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Figure 1: Total Return Log Volatility: Empirical Density Versus Normal
Density
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Notes: The figure plots histograms of the empirical cross section distribution of annual firm-level volatility
(in logs). Within each calendar year, we calculate the standard deviation of daily returns for each stock.
The upper left-hand corner histogram pools all years (1926-2010). Selected one-year snapshots of the firm
volatility cross section distribution are also show (for years 1930, 1950, 1970, 1990 and 2010). Overlaid
on these histograms is the exact normal density with mean and variance set equal to that of the empirical
distribution. Each figure reports the skewness and kurtosis of the data in the histogram.
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Figure 2: Log Sales Volatility: Empirical Density Versus Normal Density
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Notes: The figure plots histograms of the empirical cross section distribution of annual firm-level volatility
(in logs). Within each calendar year, we calculate the standard deviation of four quarterly observations of
year-on-year sales growth for each stock. The upper left-hand corner histogram pools all years (1926-2010).
Selected one-year snapshots of the firm volatility cross section distribution are also show (for years 1970,
1980, 1990, 2000 and 2010). Overlaid on these histograms is the exact normal density with mean and variance
set equal to that of the empirical distribution. Each figure reports the skewness and kurtosis of the data in
the histogram.
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Figure 3: Log Idiosyncratic Volatility: Empirical Density Versus Normal
Density

Panel A: Returns Panel B: Sales Growth
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Notes: The figure plots histograms of the empirical cross section distribution of annual idiosyncratic firm-
level volatility (in logs). Within each calendar year, we calculate the standard deviation of residuals from a
factor model for daily returns for each stock (left panel) or quarterly sales growth (right panel). In both cases,
residuals are constructed from a five factor principal components model. For returns, principal components
are estimated from daily data within the year, while for sales growth a five year rolling window of quarterly
data is used. The histograms pool all years (1926-2010 for return volatility, 1975-2010 for sales growth
volatility). Overlaid on these histograms is the exact normal density with mean and variance set equal to
that of the empirical distribution. Each figure reports the skewness and kurtosis of the data in the histogram.

3 The Factor Structure in Volatility

3.1 The Cross Section Distribution of Volatility

We begin by noting that the cross-sectional distributions of return volatility and fundamental

volatility are lognormal to a close approximation, which motivates us to estimate our factor

models using volatility in logs rather than levels.

We plot histograms of the empirical cross section distribution of firm-level volatility (in

logs). The upper left-hand corner of Figure 1 shows the distribution of log realized volatility

pooling all firm-years from 1926-2010. The figure also shows empirical distributions for

selected one-year snapshots throughout the sample (years 1930, 1950, 1970, 1990 and 2010).

Overlaid on these histograms is the exact normal density with mean and variance set equal

to that of the empirical distribution, and each figure reports the skewness and kurtosis of
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the data in the histogram.

The pooled histograms and each of the snapshots (with the exception of 1970) look nearly

normally distributed. They demonstrate only slight skewness (typically less than 0.3 in

absolute value) and do not appear to be substantively leptokurtotic.

Figure 2 reports cross section distributions of yearly sales growth volatility (in logs) for

all CRSP/Compustat firms. Fundamental volatility also appears to closely fit a lognormal

distribution, with skewness no larger than 0.3 and kurtosis never exceeding 3.5.

While Figures 1 and 2 demonstrate near lognormality of total return and growth rate

volatility, the same feature holds for residual volatility. Figure 3 shows the distributions

of log idiosyncratic return volatility (Panel A) and log idiosyncratic fundamental volatility

(Panel B) pooling all firm-years. For both returns and sales growth, residuals are constructed

from the five factor principal components model. The distributions are qualitatively identical

to the empirical histograms for total volatility. They are nearly normal, with a slight amount

of right skewness and mild excess kurtosis.

3.2 Common Secular Patterns in Firm-Level Volatility

3.2.1 Return Volatility

Next, we document common time variation in volatility across stocks. Panel A of Figure 4

plots firm-level log total return volatility, averaged within size quintiles. There is a striking

degree of common variation in the volatilities of the largest quintile and smallest quintile

of stocks. The same is true of industry groups. Panel B reports average return volatilities

among the stocks in the five-industry categorization of SIC codes provided on Ken French’s

website. This is perhaps unsurprising given that firm-level returns are believed to have a

substantial degree of common return variation, as evidenced by the predominance of factor-

based models of individual stock returns. If returns have common factors and the volatility

of those factors varies over time, then firm-level variances will also inherit a factor structure.
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What is surprising is that volatilities of residuals display the same degree of common

variation despite the fact that common return factors have been removed. Instead of aver-

aging total volatility within size and industry groups, Panels C and D plot average residual

volatility from a factor model that uses the first five principal components of returns as fac-

tors. The plots show that the same dynamics appear for all groups of firms when considering

idiosyncratic rather than total volatility. The correlation between average log idiosyncratic

volatility within size quintiles one and five is 83%. The lowest correlation among the five

industry groups is 67%, which is for idiosyncratic volatilities of firms in the healthcare in-

dustry versus those in the “other” category (including construction, transportation, services,

and finance).

This common variation is idiosyncratic and cannot be explained by excess comovement

among factor model residuals, for instance due to omitted common factors. Figure 5 shows

how firms’ idiosyncratic daily return volatility estimates are affected by using different factor

models for returns. It compares raw returns to residuals from the Fama-French three factor

model, as well as to residuals from a five factor principal components model. Panel A shows

that raw returns share substantial common variation, with an average pairwise correlation

of 13% over the 1926-2010 sample. However, the Fama-French model captures effectively all

of this common variation at the daily frequency, as correlations among its residuals are less

than 0.2% on average, and are never above 0.9% in a year. The same is true for the principal

components model, whose residual correlation is also below 0.2% on average.

The interesting fact is that the common variation in returns, which is well accounted for

by these factor models, is responsible for very little of the total variation in returns. Panel

B of Figure 5 shows that the average log idiosyncratic volatility from the factor models is

virtually the same as average volatility of total returns. In the typical year, only 4% of

average log total volatility is accounted for by the five principal components factor model,

while average log idiosyncratic volatility inherits 96% of the average total volatility level (the

same is true for the Fama-French model).
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Figure 5: Volatility and Correlation of Daily Returns

Panel A: Average Pairwise Correlation
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Panel B: Average Log Volatility
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Panel C: Dispersion of Log Volatility
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Notes: Panel A shows cross section average firm-level log volatility each year for total and idiosyncratic
returns. Panel B shows the cross section standard deviation of firm-level log volatility and Panel C shows
the average pairwise correlation for total and idiosyncratic returns within each calendar year. Idiosyncratic
volatility is the standard deviation of residuals from the three factor Fama-French model or a five factor
principal components model for daily returns (factor models also estimated within each calendar year).15



Figure 6: Volatility of 100 Size and Value Portfolios

Panel A: Total Volatility
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Notes: The figures plot log volatility of total and idiosyncratic returns on 100 size and value portfolios.
Within each calendar year, total return volatilities are estimated from daily returns for each portfolio (Panel
A), while idiosyncratic return volatility is the standard deviation of residuals from the three factor Fama-
French model (Panel B) or a five factor principal components model (Panel C) for daily returns (factor
models also estimated within each calendar year).
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Figure 7: Average Pairwise Correlation of 100 Size and Value Portfolios
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Notes: The figure shows average pairwise correlation for total and idiosyncratic returns on 100 size and value
portfolios within each calendar year (refer to Figure 5 for details).

Similarly, the dispersion in firms’ log volatility is more or less unaffected by removing

common factors, as shown in Panel C. Since log volatilities are approximately normally

distributed, Panels B and C contain most of the relevant information about the cross section

of firm volatilities over time. In short, commonalities among returns have very little influence

on the commonalities in return volatilities. The cross section distribution of total volatility

and idiosyncratic volatility are qualitatively identical.

The strong comovement of return volatility is similarly discernible in portfolio returns.

Figure 6 reports annual volatilities of the 100 Fama-French size and value portfolios. These

are also calculated from daily returns within the year over the 1964-2010 sample (the first

available full year of Ken French’s data is 1964). Panel A shows log total volatility, Panel

B shows log idiosyncratic volatility using the Fama-French three factor model, and Panel

C shows idiosyncratic volatilities for a five factor principal components model. Portfolio

volatilities show a strikingly similar degree of comovement across the size and book-to-

market spectrum, even after accounting for common factors. Like the individual stock results

above, factor models remove the vast majority of common variation in returns, thus common

volatility patterns are unlikely to be driven by omitted common return factors. This can
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be seen clearly in Figure 7. Raw portfolio returns have an average pairwise correlation of

64% between 1964 and 2010, while the correlation of factor model residuals is below 1%

on average for both models. However, the average pairwise correlation between portfolio

volatilities remain high whether total or idiosyncratic volatilities are analyzed. The average

pairwise correlation of the volatility series in Figure 6 Panel A is 77%, falling only to 54%

and 59% in Panels B and C, respectively.

One may be concerned that daily factor models miss some portion of common variation

among returns due to non-synchronicity in when aggregate information is incorporated into

individual stock prices. To address this, we re-estimate factor models and firm-level id-

iosyncratic volatilities using data at the monthly frequency, and re-plot average correlations,

average volatilities, and the dispersion of volatilities in Figure 8. Panel A shows that, indeed,

there is a higher correlation among monthly raw returns relative to daily, with an average

pairwise correlation of 23% over the 1926-2010. At the monthly frequency the Fama-French

model continues to captures nearly all common variation, with correlations below 0.4% on

average. The five factor principal components model has monthly residual correlation below

0.8% on average. At the monthly frequency, 22% of average log total volatility is accounted

for by the principal components factor model, while average log idiosyncratic volatility inher-

its 78% of the average total volatility level. Thus, monthly return factor models do explain a

larger fraction of the total return variation, but return volatility continues to be dominated

by idiosyncratic rather than common variation. It is also worth noting that the bulk of the

idiosyncratic volatility literature estimates volatility from daily data (e.g. Ang et al. (2006)).

3.2.2 Fundamental Volatility

Strong comovement among volatilities is not distinct to return volatilities, but is also true

for fundamental volatility. Figure 9 reports average yearly sales growth volatility (in logs)

by size quintile and French’s five-industry categories (Panels A and B). Despite the fact that

yearly sale growth volatilities are estimated from only four observations per year, the data
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Figure 8: Volatility and Correlation of Monthly Returns

Panel A: Average Pairwise Correlation
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Notes: The figure repeats the analysis of Figure 5 using monthly return observations within each calendar
year, rather than daily.
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Figure 10: Volatility and Correlation of Total and Idiosyncratic Sales
Growth

Panel A: Average Pairwise Correlation
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Panel B: Average Log Volatility
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Panel C: Dispersion of Log Volatility
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Notes: Panel A shows cross section average firm-level log volatility each year for total and idiosyncratic sales
growth. Panel B shows the cross section standard deviation of firm-level log volatility and Panel C shows
the average pairwise correlation for total and idiosyncratic returns within each calendar year. Idiosyncratic
volatility is the standard deviation of residuals from a one or five factor principal components model for
quarterly sales growth. The components are estimated in a five year rolling window ending in the year that
the residual volatility is calculated.
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continues to display a high degree of volatility commonality.

This is a feature of both total and residual volatility of fundamentals. Panels C and D

show within-group average log idiosyncratic volatility estimated from a five factor principal

components model for sales growth. These panels display the same volatility patterns as

those in the top two panels.

A common factor model for firms’ sales growth is perhaps less relevant than that for

returns, as shown in Panel A of Figure 10. The average pairwise sales growth correlation in

the 1975-2010 sample is only 2%, though it reaches as high as 17% in 2009. Accounting for

common factors with a five principal component factor model lowers these correlations to

below 0.3% on average, with correlations reaching a high of only 1% in 1980.

Panel B shows that, like returns, average idiosyncratic volatility of fundamentals shares

the same broad pattern as total volatility (correlation of 59%), and inherits 89% of the

average total volatility (11% is accounted for by the factor model). Given the near lognor-

mality of sales growth volatility in the cross section, along with the same overall patterns

between the cross section mean and standard deviation of for the total volatility and idiosyn-

cratic volatility distribution, we conclude that idiosyncratic volatility rather than common

variation drives the entire panel of firm-level fundamental volatilities.

3.3 Volatility Factor Model Estimates

Next, we estimate a one-factor model for volatility. We consider total volatility, as well

as idiosyncratic volatility estimated from a Fama-French three factor model or a K factor

principal component model (K = 5 or 10). In all cases, time series regressions are run firm-

by-firm, use log volatility as the left-hand side variable, and the right-hand side factor is an

equally weighted average of the left-hand size volatility measure across all firms.

Our first set of results, shown in Panel A of Table 1, reports factor model results for

daily return volatilities. Columns correspond to the factor model used to construct return
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Table 1: Log Volatility Factor Model Estimates

Panel A: Daily Returns Total FF 5 PCs 10 PCs

Loading (average) 0.925 0.920 0.924 0.925

Loading (median) 0.911 0.884 0.886 0.888

Loading (25th %ile) 0.446 0.362 0.363 0.355

Loading (75th %ile) 1.387 1.400 1.405 1.412

Intercept (average) -0.181 -0.201 -0.191 -0.190

Intercept (median) -0.272 -0.354 -0.351 -0.344

Intercept (25th %ile) -1.946 -2.324 -2.312 -2.361

Intercept (75th %ile) 1.491 1.584 1.585 1.617

R2 (average univariate) 0.363 0.349 0.352 0.351

R2 (pooled) 0.385 0.346 0.356 0.357

Panel B: Portfolio Returns Total FF 5 PCs 10 PCs

Loading (average) 1.000 1.000 1.000 1.000

Loading (median) 0.982 0.907 0.989 0.985

Loading (25th %ile) 0.914 0.789 0.869 0.868

Loading (75th %ile) 1.049 1.046 1.090 1.116

Intercept (average) 0.000 0.000 0.000 0.000

Intercept (median) -0.122 -0.485 -0.055 -0.097

Intercept (25th %ile) -0.368 -1.172 -0.777 -0.750

Intercept (75th %ile) 0.313 0.224 0.562 0.642

R2 (average univariate) 0.760 0.547 0.597 0.606

R2 (pooled) 0.628 0.441 0.497 0.474
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Table 1: Log Volatility Factor Model Estimates, Continued

Panel C: Monthly Returns Total FF 5 PCs 10 PCs

Loading (average) 0.918 0.888 0.872 0.926

Loading (median) 0.918 0.847 0.841 0.848

Loading (25th %ile) 0.416 0.193 0.050 -0.935

Loading (75th %ile) 1.417 1.524 1.657 2.746

Intercept (average) -0.099 -0.195 -0.276 -0.251

Intercept (median) -0.152 -0.348 -0.408 -0.603

Intercept (25th %ile) -1.258 -1.998 -2.558 -8.191

Intercept (75th %ile) 1.005 1.405 1.875 7.574

R2 (average univariate) 0.266 0.214 0.186 0.126

R2 (pooled) 0.288 0.207 0.180 0.087

Panel D: Sales Growth Total (1yr) 1 PC 10 PCs Total (5yr)

Loading (average) 0.876 0.849 0.938 0.897

Loading (median) 0.777 0.776 0.889 0.864

Loading (25th %ile) -0.711 -0.852 -0.876 -0.489

Loading (75th %ile) 2.401 2.523 2.652 2.207

Intercept (average) -0.231 -0.211 -0.096 -0.262

Intercept (median) -0.514 -0.432 -0.271 -0.476

Intercept (25th %ile) -3.983 -3.379 -4.647 -4.530

Intercept (75th %ile) 3.327 2.767 4.210 3.820

R2 (average univariate) 0.140 0.229 0.127 0.144

R2 (pooled) 0.174 0.168 0.167 0.283

Notes: The table reports estimates for one factor regression models of yearly log volatility. In each panel,
the single volatility factor is the equal weighted average of all firms’ log volatilities within that year. Thus
all estimated volatility factor models take the form: log σi,t = intercepti + loadingi · log σ·,t + ei,t. Columns
represent different volatility measures. For returns (Panels A through C), the first column represents esti-
mates for a factor model of log total return volatility, the second column for idiosyncratic volatility based
on Fama-French model residuals, and the third and fourth columns to idiosyncratic volatility from one and
five factor principal component models. For sales growth volatility (Panel D), the last column reports model
estimates for yearly volatilities estimated in a rolling 20 quarter window to reduce estimation noise. We re-
port means and quantiles of the empirical distribution of firm-level intercepts and volatility factor loadings,
as well as time series regression R2 average over all firms. We also report a pooled factor model R2, which
compares the estimated factor model to a model with only a firm-specific constant.
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residuals. The mean loading of an individual return volatility on the volatility factor is 0.925

for total return volatility, and is 0.920, 0.924 and 0.925 for idiosyncratic volatility based on

the Fama-French, five PC and ten PC models, respectively. Median loadings are similar. The

inter-quartile ranges for loadings span the interval from 0.355 to 1.412. The average firm’s

intercept is between −0.181 and −0.201, with slightly higher median intercept and inter-

quartile ranges covering −2.361 to 1.617. The average univariate time series R2 is 38.5% for

the total volatility model, and around 35% for idiosyncratic volatility models. Pooling all

volatilities, we find a pooled R2 34.9% and 36.3% (relative to a volatility model with only a

firm-specific constant).

In Panel B we re-estimate the volatility factor model using daily return volatility of 100

size and value portfolios. The interquartile range of loadings on the volatility factor go from

0.789 to 1.116, and are between −1.172 and 0.642 for intercepts. The common variation

among idiosyncratic portfolio volatility is exceptional, with average time series R2 between

54.7% and 64.2%, and pooled R2 between 44.1% and 49.7%.

Panel C shows volatility factor model estimates for monthly (rather than daily) return

volatilities. The picture is broadly similar to daily results. The average (median) firm has

a loading between 0.826 and 0.926 (0.776 to 0.918) and an intercept of −0.099 to −0.276

(−0.152 to −0.603). The average time series R2 is between 12.6% for ten factor model

residuals and 26.6% for raw returns.

In Panel D we show volatility factor model estimates for sales growth volatility. The first

three columns report total volatility, and idiosyncratic volatility from one and five principal

component models in which volatility is estimated from four quarterly observations within

each year. The last column reports model estimates for an annual volatility panel that uses

a rolling 20 quarter window to estimate each firm-year’s volatility.

Due to the excessively small number of observations used to construct volatility, we might

expect poorer fit in these regressions. Yet the results are closely in line with those for return
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volatility. The average firm has a volatility factor loading of between 0.849 and 0.938, with

an intercept between −0.096 and −0.262. The time series R2 for raw and idiosyncratic

growth rate volatility ranges between 12.7% and 22.9% on average. The pooled R2 reaches

as high as 28.3% when volatilities are estimated in a 20 quarter window.

4 Cross Section of Stock Returns

In this section we investigate whether pervasive fluctuations in firms’ idiosyncratic volatility

are associated with differences in average returns across stocks. We proceed by constructing a

common idiosyncratic variance factor, CIV, as the equal weighted average of CAPM residual

variances computed each month.8 We then calculate innovations to CIV based on a monthly

AR(1) model. Finally, we orthogonalize these innovations with respect to innovations in

monthly market variance. This orthogonalization disentangles our CIV exposures from the

market variance exposures studied by Ang et al. (2006).

Each month from 1926 until 2010, we regress monthly individual firm stock returns on

orthogonalized CIV innovations using a trailing 60-month window. These CIV betas are used

to sort stocks into CIV quintile portfolios, for which we construct value-weighted returns over

the subsequent month. Stocks in the lowest quintile (Q1) have low/negative CIV betas and

tend to lose value when CIV rises. In contrast, stocks in Q5 tend to hedge CIV rises, paying

off in high volatility states.

Average returns on CIV beta-sorted portfolios are reported in Table 3. Panel A shows

that average returns are decreasing in CIV beta. The spread between highest and lowest

quintiles is -5.6% per year with a t-statistic of -2.7.

In Panel B we report portfolios sorted simultaneously on CIV beta and market variance

beta, where rows correspond the the market variance beta dimension. This provides a

8We estimate the CAPM each month using all daily returns within the month. The CAPM residual
variance is then estimated from the output of this regression. Results are qualitatively identical if residuals
from alternative factor models, such as Fama-French or principal components, are used.

26



Table 3: Portfolios Formed on Common Idiosyncratic Variance Beta
Average returns on monthly CIV beta-sorted portfolios in percent per year. Panel A shows portfolios of all stocks. Panel B we

report portfolios sorted simultaneously on CIV beta and market variance beta, where rows correspond the the market variance

beta dimension. Panel C reports bivariate sorts based on CIV beta and stock-level idiosyncratic volatility.

CIV Beta
Low High
1 2 3 4 5 5-1

Panel A: All Stocks
VW Avg. Ret. 15.57 13.21 13.24 10.61 9.98 -5.59
t 5.10 5.33 5.84 5.26 4.38 -3.08

EW Avg. Ret. 20.57 17.76 17.10 15.81 14.55 -6.03
t 5.10 5.33 5.84 5.26 4.38 -3.08

VW CAPM Alpha 1.69 0.88 1.54 -0.18 -1.50 -3.19
t 1.37 1.22 2.84 -0.37 -1.91 -1.88

Panel B: Market Variance Beta
VW Avg. Ret.

Low 1 14.76 18.20 15.17 14.97 11.31 -2.66
2 16.13 14.53 13.33 12.28 13.29 -3.13
3 15.41 12.81 13.67 11.56 11.50 -3.91
4 17.90 12.91 12.79 11.77 11.15 -6.72
High 5 14.95 12.01 12.68 10.29 8.75 -6.29
5-1 1.00 -6.08 -2.49 -4.87 -2.11

t-stat
Low 1 3.80 5.24 4.64 4.81 3.48 -1.09
2 4.68 5.09 4.76 4.89 4.66 -1.34
3 4.46 4.67 5.96 5.10 4.65 -1.58
4 5.64 4.83 5.82 5.53 4.59 -2.80
High 5 4.56 4.60 5.33 4.62 3.37 -2.17
5-1 0.36 -2.49 -1.03 -2.02 -0.80

Panel C: Idiosyncratic Stock Variance
VW Avg. Ret.

Low 1 14.84 12.99 13.74 11.16 10.08 -5.10
2 15.64 13.19 13.83 11.02 11.86 -3.78
3 16.88 14.04 13.22 15.06 11.07 -5.81
4 15.33 13.87 12.05 12.24 11.79 -3.54
High 5 7.40 7.78 8.53 7.24 7.70 0.30
5-1 -8.52 -5.21 -5.21 -3.91 -2.38

t-stat
Low 1 5.37 5.60 6.61 5.85 4.87 -2.57
2 5.01 4.84 5.28 4.67 4.84 -1.96
3 4.85 4.61 4.57 5.21 4.05 -2.64
4 4.33 4.11 3.62 3.89 3.54 -1.74
High 5 1.77 1.93 2.02 1.83 1.98 0.10
5-1 -2.82 -1.59 -1.61 -1.22 -0.77

comparison with the results of Ang et al. (2006). We see that high CIV beta stocks continue

to earn substantially lower average returns within each market beta quintile. While the 5-1

CIV beta spread is significant only in market beta Q4 and Q5, all quintiles show a spread

27



of at least -2.7% per year.

Panel C reports bivariate sorts based on CIV beta and stock-level idiosyncratic volatility.

Again, the CIV beta spread remains strong except for within the most extreme idiosyncratic

volatility quintile (Q5). It is significant in 3 of the remaining 4 quintiles with a spread of at

least -3.5% per year.

5 Model

This section studies an equilibrium asset pricing model with heterogeneous agents in the

spirit of Constantinides and Duffie (1996) and Constantinides and Ghosh (2013). The id-

iosyncratic volatility factor, denoted σ2
gt, is the key state variable which drives the residual

return volatility in stocks, as well the the cross-sectional volatility of investor consumption

growth. Innovations to this factor are priced, with a negative price of risk. Stocks with more

negative exposure with respect to this innovation (a more negative “dispersion beta”) carry

a higher risk premium.

We start with a simple model that makes the point that idiosyncratic consumption risk can

help explain the idiosyncratic volatility puzzle. In that model, the sole source of difference in

dispersion betas arises from heterogeneity in the exposure of idiosyncratic cash-flow risk to

the cross-sectional dispersion. That model provides most of the intuition. The next section

presents a richer model that adds additional links between cross-sectional dispersion and

cash flow growth, and that generates quantitatively larger risk premium differences.

5.1 Preferences

There is a unit mass of atomless agents. Each one of them has Epstein-Zin preferences. Let

Ut(Ct) denote the utility derived from consuming Ct. The value function of each agent takes
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the following recursive form:

Ut(Ct) =
�
(1− δ)C

1−γ
θ

t + δ
�
EtU

1−γ
t+1

� 1
θ

� θ
1−γ

.

The time discount factor is δ, the risk aversion parameter is γ ≥ 0, and the inter-temporal

elasticity of substitution (IES) is ψ ≥ 0. The parameter θ is defined by θ ≡ (1− γ)/(1− 1
ψ ).

When ψ > 1 and γ > 1, then θ < 0 and agents prefer early resolution of uncertainty.

Aggregate labor income is defined as It. There is a large number of securities in zero or

positive net supply. There combined total (and per capita) dividends are Dt. Aggregate

dividend income plus aggregate labor income equals aggregate consumption: Ct = It +Dt.

Individual labor income is defined by

Ij,t = Sj
tCt −Dt

All agents can trade in all securities at all times and are endowed with an equal number of

all securities at time zero. As in Constantinides and Ghosh (2013), given the symmetric and

homogenous preferences, households choose not to trade away from their initial endowments.

That is, autarky is an equilibrium and individual j’ equilibrium consumption is Cj,t =

Ij,t +Dt = Sj
tCt.

5.2 Technology

On the technology side, we impose the same idiosyncratic volatility factor structure on in-

vestor consumption growth and firm diviidend growth by adopting the following specification

for aggregate consumption growth, consumption growth of agent j, and dividend growth of
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firm i:

∆cat+1 = µg + σcηt+1 (2)

∆sjt+1 = σg,t+1v
j
t+1 −

1

2
σ2
g,t+1 (3)

∆dit+1 = µi + χi

�
σ2
gt − σ2

g

�
+ ϕiσcηt+1 + κiσgte

i
t+1 + ζiσitε

i
t+1 (4)

σ2
g,t+1 = σ2

g + νg
�
σ2
gt − σ2

g

�
+ σgwwg,t+1 (5)

σ2
i,t+1 = σ2

i + νi
�
σ2
it − σ2

i

�
+ σiwwi,t+1 (6)

All shocks are i.i.d standard normal and mutually uncorrelated. Lowercase letters denote

logs. The cross-sectional mean and variance of the consumption share process are:

Ej

�
∆sjt+1

�
= −1

2
σ2
g,t+1

Vj

�
∆sjt+1

�
= σ2

g,t+1

Thus, the idiosyncratic volatility factor, σg,t+1 is the cross-sectional standard deviation of

consumption share growth. Individual consumption growth is ∆cjt+1 = ∆cat+1 +∆sjt+1. The

mean consumption share in levels is one: Ej

�
Sj
t

�
= 1 .

The conditional variance of aggregate consumption growth is constant. However, the

conditional variance of dividend growth for an individual stock i is time varying and de-

pends on the idiosyncratic volatility factor. The common factor in residual dividend growth

volatility is the idiosyncratic volatility factor. We now show that positive innovations in

the idiosyncratic volatility factor (wg,t+1 > 0) are associated with bad times and carry a

negative price of risk. Thus, bad times are times with little risk sharing (high dispersion

in equilibrium consumption share growth). Assets whose returns are low exactly when risk

sharing is impaired must pay higher risk premia.
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5.3 Claim to Individual Consumption Stream

We start by pricing a claim to individual consumption growth, using the individual’s own

intertemporal marginal rate of substitution (IMRS). We conjecture that the log wealth-

consumption ratio of agent j is linear in the state variable σ2
gt, and does not depend on any

agent-specific characteristics:

wcjt = µwc +Wgs

�
σ2
gt − σ2

g

�

We verify this conjecture by plugging in this guess into the Euler equation for the consump-

tion claim of agent j: Et[SDF j
t+1R

j
t+1] = 1. Under symmetric preferences, this conjecture

implies that the individual wealth-consumption ratio does not depend on agent-specific at-

tributes, only on aggregate objects.

The return to agent j’s consumption claim rjt+1 equals:

rjt+1 = rc0 +

�
Wgs (νg − κc

1)−
1

2
νg

� �
σ2
gt − σ2

g

�
+ σcηt+1 +

�
Wgs −

1

2

�
σgwwg,t+1 + σg,t+1v

j
t+1

where rc0 in the unconditional mean and κc
1 is a linearization constant slightly exceeding 1.

The intermediate steps are provided in the appendix, along with all pother derivations.

Epstein and Zin (1989) show that the log real stochastic discount factor is a function of

consumption growth and the return to the consumption claim:

sdf j
t+1 = θ log δ − θ

ψ
∆cjt+1 + (θ − 1) rjt+1

= µs +

�
(θ − 1)Wgs (νg − κc

1) + γ
1

2
νg

� �
σ2
gt − σ2

g

�

−γσcηt+1 − γσg,t+1v
j
t+1 +

�
(θ − 1)Wgs +

1

2
γ

�
σgwwg,t+1
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where µs is the unconditional mean SDF.9

5.4 Aggregate SDF

Since all agents can invest in all risky assets, the Euler equation has to be satisfied for any

two agents j and j� and for every stock i (with returns orthogonal to the agents’ idiosyncratic

income shocks vj and vj
�
). This also implies that the average SDF must also price all financial

assets if all the individual SDFs price the return Ri
t+1:

1 = Et

�
SDF j

t+1R
i
t+1

�
= Et

�
Ej

�
SDF j

t+1R
i
t+1

��
= Et

�
Ej

�
SDF j

t+1

�
Ri

t+1

�

= Et

�
SDF a

t+1R
i
t+1

�
.

We can rewrite the expression for the average log real stochastic discount factor:

sdfa
t+1 = Ej

�
sdf j

t+1

�
+

1

2
Vj

�
sdf j

t+1

�

= µs +
1

2
γ2σ2

g + sgs
�
σ2
gt − σ2

g

�
− λησcηt+1 − λwσgwwg,t+1

where the loadings are given by:

sgs ≡ 1

2
γνg

�
1

ψ
+ 1

�
,

λη ≡ γ,

λw ≡
γνg

�
1
ψ − γ

�

2 (κc
1 − νg)

− 1

2
γ(1 + γ),

9The appendix shows that the coefficient Wgs is given by:

Wgs =
νgγ(γ − 1)

2θ(κc
1 − νg)

= −
γνg

�
1− 1

ψ

�

2 (κc
1 − νg)

(7)

If the IES exceeds 1, then Wgs < 0. Less risk sharing, or higher consumption share dispersion, leads to a
lower wealth-consumption ratio.
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Hence, there are two priced sources of aggregate risk in our model: shocks to aggregate

consumption growth, which carry a positive price of risk λη, equal to the coefficient of

relative risk aversion, and shocks to the idiosyncratic volatility factor. The latter carry a

negative price of risk λw, indicating that deterioration in risk sharing is bad news for the

stand-in agent, provided that the agent has a preference for early resolution of uncertainty.

In the case of time-additive utility, the standard Mankiw (1986) result obtains and only the

current volatility matters, but, in general, the average investor also cares about the future

dispersion of consumption growth. The size of this effect is governed by the persistence (νg)

of the idiosyncratic volatility factor. This result will allow us to directly use the volatility

factor constructed from stock returns to test our asset pricing mechanism empirically rather

than measure the cross-sectional dispersion of investor consumption growth directly.

The maximum Sharpe ratio in the economy is larger, the bigger these prices of risk and

the more volatile the shocks:

maxSRt = Stdt[sdf
a
t+1] =

�
λ2
ησ

2
c + λ2

wσ
2
gw

It follows that the risk-free interest rate is:

rft = −Et[sdf
a
t+1]−

1

2
Vt[sdf

a
t+1]

= −µs −
1

2
γ2σ2

g −
1

2
λ2
ησ

2
c −

1

2
λ2
wσ

2
gw − sgs

�
σ2
gt − σ2

g

�

Interest rates contain the usual impatience and intertemporal substitution terms, included

in µs. The next three terms capture the precautionary savings motive: when idiosyncratic

risk is high, agents increase savings, lowering interest rates. Interest rates move negatively

with the state variable because sgs > 0. The higher consumption share dispersion, the lower

rates.
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5.5 Firm Return

Turning to the pricing of the dividend claim defined by equation (4), we guess and verify

that its log price-dividend ratio is affine in the common and idiosyncratic variance terms:

pdit = µpdi + Ai
gs

�
σ2
gt − σ2

g

�
+ Ai

is

�
σ2
it − σ2

i

�

As usual, log returns are approximated as:

rit+1 = ∆dit+1 + κi
0 + κi

1pd
i
t+1 − pdit

Innovations in individual stock returns and the return variance reflect the additional

sources of idiosyncratic risk:

rit+1 − Et

�
rit+1

�
= βη,iσcηt+1 + βgs,iσgwwg,t+1 + κiσgte

i
t+1 + ζiσitε

i
t+1 + κi

1A
i
isσiwwi,t+1

Vt

�
rit+1

�
= β2

η,iσ
2
c + β2

gs,iσ
2
gw +

�
κi
1A

i
is

�2
σ2
iw + κ2

iσ
2
gt + ζ2i σ

2
it

where

βη,i ≡ ϕi,

βgs,i ≡ κi
1A

i
gs

Innovations in stock returns contain two sources of aggregate risk and three sources of idiosyn-

cratic risk (equation 8). The variance of individual stock returns are driven by the common

σgt and idiosyncratic σit processes (equation 8). In the empirical section, we demonstrated

the presence of a large first principal component in both total and residual stock returns,

and showed that it was the same component in both. This model generates that feature and

associates the common component in residual variance with changes in the cross-sectional

dispersion of consumption growth across agents. Times of low risk sharing are times of high
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idiosyncratic (and total) stock return variance.

The coefficients of the price-dividend equation are obtained from the Euler equation:

Ai
gs =

2sgs + 2χi + κ2
i

2 (1− κi
1νg)

=

�
1 + 1

ψ

�
γνg + 2χi + κ2

i

2 (1− κi
1νg)

(8)

Ai
is =

ζ2i
2(1− κi

1νi)
(9)

and the constant µpdi is the mean log pd ratio which solves the following non-linear equation:

0 = ri0 + µs +
1

2
γ2σ2

g +
1

2
(βgs,i − λw)

2σ2
gw +

1

2
(βη,i − λη)

2σ2
c

+
1

2
κ2
iσ

2
g +

1

2
ζ2i σ

2
i +

1

2

�
κi
1A

i
is

�2
σ2
iw

where

ri0 = µi + κi
0 + (κi

1 − 1)µpdi,

κi
1 =

exp(µpdi)

1 + exp(µpdi)
, κi

0 = log(1 + exp(µpdi))− κi
1µpdi

The expression for the equity risk premium on an individual stock is:

Et

�
rit+1 − rft

�
+ .5Vt[r

i
t+1] = βη,iλησ

2
c + βgs,iλwσ

2
gw. (10)

The first term is the standard consumption CAPM term. It is typically small because

consumption growth is not very volatile. The second term is a new term which compensates

investors for movements in the cross-sectional (income and) consumption distribution, today

and in the future. Stocks that have low returns exactly when risk sharing deteriorates

(βgs,i < 0) are risky and carry high expected returns because λw < 0. If χi is sufficiently

negative, Ai
gs < 0 and βgs,i < 0. A negative χi is natural because empirically, poor risk

sharing are bad economic times that are associated with lower future dividend growth.
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In the cross-section, a stock with higher exposure to the common idiosyncratic risk term

κi will have a higher (less negative) beta and therefore carry a lower expected return, all

else equal. Since stocks with high idiosyncratic volatility have high exposures κi empirically,

the model generates a lower expected return for high idiosyncratic risk stocks. That is, the

model generates the idiosyncratic risk anomaly. Intuitively, when there is a positive shock

to the volatility factor, the quantity of idiosyncratic risk goes up more so for stocks with

greater exposure κi. As a result of the convexity in the relation between growth and terminal

value, also explored by Pastor and Veronesi (2003, 2009)), this in turn raises the price more

of those high volatility stocks, thus increasing their beta to the vol factor and lowering their

equilibrium expected return. The next section discusses a calibrated version of this model

to see how close it comes to explaining the idiosyncratic risk anomaly quantitatively.

6 Calibration

The model in the previous section cleanly illustrates how increases in idiosyncratic risk,

resulting in less risk sharing among agents, affect interest rates and risk premia in the cross-

section of stocks. We now add a few additional model ingredients while preserving the main

intuition given in the simple model. The full model allows for an additional correlation

between aggregate consumption growth and dividend growth with innovations in the risk

sharing process wg,t+1. Second, it allows for the volatility of these innovations to be time-

varying rather than constant. The latter change makes risk premia time-varying. It also

makes the volatility of the return on the market portfolio, defined as an asset that pays

aggregate dividend growth (one without any idiosyncratic risk), time varying, which is a

desirable feature. In the current version, the variability of the market return is driven solely

by the idiosyncratic volatility factor. In reality, the two are positively but not perfectly

correlated. In the next version of this paper, we plan to introduce a separate aggregate
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volatility factor, σct. In sum, the following technology processes are modified:

∆cat+1 = µg + σcηt+1 + φcσgtwg,t+1

∆dit+1 = µi + χi
�
σ2
gt − σ2

g

�
+ ϕiσcηt+1 + φiσgtwg,t+1 + κiσgte

i
t+1 + ζiσitε

i
t+1

σ2
g,t+1 = σ2

g + νg
�
σ2
gt − σ2

g

�
+ σwσgtwg,t+1

The market portfolio is modeled as a claim to aggregate dividend growth:

∆dat+1 = µm + χm
�
σ2
gt − σ2

g

�
+ ϕmσcηt+1 + φmσgtwg,t+1

Appendix B works out the details of this model extension.

The variance of an individual stock return now takes the following form:

Vt

�
rit+1

�
= β2

η,iσ
2
c + β2

gs,iσ
2
gt +

�
κi
1A

i
is

�2
σ2
iw + κ2

iσ
2
gt + ζ2i σ

2
it (11)

where

βη,i ≡ ϕi,

βgs,i ≡ κi
1A

i
gsσw + φi,

Appendix B provides the expressions for Ai
gs, which measures the sensitivity of the pd ratio to

changes in the cross-sectional variance of consumption growth σ2
gt, and Ai

is, which captures

the sensitivity to changes in stock-specific variance σ2
it. The dependence of Ai

gs on the

parameters of the model is similar to that in equation (8) while the expression for Ai
is is

identical as in (9). The former is usually negative while the latter is always positive. The

equity risk premium on any stock i is:

Et

�
rit+1 − rft

�
+ .5Vt[r

i
t+1] = βη,iλησ

2
c + βgs,iλwσ

2
gt. (12)
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Similarly, the variance of the market portfolio is:

Vt

�
rmt+1

�
= β2

η,mσ
2
c + β2

gs,mσ
2
gt (13)

The model contains three new features. First, equations (11) and (13) show that the variance

of stock returns moves around over time not only via the idiosyncratic sources of return

volatility -as in the previous model- but also via the priced source of risk associated with

wg,t+1 shocks. Market variance is high when risk sharing is poor. Second, the equity risk

premium in equation (12) is now time-varying rather than constant. This variation arises

because of the stochastic volatility in the σ2
gt process. Third, we built in an additional cash-

flow channel that relates innovations in cross-sectional income dispersion wg,t+1 to changes

in dividend growth and aggregate consumption growth. The former changes the beta of a

stock. If contemporaneous deteriorations in risk sharing coincide with low dividend growth

realizations (φi < 0) for a stock, then that stock has a lower (more negative) beta. Given the

negative price of risk, it will carry a higher expected return. The latter effect (φc < 0) changes

the price of risk λw and makes it more negative. It is natural to associate recessions (negative

aggregate consumption growth episodes) with periods where risk sharing deteriorates. Hence,

the contemporaneous cash-flow effects (φc < 0 and φi < 0) increase the equity risk premium,

all else equal.

The following objects are useful in what follows. The idiosyncratic stock return variance

is the variance of the idiosyncratic return components:

Vt

�
ridio,it+1

�
=

�
κi
1A

i
is

�2
σ2
iw + κ2

iσ
2
gt + ζ2i σ

2
it

Define the idiosyncratic variance (IV) factor as the first principal component of the idiosyn-

cratic return variance, as in section 2:

IVt ≡ Vt

�
rIVt+1

�
= κ̄2σ2

gt + ζ̄σ2
i ,
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where the last term is constant by virtue of the iid nature of the σit processes in the cross-

section of stocks.

Two key parameters are κi and ζi. The following relationships identify these parame-

ters. First, we can infer κi from a regression of idiosyncratic stock return variance on the

idiosyncratic variance factor:

Cov
�
Vt

�
ridio,it+1

�
, IVt

�

V ar[IVt]
=

κ2
i

κ̄2
(14)

This regression slope is informative about κi, holding all other parameters fixed. Second,

the R-squared of that regression is informative about ζi, all else equal:

R2 = 1−
ζ4i

σ2
iw

1−ν2i

κ4
i
σ2
wσ2

g

1−ν2g
+ ζ4i

σ2
iw

1−ν2i

(15)

Table 5 shows our parameter choices; the model is calibrated and simulated at annual

frequency. Risk aversion γ is set to 10 and the inter-temporal elasticity of substitution ψ is

set to 2, both common values in the consumption-based asset pricing literature. The time

discount factor δ is set to 0.91, which produces a mean risk-free rate of 0.96% per year, given

all other parameters. The model produces a risk-free rate with low volatility of 0.91% per

year. Mean consumption growth µg is 2% per year. We set σc to 1.5%. We set φc equal

to -0.22 to capture the negative correlation between aggregate consumption growth and the

degree of risk sharing. Aggregate consumption growth volatility is modest at 2.67% per year.

We set the mean of the cross-sectional dispersion in consumption growth, σg, to 10%.

This value is a compromise between the data, which -while noisy- indicate a higher value

of dispersion and our ability to solve the model.10 The persistence of the cross-sectional

dispersion process, νg, is set to an intermediate value of 0.77 per year. This choice will

produce annual persistence in idiosyncratic return volatility around 0.77, close to the 0.77 in

10For high values of σg, the equation for the mean price-dividend ratio no longer has a solution.
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the data. This choice implies that our main state variable moves at business cycle rather than

at much lower frequencies. We set σw to 1.5%. This ensures that σ2
gt remains positive, while

creating substantial action in the extent of risk sharing over time. The time series standard

deviation of σgt is 1.18%. The model results in a negative market price of “dispersion risk”

λw = −5.24 and a substantial maximum conditional Sharpe ratio of 0.55.

Section 2 documented facts about firm-level volatilities. Our calibrated model aims to

match both firm volatility behavior as well as understand the asset pricing implications

of this behavior. The model suggests a sort of firms in terms of their exposure to the

idiosyncratic volatility factor IVt. Each month from 1926 until 2010, we regress monthly

individual firm stock returns on market returns to form residual returns using 60-month

windows. We calculate residual variance in month t as the time series standard deviation

of the 60 months of returns ending in month t. We define the IV factor in month t as the

equally-weighted mean of all stocks’ residual variances in month t. We then regress each

stock’s residual variance on the IV factor, controlling for the lagged IV factor and for the

contemporaneous market return variance, using a 60 month window, and sort stocks into

five quintile portfolios from lowest IV factor exposure (Q1) to highest (Q5). We then hold

the portfolio for one month until t+1 and calculate portfolio returns over that month. They

are reported in row 1 of Table 4. We observe a declining pattern in return from Q1 to Q5.

The return spread between portfolio 5 and portfolio 1 is 5.59% per year and has a t-statistic

of 3.08. This shows that stocks with higher exposure to the IV factor have lower returns.

The pattern cannot be explained by exposure to the market variance factor since market

variance was controlled for in the portfolio formation step.

We also calculate post-formation betas βgs,i with respect to the IV factor. These are

reported in row 5 of Table 4. The betas are very negative for Q1 (-1.77) and less negative

for Q5 (-0.97). The spread in betas is -0.80.

We calculate total and residual return variances as the average total (idiosyncratic) return

variances of the stocks in that portfolio in that month. These are individual stock variances,
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Table 4: Main Results
This tables reports moments from the model and compares them to the data. The first two rows report the average excess return

in model and data. The next two rows split out the equity risk premium into a contribution representing compensation for η risk

and a compensation for wg risk. Rows 5 and 6 report return volatilities in data and model, followed by a breakdown of volatility

into its five components in rows 7-11 (see equation 11). Since the variance but not the volatility components are additive, we

calculate the square root of each variance component, and then rescale all components so they sum tot total volatility. Rows 12

and 13 report the empirical object in equation (14),
Cov

�
Vt

�
ridio,it+1

�
,Vt[rIVt+1]

�

V ar[Vt

�
rIVt+1

�
]

, in data and in model, multiplied by 100. Rows

14 and 15 report the R-squared in equation (15) in data and in model, multiplied by 100. The model is simulated at annual

frequency for 60,000 periods. All moments in the data are expressed as annual quantities and computed from the July 1926 to

December 2010 sample.

Moment Q1 Q2 Q3 Q4 Q5 M

1 Excess Ret Data 12.00 9.64 9.67 7.04 6.41 7.47

2 Model 9.96 9.23 5.97 5.55 5.76 7.02

3 η risk 0.68 0.68 0.68 0.68 0.68 0.68

4 wg risk 9.28 8.55 5.30 4.88 5.09 6.35

5 Beta βgs,i Data −1.77 −1.63 −1.01 −0.93 −0.97 −1.21

6 Model −1.77 −1.63 −1.01 −0.93 −0.97 −1.21

7 Return Vol. Data 81.20 60.08 53.74 52.38 66.66 16.69

8 Model 83.27 53.61 49.20 44.58 67.05 12.91

9 η risk 2.72 2.61 2.66 2.65 2.75 3.50

10 wg risk 10.70 9.46 5.97 5.48 5.92 9.41

11 ei risk 40.47 24.57 21.86 19.95 30.67 ×
12 εi risk 27.78 16.39 18.02 15.95 26.29 ×
13 wi risk 1.60 0.58 0.69 0.54 1.41 ×
14 Eq. (14) Data 1.83 0.89 0.68 0.57 1.03 ×
15 Model 1.98 0.79 0.60 0.51 1.12 ×
16 Eq. (15) Data 92.27 93.05 85.18 86.65 83.08 ×
17 Model 92.27 93.05 85.18 86.65 83.08 ×

not portfolio return variances. We annualize the series. Annual return volatilities (standard

deviations) range from 48% to 77%. They are highest for portfolios Q1 and Q5. The market

portfolio has a volatility of 16.7% in the data. Row 7 of Table 4 shows the return volatilities.

We set µi equal to the values observed in the data. We set ϕdi = ϕdm = 3. This is a

standard leverage parameter. By setting this parameter equal for all portfolios, we ensures

that all differences in risk premia across portfolios arise from differences in exposure to the

wg,t+1 shocks. That contribution to the risk premium from this standard CCAPM (η-risk) is
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0.68% per year. We set φdm equal to -0.65 and χm equal to -7.98 in order to exactly match

the observed market beta βgs,m of -1.21.11 Our parameter choices imply a return volatility

of 12.91% for the market portfolio, somewhat below the data. The model-implied equity

risk premium is 7.02% per annum, close to the historical average for the 1926-2010 sample

of 7.47%.

The idiosyncratic volatility process parameters are common to all firms. We set σi to

0.4%, νi to 0.40, and σiw to 2e-6. The persistence of σit is set lower to that of σgt to generate

the fact that the persistence of the return volatility of the quintile portfolios is lower than

that of the market. σiw is chosen as large as possible while preventing σit to go negative.

Finally, the value for σi is a normalization because every portfolio’s variance is pre-multiplied

by ζi.

The individual dividend growth parameters, φi, χi, κi, and ζi are chosen as follows. First,

to add further parsimony, we also set all parameters φi = φdm = −0.65, ∀i. Second, we

chose ζi to match the R2 of equations (15) exactly for each stock, given our choice for κi.

See rows 16 and 17 of Table 4. Third, for κi we start from the values implied by the slope in

equations (14) for each stock and multiply by κ̄2 before taking the square root. The value

for κ̄2 is chosen to match the observed unconditional average of the IV factor of 35.45%.

From this base level, we adjust up the κi values for Q1 and Q5 up and adjust the ones for

Q2, Q3, and Q4 down so as to keep the average κ̄2 unchanged.12 This helps us to match the

higher volatilities of stocks in portfolios Q1 and Q5, at the expense of missing our target for

the slopes of equations (14) somewhat. Rows 14 and 15 of Table 4 shows that the fit is still

good. Fourth, we set the parameters χi to exactly match the observed betas; see rows 5 and

6 of Table 4. Table 5 shows that this implies a strongly increasing pattern for χi, given all

other parameters.

11There are multiple combinations of φdm and χm that deliver the same βgs,m. These combinations have
roughly the same volatility implications and identical risk premium implications. We select a value for φdm

equal to -0.65 which is 3 times the value for φc, the same leverage effect of 3 as we assume with respect to
the η shock (ϕdm = 3).

12The adjustment factors are 1.12, 0.92, 0.92, 0.92 and 1.12.
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Table 5: Calibration
This table lists the parameters of the model. The last panel discusses the calibration of five stock portfolios, sorted from lowest

volatility (Q1) to highest volatility (Q5). The market portfolios is indicated by the letter M.

Preferences

δ 0.91 γ 10 ψ 2

Aggregate Consumption Growth Process

µg 0.02 σc .015 φc -0.22

Consumption Share Process

σg 0.10 νg 0.77 σw .015

Dividend Growth Process

σi 0.004 νi 0.50 σiw 2e-6

Parameter Q1 Q2 Q3 Q4 Q5 M

µi 4.86% 3.84% 4.46% 1.88% -5.57% 4.14%

ϕdi 3 3 3 3 3 3

φi −0.65 −0.65 −0.65 −0.65 −0.65 −0.65

χi −35.72 −20.62 −11.43 −9.44 −16.76 −7.98

κi 6.69 4.23 3.70 3.39 5.02 ×
ζi 114.90 70.57 76.20 67.68 107.63 ×

Table 4 shows the results. The model does a good job at replicating the overall return

volatility of the stocks in each of the five portfolios. the same is true for the idiosyncratic

return volatilities (not reported). The main finding is that the model generates a decreasing

pattern in equity risk premia. Hence, the model generates the fact that stocks with large

negative return exposure to the idiosyncratic volatility factor carry higher expected returns.

The spread in betas of −0.80, combined with a market price of risk of λw = −5.24 generates

a spread in expected returns of 4.2%, three quarters of the observed spread. The stocks

in portfolio Q5 have high exposure to the IV factor. Their returns fall the least when risk

sharing opportunities deteriorate in so they are the best hedge against such deteriorations.

As a result, they carry the lowest risk premia.

The model generates the observed pattern in betas mainly via the increasing pattern in

the predictive coefficient χi which go from more negative to less negative. A low degree

of risk sharing (high σ2
gt) signals lower future cash-flow growth persistently into the future,

and more so for the Q1 portfolio than for the Q5 portfolio. That makes the Q1 portfolio
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riskier than the Q5 portfolio, all else equal. There also is the Jensen effect highlighted in the

previous section arising from differences in κi. 13 Hence the cash flow predictability effect

must offset the Jensen effect for the betas to line up with the observed ones.

7 Conclusion

We document strong comovement of individual stock return volatilities. Removing common

variation in returns has little effect on volatility comovement, as the volatility of residual

returns demonstrates effectively the same factor structure as total returns, despite the fact

that these residuals are uncorrelated. The distinction between stocks’ total volatility and

idiosyncratic volatility is tiny – almost all return variation at the stock level is idiosyncratic.

Volatility comovement is not only a feature of returns, but also for volatility of firms’ fun-

damentals. Like returns, we find a strong factor structure among sales growth volatilities,

both for total growth rates as well as among idiosyncratic, uncorrelated factor model residual

growth rates.

We explore the asset pricing implicates of these findings in a model with heterogeneous

investors whose consumption growth is subject to some of this variation in idiosyncratic risk.

In this model, CIV is a priced state variable. Increases in CIV lead to a deterioration in risk

sharing and are are associated with high marginal utility for the average investor. Stocks

with less negative exposure to positive innovations in risk sharing opportunities are less risky

and carry lower returns. Sorting stocks into portfolios based on their exposure to the CIV, we

find that stocks with more negative betas carry higher average returns. The model explores

various channels that can generate the observed pattern in betas. It generates three quarters

of the observed return spread for plausible parameters.

13For the portfolios under investigation in this section, that effect leads to a 4.8% spread in the wrong
direction if we set χi = χ5 ∀i.
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A Appendix Section 3

Starting from the budget constraint for agent j:

W j
t+1 = Rj

t+1(W
j
t − Cj

t ). (16)

The beginning-of-period (or cum-dividend) total wealth W j
t that is not spent on consumption Cj

t earns

a gross return Rj
t+1 and leads to beginning-of-next-period total wealth W j

t+1. The return on a claim to

consumption, the total wealth return, can be written as

Rj
t+1 =

W j
t+1

W j
t − Cj

t

=
Cj

t+1

Cj
t

WCj
t+1

WCj
t − 1

.

We use the Campbell (1991) approximation of the log total wealth return rjt = log(Rj
t ) around the long-run

average log wealth-consumption ratio µwc ≡ E[wj
t − cjt ]:

rjt+1 = κc
0 +∆cjt+1 + wcjt+1 − κc

1wc
j
t ,

where the linearization constants κc
0 and κc

1 are non-linear functions of the unconditional mean log wealth-

consumption ratio µwc:

κc
1 =

eµwc

eµwc − 1
> 1 and κc

0 = − log (eµwc − 1) +
eµwc

eµwc − 1
µwc.

The return on a claim to the consumption stream of agent j, Rj , evaluated at her intertemporal marginal

rate of substitution SDF j satisfies the Euler equation:

1 = Et

�
SDF j

t+1R
j
t+1

�

1 = Et

�
Ej

�
SDF j

t+1R
j
t+1

��

1 = Et

�
Ej

�
exp{sdf j

t+1 + rjt+1}
��

1 = Et

�
exp{Ej

�
sdf j

t+1 + rjt+1

�
+

1

2
Vj

�
sdf j

t+1 + rjt+1

�
}
�

(17)

where the second equality applies the law of iterated expectations, and the last equality applies the cross-

sectional normality of consumption share growth.

We combine the approximation of the log total wealth return with our conjecture for the wealth-

consumption ratio of agent j:

wcjt = µwc +Wgs

�
σ2
gt − σ2

g

�

We solve for the coefficients µwc and Wgs by imposing the Euler equation for the consumption claim.
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First, we compute rjt+1:

rjt+1 = κc
0 + µg + (1− κc

1)µwc +Wgs (νg − κc
1)

�
σ2
gt − σ2

g

�
+ σcηt+1 +Wgsσgwwg,t+1 +∆sjt+1

= κc
0 + µg + (1− κc

1)µwc +Wgs (νg − κc
1)

�
σ2
gt − σ2

g

�
+ σcηt+1 +Wgsσgwwg,t+1 + σg,t+1v

j
t+1 −

1

2
σ2
g,t+1

= rc0 +

�
Wgs (νg − κc

1)−
1

2
νg

� �
σ2
gt − σ2

g

�
+ σcηt+1 + (Wgs −

1

2
)σgwwg,t+1 + σg,t+1v

j
t+1

where rc0 = κc
0 + µg + (1− κc

1)µwc − 1
2σ

2
g is the unconditional mean log return.

Second, Epstein and Zin (1989) show that the log real stochastic discount factor is

sdf j
t+1 = θ log δ − θ

ψ
∆cjt+1 + (θ − 1) rjt+1

= θ log δ − γ∆cjt+1 + (θ − 1) (κc
0 + wcjt+1 − κc

1wc
j
t )

= θ log δ − γ (µg + σcηt+1)− γ∆sjt+1 + (θ − 1) (κc
0 + wcjt+1 − κc

1wc
j
t )

= θ log δ − γµg + (θ − 1)[κc
0 + (1− κc

1)µwc] + (θ − 1)Wgs (νg − κc
1)

�
σ2
gt − σ2

g

�

−γσcηt+1 − γ∆sjt+1 + (θ − 1)Wgsσgwwg,t+1

= µs +

�
(θ − 1)Wgs (νg − κc

1) + γ
1

2
νg

� �
σ2
gt − σ2

g

�

−γσcηt+1 − γσg,t+1v
j
t+1 +

�
(θ − 1)Wgs +

1

2
γ

�
σgwwg,t+1

where µs = θ log δ − γµg + (θ − 1)[κc
0 + (1− κc

1)µwc] + γ 1
2σ

2
g in the unconditional mean log SDF.

We have that:

Ej

�
sdf j

t+1

�
= µs +

�
(θ − 1)Wgs (νg − κc

1) + γ
1

2
νg

� �
σ2
gt − σ2

g

�

−γσcηt+1 +

�
(θ − 1)Wgs +

1

2
γ

�
σgwwg,t+1

Ej

�
rjt+1

�
= rc0 +

�
Wgs (νg − κc

1)−
1

2
νg

� �
σ2
gt − σ2

g

�

+σcηt+1 +

�
Wgs −

1

2

�
σgwwg,t+1

Vj

�
sdf j

t+1 + rjt+1

�
= (1− γ)2 σ2

g,t+1 = (1− γ)2
�
σ2
g + νg

�
σ2
gt − σ2

g

�
+ σgwwg,t+1

�
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All the equations above imply that:

Ej

�
sdf j

t+1 + rjt+1

�
+

1

2
Vj

�
sdf j

t+1 + rjt+1

�
= µs +

�
(θ − 1)Wgs (νg − κc

1) + γ
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2
νg
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2
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2
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1

2
(1− γ)2
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σ2
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1
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gt − σ2

g

�

+(1− γ)σcηt+1 +
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1

2
γ(γ − 1)

�
σgwwg,t+1

Now, we can take expected value and variance conditioning on t:

Et
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gw

Plugging these different components into equation (17), and setting all the constant terms to zero yields:

0 = µs + rc0 +
1

2
(1− γ)σ2

g +
1

2
(1− γ)2 σ2

c +
1

2

�
θWgs +

1

2
γ(γ − 1)

�2
σ2
gw (18)

Then setting all coefficients in
�
σ2
gt − σ2

g

�
equal to zero we obtain:

Wgs =
νgγ(γ − 1)

2θ(κc
1 − νg)

= −
γνg

�
1− 1

ψ

�

2 (κc
1 − νg)

(19)

If the IES exceeds 1, then Wgs < 0.

Plugging these coefficients back into equation (18) implicitly defines a nonlinear equation in one unknown

(µwc), which can be solved for numerically, characterizing the average wealth-consumption ratio.
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We can derive an expression for the common log real stochastic discount factor:

sdfa
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� �
σ2
gt − σ2

g

�

−γσcηt+1 +

�
(θ − 1)Wgs +

1

2
γ

�
σgwwg,t+1 +

1

2
γ2

�
σ2
g + νg

�
σ2
gt − σ2

g

�
+ σgwwg,t+1

�

= µs +
1

2
γ2σ2

g +

�
(θ − 1)Wgs (νg − κc

1) +
1

2
γ(1 + γ)νg

� �
σ2
gt − σ2

g

�

−γσcηt+1 +

�
(θ − 1)Wgs +

1

2
γ(1 + γ)

�
σgwwg,t+1

= µs +
1

2
γ2σ2

g + sgs
�
σ2
gt − σ2

g

�
− λησcηt+1 − λwσgwwg,t+1

where

sgs ≡ (θ − 1)Wgs (νg − κc
1) +

1

2
γ(1 + γ)νg =

1

2
γνg

�
1

ψ
+ 1

�
,

λη ≡ γ,

λw ≡ (1− θ)Wgs −
1

2
γ(1 + γ) =

γνg
�

1
ψ − γ

�

2 (κc
1 − νg)

− 1

2
γ(1 + γ),

The risk-free rate is:

rft = − log
�
Et[SDF j

t+1]
�
= − log

�
Et[Ej [SDF j

t+1]]
�

= = −Et[sdf
a
t+1]−

1

2
Vt[sdf

a
t+1]

= −µs −
1

2
γ2σ2

g −
1

2
λ2
ησ

2
c −

1

2
λ2
wσ

2
gw − sgs

�
σ2
gt − σ2

g

�

B Appendix Section 4

The derivations follow the same steps as in appendix A. We first compute rjt+1:

rjt+1 = κc
0 + µg + (1− κc

1)µwc +Wgs (νg − κc
1)

�
σ2
gt − σ2

g

�
+ σcηt+1 + (φc +Wgsσw)σgtwg,t+1 +∆sjt+1

= rc0 +

�
Wgs (νg − κc

1)−
1

2
νg

� �
σ2
gt − σ2

g

�
+ σcηt+1 + (φc +Wgsσw − 1

2
σw)σgtwg,t+1 + σg,t+1v

j
t+1

where rc0 = κc
0 + µg + (1− κc

1)µwc − 1
2σ

2
g .
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The log real stochastic discount factor for agent j is

sdf j
t+1 = θ log δ − γ (µg + σcηt+1 + φcσgtwg,t+1)− γ∆sjt+1 + (θ − 1) (κc

0 + wcjt+1 − κc
1wc

j
t )

= µs +

�
(θ − 1)Wgs (νg − κc

1) + γ
1

2
νg

� �
σ2
gt − σ2

g

�

−γσcηt+1 − γσg,t+1v
j
t+1 +

�
(θ − 1)Wgsσw − γφc +

1

2
γσw

�
σgtwg,t+1

where µs = θ log δ − γµg + (θ − 1)[κc
0 + (1− κc

1)µwc] + γ 1
2σ

2
g .

Ej

�
sdf j

t+1

�
= µs +

�
(θ − 1)Wgs (νg − κc

1) + γ
1

2
νg

� �
σ2
gt − σ2

g

�

−γσcηt+1 +

�
(θ − 1)Wgsσw − γφc +

1

2
γσw

�
σgtwg,t+1

Ej

�
rjt+1

�
= rc0 +

�
Wgs (νg − κc

1)−
1

2
νg

� �
σ2
gt − σ2

g

�

+σcηt+1 + (φc +Wgsσw − 1

2
σw)σgtwg,t+1

Vj

�
sdf j

t+1 + rjt+1

�
= (1− γ)2

�
σ2
g + νg

�
σ2
gt − σ2

g

�
+ σwσgtwg,t+1

�

All the equations above imply that:

Ej

�
sdf j

t+1 + rjt+1

�
+

1

2
Vj

�
sdf j

t+1 + rjt+1

�
= µs +

�
(θ − 1)Wgs (νg − κc

1) + γ
1

2
νg

� �
σ2
gt − σ2

g

�

−γσcηt+1 +

�
(θ − 1)Wgsσw − γφc +

1

2
γσw

�
σgtwg,t+1

+rc0 +

�
Wgs (νg − κc

1)−
1

2
νg

� �
σ2
gt − σ2

g

�

+σcηt+1 + (φc +Wgsσw − 1

2
σw)σgtwg,t+1

+
1

2
(1− γ)2

�
σ2
g + νg

�
σ2
gt − σ2

g

�
+ σwσgtwg,t+1

�

= µs + rc0 +
1

2
(1− γ)2σ2

g

+

�
θWgs (νg − κc

1) +
1

2
γ(γ − 1)νg

� �
σ2
gt − σ2

g

�

+(1− γ)σcηt+1 +

�
θWgsσw + (1− γ)φc +

1

2
γ(γ − 1)σw

�
σgtwg,t+1
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Now, we can take expected value and variance conditioning on t:

Et

�
Ej

�
sdf j

t+1 + rjt+1

�
+

1

2
Vj

�
sdf j

t+1 + rjt+1

��
= µs + rc0 +

1

2
(1− γ)2σ2

g

+

�
θWgs (νg − κc

1) +
1

2
γ(γ − 1)νg

� �
σ2
gt − σ2

g

�

Vt

�
Ej

�
sdf j

t+1 + rjt+1

�
+

1

2
Vj

�
sdf j

t+1 + rjt+1

��
= (1− γ)2σ2

c +

�
θWgsσw + (1− γ)φc +

1

2
γ(γ − 1)σw

�2
σ2
gt

Plugging these different components into equation (17) yields:

0 = Et

�
Ej

�
sdf j

t+1 + rjt+1

�
+

1

2
Vj

�
sdf j

t+1 + rjt+1

��
+

1

2
Vt

�
Ej

�
sdf j

t+1 + rjt+1

�
+

1

2
Vj

�
sdf j

t+1 + rjt+1

��

= µs + rc0 +
1

2
(1− γ)2σ2

g +

�
θWgs (νg − κc

1) +
1

2
γ(γ − 1)νg

� �
σ2
gt − σ2

g

�

+
1

2

�
(1− γ)2σ2

c +

�
θWgsσw + (1− γ)φc +

1

2
γ(γ − 1)σw

�2
σ2
gt

�

= µs + rc0 +
1

2
(1− γ)2 σ2

g +
1

2
(1− γ)2 σ2

c +
1

2

�
θWgsσw + (1− γ)φc +

1

2
γ(γ − 1)σw

�2
σ2
g

+

�
θWgs (νg − κc

1) +
1

2
γ(γ − 1)νg +

1

2

�
θWgsσw + (1− γ)φc +

1

2
γ(γ − 1)σw

�2��
σ2
gt − σ2

g

�

Using method of undetermined coefficients, µwc solves:

0 = µs + rc0 +
1

2
(1− γ)2 σ2

g +
1

2
(1− γ)2 σ2

c +
1

2

�
θWgsσw + (1− γ)φc +

1

2
γ(γ − 1)σw

�2
σ2
g

and Wgs solves the following quadratic equation:

0 = θWgs (νg − κc
1) +

1

2
γ(γ − 1)νg +

1

2

�
θWgsσw + (1− γ)φc +

1

2
γ(γ − 1)σw

�2

= θWgs (νg − κc
1) +

1

2
γ(γ − 1)νg

+
1

2
σ2
wθ

2W 2
gs +

1

2

�
(1− γ)φc +

1

2
γ(γ − 1)σw

�2
+ θ

�
(1− γ)φc +

1

2
γ(γ − 1)σw

�
σwWgs

=
1

2
σ2
wθ

2

� �� �
>0

W 2
gs +




νg − κc

1� �� �
<0

+σw

�
(1− γ)φc +

1

2
γ(γ − 1)σw

�

� �� �
>0




θ����
<0

Wgs

+
1

2
γ(γ − 1)νg +

1

2

�
(1− γ)φc +

1

2
γ(γ − 1)σw

�2

� �� �
>0

If σw > 0 is sufficiently small, we have

νg − κc
1 + σw

�
(1− γ)φc +

1

2
γ(γ − 1)σw

�
< 0
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which makes both roots of the quadratic equation strictly negative if not complex, i.e. Wgs < 0.

We can rewrite the expression for the common log real stochastic discount factor:

sdfa
t+1 = Ej

�
sdf j

t+1

�
+

1

2
Vj

�
sdf j

t+1

�

= µs +

�
(θ − 1)Wgs (νg − κc

1) + γ
1

2
νg

� �
σ2
gt − σ2

g

�

−γσcηt+1 +

�
(θ − 1)Wgsσw − γφc +

1

2
γσw

�
σgtwg,t+1 +

1

2
γ2

�
σ2
g + νg

�
σ2
gt − σ2

g

�
+ σwσgtwg,t+1

�

= µs +
1

2
γ2σ2

g +

�
(θ − 1)Wgs (νg − κc

1) +
1

2
γ(1 + γ)νg

� �
σ2
gt − σ2

g

�

−γσcηt+1 +

�
(θ − 1)Wgsσw − γφc +

1

2
γ(1 + γ)σw

�
σgtwg,t+1

= µs +
1

2
γ2σ2

g + sgs
�
σ2
gt − σ2

g

�
− λησcηt+1 − λwσgtwg,t+1

where

sgs ≡ (θ − 1)Wgs (νg − κc
1) +

1

2
γ(1 + γ)νg,

λη ≡ γ,

λw ≡ (1− θ)Wgsσw + γφc −
1

2
γ(1 + γ)σw,

The risk-free rate is:

rft = −µs −
1

2
γ2σ2

g − sgs
�
σ2
gt − σ2

g

�
− 1

2
λ2
ησ

2
c −

1

2
λ2
wσ

2
gt (20)

For individual firm’s stock returns, we guess and verify that

pdit = µpdi +Ai
gs

�
σ2
gt − σ2

g

�
+Ai

is

�
σ2
it − σ2

i

�

As usual, returns are approximated as:

rit+1 = ∆dit+1 + κi
0 + κi

1pd
i
t+1 − pdit

= ∆dit+1 + κi
0 + µpdi

�
κi
1 − 1

�
+
�
σ2
gt − σ2

g

�
Ai

gs

�
κi
1νg − 1

�
+
�
σ2
it − σ2

i

�
Ai

is

�
κi
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�

+Ai
gsκ

i
1σwσgtwg,t+1 +Ai

isκ
i
1σiwwi,t+1

= µi + χi

�
σ2
gt − σ2

g

�
+ ϕiσcηt+1 + φiσgtwg,t+1 + κiσgte

i
t+1 + ζiσitε

i
t+1

+κi
0 + µpdi

�
κi
1 − 1

�
+
�
σ2
gt − σ2

g

�
Ai

gs

�
κi
1νg − 1

�
+

�
σ2
it − σ2

i

�
Ai
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�
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1νi − 1

�

+Ai
gsκ

i
1σwσgtwg,t+1 +Ai

isκ
i
1σiwwi,t+1

= ri0 +
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−Ai

gs

�
1− κi

1νg
�
+ χi

� �
σ2
gt − σ2

g

�
−Ai

is

�
1− κi

1νi
� �

σ2
it − σ2

i

�

+ϕiσcηt+1 +
�
φi +Ai

gsκ
i
1σw

�
σgtwg,t+1 + κiσgte

i
t+1 + ζiσitε

i
t+1 +Ai

isκ
i
1σiwwi,t+1

where ri0 = µi + κi
0 + (κi

1 − 1)µpdi

Innovations in individual stock market return and individual return variance reflect the additional sources
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of idiosyncratic risk:

rit+1 − Et

�
rit+1

�
= βη,iσcηt+1 + βgs,iσgtwg,t+1 + κiσgte

i
t+1 + ζiσitε

i
t+1 + κi

1A
i
isσiwwi,t+1

Vt

�
rit+1

�
= β2

η,iσ
2
c + β2

gs,iσ
2
gt +

�
κi
1A

i
is

�2
σ2
iw + κ2

iσ
2
gt + ζ2i σ

2
it

where

βη,i ≡ ϕi,

βgs,i ≡ κi
1A

i
gsσw + φi,

The expression for the equity risk premium on an individual stock is:

Et

�
rit+1 − rft

�
+ .5Vt[r

i
t+1] = βη,iλησ

2
c + βgs,iλwσ

2
gt.

The coefficients of the price-dividend equation are obtained from the Euler equation. Ai
gs solves the following

quadratic equation:

0 = sgs +Ai
gs(κ

i
1νg − 1) + χi +

1

2
κ2
i +

1

2

�
κi
1A

i
gsσw + φi − λw

�2

= sgs +Ai
gs(κ

i
1νg − 1) + χi +

1

2
κ2
i +

1

2
κi
1
2
Ai

gs
2
σ2
w +

1

2
(φi − λw)

2 + (φi − λw)κ
i
1A

i
gsσw

=
1

2
σ2
wκ

i
1
2
Ai

gs
2
+Ai

gs

�
κi
1νg − 1 + (φi − λw)κ

i
1σw

�
+ sgs + χi +

1

2
κ2
i +

1

2
(φi − λw)

2,

Ai
is is given by:

Ai
is =

ζ2i
2(1− κi

1νi)
,

and the constant µpdi is the mean log pd ratio which solves the following non-linear equation:

0 = ri0 + µs +
1

2
γ2σ2

g +
1

2
(βgs,i − λw)

2σ2
g +

1

2
(βη,i − λη)

2σ2
c

+
1

2
κ2
iσ

2
g +

1

2
ζ2i σ

2
i +

1

2

�
κi
1A

i
is

�2
σ2
iw

where ri0 in the unconditional mean stock return

ri0 = µi + κi
0 + (κi

1 − 1)µpdi,

κi
1 =

exp(µpdi)

1 + exp(µpdi)
,

κi
0 = log(1 + exp(µpdi))− κi

1µpdi

Given our parameters, only one of the four roots (two for Wgs and two for Ai
gs) solves the system of equations

for the mean wealth-consumption and mean price-dividend ratio. That root delivers negative values for both

coefficients. this is consistent with the previous model.
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