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All the heterogeneous firm papers that use parametric distributions—that is, most
of the literature following Melitz (2003)—use the Pareto distribution. The use of this
distribution allows a large set of heterogeneous firms models to deliver the very sim-
ple gains from trade (GFT) formula developed by Arkolakis et al. (2012) (hereafter,
ACR). This implication is closely tied to fact that Pareto allows for a constant elas-
ticity of substitution import system.1 This paper investigates trade elasticities and
welfare effects of trade cost reductions under a realistic alternative to the Pareto
distribution.

As described thoroughly in Melitz and Redding (2014), much progress has been
made in investigating the properties of heterogeneous firms models under general
distributions. However, quantification of trade and welfare effects still requires para-
metric assumptions. Three important criteria have been invoked in deciding the
appropriate distribution to use for heterogeneity. The first is tractability. The Pareto
distribution makes it relatively easy to derive aggregate properties in an analyti-
cal model. However, uniform distributions and degenerate spikes are also tractable.
Hence, users of the Pareto distribution also justify it on empirical and theoretical
grounds. For example, ACR defend the Pareto assumptions with the arguments that
it provides “a reasonable approximation for the right tail of the observed distribution
of firm sizes” and is “consistent with simple stochastic processes for firm-level growth,
entry, and exit...”

We explore the consequences of replacing the assumption of Pareto heterogeneity
with log-normal heterogeneity. This case is interesting because it (a) maintains some
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1Two papers remove the long fat tail of the standard Pareto by bounding productivity from above.

The first, Helpman et al. (2008), shows that this leads to variable trade elasticities. The more recent,
Feenstra (2013), shows how double truncated Pareto changes the analysis of pro-competitive effects
of trade.
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desirable analytic features of Pareto, (b) fits the complete distribution of firm sales
rather than just approximating the right tail, and (c) can be generated under equally
plausible processes.2 The log-normal is reasonably tractable but its use sacrifices
some “scale-free” properties conveyed by the Pareto distribution. The consequence
is that gains from trade depend on the method of calibration. Under a calibration
using macro-data—specifically the elasticity of aggregate bilateral trade with respect
to trade costs—approximately the same gains from trade can be obtained. However,
calibrating based on micro data—the size distribution of firm sales in a given market—
yields very different gains from trade. In the symmetric two-country parameterized
model considered by Melitz and Redding (2013), gains from trade can be twice as
high under log-normal.

1 Welfare Theory

The heterogeneous firms version of monopolistic competition model with the CES (σ)
demand has been stated fully in several places so we include only the most impor-
tant equations here.3 Note that we work with firms indexed by α, the unitary cost
parameter. Consider a country with representative worker endowed with L efficiency
units, paid wages w, and facing price index P . Welfare in i is given by real income:

Wi ≡
wiLi
Pi

=

(
L

σ

)σ/(σ−1)
σ − 1

τiif
1/(σ−1)
ii

1

α∗ii
, (1)

where α∗ denote the cutoff cost such that profits are zero (τ is the iceberg trade costs
and f is the fixed production cost parameter).

As detailed in the online appendix, changes in welfare depend on changes in the
price index which in turn depends on changes in the domestic cut-off which can be
decomposed as

dWi

Wi

= −dα
∗
ii

α∗ii
=

1

εii

(
dπii
πii
− dM e

i

M e
i

)
. (2)

Welfare changes depend on the change in the domestic trade share, πii and in the mass
of domestic entrants, M e

i . Both effects are stronger when the partial trade elasticity,4

εii, that affects internal trade is small.
The result in (2) that marginal changes in welfare mirror changes in the domestic

cost cutoff focuses our attention on the role of selection. It is also important since it
shows that one should be careful in arguing for Pareto based on its performance in the

2We compare generative processes for the two distributions in the online appendix.
3A full treatment using our notation is available in the appendix; in most respects, it follows the

exposition in Melitz and Redding (2014).
4The “partial” conveys the point that this elasticity holds incomes and price indices constant.

Thus, it corresponds to the elasticity obtained from a gravity equation estimated with origin and
destination fixed effects. The online appendix contains a formal definition.
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right tail of the distribution. This right tail may well be important for exporting (to
difficult markets) but, assuming that survival into exporting to the domestic market
is prevalent, it is the left part of the tail that is crucial for welfare. As pointed out
by Eeckhout (2004) in the context of the city size distribution, it is in this left part
of the distribution that Pareto and log-normal differ most dramatically.

Shifting to the last equality in (2), welfare falls with the domestic market share
since εii < 0 but it is increasing in the mass of entrants. Under Pareto, εni is constant
which implies dM e

i = 0.5 This means we can integrate marginal changes to obtain

the simple welfare formula of ACR, where Ŵi = π̂
1/ε
ii , where “hats” denote total

changes. The log-normal case is much more complex and requires knowledge of the
whole distribution of bilateral cutoffs. Unlike the Pareto case, one can no longer use
“exact hat algebra” to solve the system as a function of observable trade shares, the
trade elasticity and GDP. While we believe the multi-country log-normal model can
be calibrated using additional data, here we want to build intuition on when and why
departing from Pareto matters. Hence, we rely on a simpler approach of exploring
the symmetric case described by Melitz and Redding (2013).

2 Calibration of the symmetric model

To consider the case of 2 symmetric countries, set τni = τin = τ , τii = 1, fii = fd,
fni = fin = fx and Li = L. We know from (1) that we need to investigate the
behavior of the domestic cutoff, α∗ii = α∗d which will entirely determine welfare. In
this model, the cutoff equation is derived from the zero profit condition, one for the
domestic and one for the export market in the trading equilibrium. Under symmetry,
the ratio of export to domestic cutoffs depends only on a combination of parameters:

α∗x
α∗d

=
1

τ

(
fd
fx

)1/(σ−1)

, (3)

Equilibrium also features the free-entry condition such that expected profits are equal
to sunk costs:

fd ×G(α∗d) [H(α∗d)− 1] (4)

+ fx ×G(α∗x) [H(α∗x)− 1] = fE,

where the H function is defined as H(α∗) ≡ 1
α∗1−σ

∫ α∗
0
α1−σ g(α)

G(α∗)
dα, a monotonic,

invertible function. Equations (3) and (4) characterize the equilibrium domestic cutoff
α∗d. Once the values for L, τ , f , fE, fx, σ have been set, and the functional form for
G() has been chosen, one can calculate welfare. The gains from trade are then the
ratio of domestic cutoffs, autarkic over openness cases: Ti = α∗dA/α

∗
d. The domestic

5See the working paper version of Arkolakis et al. (2012) for the proof.
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cutoff in autarky is very simply obtained by restating the free entry condition as
fd ×G(α∗dA) [H(α∗dA)− 1] = fE.

The last step is therefore to specify G(α). Pareto-distributed productivity implies
a power law CDF for α:

G(α) =
(α
ᾱ

)θ
(5)

The Lognormal distribution of α retains the log-normality of productivity but with a
change in the log-mean parameter from µ to −µ, implying a CDF of

G(α) = Φ

(
lnα + µ

ν

)
, (6)

where for the rest of the paper we use Φ to denote the CDF of the standard normal.
Parameter µ is the location parameter for the productivity distribution and ν is the
dispersion parameter.

The equations needed for the quantification of the gains from trade are therefore
(3) and (4), that provide α∗d conditional on G(α∗d), itself defined by (5) under Pareto
and (6) under log-normal.

2.1 The 4 key moments to calibrate

There are four moments that are crucial to calibrate the unknown parameters of the
two-country model.

M1: The share of firms that pay the sunk cost and successfully enter, G(α∗d) in the
model. Since the number of firms that pay the entry cost but exit immediately is
not observable, M1 is a challenge to calibrate. We show in the appendix that under
Pareto, the GFT calculation is invariant to M1. Unfortunately, M1 matters under
log-normal, so our sensitivity analysis considers a range of values.

M2: The share of firms that are successful exporters, G(α∗x)/G(α∗d) in the model.
The target value for M2 is 0.18, based on export rates of US firms reported by Melitz
and Redding (2013).

M3 is the data moment used to calibrate the firm’s heterogeneity parameter, denoted
θ in Pareto and ν in Log-Normal. This is the most important moment for determining
welfare effects and thus the method for calibrating it deserves the most attention. As
noted by Arkolakis et al. (2012), there are two alternative moments that the model
links closely to the heterogeneity parameters. The first, which we refer to simply as
M3, is an estimate derived from the distribution of firm-level sales (exports) in some
market. The second, which we call M3′ is the trade elasticity εx. Under the Pareto
distribution εx = εd = −θ. Thus, we calibrate the Pareto heterogeneity parameter as
θ = −M3′. Under log-normal

M3′ = 1− σ − 1

ν
h

(
lnα∗x + µ

ν
+ (σ − 1)ν

)
,
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where h(x) ≡ φ(x)/Φ(x), the ratio of the PDF to the CDF of the standard normal.

M4: The share of export value in the total sales of exporters. Using the CES demand
structure and country symmetry, this last moment is the one that will set the bench-
mark trade cost: τ̂ . Indeed one can write M4 = τ̂1−σ

1+τ̂1−σ
, which they take as 0.14 from

US exporter data. Setting σ = 4, we can solve for τ̂ = ([(1 −M4)/M4])1/3 = 1.83.
Note that this moment only relies on the CES demand structure, and therefore is not
sensitive to the distribution assumption under symmetry.

Our simulations keep as a benchmark the target values for M1, M2 and M4
from Melitz and Redding (2013). The M3 approach is described in section 2.2,
with simulations implemented in section 3. The M3′ approach is explained and
implemented in section 4. Note finally that there are two remaining parameters to
be determined: the CES preference parameter, σ, and the domestic fixed cost, fd.
We maintain σ = 4 and, since equations (3) and (4) imply that only relative fx/fd
matters for equilibrium cutoffs, we set fd = 1.

2.2 QQ estimators of shape parameters

This section develops the method of estimating the heterogeneity parameters for our
two distributions of productivity which are needed for the micro data calibration of
M3. Each of the two primitive distributions is characterized by a location parameter
(ᾱ ≡ ϕ in Pareto or µ in log-normal) and a shape parameter (θ or ν). For most of
our analysis, in particular for welfare and trade elasticities, the crucial parameter is
the one governing shape, which is also directly related to the degree of heterogeneity
of the distribution (falling with θ and rising with ν).

One important advantage of Pareto, pointed out by Redding (2011) is that if ϕ
is Pareto then ϕr is Pareto also. The shape parameter becomes θ/r, the location
becomes ϕr. This advantage is shared by the log-normal. If ϕ is log-N (µ, ν), where
µ and ν are, respectively the mean and standard deviation of log productivity, then
ϕr is log-N (rµ, rν).

These properties of the Pareto and log-normal distributions imply that we can
estimate the shape parameter of productivity with data on the distribution of sales in
some market. This is because the CES monopolistic competition assumption (CES-
MC) implies that sales of an exporter from i to n, with efficiency α can be expressed
as xni(α) = Kniα

1−σ where Kni combines all the terms that depend on origin and
destination but not on the identity of the firm. Therefore, CES-MC combined with
productivity distributed Pareto(ϕ, θ) implies that the sales of firms in any given mar-

ket will be distributed Pareto(ϕ̃, θ̃), where θ̃ = θ
σ−1 . If ϕ is log-N (µ, ν) then ϕσ−1 is

log-N (µ̃, ν̃), with ν̃ = (σ − 1)ν.6 Therefore, provided that we obtain estimates of θ̃
and ν̃ and that we postulate a value for σ, we can obtain estimates of θ and ν.

6The location parameters for sales are ϕ̃ = Kniϕ
σ−1 and µ̃ = (σ − 1)µ + lnKni for Pareto and

log-normal respectively.
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We apply the method of Kratz and Resnick (1996) to estimate parameters of
truncated sales data that may come from either a Pareto or a log-normal distribution.
They call the method a QQ estimator because it regresses empirical quantiles on
corresponding theoretical quantiles. The original idea was developed for exploratory
data visualization.

Dropping country subscripts for clarity, we denote sales as xi where i now indexes
firms ascending order of individual sales. Thus, i = 1 is the minimum sales and i = n
is the maximum. Our QQ estimators work with logged sales data. The empirical
quantiles of the sorted data are QEi = lnxi.

The distribution of lnxi takes an exponential form if xi is Pareto:

FP(lnx) = 1− exp[−θ̃(lnx− lnx)], (7)

whereas the corresponding CDF of lnxi under log-normal xi is normal:

FLN(lnx) = Φ((ln x− µ̃)/ν̃). (8)

The QQ estimator minimizes the sum of the squared errors between the theoretical
and empirical quantiles. The theoretical quantiles implied by each distribution are
obtained by applying the respective formulas for the inverse CDFs the empirical CDF:

QP
i = F−1P (F̂i) = lnx− 1

θ̃
ln(1− F̂i), (9)

QLN
i = F−1LN(F̂i) = µ̃/ν̃ + ν̃Φ−1(F̂i). (10)

Bury (1999) recommends F̂i = (i−0.3)/(n+0.4), as the empirical estimate of the CDF.
The QQ estimator regresses the empirical quantile, QEi , on the theoretical quantiles,
QP
i or QLN

i . Thus, the heterogeneity parameter ν̃ of the log-normal distribution can
be recovered as the coefficient on Φ−1(F̂i), and the primitive productivity parameter
ν = ν̃/(σ − 1).

In the case of Pareto, the right hand side variable is − ln(1− F̂i). The coefficient
on − ln(1 − F̂i) gives us 1/θ̃ from which we can back out the primitive parameter
θ = (σ − 1)θ̃.7

One advantage of the QQ estimator is that the linearity of the relationship between
the theoretical and empirical quantiles means that the same estimate of the slope
should be obtained even when the data are truncated. If the assumed distribution
(Pareto or log-normal) fits the data well, we should recover the same slope estimate
even when estimating on truncated subsamples.

We implement the QQ estimators on firm-level exports for the year 2000, using
two sources, one for French exporters, and the other one for Chinese exporters. Both

7There is a close relationship between the QQ estimator for the Pareto and the familiar log rank-
size regressions examined by Gabaix and Ioannides (2004) since both rank, 1 + (n − i), and one
minus the empirical CDF are linear in i.
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Table 1: Pareto vs log-normal: QQ regressions (French exports to Belgium in 2000).
(1) (2) (3) (4) (5) (6) (7) (8)

Sample: all top 50% top 25% top 5% top 4% top 3% top 2% top 1%
Obs: 34751 17376 8688 1737 1390 1042 695 347

Log-normal: RHS = Φ−1(F̂i), coeff = ν̃

Φ−1(F̂i) 2.392a 2.344a 2.409a 2.468a 2.450a 2.447a 2.457a 2.486a
R2 0.999 0.999 1.000 0.999 0.998 0.998 0.996 0.992
ν 0.797 0.781 0.803 0.823 0.817 0.816 0.819 0.829

Pareto: RHS = − ln(1− F̂i), coeff = 1/θ̃

− ln(1− F̂i) 2.146a 1.390a 1.174a 0.915a 0.884a 0.855a 0.822a 0.779a
R2 0.804 0.966 0.981 0.990 0.992 0.994 0.994 0.994
θ 1.398 2.158 2.555 3.278 3.392 3.511 3.650 3.849
Notes: the dependent variable is the log exports of French firms to Belgium in 2000. The
standard deviation of log exports in this sample is 2.393, which should be equal to ν̃ if x is
log-normally distributed and to 1/θ̃ if distribution if Pareto. ν and θ are calculated using σ = 4.
Standard errors still have to be corrected.

datasets have been used in several recent papers (Eaton et al. (2011) is an example
for French data, Manova and Zhang (2012) is one for Chinese exports). We view
confrontation of evidence from different sources as important when assessing which
distribution is preferred by the data. We apply two restrictions to the data. One
follows theory in that the precise mapping between productivity and sales distribu-
tions is only valid when considering each destination market separately. For both set
of exporters we use a leading destination: Belgium for French firms and Japan for
Chinese ones.8

Table 1 reports results of QQ regressions for log-normal (top panel) and Pareto
(bottom panel) assumptions, running QQ regressions for different truncations of the
data. The first column keeps all French exporters to Belgium in 2000, the second
one only the top 50%, etc. First, note in column (1) that the log-normal quantiles
can explain 99.9% of the variation in the empirical quantiles, compared to 80% for
Pareto. A second striking feature of the data is that the coefficients in the log-normal
case are much less sensitive to truncation. This what one would expect if the correct
distributional assumption was made. On the other hand, truncation dramatically
changes the slope for the Pareto quantiles.

When running the same regressions on Chinese exports to Japan (the correspond-
ing table can be found in the appendix), the same pattern emerges: log-normal seems

8The mapping is less clear when considering overall exports, or even total sales of firms (including
domestic sales). Chaney (2013) and Di Giovanni et al. (2011) are examples using (truncated) total
exports and sales respectively for French firms. The appendix corroborates the evidence in favor of
log-normality of total sales of French and Spanish firms. We also show that the superior performance
of log-normal is not driven by exports of intermediaries. For both the French and Chinese export
samples, restricting to non-intermediaries yields similar results.
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to be a much better description of the data. The easiest way to see this is graphically.
Figure 1, inspired by the work of Battistin et al. (2009), plots for both the French and
the Chinese samples the relationship between the theoretical and empirical quantiles
(top) and the histograms (bottom).

Figure 1: QQ graphs

(a) French firms → Belgium (b) Chinese firms → Japan

3 Micro-data simulations

In these simulation runs, we take as benchmark M3 the values of θ obtained from
truncated sample columns of Table 1. While this does not matter much for log-normal
(for which we take the un-truncated estimates), it is compulsory for Pareto, since the
model needs θ > σ − 1 > 3 for that case. In choosing where to truncate our goal
was to obtain an estimate of θ that was close to the 4.25 used by Melitz and Redding
(2013). We choose the top 1% estimates as our benchmark: that is θ = 3.849 and
ν = 0.797 for the French exporters case, θ = 4.854 and ν = 0.853 for China.

Our graphs show the GFT for both the Pareto and the log-normal cases, for values
of 1/2× τ̂ < τ < 2× τ̂ , with τ̂ , our benchmark level of trade costs. An advantage of
that focus is that it keeps us within the range of parameters where α∗x < α∗d, ensuring
that exporters are partitioned (in terms of productivity) from firms that serve the
domestic market only. Results for the whole range of τ values are provided in the
online appendix.

A first important difference between the log-normal and Pareto versions of the
model is that the share of firms that enter successfully (the value of M1) affects
gains from trade in the former, but not in the latter case (see the online appendix).
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Figure 2: Welfare gains, sensitivity to M1

(a) French firms → Belgium (b) Chinese firms → Japan
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Figure 2 investigates how large a difference does it make to go from extremely small
entry rates (0.0055 as in Melitz and Redding (2013)), to very large ones (0.75). What
is in general the impact of M1 on welfare in this model? In terms of calibrated
parameters , in order to have a larger proportion of firms enter successfully, the free
entry equation (4) suggests that the sunk entry costs fE needs to rise. This is because
a rise in the sunk costs reduces the total mass of entrants and therefore competition
on both input and goods markets, which makes entry easier. Therefore α∗ and hence
M1 = G(α∗) rise (a proof is provided in the online appendix). This rise in fE leads to
a reduction in welfare in both autarky and trading equilibria. Therefore the impact
on gains from trade is in general ambiguous, depending on relative rates of changes
in α∗. A unique feature of Pareto is that those rates of change are exactly the same.
Under log-normal, α∗dA rises faster than α∗d. Intuitively, this is because the rise in sunk
costs, fE, has an additional detrimental effect on purely local firms under trade. In
that situation, exporters at home exert a pressure on inputs, and exporters from the
foreign country increase competition on the domestic market, such that the change
in expected profits (determining the domestic cutoff) is lower under trade than under
autarky, and gains from trade increase with M1. Results in Figure 2 show that the
welfare in log-normal is highly dependent on the value of M1. This reinforces the
point following from equation (1) that it is not only the behavior in the right tail of
the productivity distribution that matters for welfare. When M1 increase, cutoffs lie
in regions where the two distributions diverge, and that affects relative welfare in a
quantitatively relevant way. This raises the question of the appropriate value of M1,
which is not directly observable. The fact that we do observe in the French, Chinese
and Spanish domestic sales data a bell-shaped PDF suggests that more than half the
potential entrants are choosing to operate (otherwise we would face a strictly declining
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PDF). As a conservative estimate, we therefore set M1=0.5 as our benchmark.
The second simulation looks at the influence of truncation for combinations of

parameters of the distributions. We keep ν at its benchmark level. Now it is the
Pareto case which will vary according to the different values of θ chosen (which
depend on how much you truncate the data). It is interesting to note that in both
cases a larger variance in the productivity of firms (low θ or high ν) increases welfare:
heterogeneity matters. Hence truncating the data, which results in larger values of
θ—needed for the integrals to be bounded in this model—has an important effect on
the size of gains from trade obtained: it lowers them.

Figure 3: Welfare gains, sensitivity to truncation

(a) French firms → Belgium (b) Chinese firms → Japan
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4 Macro-data simulations

In this section, we adopt the M3′ approach where the underlying micro parameters
ν and θ are calibrated to match a trade elasticity. The most obvious strategy is
to borrow estimates from the gravity literature regressing trade flows on bilateral
applied tariffs. Head and Mayer (2014) survey this literature and report a median
estimate of -5.03, which we take as our target for both Pareto and log-normal. The
left panel of figure 4 plots the GFT as in previous figures, and the right panel graphs
the three relevant trade elasticities: εP for Pareto, constant at -5.03, εLNx and εLNd , the
international and domestic elasticities for the log-normal case. By construction, εLNx
coincides with Pareto at the benchmark trade cost (τ = 1.83). As τ declines, the
elasticity falls in absolute value. The domestic elasticity, εLNd , is uniformly smaller in
absolute value than εLNx . And it rises with increases in τ because higher international
trade costs make the domestic market easier in relative terms.
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Despite this large heterogeneity in trade elasticities between Pareto and log-
normal, gains from trade happen to be very proximate in this the symmetric country
calibration. While the GFT are very similar for this set of parameters, they are not
identical, as the zoomed-in box reveals. Second, they can be much more different
when one changes other parameter targets, in particular the share of exporters (see
online appendix). Third, this calibration sets the heterogeneity parameter ν in order
to fit a unique trade elasticity (the international one), while the LN version of the
model features two elasticities that depend crucially on ν. Calibrating the model to fit
an average of the two trade elasticities(see the appendix), the Pareto and log-normal
GFT again diverge from each other.

Figure 4: Welfare gains calibrated on trade elasticity
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5 Discussion

Our two calibration exercises yield quite different results, the micro-data one pointing
to large differences between Pareto and log-normal, the macro-data one pointing to
more similar outcomes in terms of welfare. Which calibration should be preferred?
ACR make a compelling case for the macro data calibration. However, we have
several concerns. First, it seems more natural to actually use firm-level data to
recover firms’ heterogeneity parameters. More crucially, a gravity equation with a
constant trade elasticity is mis-specified under any distribution other than Pareto.
That is the empirical prediction that εni is constant across pairs of countries is unique
to the Pareto distribution. The two papers we know of that test for non-constant
trade elasticities (Helpman et al. (2008) and Novy (2013)) find distance elasticities
to be indeed non-constant. Our ongoing work investigates the diversity of those
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reactions to trade costs in a more appropriate way, also departing from the massive
simplification of the case of two symmetric countries.
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Appendix

A.1 Welfare and the share of domestic trade

Here we derive equation (2), showing welfare changes as a function of changes in
the domestic share and the mass of domestic entrants. This equation resembles an
un-numbered equation in Arkolakis et al. (2012), p. 111. However, it reduces the
determinants of welfare to just changes in own trade and changes in the mass of
entrants. Along the way, we set up the model in general terms: C asymmetric
countries, and general distribution functions, which provides equation (2) and other
useful results fo the calibration.

Bilateral trade can be expressed as the product of M e
ni, the mass of entrants from

i into destination n, and the mean export revenues of exporters from i serving market
n.

Xni = G(α∗ni)M
e
i

∫ α∗ni

0

xni(α)g(α)dα

G(α∗ni)
, (A.1)

where α∗ni is the cutoff cost over which firms in i would make a loss in market n.
With demand being CES (denoted σ), equilibrium markups (m̄ = σ/(σ−1)) being

constant, and trade costs (τni) being iceberg, the export value of an individual firm
with productivity 1/α is given by

xni(α) = (m̄αwiτni)
1−σP σ−1

n Yn, (A.2)

with Yn denoting total expenditure and Pn the price index of the CES composite.
Following Helpman et al. (2008), it is useful to define

Vni =

∫ α∗ni

0

α1−σgi(α)dα. (A.3)
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Now we can re-express aggregate exports from i to n as

Xni = M e
i Yn(m̄wiτni)

1−σP σ−1
n Vni, with P 1−σ

n ≡
∑
`

M e
` (m̄w`τn`)

1−σVn`.

(A.4)
Since market clearing and balanced trade imply Yi = wiLi, we can replace wi with
Yi/Li. We also divide Xni by Yn to obtain the expenditure shares, πni for importer n
on exporter i:

πni = M e
i L

σ−1
i Y 1−σ

i (m̄τni)
1−σVniP

σ−1
n , (A.5)

with
P 1−σ
n =

∑
`

M e
`L

σ−1
` Y 1−σ

` (m̄τn`)
1−σVn`. (A.6)

Gross profits in the CES model are given by xni/σ. Hence, assuming that fixed costs
are paid using labor of the origin country, the cutoff cost such that profits are zero is
determined by xni(α

∗) = σwifni. Combined with wi = Yi/Li we obtain:

α∗ni = σ1/(1−σ)
(
Li
Yi

)σ/(σ−1)(
Yn
fni

)1/(σ−1)
Pn
m̄τni

. (A.7)

Welfare in this model is given by real income. Inverting equation (A.7), welfare can
be expressed in terms of the domestic cutoff:

Wi ≡
Yi
Pi

=

(
Li
σ

)σ/(σ−1)
σ − 1

τiif
1/(σ−1)
ii

1

α∗ii
. (A.8)

This is equation (1) in the main text. Since α∗ii is the sole endogenous variable,
dWi

Wi
= −dα∗ii

α∗ii
. The next step is to relate changes in the cutoff to changes in trade

shares. To do this we divide both sides of equation (A.6) by P 1−σ
n , and differentiate,

to obtain:∑
`

πn`

[
dM e

`

M e
`

+ (1− σ)
dτn`
τn`

+ (1− σ)
dY`
Y`

+
dVn`
Vn`

+ (σ − 1)
dPn
Pn

]
= 0 (A.9)

Analyzing the dV/V term first, we can see from the definition in equation (A.3) that
it is the product of the elasticity of V with respect to the cutoff times the percent
change in the cutoff. We follow ACR in denoting the first elasticity as γ; it is given
by

γni ≡
d lnVni
d lnα∗ni

=
α∗2−σni g(α∗ni)∫ α∗ni

0
α1−σg(α)dα

. (A.10)

From the definition of V and equilibrium cutoffs in (A.7), we can write the change in
V as

dVn`
Vn`

= γn`
dα∗n`
α∗n`

= γn`

[
1

σ − 1

dYn
Yn
− σ

σ − 1

dY`
Y`

+
dPn
Pn
− dτn`

τn`

]
. (A.11)
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Combining (A.9) and (A.11) leads to∑
`

πn`

[
dM e

`

M e
`

+ (1− σ − γn`)
(
dτn`
τn`
− dPn

Pn

)
+

(
1− σ − σγn`

σ − 1

)
dY`
Y`

+
γn`
σ − 1

dYn
Yn

]
= 0

(A.12)
Differentiating bilateral trade shares in equation (A.5),

dπn`
πn`

=
dM e

`

M e
`

+ (1− σ)
dτn`
τn`

+ (1− σ)
dY`
Y`

+
dVn`
Vn`

+ (σ − 1)
dPn
Pn

, (A.13)

dπnn
πnn

=
dM e

n

M e
n

+ (1− σ)
dYn
Yn

+
dVnn
Vnn

+ (σ − 1)
dPn
Pn

. (A.14)

Hence, the difference in those share changes gives

dπn`
πn`
−dπnn
πnn

+
dM e

n

M e
n

=
dM e

`

M e
`

+(1−σ)
dτn`
τn`

+(1−σ)

[
dY`
Y`
− dYn

Yn

]
+
dVn`
Vn`
−dVnn
Vnn

. (A.15)

Let us focus now in the difference in V term. From (A.11), we can write:

dVn`
Vn`
− dVnn

Vnn
= γn`

dα∗n`
α∗n`
− γnn

dα∗nn
α∗nn

= γn`

[
1

σ − 1

dYn
Yn
− σ

σ − 1

dY`
Y`
− dτn`

τn`
+
dPn
Pn

]
− γnn

[
−dYn
Yn

+
dPn
Pn

]
.

= (γn` − γnn)
dα∗nn
α∗nn

+ γn`

[
σ

σ − 1

(
dYn
Yn
− dY`

Y`

)
− dτn`

τn`

]
. (A.16)

We then plug (A.16) into (A.15) to obtain

dπn`
πn`
− dπnn

πnn
+
dM e

n

M e
n

− (γn` − γnn)
dα∗nn
α∗nn

=
dM e

`

M e
`

+ (1− σ − γn`)
dτn`
τn`

+

(
1− σ − σγn`

σ − 1

)[
dY`
Y`
− dYn

Yn

]
.

(A.17)

Therefore the term in square brackets inside (A.12) is equal to

dπn`
πn`
− dπnn

πnn
+
dM e

n

M e
n

− (γn` − γnn)
dα∗nn
α∗nn

+ (1− σ − γn`)
[
dYn
Yn
− dPn

Pn

]
. (A.18)

After replacing dYn
Yn
− dPn

Pn
= −dα∗nn

α∗nn
, and canceling out the terms involving γn`, we can

substitute the result into (A.12) to obtain∑
`

πn`

[
dπn`
πn`
− dπnn

πnn
+
dM e

n

M e
n

+ (σ − 1 + γnn)
dα∗nn
α∗nn

]
= 0 (A.19)
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Noting that only dπn`/πn` terms depend on ` we can re-arrange as

− (σ − 1 + γnn)
dα∗nn
α∗nn

= −dπnn
πnn

+
dM e

n

M e
n

+
∑
`

πn`
dπn`
πn`

(A.20)

Using
∑

` πn`
dπn`
πn`

= 0, we can finally express the welfare change as

dWn

Wn

= −dα
∗
nn

α∗nn
=
−dπnn/πnn + dM e

n/M
e
n

(σ − 1 + γnn)
, (A.21)

which after defining εnn = 1− σ − γnn, is equation (2) in the text.

A.2 How M1 (entry share) affects welfare in the symmetric
model

Under the trading regime, ur micro-data calibration procedure is characterized by the
two equilibrium relationships (3) and (4), the two moment conditions M1−G(α∗d) = 0
and M2−G(α∗x)/G(α∗d) = 0, and four unknowns (α∗d, α

∗
x; f

E, fx).
Differentiating the two moment conditions with respect to M1 we obtain

dα∗d/α
∗
d

dM1/M1
=

G(α∗d)

α∗dG
′(α∗d)

> 0, (A.22)

dα∗x/α
∗
x

dM1/M1
=

G(α∗x)

α∗xG
′(α∗x)

> 0, (A.23)

Simple manipulations of the differentiated system also yields

dfx
fx

= (σ − 1)×
[

G(α∗d)

α∗dG
′(α∗d)

− G(α∗x)

α∗xG
′(α∗x)

]
× dM1

M1
, (A.24)

dfE

fE
= A+

1

dα∗d
α∗d

+ A+
2

dα∗x
α∗x

+ A+
3

dfx
fx
, (A.25)

where (A+
1 , A

+
2 , A

+
3 ) are positive parameters. The right hand side of (A.24) is zero

under Pareto. Looking at definition (5), it is indeed clear that
G(α∗d)

α∗dG
′ (α∗d)
− G(α∗x)

α∗xG
′ (α∗x)

= 0.

Therefore, a change of M1 is i) not related to changes in fx, ii) affecting all cutoffs in
the same way, leaving export propensity, but also gains from trade unaffected. Under

log-normal on the contrary,
G(α∗d)

α∗dG
′ (α∗d)
− G(α∗x)

α∗xG
′ (α∗x)

> 0 (see (6)). Hence

dfx/fx
dM1/M1

> 0 (A.26)
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Combined with (A.22), (A.23), (A.24) and (A.25) thus imply

dfE/fE

dM1/M1
> 0 (A.27)

.
Let consider now the domestic cutoff in autarky, characterized byG(α∗dA) [H(α∗dA)− 1] =

fE. Differentiating this relationship we get

dα∗dA/α
∗
dA

dM1/M1
> 0 (A.28)

We conclude from the previous computations that an increase in M1 leads to an
increase in both α∗d and α∗dA, namely a less selective domestic market both in autarky
and in the trading equilibrium.

The change in trade gains is equal to

dT
T

=

[
dα∗dA
α∗dA

− dα∗d
α∗d

]
× dM1

M1
(A.29)

The sign of the previous relationship cannot be characterized algebraically and we
consequently rely on our quantitative procedure to show that it is positive under
log-normal.

A.3 Distribution parameters for Chinese exports to Japan

Here we replicate Table 1 for the case of Chinese exports to Japan in 2000.

A.4 Distributions of total sales

Some of the prior literature asserting Pareto is based on firm size distribution (Di Gio-
vanni et al. (2011) for instance), rather than looking at the distribution of export sales
from one origin in a particular importing country (which is also done in Eaton et al.
(2011)).

A.5 Macro-data simulation targeting the average elasticity

A.6 Comparison of QQ estimator to other methods

One alternative to the QQ estimators is to use method of moments. In this case
that means inferring the distributional parameters from the means and standard
deviations of log sales. We can use equations (7) and (8) to obtain an idea of what
those coefficients should be. With log of sales distributed Normal, they have a mean
value of µ̃, and a standard deviation of ν̃. In the Pareto case, the log of sales have a
mean value of ln ϕ̃+1/θ̃, and a standard deviation of 1/θ̃. In this sample, the standard
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Table 2: Pareto vs Log-Normal: QQ regressions (Chinese exports to Japan in 2000).

(1) (2) (3) (4) (5) (6) (7) (8)
Sample: all top 50% top 25% top 5% top 4% top 3% top 2% top 1%
Obs: 24832 12416 6208 1241 993 745 496 248

Log-normal: RHS = Φ−1(F̂i), coeff = ν̃

Φ−1(F̂i) 2.558a 2.125a 1.950a 1.936a 1.934a 1.929a 1.910a 1.970a
R2 0.986 0.995 0.999 0.998 0.998 0.997 0.995 0.992
ν 0.853 0.708 0.650 0.645 0.645 0.643 0.637 0.657

Pareto: RHS = − ln(1− F̂i), coeff = 1/θ̃

− ln(1− F̂i) 2.194a 1.239a 0.946a 0.718a 0.698a 0.674a 0.640a 0.618a
R2 0.725 0.930 0.971 0.990 0.991 0.992 0.995 0.994
θ 1.367 2.422 3.170 4.175 4.296 4.452 4.688 4.854
Notes: the dependent variable is the log exports of Chinese firms to Japan in 2000. The standard
deviation of log exports in this sample is 2.576, which should be equal to ν̃ if x is log-normally
distributed and to 1/θ̃ if distribution if Pareto. ν and θ are calculated using σ = 4. Standard
errors still have to be corrected.

Table 3: Pareto vs Log-Normal: QQ regressions (French firms total sales in 2000).

(1) (2) (3) (4) (5) (6) (7) (8)
Sample: all top 50% top 25% top 5% top 4% top 3% top 2% top 1%
Obs: 92988 46494 23247 4649 3719 2789 1860 930

Log-normal: RHS = Φ−1(F̂i), coeff = ν̃

Φ−1(F̂i) 1.790a 2.076a 2.330a 2.579a 2.586a 2.603a 2.610a 2.586a
R2 0.984 0.990 0.996 0.999 0.998 0.998 0.997 0.992
ν 0.597 0.692 0.777 0.860 0.862 0.868 0.870 0.862

Pareto: RHS = − ln(1− F̂i), coeff = 1/θ̃

− ln(1− F̂i) 1.658a 1.251a 1.143a 0.955a 0.932a 0.906a 0.869a 0.806a
R2 0.844 0.988 0.991 0.991 0.991 0.990 0.990 0.989
θ 1.809 2.398 2.624 3.140 3.220 3.312 3.452 3.723
Notes: the dependent variable is the log exports of French total sales in 2000. The standard
deviation of log exports in this sample is 1.805, which should be equal to ν̃ if x is log-normally
distributed and to 1/θ̃ if distribution if Pareto. ν and θ are calculated using σ = 4. Standard
errors still have to be corrected.
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Table 4: Pareto vs Log-Normal: QQ regressions (Spanish firms total sales in 2000).

(1) (2) (3) (4) (5) (6) (7) (8)
Sample: all top 50% top 25% top 5% top 4% top 3% top 2% top 1%
Obs: 87998 43999 21999 4400 3520 2640 1760 880

Log-normal: RHS = Φ−1(F̂i), coeff = ν̃

Φ−1(F̂i) 1.588a 1.859a 2.095a 2.419a 2.435a 2.462a 2.510a 2.599a
R2 0.986 0.988 0.992 0.998 0.997 0.996 0.995 0.991
ν 0.529 0.620 0.698 0.806 0.812 0.821 0.837 0.866

Pareto: RHS = − ln(1− F̂i), coeff = 1/θ̃

− ln(1− F̂i) 1.489a 1.122a 1.032a 0.899a 0.880a 0.861a 0.840a 0.814a
R2 0.866 0.990 0.995 0.995 0.996 0.997 0.997 0.996
θ 2.015 2.674 2.907 3.337 3.409 3.486 3.573 3.687
Notes: the dependent variable is the log exports of Spanish total sales in 2000. The standard
deviation of log exports in this sample is 1.599, which should be equal to ν̃ if x is log-normally
distributed and to 1/θ̃ if distribution if Pareto. ν and θ are calculated using σ = 4. Standard
errors still have to be corrected.

Figure 5: QQ graphs on total sales

(a) French firms (b) Spanish firms
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Figure 6: Welfare gains calibrated on average trade elasticity
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deviation of log sales is 2.389, hence predicted coefficients in Table 1 are 2.389 for Log-
Normal and Pareto independently of truncation. The un-truncated sample estimate
almost exactly matches that prediction for the log-normal case, when most estimates
of Pareto case are quite far off.

A frequently used estimate of the Pareto parameter derives from a regression of
logged rank on log firm size. The coefficient on log sales is −θ̃ = − θ

σ−1 . Eaton et al.
(2011), Di Giovanni et al. (2011) are recent examples that pursue this approach and
it is also referred to by Melitz and Redding (2013) in their parameterization of M3.

A.7 Generative processes for log-normal and Pareto

Because the Pareto distribution has been thought to characterize a large set of phe-
nomena in both natural and social sciences, much effort has gone into developing
generative models that predict the Pareto as a limiting distribution. The building
block emphasized in the literature, see especially Gabaix (1999), is Gibrat’s law of
proportional growth. Applied to sales of an individual firm i in period t, Gibrat’s
Law states that Xi,t+1 = ΓitXit. The key point is that the growth rate from period to
period, Γit−1 is independent of size. A confusion has arisen because it is straightfor-
ward to show that the law of proportional growth delivers a log-normal distribution.
In period T size is given by

XiT = exp(lnXi0 +
T∑
t=1

ln Γit)
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The central limit theorem implies for large T ,

√
T

(∑
t ln Γit
T

− E[ln Γit]

)
∼ N (0,V[ln Γit]),

where E and V are the expectation and variance operators. Rearranging and, for
convenience only, initializing sizes at Xi0 = 1, lnXit is normally distributed with
expectation TE[ln Γit] and variance TV[ln Γit]. This implies XiT is log-normal with
log-mean parameter µ̃ = TE[ln Γit] and log-SD parameter ν̃ =

√
TV[ln Γit].

This demonstration that Gibrat’s Law implies a limiting distribution that is log-
normal echoes similar arguments by Sutton (1997) for firms and Eeckhout (2004) for
cities. The problem with this formulation is that it is only valid for large T and
yet as T grows large, the distribution exhibits some perverse behavior. Assume that
sizes are not growing on average, i.e. E[Γit] = 1. By Jensen’s Inequality, E[ln Γit] <
ln(E[Γit]) = 0. Since the median ofXiT is exp(µ̃) = exp(TE[ln Γit]), the median should
decline exponentially with time. The mode, exp(µ̃− ν̃2) = exp[T (E[ln Γit]−V[ln Γit])]
should decline even more rapidly with time. Thus, as T becomes large, Gibrat’s law
with E[Γit] = 1 implies a distribution with a mode going to zero while the variance
is becoming infinite. Evidently something must be done to rescue Gibrat’s law from
generating degeneracy.

A variety of modifications to Gibrat’s Law have been investigated. Kalecki (1945)
specifies growth shocks that are negatively correlated with the level. This allows for
a log-normal with stable variance to emerge. Gabaix (1999) shows in an appendix
that a simple change to the growth process, Xi,t+1 = ΓitXit + ε with ε > 0 (the
Kesten process) is enough to solve the problem of degeneracy. But the resulting
stable distribution is Pareto, not log-normal. Reed (2001) instead assumes finite-lived
agents with exponential life expectancies. This leads to a double-Pareto distribution.
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