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Abstract
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1 Introduction

The impact of monetary aggregates on the real economy, or whether money is “non-neutral,”

is one of the major question in macroeconomics. A general result in this respect is that monetary

non-neutrality increases when prices become less responsive to monetary shocks. The friction that

explains such unresponsiveness however varies among monetary theories. In Rational Inattention

Theory (Sims (2003, 2010); Mackowiak and Wiederholt (2009)) – which is the focus of this paper –

the friction is given by the limited capacity to process information (“attention”) which firms must

allocate to observe the realization of shocks with a certain precision. The argument for monetary

non-neutrality then goes as follows: If firms are exposed to more volatile idiosyncratic shocks

than aggregate shocks, they allocate most of their attention to idiosyncratic shocks. As a result,

aggregate shocks – such as monetary shocks – are observed with large noise and hence prices react

little to these shocks. Compared to alternative theories, attractive features of Rational Inattention

are its very intuitive friction and its quantitative prediction of large and persistent monetary non-

neutrality even if the friction is assumed to be “small.”

This paper revisits this result to arrive at a substantially different quantitative conclusion once

we augment a rational inattention model to capture two features in the data: First, firms sell or

produce multiple goods, so firms take multiple pricing decisions simultaneously. Second, there

is large dispersion of price changes even within firms, implying that idiosyncratic shocks have

both a good- and a firm-specific component. We find, once these two features are added in, that

money is fully neutral when we calibrate the model to stores, which price a large number of

goods. Calibrating the model to goods producers, which price a much smaller number of goods,

yields a trade-off between monetary non-neutrality and the assumed severity of the friction: To

increase monetary non-neutrality by a factor of two (three), the friction must increase by a factor

of two (three) as well. Overall, monetary non-neutrality is reduced by a factor of three relative

to a benchmark of single-product firms when the friction is “small.” When the friction is set in

alternative ways, monetary non-neutrality is also much smaller than in the benchmark.

The main force behind our results is the existence of economies of scope in information pro-

cessing: A firm must spend some of its attention to observe the realization of a shock with a
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certain precision, but then the firm can use such information at no additional cost in all its deci-

sions. Hence, a firm that prices multiple goods has stronger incentives to pay attention to common

shocks across its pricing decisions than a single-product firm. Aggregate and firm-specific shocks,

but not good-specific shocks have this common shock property. In particular, these economies of

scope are stronger for stores, which price a much larger number of goods than goods producers.

Uncovering and studying these economies of scope are the main contribution of this paper.

To do so, we augment the model of Mackowiak and Wiederholt (2009) to allow for multi-

product firms that are subject to good- and a firm-specific shocks, in addition to nominal aggre-

gate demand shocks (in short, “monetary shocks”). We then present evidence regarding the two

distinct features of our model by computing new empirical moments from the datasets used by

the Bureau of Labor Statistics (BLS) to construct the Consumer Price Index (CPI) and the Producer

Price Index (PPI). We calibrate our model separately to these two sets of moments, interpreting

firms either as “stores” or “goods producers”, and conduct a number of experiments. We separate

our results into a theoretical, empirical and quantitative part.

Theoretical results. Assuming white noise shocks so that the model has a closed-form solution,

we show that there are two other forces at work in addition to the economies of scope. First, firms

must simply pay attention to a larger number of good-specific shocks as they price more goods.

We call this the “income effect:” it resembles the situation of a consumer who faces a tighter bud-

get constraint as her consumption basket expands to include more goods. This force makes the

friction more severe as firms price more goods. A force that may go in opposite direction is the

“aggregation effect:” firms’ information-processing capacity may depend on the number of pric-

ing decisions taken. Since there is no theory that models firms’ decision of investing in information

processing capacity, we discipline the aggregation effect through a number of alternative assump-

tions.

The interaction of these three forces determines the degree of monetary non-neutrality. If we

assume away the aggregation effect – so that firms’ information processing capacity is invariant

to the number of goods – the income effect may dominate the economies of scope. This happens

if firms price a small number of goods and good-specific shocks are very volatile relative to mon-

etary and firm-specific shocks. In that case, monetary non-neutrality may be increasing in the
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number of goods priced. For a high enough number of goods, however, monetary non-neutrality

is always decreasing in the number of goods. The reason is that the economies of scope become

increasingly stronger relative to the income effect as the number of goods increases. At the same

time, the severity of the friction unambiguously increases in the number of goods priced. This

is true whether we measure the friction by the expected loss in per-good profits or the shadow

price of information-processing capacity. This latter result also holds if we assume that the ag-

gregation effect is such that firms’ attention to monetary shocks is invariant to the number of

goods. In contrast, if we choose to calibrate the aggregation effect such that the friction is equally

binding regardless of the number of goods priced, using either of our two measures, monetary

non-neutrality unambiguously decreases as firms price more goods.1

Empirical results. Our first fact – that most firms are multi-product producers – is well-established,

for example by Bernard et al. (2010). The available evidence with respect to pricing, which we re-

view in our empirical section, suggests an average number of goods of about 40,000 priced by

stores and about 4 by goods producers. Even if firms price multiple goods, one may argue that

prices decisions may be decentralized. However, this is not what empirical work suggests, for

example Zbaracki et al. (2004). To establish our second key empirical fact and to provide further

moments for calibrations, we compute the dispersion of price changes and other statistics from

CPI and PPI micro data for the whole sample and after sorting firms into four bins according to

the number of goods. This way, we can examine how key statistics change as firms price more

goods.

We find that, in full CPI sample, 51.6% of the cross-sectional dispersion of log non-zero price

changes is due to dispersion within firms. In the PPI data, we have sufficient variation in the

number of goods to compute the ratio as a function of that number: it increases as firms price

more goods, from 37% (for bin 1, where firms price between one and three goods) to 72.4% (for

bin 4, where firms price more than seven goods). This finding is important from a modeling point

of view: The model predicts that if there are no good-specific shocks, then the number of goods

1Among our three alternative specifications for the aggregation effect, keeping a constant severity of the friction
is probably the most suitable one. The main reason is that it allows for a clean comparison among firms that price
a different number of goods. It also makes our model internally consistent: In our model, the number of goods that
firms price and firms’ information processing capacity are exogenous. However, if the severity of the friction increases
as firms price more goods, then firms have incentives to decentralize their pricing decisions in smaller decision units
and/or firms that price more goods have stronger incentives to invest in information processing capacity.
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that firms price has no effect on firms’ attention allocation. But in this case, the model also predicts

no within-firm dispersion of prices changes, which is not what we find in the data.

Regarding other statistics, we find that the average absolute size of price changes in the CPI

data is 11.01%, which is in line with the findings of Klenow and Kryvtsov (2008), and in the PPI

data this statistic decreases with the number of goods, from 8.5% for bin 1 to 6.5% for bin 4. We also

find that good-level inflation has a negative serial correlation. Our estimate of an AR(1) coefficient

is -0.29 in the CPI data and in the PPI data it ranges from -0.05 for bin 1 to -0.03 to bin 4.

Quantitative results. To set a benchmark, we replicate the findings of Mackowiak and Wieder-

holt (2009) who assume persistent shocks, single-product firms, one type of idiosyncratic shocks

calibrated to match the average size of price changes in the CPI data, and a “small” friction. As in

their work, we find large and long-lasting monetary non-neutrality.

When we depart from this benchmark, our main findings in this paper are as follows: (1)

After calibrating the persistence of idiosyncratic shocks to that of good-level inflation in the CPI

data, the cumulated effect of a monetary shock is cut by two relative to the benchmark for the

same “small” friction. (2) When we additionally calibrate the volatility of firm-specific and good-

specific shocks to match the ratio of within-dispersion of price changes, this cumulated effect is cut

by three relative to the benchmark when firms produce two goods for the same “small” friction

per good. Money is almost neutral when firms produce eight goods or more. (3) When we use

a heterogeneous firm version of the model – different firms price a different number of goods in

the same economy – we must separately calibrate the processes of idiosyncratic shocks to match

moments in all four bins. Once we do so, monetary non-neutrality is cut by a factor of three

relative to the benchmark. A monetary shock continues to have sizable effects on impact, but with

much less persistence. (4) Using this calibration, we show that to increase monetary non-neutrality

in the model, the loss of steady state revenues must increase almost linearly. Alternatively, if we

calibrate our model to yield a loss of 0.34% of steady-state revenues assumed by Midrigan (2011),

monetary non-neutrality is cut by five relative to the benchmark. 2 (5) Calibrating the aggregation

effect from micro data is impracticable since the model’s predicted micro moments show almost

2Our measure of monetary neutrality is difficult to compare with that of Midrigan (2011). In any case, contrasting
the rational inattention model with the menu cost model is outside the scope of this paper.
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no response to variations in information processing capacity while monetary non-neutrality is

highly sensitive to such variations.

Literature review. The economies of scope in information processing studied in this paper have

not been stressed before in the fast-growing literature of rational inattention, either applied to

monetary economics as in Sims (2006), Woodford (2009, 2012), Mackowiak and Wiederholt (2009,

2011)), and Paciello and Wiederholt (2011) or in other applications such as asset pricing (Peng and

Xiong (2006), portfolio choice (Mondria (2010)), rare disasters (Mackowiak and Wiederholt (2011)),

consumption dynamics (Luo (2008)), home bias (Mondria and Wu (2010)), the current account

(Luo et al. (2012)), discrete choice models (Matejka and McKay (2011)) and search (Cheremukhin

et al. (2012)). Our paper is complementary to the study of multi-product firms and menu costs, as

in Sheshinski and Weiss (1992), Midrigan (2011), Bhattarai and Schoenle (2011) and Alvarez and

Lippi (2013). A key result in this literature is that introducing multi-product firms may increase

monetary non-neutrality. We find the opposite result. The reason is that there is an extensive

margin on price changes in menu cost models that does not exist in rational inattention models.

Our empirical results are also novel since most empirical work views the data through the lens

of menu cost models – for example, Bils and Klenow (2004), Klenow and Kryvtsov (2008) and

Nakamura and Steinsson (2008) – and does not provide the key statistics necessary to calibrate

our rational inattention model. Finally, our paper shares its critical tone with Venkateswaran and

Hellwig (2009), which, without using a rational inattention model, questions the assumption in

Mackowiak and Wiederholt (2009) of independent sources of information for each type of shock.

Layout. Section 2 displays the model setup and solves it in closed form without frictions and with

frictions after assuming white noise shocks. Section 3 uses this model to generate our theoretical

results. Section 4 presents our empirical results from CPI and PPI data. Section 5 calibrates our

model to CPI and PPI moments. Section 6 concludes and appendices collect tables, figures and

material omitted in the main text.
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2 A Model of Multi-Product, Rationally Inattentive Firms

Our model is an extension of Mackowiak and Wiederholt (2009) in which firms price an exoge-

nous number of goods and where we allow for monetary, firm-specific and good-specific shocks.

This section introduces this model and solves it analytically under the assumption of white noise

shocks to obtain the main result of the Rational Inattention Theory regarding monetary non-

neutrality.

2.1 Setup

Consider an economy with a continuum of goods of measure one indexed by j ∈ [0, 1], and a

continuum of monopolist firms with measure 1
N indexed by i ∈

[
0, 1

N

]
for N ∈ N. Each firm i

prices N goods which are randomly drawn without replacement from the set of goods. Denote ℵi

the set that collects the identity of the N goods produced by firm i.

Each good j contributes to the profits of its goods producer according to

π
(

Pjt, Pt, Yt, Fit, Zjt
)

, (1)

where Pjt is the fully flexible price of good j, Pt is the aggregate price, Yt is real aggregate demand,

and Fit and Zjt are two idiosyncratic, exogenous random variables, the former specific to firm i

and the latter specific to good j, all at time t. The function π (·) is assumed to be independent of

which and how many goods the firm prices, twice continuously differentiable and homogenous

of degree zero in the first two arguments. Idiosyncratic variables Fit and Zjt satisfy

∫ 1
N

0
fitdi = 0, (2)

∫ 1

0
zjtdj = 0, (3)

where small case generically denotes log-deviations from steady-state levels. Hence, fit and zjt

have direct interpretation respectively as firm-specific and good-specific shocks.
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Nominal aggregate demand Qt is assumed to be exogenous and stochastic satisfying

Qt = PtYt, (4)

where aggregate prices are obtained according to

pt =
∫ 1

0
pjtdj. (5)

The total period profit function of firm i is

∑
n∈ℵi

π (Pnt, Pt, Yt, Fit, Znt) ,

which sums up the contribution to profits of all goods produced by firm i.

The key assumption of rational inattention models is that firms are constrained in the “flow of

information” that they can process at every period t:

I
({

Qt, Fit, {Znt}n∈ℵi

}
, {sit}

)
≤ κ (N)

where Qt, Fit, {Znt}n∈ℵi
are variables of interest for firm i that are not directly observable, sit is the

vector of signals that firm i actually observes, the function I (·) measures the information flow

between observed signals and variables of interest, and κ (N) is an exogenous, limited capacity

that without loss of generality is assumed to depend on the number N of goods the firm prices.

The information flow I (·) is a measure of how informative the observation of a signal is with

respect to a given variable. This measure has been proposed by Shannon (1948) and has a com-

plicated functional form that, as will become apparent below, does not need to be specified here

except for computational purposes, so we relegate it to the appendix. However, to provide in-

tuition, if one denotes as Ut an arbitrary unobservable variable of interest and as Ot an arbitrary

observable signal, and assumes that Ut and Ot are Gaussian i.i.d. processes, then the information
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flow between Ut and Ot is given by

I ({Ut} , {Ot}) =
1
2

log2

(
1

1− ρ2
U,O

)
, (6)

which is increasing in |ρU,O|, the absolute correlation between Ut and Ot. Hence, a given informa-

tion flow pins down the precision of signals with respect to the variables of interest.

We also assume that the vector of signals sit may be partitioned into N + 1 subvectors

{
sa

it, s f
it, {s

z
nt}n∈ℵi

}
;

each subvector is correlated to one target variable such that
{

qt, sa
it
}

,
{

fit, s f
it

}
and {znt, sz

nt}n∈ℵi
are

independent of each other. Besides, we assume that all variables Gaussian, jointly stationary and

there exists an initial infinite history of signals:

s1
i = {si−∞, . . . , si1} .

These assumptions imply that the information flow is additively separable according to

I
({

Qt, Fit, {Znt}n∈ℵi

}
, {sit}

)
= I ({Qt} , {sa

it}) + I
(
{Fit} ,

{
s f

it

})
+ ∑

n∈ℵi

I ({Znτ} , sz
nt) .

Hence, the problem of the firm i may be represented as

max
{sit}∈Γ

Ei0

[
∞

∑
t

βt

{
∑

n∈ℵi

π (P∗nt, Pt, Yt, Fit, Znt)

}]
(7)

where

P∗nt = arg max
Pnt

E [π (Pnt, Pt, Yt, Fit, Znt) | sit] (8)

is subject to

I ({Pt, Yt} , {sa
it}) + I

(
{Fit} ,

{
s f

it

})
+ ∑

n∈ℵi

I ({Znt} , {sz
nt}) ≤ κ (N)
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⇔ κa + κ f + ∑
n∈ℵi

κn ≤ κ (N) . (9)

To abbreviate notation, we denote I
(
{Pt, Yt} ,

{
sa

it
})

, I
(
{Ft} ,

{
s f

it

})
and I ({Znt} , {sz

nt}) as κa,

κ f and κn, where I
(
{Pt, Yt} ,

{
sa

it
})

= I
(
{Qt} ,

{
sa

it
})

since the only source of aggregate distur-

bances is Qt. The absence of nominal rigidities implies that the pricing problem in (8) is static.

The firm, however, must consider its whole discounted expected stream of profits to allocate its

information flow capacity, its “attention”, among a set Γ of signals. These signals are restricted to

satisfy the above assumptions – being Gaussian, jointly stationary and independent – and must

contain no information about future realizations of shocks. If a firm chooses more precise sig-

nals about, for instance, {Pt, Yt}, then information flow I ({Pt, Yt} , {sait}) increases, reducing the

information capacity to be allocated to other signals.

We define the equilibrium in this economy as follows:

Definition 1 An equilibrium is a collection of signals {sit}, prices
{

Pjt
}

, the aggregate price level {Pt}

and real aggregate demand {Yt} such that

1. Given {Pt} , {Yt} , {Fit}i∈[0, 1
N ]

and
{

Zjt
}

j∈[0,1], all firms i ∈
[
0, 1

N

]
choose the stochastic process of

signals {sit} at t = 0 and the price of goods they produce, {Pnt}n∈ℵi
for t ≥ 1.

2. {Pt} and {Yt} are consistent with equations (4) and (5) for t ≥ 1.

Discussion. A profit function π (·) independent across goods implies that the pricing problem

in (8) is independent of N. However, N enters the attention allocation problem through three

channels. First, the period objective in (7) sums up the contribution to profits of all goods produced

by the firm. This is the source of economies of scope in information processing highlighted in

this paper. Second, the firm has to pay attention to more signals regarding good-specific shocks

as the firm produces more goods. We label this the “income effect” since it brings to mind a

consumer whose basket of goods increases with N. This channel is captured by the left-hand side

of (9). Finally, the capacity constraint κ (N) in (9) may also depend on N; we call this channel the

aggregation effect.

The aggregation effect simply acknowledges that firms may have different capacity to pro-
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cess information when they price a different number of goods. After all, this capacity should be

endogenous to firms’ internal organization or their investment in information technologies. How-

ever, there is no theory to guide us how to model this endogenous choice. As we show below, we

can also not calibrate κ (N) using micro moments in any straight-forward way. Hence, we take

no stand on it. We simply make a variety of alternative assumptions to discipline the effect that

we find illustrative or convenient for comparing economies, and study the implications of such

assumptions.

We make some simplifying assumptions in our model economy: for example, we keep constant

the number N of goods produced by all firms, that profits π (·) are independent across goods pro-

duced by the same firm, and that signals are informative only about one type of shocks. In section

3, we allow for heterogeneity in N in the same economy, and use this model for calibrations to

PPI data in section 5. We relax the other assumptions in Appendix C to find either counterfactual

predictions or no substantive effects.

We next solve this setup under the assumption that shocks are Gaussian i.i.d. This simplifi-

cation allows for an analytical solution, but our setup also allows for more general specification

of shocks. We solve this generalized problem in the Appendix B. We use such a solution in our

quantitative analysis in section 5.

2.2 Solution for White Noise Shocks

Here, we present the key steps of the solution. As a main result, we derive the expression that

relates monetary non-neutrality to information capacity.

First, when shocks are Gaussian and i.i.d., the firm’s problem in (7) and (8) – up to a second-

order approximation – is defined as the choice of attention to aggregate, firm- and good-specific

shocks to minimize the discounted sum of firms’ expected loss in profits due to the friction. After

some algebra, this problem becomes

min
κa,κ f ,{κn}n∈ℵi

β

1− β

|π̂11|
2

[
2−2κa σ2

∆N +

(
π̂14

π̂11

)2

2−2κ f σ2
f N +

(
π̂15

π̂11

)2

∑
n∈ℵi

2−2κn σ2
z

]
(10)

subject to the rational inattention constraint in (9).
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In this expression, σ2
∆ is the volatility of a compound aggregate variable

∆t ≡ pt +
π̂13

|π̂11|
yt (11)

that linearly depends on monetary shocks qt after we guess that the log-deviation of aggregate

prices responds linearly to monetary shocks, pt = αqt. We confirm this guess below. In addi-

tion, σ2
f and σ2

z are respectively the volatility of firm- and good-specific shocks. Parameters π̂13
|π̂11| ,

π̂14
|π̂11| and π̂15

|π̂11| denote the sensitivity of frictionless prices to the log-deviation of real aggregate de-

mand, firm- and good-specific shocks. Parameters π̂11, π̂13, π̂14 and π̂15 are the derivatives of the

marginal effect of the good price on its own profits with respect to the good price, real aggregate

demand, firm- and good-specific shocks, all evaluated at the non-stochastic steady state.

From the first order conditions of this problem, we obtain

κ∗a = κ∗f + log2 (x1) , (12)

κ∗a = κ∗n + log2

(
x2
√

N
)

, ∀n ∈ ℵi (13)

for x1 ≡ |π̂11|σ∆
π̂14σf

and x2 ≡ |π̂11|σ∆
π̂15σz

. The assumption that all parameters are the same for all firms and

goods along with the conditions in (12) and (13) has two implications: first, the attention paid to

aggregate and firm-specific signals, κ∗a and κ∗f , is the same for all firms; second, the attention paid

to good-specific signals is the same for all goods within all firms, κ∗n = κ∗z for all n ∈ ℵi and all i.

In addition, the conditions in (12) and (13) along with the constraint imply that

κ∗a =
1

N + 2

[
κ (N) + log2 (x1) + N log2

(
x2
√

N
)]

(14)

if x1xN
2 ∈

[
2−κ(N)
√

N
, 2(N+1)κ(N)

√
N

]
, which ensures that κ∗a ∈ [0, κ (N)].

In words, for a given N, the smaller is either capacity κ (N) or parameters x1 and x2, the smaller

is the attention to monetary shocks, or equivalently, the larger is the noise of firms’ signals cor-

related to these shocks. A smaller x1 comes out of this expression when the volatility σf of the

firm-specific shocks is larger relative to the volatility σ∆ of the aggregate compound variable in

(23) and/or when frictionless prices are more responsive to firm-specific shocks, that is when π̂14
|π̂11|
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is larger. Similarly, we obtain a smaller x2 when σz
σ∆

is larger and/or when π̂15
|π̂11| is larger.

Since all firms are identical, the price of any good n ∈ ℵi for any firm i follows

p∗nt =
(

1− 2−2κ∗a
)
(∆t + ε it) +

π̂14

|π̂11|

(
1− 2−2κ∗f

)
( fit + eit) +

π̂15

|π̂11|

(
1− 2−2κ∗z

)
(znt + ψnt) (15)

where ε it, eit are the realization of the noise of signals observed by firm i of a monetary shock and

a shock specific to firm i, ψn,t. ψnt is the realization of the noise of signals of a shock specific to

good n. Aggregating among all goods and firms by using (2), (3) and (5), the log-deviation of the

aggregate prices with respect to the steady state is

p∗t =
(

1− 2−2κ∗a
)

∆t =
(

1− 2−2κ∗a
) [

α +
π̂13

|π̂11|
(1− α)

]
qt

which confirms the guess p∗t = αqt for

α =

(
22κ∗a − 1

) π̂13
|π̂11|

1 + (22κ∗a − 1) π̂13
|π̂11|

. (16)

This is the most important result of the Rational Inattention Theory. If firms have unlimited

information-processing capacity, κ (N) → ∞, then firms choose infinitely precise signals about

monetary shocks (and all other shocks), so κ∗a → ∞ and α→ 1. Money is fully neutral. In contrast,

if firms have limited information-processing capacity, firms choose signals about shocks with finite

precision, so κ∗a is finite and thus α < 1. Money becomes non-neutral. The more attention firms

pays to idiosyncratic information – the higher are either κ∗f or κ∗z – the lower is κ∗a , so monetary

non-neutrality is stronger. Moreover, for a given κ∗a , the stronger is complementarity in pricing

decisions among firms – the smaller is π̂13
|π̂11| > 0 – the stronger is monetary non-neutrality.

3 Theoretical Results

We next conduct a comparative statics analysis to illustrate in several propositions the implica-

tions of introducing multi-product firms and good-specific shocks. We have mentioned above

three forces by which these ingredients affect firms’ attention allocation. Before presenting our
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propositions, we build up intuition for the underlying mechanisms by going through these forces.

The first force is the economies of scope in information processing: The more goods a firm

prices, the more pricing decisions can benefit from the information processed that is common to

all goods. These economies of scope are captured in the first order conditions in (12) and (13),

which we rewrite as

κ∗a = κ∗z + log2

(
x2
√

N
)

,

κ∗f = κ∗z + log2

(
x2

x1

√
N
)

,

after imposing that κ∗n = κ∗z for all n ∈ ℵi and all i. In words, the difference in attention paid by

the firm to aggregate and good-specific shocks is increasing in N since x2 > 0 while the difference

in attention paid to firm-specific and good-specific shocks is increasing in N since x1, x2 > 0.

The second force is the income effect: Firms must pay attention to signals regarding more goods

as firms price more goods. This force is captured by the N on the left-hand side of the constraint

(9), which we rewrite as

κa + κ f + Nκz ≤ κ (N)

after imposing that κ∗n = κ∗z for all n ∈ ℵi and all i. Just as a consumer whose consumption basket

expands with N, if κ (N) is kept constant, a firm pricing more goods has to distribute its attention

amongst more shocks, so its information capacity becomes more binding. Thus, the income effect

reduces firms’ incentives to allocate attention to all shocks.

The third force is the aggregation effect, which is captured by the unspecified functional form

of firms’ information capacity κ (N) in (9). In the following, we study the interaction of these

forces after we make a number of alternative assumptions on the aggregation effect.

We start by assuming away any aggregation effect, κ (N) = κ and dropping good-specific

shocks:

Proposition 1 If good-specific shocks do not exist, σz = 0, or are irrelevant for pricing decisions, π15 = 0,

firms’ allocation of attention is invariant to N if κ (N) = κ. Moreover, prices of goods produced by the same

firm perfectly commove.
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Proof. When σz = 0 or π15 = 0, firms ignore signals sz
t regarding firm-specific shocks, so κ∗z = 0.

Then κ∗a is obtained from combining the condition in (12) and the constraint κa + κ f = κ:

κ∗a =
1
2
[κ + log2 (x1)] .

which is constant in N. Moreover, the optimal pricing rule in (15) reduces to

p∗nt =
(

1− 2−2κ∗a
)
(∆t + ε it) +

π̂14

|π̂11|

(
1− 2−2κ∗f

)
( fit + eit)

which only varies with aggregate or firm-specific disturbances ∆t, fit, ε it and eit.

Intuitively, firms can equally exploit the economies of scope in information processing by pay-

ing attention to either aggregate or firm-specific shocks for any N. Further, there is no income

effect since the number of shocks hitting firms is constant in N. Since κ (N) = κ, firms’ constraint

is invariant to N and thus N only affects the scale of the firms’ objective.

Proposition 1 is useful for benchmarking. When all shocks hit the whole firm, a multi-product

firm allocates its attention exactly as a single-product firm. However, the model in this case also

predicts no dispersion of price changes within firms because prices do not respond to any good-

specific disturbance. As anticipated in the introduction and documented in section 4, this pre-

diction is strongly counterfactual according to both CPI data and PPI data. Hence, we focus on

a setup with good-specific shocks.3 None of our results below in this section relies on a specific

process for these good-specific shocks but only on an interior allocation of firms’ attention to all

shocks.

Next, we keep our assumption of no aggregation effect, and further assume that the respon-

siveness α of aggregate prices to a monetary shock is exogenously constant.

Proposition 2 If κ (N) = κ and α is exogenously constant, firms’ attention κ∗a to monetary shocks is

3The appendix solves for an extension of the model that specifies a common signal for all good-specific shocks that
affect a given firm. We show that Proposition 1 holds. This result gives ground to our assumption that signals provide
information about only one type of shocks.
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increasing in N for N > N̂ and κ∗a ∈ [0, κ], where N̂ solves

log N̂ +
1
2

N̂ = κ log 2− log (x2/x1)− log (x2)− 1.

Proof. α constant implies that x1 ≡ |π̂11|σ∆
π̂14σf

and x2 ≡ |π̂11|σ∆
π̂15σz

are also constant. N̂ solves ∂κ∗a
∂N = 0 for

the interior solution of (14) after setting κ (N) = κ.

Proposition 2 states that the economies of scope in information processing dominates the in-

come effect when N > N̂. Note that a constant α allows to abstract from the feedback between

firms’ allocation of attention and the responsiveness of aggregate prices to shocks. We introduce

such feedback in the next proposition. Here, since N ∈ N, log 2 < 0 and x1, x2 > 0, N̂ ≥ 1 only

holds if x2/x1 and/or x2 are small enough. Since x1 ≡ |π̂11|σ∆
π̂14σf

and x2 ≡ |π̂11|σ∆
π̂15σz

, x2 is small either

when σ∆
σz

is small, that is, the volatility of good-specific shocks is high relative to the compound

aggregate variable ∆t, or when π̂15
|π̂11| is large, that is, frictionless prices are highly responsive to

good-specific shocks. Similarly, x2/x1 is small either when σ∆
σf

is small or when π̂15/|π̂11|
π̂14/|π̂11| is high,

that is, frictionless prices are highly responsive to good-specific shocks relative to firm-specific

shocks.

To introduce endogeneity of α, we assume κ (N) is unrestricted to state a general result.

Proposition 3 The endogeneity of α amplifies the effect of N on κ∗a . This amplification is stronger when

the complementarity in pricing decisions is stronger, that is, when π̂13
|π̂11| ≤ 1 is smaller.

Proof. From equation (16), α is increasing in κa for π̂13
|π̂11| ≤ 1, so ∆t in (11) and thus σ∆ are also

increasing in κ∗a ; hence x1 and x2 are increasing in α. Besides, the interior solution of κ∗a in (14) is

increasing in x1 and x2; hence κ∗a is increasing in α. As a result, the effect of N on κ∗a in (14) gets

amplified by the endogeneity of α captured in (16). According to (16), α is more increasing in κa as

π̂13
|π̂11| is smaller, therefore this amplification effect is stronger.

Proposition 3 states that firms’ optimal attention to monetary shocks (κ∗a ) and the degree of

monetary non-neutrality (α) are jointly determined by a fixed point that solves equations (14) and

(16). Visually, Figure 1 draws these two equations in the space (α, κa). The interior solution of (14)

is drawn in red, while (16) is drawn in blue. In addition, the upper bounds of κa ∈ [0, κ (N)] and
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α ∈ [0, 1] are represented by dashed lines. Equilibrium α is denoted as α∗1 .

Equation (16) is invariant to N but the intercept of (14) may decrease or increase while its slope

is decreasing in N. The green line in Figure 1 depicts the case of a higher intercept of (14) as N

increases, so equilibrium α is now α∗2 . As a result, the effect of N on κ∗a in Proposition 2 is amplified

by an indirect effect of κ∗a on σ2
∆ in the same direction.

A key observation is that (16) is more flattened out for intermediate values of α than for high

and low α. Hence, an increase in κa has a large effect on α when α is at an intermediate level. This

result is stronger when π̂13
|π̂11| is smaller, that is, complementarity in pricing decisions is stronger.

Visually, this is because (16) is flattened out for intermediate values of α as π̂13
|π̂11| is smaller. This

result plays a crucial role in our quantitative analysis in section 5 when a small increase in firms’

attention to monetary shocks yield a large reduction of monetary non-neutrality.

For our next result we assume that the aggregation effect is such that firms’ attention to mone-

tary shocks is invariant to N, that is κ∗a (N) = κ̄a. This implies that κ (N) is increasing for N < N̂

and decreasing for N > N̂, with N̂ defined in Proposition 2. The next proposition shows that this

assumption is equivalent to assuming that the friction is more binding as N increases as measured

by two alternative indicators. One is the frictional cost, which is defined as the expected loss in

profits due to the friction per-good and unit of time,

C
(
κa, κ f , κn

)
=
|π̂11|

2

[
2−2κa σ2

∆ +

(
π̂14

π̂11

)2

2−2κ f σ2
f +

(
π̂15

π̂11

)2

2−2κn σ2
z

]
(17)

and the second is the shadow price of information-processing capacity, which is equal to the La-

grange multiplier of the constraint in (9).

Proposition 4 When κ (N) is set such that κ∗a (N) = κ̄a, the friction is increasingly more binding, either

measured by the frictional cost or the shadow price of information-processing capacity.

Proof. Using the first order conditions in (12) and (13) and κ∗a (N) = κ̄a, the frictional cost in (17)

becomes

Cn (N) =
|π̂11|

2
2−2κ̄a σ2

∆(N + 2)
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and the shadow price of information-processing capacity

λ (N) = − β

1− β
|π̂11| log (2) 2−2κ̄a σ2

∆N

both of which increase linearly with N given σ2
∆ is also invariant to N because κa(N) = κ̄a.

The next proposition extends this result to any case in which firms’ attention to aggregate

shocks is decreasing in the number N of goods that firms price.

Proposition 5 Any specification of the model such that κ∗a (N) is decreasing in N implies that the frictional

cost and the shadow price of information-processing capacity are increasing in N.

Proof. Proposition 4 states that the friction is increasingly binding with N for N ≤ N̂ even when

κ (N) is increased to preserve a constant κ∗a . This is an lower bound for the case that this proposi-

tion refers to.

Proposition 4 and 5 predict that the severity of the friction must increase as firms price more

goods to yield constant or increasing monetary non-neutrality. We confirm this prediction in our

quantitative exercises in section 5. As a matter of fact, in section 5 we find that the severity of the

friction must be much higher in our calibrated model with multi-product firms than in a compara-

ble model of single-product firms such that both models yield the same monetary non-neutrality.

This severity of the friction must be also higher than what is assumed in alternative models or

what has been found in empirical studies.

A natural alternative assumption to discipline the aggregation effect is to assume that the sever-

ity of the friction is invariant to the number of goods that firms price. Since we use two measure-

ments of friction, the exact condition we impose takes two alternative forms. In the first, we set

the aggregation effect such that the frictional cost is invariant to N at the optimal allocation of at-

tention, that is, the expected loss in profits due to the friction per good is the same in equilibrium

for any firm regardless of the number of pricing decision it takes. In the second, the shadow price

of information processing capacity is invariant to N at the optimal allocation of attention, that is,

firms’ incentives to increase their information processing capacity is the same in equilibrium for

any firm regardless of the number of pricing decisions it takes.
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Both of these alternative assumptions imply a concave relationship between information pro-

cessing capacity and N. This is because firms can increasingly exploit the economies of scope in

information processing as they take more pricing decisions. The next proposition states our main

result for this case.

Proposition 6 When the capacity function κ (N) is restricted to preserve a severity of the friction invariant

to N, firms’ attention κ∗a (N) to monetary shocks is unambiguously increasing in N. When the frictional

cost is invariant to N, κ∗a (N) becomes

κ∗a (N) = κ∗a (1) +
1
2

log2

(
N + 2

3

)
+ log2

[
σ∆
(
κ∗a (N) , σq

)
σ∆
(
κ∗a (1) , σq

) ] .

When the shadow price of information processing is invariant to N, κ∗a (N) becomes

κ∗a (N) = κ∗a (1) +
1
2

log2 (N) + log2

[
σ∆
(
κ∗a (N) , σq

)
σ∆
(
κ∗a (1) , σq

) ] .

Proof. These expressions follow from the definition of the frictional cost and the shadow price of

information capacity along the optimal conditions for the allocation of attention.

This proposition provides the intuition for our main quantitative results. For a given extent of

the friction, the model underestimates firms’ attention to monetary shocks – and thus overstates

monetary non-neutrality – under the assumption of single-product firms. This result holds for

any specification of the model, even if the specification varies with N. It is only important to have

a volatility of monetary shocks σq invariant to N and an interior solution for firms’ allocation of

attention.4 In our quantitative exercises below, we pin down these parameters directly from the

data.

The specification of the aggregation effect that leads to proposition 6 has two attractive features

with respect to those previously imposed: The first is that it provides a natural discipline to com-

pare among firms that price a different number of goods. The second is that it allows for internal

consistency in our model. This requires further explanation:

4The exception is the degree of strategic complementarity, which is captured by π̂13
|π̂11| implicit in ∆t. If one assumes

that strategic complementarity of firms pricing decisions decreases strongly ( π̂13
|π̂11| increases) as N increases, then the

monotonicity of κ∗a (N) may not hold for some values of N.
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In our model, we assume that the number of pricing decisions that firms take is exogenous. If

the aggregation effect is such that frictional cost were increasing in the number of goods priced

by a firm, then firms would have incentives to delegate their pricing decisions to smaller decision

units. Hence, if the number of pricing decisions were endogenous, our economy would collapse

to one in which all goods are priced by single-product firms. Of course, there are more reasons for

firms to produce a basket of goods than exploiting economies of scope in information processing.

These other reasons are absent in our model due to the assumption that the contribution to profits

of each good is independent of the number of goods and which goods a firm produces. This

simplification implies that our firms are modeled as decision units, not as production units. We

relax this assumption in Appendix C. We find that, given the productive structure of the firm,

proposition 6 still applies: Decision units pay more attention to aggregate shocks as they prices

more goods.

A similar argument applies to the shadow price of information-processing capacity. In our

model, firms information processing capacity is exogenous. However, if the shadow price of such

a capacity were increasing, firms pricing more goods would have larger incentives to invest in

this capacity. By contrast, assuming that the shadow price of information processing is invariant

to N is equivalent to assuming that the cost of building information capacity does not depend

on the number of decisions that can benefit from the processed information. This result is not

contaminated by the implicit assumption in our model that the scale of firms depends on N. We

could instead assume the total measure of goods in the economy is N and the density of firms is

always 1, so firms size is invariant to N. This modification has no effect on any of our results.

Heterogeneous firms. We now introduce a modification of our model that allows for firms that

price a heterogeneous number of goods. This modified model produces the same qualitative re-

sults as the one studied above. However, it allows us to perform a more realistic calibration using

several moments from PPI data which we compute according to the number of goods firms price.

Thus, consider G groups of firms such that firms in group g = 1, ..., G produce Ng goods. Each

group has measure ωg satisfying ∑G
g=1 ωgNg = 1. The processes for firm-specific and good-specific

shocks are independent for each group, so these shocks still wash out when prices are aggregated.

All parameters are the same for all groups.
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For a given guess p∗t = αqt, the solution of κ∗a is still represented by (14) only replacing N by

Ng. This guess is now confirmed for

α =

π̂13
|π̂11|

G
∑

g=1
ωgNg

(
1− 2−2κ∗a(Ng)

)
1−

(
1− π̂13

|π̂11|

) G
∑

g=1
ωgNg

(
1− 2−2κ∗a(Ng)

)

We find that Propositions 1 to 5 continue to hold in this setup. Proposition 6 gets modified to

κ∗a (N) = κ∗a (1) +
1
2

log2

(
N + 2

3

)
, and

κ∗a (N) = κ∗a (1) +
1
2

log2 (N) ,

which is still increasing in N although there are two differences with respect to the above result.

First, κ∗a (1) is now the attention paid to monetary shocks by single-product firms in the same

economy – before it was firms’ attention in an economy populated only by single-product firms.

Second, the last term in the right-hand side of the equation for κ∗a (N) in Proposition 4 is zero

since the volatility σ∆ now is common to all firms. This modification implies that the effect of

N on κ∗a (N) conditional on κ∗a (1) is now less steep. This does not mean that complementarity

in pricing decisions plays no role: κ∗a (1) is higher than in an economy with only single-product

firms. This is because κ∗a (1) is increasing in σ∆ and σ∆ is higher in an economy where there are

multi-product firms.

4 Empirical Results

This section provides empirical support for two distinctive features of our rational inattention

model: the multi-product nature of firms, and the existence of good-specific shocks. We also

report several new facts about price setting in the CPI and PPI data. We generate these statistics

explicitly with the calibration of our rational inattention model in mind.
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4.1 Data description

We use confidential, monthly transaction-level micro price data collected by the U.S. Bureau Labor

Statistics (BLS) to construct the Consumer Price Index (CPI) and the Producer Price Index (PPI).5

We generate our results by computing statistics for the whole sample and for four ‘bins.’ We assign

firms to these bins according to their number of goods in the data. Thus, we can track how key

statistics change as the number of goods increases. All statistics, including standard deviations,

are reported in Table 1.

Our CPI data span the time period from 1988 to 2009, containing approximately 125, 782 outlets.

An outlet usually corresponds to a non-producing retailer or, in colloquial terms, a store. Our main

manipulation of the CPI data is to exclude sales and zero price changes. The exclusion of sales is

common in studies of price setting: sales are usually considered practices of firms that are not

necessarily related to the business cycles (for instance, see Guimaraes and Sheedy (2011)). We

exclude zero price changes for two reasons: First, this is more consistent with our model, in which

prices are fully flexible. Second, Mackowiak and Wiederholt (2009), which we use as benchmark

in section 5, calibrate their model to statistics excluding sales and zero price changes.

Our PPI sample spans the time period from 1998 to 2005, containing approximately 28, 575

firms. A “firm” is typically a goods producer which is defined as a decision unit that prices a

given number of goods. Again, we exclude zero price changes, but we do not control for sales.

This practice is sufficiently less common for firms in this dataset to leave results unchanged.6

4.2 Multi-Product Firms and Facts about Pricing

In our CPI sample, the median (mean) number of goods sampled from a single outlet is 1.39 (2.05)

with a standard deviation of 2.03 goods.7 In these data, 87% (75%) of outlets have less than 3 (2)

goods in the sample. Given that outlets are usually stores, we conclude that the CPI data does not

5Nakamura and Steinsson (2008) or Bils and Klenow (2004) describe the CPI data in detail, while for example Bhat-
tarai and Schoenle (2011) describe the PPI data.

6As work by Nakamura and Steinsson (2008) has shown, sales are not a factor in determining the behavior of PPI
prices. We have computed our statistics excluding sales prices, and have found no significantly different results.

7The median is not integer because for the following reason: First, we compute for each outlet over time its mean
number of goods. Due to exit and entry, this may not be an integer. Second, we take the median or mean across firms.
The same reasoning applies to the PPI data.
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provide reliable estimates of the number of goods that a single outlet prices. For this reason, we

also do not use in our calibrations the moments computed by bin from this dataset; we only use

moments computed for the whole sample.

To obtain an estimate of the number of goods in stores, we use the Food Marketing Institute

(FMI) 2010 Report, which reports an average of 38,718 items per store.8 The FMI is an industry-

based institution that represents 1, 500 food retailers and wholesalers in the U.S.. Their members

are large multi-store chains, regional firms and independent supermarkets, stores and drug stores

of a large variety of classes with a combined annual sales volume of 680 billion.9 Additional

evidence is provided by Rebelo et al. (2010) which uses data from one particular store that prices

about 60,000 items. In any case, as anticipated in the introduction and presented in detail in

section 5, we do not need to pin down a precise estimate of the number of goods priced by stores.

It suffices to establish that this number is large.

In contrast, we can use the PPI data to estimate variation in number of goods priced by produc-

tive firms. In turn, we can then relate that number to changes in key price statistics and calibrate

our model accordingly. We note that the number of goods recorded in our data represents a lower

bound on the actual number of goods per firm: the PPI sample is not the universe of all goods

produced. This only makes our conclusions in section 5 stronger since we will thus work with a

lower bound on the number of goods. However, what is important for representativeness is that

there is a monotonic mapping from the actual number of goods to our sample, as Bhattarai and

Schoenle (2011) discuss in detail. Moreover, our data contain substantial variation in the number

of goods per firm such that we consider the statistics by bins as reliable. The median (mean) num-

ber of goods per firm is 4 (4.13) with a standard deviation of 2.55 goods. The median number of

goods per firm are 2 (bin 1), 4 (bin 2), 6 (bin 3), and 8 (bin 4).

A rough alternative estimate for the number of goods priced by a firm is in Bernard et al. (2010).

They define a product as a category of the five-digit Standard Industrial Classification in the US

Manufacturing Census data, which is less thin than ours. Their research focus is very different

from ours, but an informative result for our work is that average number of products produced

8http://www.fmi.org/research-resources/supermarket-facts
9http://www.fmi.org/about-us/who-we-are. For a detailed list of stores included, see http://www.fmi.org/about-

us/our-members
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by a multi-product firm is 3.5.

A final remark is that although the multi-product nature of firms is a well-established empirical

fact, we cannot verify ourselves in our data whether prices are set by multi-product decision units

or not. However, the data are carefully collected by the BLS such that a firm is a “price-forming

unit.” In addition, Zbaracki et al. (2004) conduct a case study that documents in great detail the

decision process of setting prices of a productive firm. They report that the firm they study has

multiple products, whose regular prices are decided at headquarters while sale prices are set by

local managers in small geographical areas. However, at both levels there is a single decision

unit setting prices for the whole portfolio of goods that this firm produces. We consider this as

evidence that prices are indeed set by multi-product decision units.

Within-firm dispersion of price changes Separately using the CPI and PPI datasets, we construct

a measure of the ratio of within-firm dispersion of log non-zero price changes relative to total

cross-sectional dispersion of log non-zero price changes. We denote this statistics as r:

r =
1
T

T

∑
t=1


It

∑
i=1

∑
n∈ℵi

(πnt − πit)
2

It

∑
i=1

∑
n∈ℵi

(πnt − πt)
2


where πit is the mean absolute size of log price changes across all goods sampled for firm i at

time t. It measures the ratio of within-firm cross-sectional variance relative to total cross-sectional

variance.

Computation of this statistic leads to our most important empirical result. In the CPI data,

51.6% of the cross-sectional dispersion of log price changes is due to within-firm dispersion. In

the PPI data, this ratio is increasing as firms produce more goods, from 36.5% (for bin 1, where

firms produce between 1 and 3 goods) to 72.4% (for bin 4, where firms produce more than 7 goods).

In the full PPI sample, 59.1% of the total variance is due to within-firm variance.

In the following discussions, we sometimes refer to this finding as imperfect co-movement of

price changes. We interpret this result as evidence of the existence of good-specific shocks that

firms must take into account in their pricing decisions.
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4.3 Other relevant statistics

Absolute size of price changes. As a measure of the magnitude of price changes, we compute the

average size of absolute price changes. We denote this statistic as |π|. Labelling time as t, firms as

i and goods produced by firm i at time t as n ∈ ℵit,

|π| = 1
I

I

∑
i=1

[
1
Ni

∑
n∈ℵi

[
1
Tn

Tn

∑
t=1
|πnt|

]]

where πnt ≡ pnt − pnt−1 is non-zero inflation for good n, Tn is the total number of periods for

which inflation for good n can be computed, Ni is the number of goods produced by firm i in the

sample, and I is the total number of firms in the sample. Thus, we first compute for each good

the size of price changes, conditional on non-zero price changes. Second, we compute firm-level

averages. Finally, we take the mean across all firms in the full sample, or within one of the bins.

In the CPI data, the mean (median) absolute size of regular price changes is 11.3% (9.6%),

according to Klenow and Kryvtsov (2008). Our own computation gives us 11.01% (8.42%).10 In

the PPI data, the mean absolute size of price changes for the whole sample is 7.8%. For bins 1

to 4 the magnitudes are as follows: 8.5%, 7.9%, 6.8%, and 6.5%. This trend shows that the multi-

product nature of price changes is strongly related to the size of price changes: as the number of

goods increases, the magnitude of price changes becomes smaller. Various robustness checks in

the PPI data, reported in Bhattarai and Schoenle (2011), leave this result unchanged.

Serial correlation of price changes. We denote this statistic by ρ for the whole sample and by ρk

for bins k ∈ (1, 2, 3, 4). We obtain this statistic by computing median quantile estimates for the

parameter of an AR(1) coefficient for πn,k,t, conditional on non-zero price changes. We compute

the median quantile regression by estimating the following specification:

ρ̂k = argminρk E[|πn,k,t − ρkπn,k,t−1|]

We find that the median estimate of the AR(1) coefficient is -0.29 in the CPI sample. Bils and

10The slight difference in results is due to our focus on outlets as the unit of analysis, which changes the aggregation
approach.
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Klenow (2004) estimate a comparable first-order serial correlation of -0.05.11 In the PPI data, our

estimate of the AR(1) coefficient is -0.04. It ranges from -0.05 in bin 1 to -0.03 in bin 4. All coeffi-

cients are statistically highly significant.

Cross-sectional dispersion of price changes. This statistic is denoted as σ̃ and defined as

σ̃2 =
1
T

T

∑
t=1


It

∑
i=1

∑
n∈ℵi

(πnt − πt)
2

It

∑
i=1

Nit − 1


where πt is the average of non-zero absolute log price changes πnt of all goods sampled at time t,

Nit is the total number of goods sampled for firm i at time t, It is the total number of firms at time

t, and T is the total number of periods in our data. As Table 1 shows, the cross-sectional dispersion

is 3.51% (2.65%) in the full PPI (CPI) sample. There is no clear trend in the PPI data.

5 Quantitative Results

In this section use a generalized version of our model that allows for persistent monetary, firm-

and good-specific shocks12 to tackle quantitatively two related questions: How sensitive is the

prediction of the rational inattention model regarding monetary non-neutrality to the introduc-

tion of multiproduct firms? And, what is the degree of monetary non-neutrality predicted by a

calibrated rational inattention model of multi-product firms?

5.1 Baseline Calibration

We start by replicating the results of Mackowiak and Wiederholt (2009) for an economy of single-

product firms. We subsequently use this as a benchmark, to which we add calibration targets

from the data and incorporate the multi-product nature of the firm. We nest the calibration of

11Bils and Klenow (2004) compute their estimate as the average of AR(1) coefficients for inflation of 123 categories
in the CPI data. They include sales and zero price changes, between 1995 and 1997. We differ in our methodology and
by focusing on the period from 1989 to 2009. Qualitatively, both approaches give the same results.

12We discuss the problem of the firm and its numerical solution algorithm in the appendix.
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Mackowiak and Wiederholt (2009) in our model by setting

N = 1; κ (1) = 3;
π̂13

|π̂11|
= 0.15;

π̂14

|π̂11|
= 0;

π̂15

|π̂11|
= 1.

First, setting capacity κ (1) = 3 implies a small frictional cost of 0.21% of firms’ steady state

revenues. Second, the complementarity in pricing decisions π̂13
|π̂11| = 0.15 is in the lower bound of

the range suggested by Woodford (2003). It is also exactly what Mackowiak and Wiederholt (2009)

assume. Third, they refer to idiosyncratic shocks as firm-specific in their model. However, since

their model has single-product firms, idiosyncratic shocks are indistinguishable between our firm-

specific and good-specific shocks. To replicate their exercise, we must shut down one of them. We

find it more appealing to start our analysis assuming that these shocks are good-specific, π̂14
|π̂11| = 0.

Fourth, we set idiosyncratic and monetary shocks to be equally important in profits, so π̂15
|π̂11| = 1.

This parameter enters in the model through x2 ≡ |π̂11|σ∆
π̂15σz

, so setting π̂15
|π̂11| = 1 implies that σ∆

σz
must

be pinned down from the data.

To obtain σ∆, we also follow Mackowiak and Wiederholt (2009). We estimate an AR(1) process

for GNP quarterly data spanning 1959:1–2004:1 to obtain the volatility and persistence of qt, σq =

2.68% and ρq = .95. Then, for computational simplicity, we approximate this process by a MA(20):

qt =
20

∑
k=0

(
1− k

20

)
vt−k (18)

where vt ∼ N (0, 1) and coefficients decrease linearly with the order of lags up to 20 lags. Hence

an innovation in nominal aggregate demand dies out after 21 periods. Given the process for qt,

the compound aggregate variable ∆t also follows a MA(20):

∆t =
20

∑
k=0

[(
1− π̂13

|π̂11|

)
αk +

π̂13

|π̂11|

(
1− k

20

)
ρq

]
vt−k

where {αk} are the parameters of the guessed process of aggregate prices, which is also MA(20):

pt =
20

∑
k=0

αkvt−k (19)

such that {αk} are found in equilibrium. We provide a detailed explanation in the appendix.
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For idiosyncratic volatility σz, we assume that these shocks follow an MA (20) similar to (18)

with an adjusted scale of coefficients to match the 9.6% average absolute per-good inflation re-

ported by Klenow and Kryvtsov (2008) for CPI data in the US. This implies σz = 11.8σq.

We then replicate the results in Mackowiak and Wiederholt (2009):13 Firms’ attention is κ∗a (1) =

0.09 to monetary shocks and κ∗z (1) = 2.91 to idiosyncratic shocks. This yields large and long-

lasting monetary non-neutrality. Figure 2 depicts the response of aggregate prices after an inno-

vation of 1% in qt. The black line draws the response of frictionless prices; this response inherits

the process assumed for qt in (18). The blue line draws the response of aggregate prices under

rational inattention. On impact, prices absorb only 2.8% of the innovation in qt. Their response

remains sluggish relative to the response of frictionless prices for 20 periods (the output deviation

is less than 5% of the shock thereafter) and the cumulated response of prices is only 22% of the

cumulated response of frictionless prices. As anticipated above, the frictional cost is 0.21% of the

firm’s steady state quarterly real revenue Y. This cost is considered small. It gives little incentives

for firms to increase their information capacity if such decision were endogenous. Importantly,

these single-product results confirm Sims’ statement about the ability of the Rational Inattention

model to generate large macroeconomic effects even with a small friction.

5.2 Multi-Product Firms

We now extend the baseline calibration, allowing firms to produce N > 1 goods. As a result,

we find that money becomes fully neutral. Again, we target an average absolute size of price

changes of 9.6% and a frictional cost of 0.21%Y. What is the right choice of N? We know from

Section 4 that the CPI data does not provide sufficient variation to calibrate N. However, indirect

estimates indicate N ≈ 40, 000 (see the Food Marketing Institute’s 2010 report). Since the effect of

multi-production is already very strong for N = 2, 4 and 8, we report results for these cases only.

We find that already for a two-good firm, monetary non-neutrality is cut by three in magnitude

and duration. We illustrate in Figure 2 in red the resulting response of prices to a monetary shock,

13In our numerical algorithm, we use a tolerance of 2% for convergence, exactly as in Mackowiak and Wiederholt
(2009). We keep this criterion for comparability with Mackowiak and Wiederholt (2009) in the following sections, but
from section 5.5 on we replace it with a tighter tolerance of 0.01%. If we use the tighter convergence criterion in this
and the next sections, we obtain even starker predictions from introducing multi-product firms.
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when for N = 2 firms’ attention is κ∗a (2) = 0.36 and κ∗z (2) = 2.92. Strikingly, the response of

prices is almost identical to the frictionless price response after 7 periods (the output deviation

is less than 5% of the shock thereafter), and their cumulated response is 74% that of frictionless

prices. Prices absorb 29% of the innovation in qt on impact. Note that this result holds when a

firm’s attention to monetary shocks is only a small fraction of the firm’s total capacity. The strong

effect is due to complementarity in pricing decisions, as stated by Proposition 3.

We also show the response of prices to an aggregate shock for a four-good firm in Figure 2 in

green. We find that κ∗a (4) = 0.58 and κ∗z (4) = 2.90. Prices absorb 15% of the shock on impact.

Overall, their response closely follows that of frictionless prices after 4 quarters with almost no

real effects thereafter, and their cumulated response is 86% that of frictionless prices. For N = 8,

in magenta in figure 2, results are even stronger: κ∗a (8) = 0.90 and κ∗z (8) = 2.87, prices absorb

49% of the shock on impact, the output deviation is less than 5% of the shock after 2 quarters and

the cumulated response of prices is 93% that of frictionless prices. Given these results, we find it

uninformative to report results for N = 40, 000: Money is fully neutral.

5.3 Serial Correlation of Price Changes

We now calibrate the persistence of idiosyncratic shocks zjt to match the persistence observed in

the CPI data. Again, we find that this substantially reduces monetary non-neutrality. What do we

calibrate good-level persistence to? So far we have followed Mackowiak and Wiederholt (2009)

by assuming that zjt is as persistent as qt. Instead, we pick a much lower value for the persistence

parameter. According to Bils and Klenow (2004), the first-order serial correlation of per-good

inflation is −0.05. Our own computationis −0.29 (see Table 1). Both computations are method-

ologically different,14 but both suggest that idiosyncratic shocks are substantially less persistent

than monetary shocks.

We therefore set zjt to follow an MA process for which the coefficients decrease linearly with the

order of lags, as for qt in equation (18). However, to match the −0.05 first-order serial correlation,

14Bils and Klenow (2004) compute this statistic by averaging the coefficient of AR(1) regressions for inflation of 123
categories in the CPI data, including sales and zero price changes, between 1995 and 2007. We compute the coefficient
from an AR(1) quantile regressions for non-zero inflation of each item in the CPI data, excluding sales and zero price
changes, between 1989 and 2009. Our computation is consistent with the other statistics we report.
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zjt must follow a MA(5). We must also set σz = 10.68σq to match the average absolute per good

inflation. To generate −0.29 first-order serial correlation, zjt must follow a MA(1) with coefficient

0.33 and σz = 9.74σq. We also keep targeting 0.21%Y of per-good frictional cost.

We focus on results for the case N = 1. The reason is that results are qualitatively not different

for N > 1 from those in the section above. However, attention allocated to the aggregate shock

does change significantly when we calibrate the model to the serial correlation observed in the

data for N = 1. Figure 3 summarizes the response of prices to a 1% innovation in qt for N = 1. The

black and blue lines show the response of frictionless prices, and prices under rational inattention

for the benchmark calibration. The red line draws the response of prices calibrated to −0.05 serial

correlation: We find that κ∗a (1) = 0.20 and κ∗z (1) = 2.81. This implies that the response of prices

on impact is 7% of the shock and the deviation of output is less than 5% of the shock after 12

periods, and the cumulated response of prices is 52% of the frictionless price response. The green

line shows the response of prices calibrated to −0.29 serial correlation of price changes. Now

κ∗a (1) = 0.19 and κ∗z (1) = 2.66. This implies that the response of prices on impact is 7% of

the shock, the output deviation is less than 5% of the shock after 12 periods, and the cumulated

response of prices is 52% that of frictionless prices.15

We conclude that the monetary non-neutrality predicted by the model is substantially reduced

for N = 1: When we calibrate the model to match the serial correlation of good-level price changes

found in the data, the cumulated response of prices is now 52% of the frictionless price response,

instead of 22% in the benchmark model. The intuition is straight-forward: When the process of

a shock is less persistent, any mistakes of firms when tracking this shock have lower impact on

future mistakes tracking this shock. Hence, firms pay less attention to this shock. We give a more

detailed argument in the appendix.

5.4 Within-Firm Dispersion of Price Changes

We now introduce firm-specific shocks. This is necessary in order to match the imperfect comove-

ment of price changes observed within firms in the data. Matching this additional target is only

15If we used OLS instead of quantile regressions to estimate an AR(1) process for price changes, the estimate would
be −0.22. The implied calibration results are very similar to those reported here.
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possible in a model with all three kinds of shocks: firm-specific, good-specific and aggregate.

Again, we find that monetary non-neutrality quickly vanishes as N increases.

To perform this exercise, we target the ratio of within-firm variance to total cross-sectional

variance of non-zero absolute price changes in the CPI. In our exercises above with no firm-specific

shocks, this statistic is 50% for N = 2, 86% for N = 4 and 93% for N = 8. Our target now is a ratio

of 51.6%, as shown in Table 1.

To choose the relative volatility of firm-specific and good-specific shocks, we assume that

π̂14
|π̂11| = 1; that is, firm-specific shocks fit have the same weight in firms’ profits as aggregate and

good-specific shocks, qt and znt.16 For any number of goods N, we must set the process of firm-

specific and good-specific shocks to follow an MA(1) with parameter 0.33 to match −0.29 serial

correlation of per-good inflation. The total volatility of these shocks to match 9.6% average ab-

solute per-good inflation must be 9.75σq for N = 2, 11.7σq for N = 4, and 11.18σq for N = 8.

To match the 51.6% ratio of within-firm dispersion, the calibration of σf /σz is also specific to the

number of goods. For N = 2, we set σf = 0 since the highest within-firm dispersion ratio we can

generate is 50%, so results for this case are the same as in section 5.3. We set σf = 1.37σz for N = 4

and σf = 1.90σz for N = 8. Finally, we calibrate κ (N) to yield a 0.21%Y per-good frictional cost as

in our previous exercises.

We find that for a four-good firm, the allocation of attention becomes κ∗a (4) = 0.61, κ∗f (4) =

3.27 and κ∗z (4) = 2.05 respectively for monetary, firm-specific and good-specific shocks. This

implies that aggregate prices absorb 30% of a monetary shock on impact. The deviation of output

is less than 5% of the shock after 4 periods, and the cumulated response of prices is 87% of the

frictionless price’ response. For an eight-good firm, κ∗a (8) = 0.96, κ∗f (8) = 3.85 and κ∗z (4) = 1.90,

and prices absorb 52% on impact. The deviation of output is less than 5% of the shock after 2

periods, and the cumulated price response is 94% of the frictionless price response.

Discussion These results allow us to provide an answer to the two questions posed at the begin-

ning of this section. Regarding the sensitivity of the monetary non-neutrality predicted by the

model, we find that the model is very sensitive. The force behind this result is the economies of

scope in information processing that multi-product firms can exploit by processing information

16Similarly than for x2, π̂14
|π̂11| enters in the model’s predictions through x1 ≡ |

π̂11|σ∆
π̂14σf

.
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about monetary and firm-specific shocks, but not good-specific shocks. This force is amplified by

the complementarity in pricing decisions between firms, which is responsible for the large reduc-

tion in monetary non-neutrality in the model despite the fact that firms’ attention to monetary

shocks is only a small proportion of firms’ capacity. We further study the role of complementarity

in pricing in section 5.6.

Given this high sensitivity, our results suggest that there is no room for monetary non-neutrality

in a rational inattention model calibrated to CPI data in which firms are interpreted as stores. This

is because stores price a high number of goods priced. In addition, we find that even in a model

of single-product firms monetary non-neutrality is smaller than in our benchmark model once the

model matches the serial correlation of price changes at the good level.17

We conclude from sections 5.3 and 5.4 that our results do not depend on the relative volatility

of firm-and good-specific shocks as long as firms pay some attention to good-specific shocks. This

quantitative conclusion is the same as our theoretical one in section 3.

5.5 Calibration to PPI Data

Since this is a completely different dataset than the one used by Mackowiak and Wiederholt (2009),

we abandon using their work as benchmark. Instead, we keep our target of 0.21% of steady state

revenues for the frictional cost and we concentrate on the ability of the model to replicate moments

from the data for our four bins and the monetary non-neutrality predicted once the model is cali-

brate to these moments. For this we use the version of our model introduced at the end of section

3, which allows for firms producing a heterogeneous number of goods, once it is generalized to

include persistent monetary, firm- and good-specific shocks.

We now take the version of our model with heterogeneous firms and calibrate it to moments

from the PPI sample. As discussed in section 4, our PPI sample has sufficient variation in N. This

allows us to compute moments conditional on various N. Specifically, we assume that there are

four groups of firms, producing 2, 4, 6 and 8 goods – the median number of goods per firm in each

17These results are robust to varying the importance of good-specific shocks; it is only important that firms pay at
least some attention to these types of shocks. These results also robust to using the tighter tolerance for convergence
that we use in the following sections.
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bin. The relative weights of these groups in the model economy are the shares of total employment

in each bin. We keep our baseline calibration except for the processes of firm-specific and good-

specific shocks. As above, we calibrate these processes to match three statistics: the mean absolute

size of non-zero log price changes, the within-firm variation ratio of per-good inflation, and the

first-order serial correlation of non-zero log price changes. We keep our target of 0.21%Y per-good

frictional cost.

We start our analysis by asking if one set of parameters can explain trends in the data as the

number of goods increases. To do so, we assume that the processes for firm-specific and good-

specific shocks are the same in all bins. This means that we calibrate these two shock processes

to match the three targets for bin 1 only. We then assume that the processes for the other bins

follow the same calibrated processes. We report the model-predicted moments in italics in Table

3 and contrast them with the moments computed from the data. The model fails to account for

the observed moments in other bins. While the average absolute size of log price changes and the

serial correlation of non-zero log price changes are invariant to N in the model, they are decreasing

in the data. Moreover, the ratio of within-firm variation is less increasing in N in the model than

in the data.

Next, we calibrate firm-specific and good-specific shocks independently for each group to

match the statistics for all bins. Figure 4 illustrates the response of prices to an aggregate shock.

The response of prices is not very different across bins. This is due to strategic complementar-

ity in pricing decisions within and across bins. Aggregate prices absorb on impact 16.7% of the

monetary shock, output is less than 5% higher than its steady state after 7 periods, and the cumu-

lated response of aggregate prices is 75% of the frictionless price response. We then conclude that

monetary shocks have a strong effect on impact when firms in the model are interpreted as goods

producers, but the persistence of these shocks is limited.

5.6 The Role of Complementarity in Pricing

To further highlight the importance of the complementarity in pricing decisions in our analysis,

we reduce the complementarity in pricing decisions. We do so by increasing π̂13
|π̂11| from 0.15 to 0.85.

This modification has two effects. On the one hand, an increase in firms’ attention to monetary
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shocks has a milder effect on reducing monetary non-neutrality when π̂13
|π̂11| is higher. This comes

from Proposition 3. On the other hand, for a given level of firms’ attention to monetary shocks,

monetary non-neutrality is lower when the extent of complementarities is lower. This result comes

from equation (16). Our model calibrated to all bins in the PPI data implies the following: Aggre-

gate prices absorb 23% of the aggregate shock on impact, there are almost no real effects after only

6 periods, and the cumulated response of prices is 84% that of frictionless prices.

5.7 Calibrating Information Capacity

One key parameter in our model is the total information capacity κ(N). So far, we have pinned it

down by imposing a constant frictional cost of 0.21% per good in terms of expected profit losses.

We now depart from this assumption: Since a direct attempt at calibrating κ(N) reveals a high

insensitivity to moments from the micro data, we instead use the shadow value of information-

procession capacity to pin down κ(N). As an alternative to calibrate the information friction, we

also target the menu cost friction in Midrigan (2011).

First, we attempt to calibrate κ(N) directly from the data by targeting an additional moment:

We choose the total cross-sectional dispersion of absolute log price changes in the CPI sample.

We then take our model from section 5.4 for N = 2 as well as N = 4 and solve it for a grid

of κ (N). We report results in Tables 4 and 5.18 We find that we are unable to pin down κ(N)

through this approach. The reason is that the predictions of the model regarding moments that

can be contrasted with the micro data are highly insensitive to changes in κ(N). At the same time,

the predictions regarding monetary non-neutrality are highly sensitive to changes in κ(N). This

invalidates this approach of calibrating κ(N). While we could relax the assumption of Gaussian

shocks to match our additional moment, this would would add new parameters to calibrate and

would not solve the problem illustrated here that prevents us from calibrating κ (N) .

Indeed, as the above suggests, the trade-off between monetary non-neutrality and the sever-

ity of the friction is quite substantial: When we calibrate our model from section 5.4 to the PPI

moments of the median four-good firm, we find that an increase of monetary non-neutrality by a

18Similar results hold when we try to pin down the lagrange multiplier λ(N) this way, so we choose not to display
these tables.
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factor of 2 (3) is associated with an increase in the friction by a factor of approximately 2 (3) as well.

We illustrate this trade-off for a wider range of the friction in Figure 5. Monetary non-neutrality is

monotonically increasing in the friction.

For these reasons, we choose to pin down κ(N) by keeping the shadow value of information

capacity constant across goods. That is, we keep the Lagrange multiplier on the capacity constraint

(9) constant across goods: λ(N) = λ̄. We implement this in our model from section 5.4, again

targeting an average of log absolute price changes of 9.6%, a serial correlation of −0.291 and a

within-firm variance ratio of 51.6%. We find that the cumulated price response lies in between

52% and 83% of the frictionless price response while the friction ranges between 0.20% and 0.24%.

Monetary neutrality is extremely high. It increases with the number of goods, exactly as predicted

by our model.

As an alternative to pin down the information capacity, we force our model of section 5.5 to

generate the same frictional cost as in the two-good menu cost model of Midrigan (2011) cali-

brated using the distribution of prices for a given store. There, the cost of the friction is 0.34% of

steady state revenues. If we force our model, calibrated to PPI data, to generate this level of cost,

aggregate prices absorb 8.44% of the shock on impact. The deviation of output then is less than

5% of the shock after 16 periods, and the cumulated response of aggregate prices is 48% that of

frictionless prices.

6 Conclusion

In this paper, we have explored the impact of monetary policy on the real economy in a model of

rational inattention. In our model, which accounts for the multi-product nature of firms, the real

impact of monetary policy is much lower than in a less realistic model in which firms produce only

one good. This result is due to economies of scope in information processing: As firms produce

more goods, the return to gathering information on common monetary, rather than good-specific,

shocks increases. When we calibrate our multi-product firm model to US CPI data, we find that

monetary policy has minimal real effects. Calibrating our model to PPI data, in which firms price

a much smaller number of goods, suggests only limited non-neutrality and aggregate inertia.
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Tables and Figures

Table 1: Multi-Product Firms and Moments from CPI and PPI data

CPI 1-3 Goods 3-5 Goods 5-7 Goods >7 Goods All

# goods, mean 1.47 3.89 6.02 10.82 2.05
# goods, median 1.00 3.85 6.00 9.00 1.39
Absolute size of price changes 10.87% 11.64% 11.69% 12.55% 11.01%

(0.03%) (0.09%) (0.15%) (0.11%) (0.03%)

Within variance ratio of |∆p| 20.9% 55.8% 62.8% 79.0% 51.6%
(0.3%) (0.4%) (0.4%) (0.4%) (0.6%)

Cross-sectional variance 1.93% 2.65% 3.60% 2.85% 2.65%
(0.52%) (0.70%) (0.89%) (0.50%) (0.31%)

Serial correlation −0.248 −0.307 −0.334 −0.355 −0.291
(0.0008) (0.0013) (0.0022) (0.0015) (0.0006)

PPI

# goods, mean 2.19 4.02 6.03 10.25 4.13
# goods, median 2 4 6 8 4
Absolute size of price changes 8.5% 7.9% 6.8% 6.5% 7.8%

(0.13%) (0.09%) (0.14%) (0.16%) (0.10%)

Within variance ratio of |∆p| 36.5% 54.6% 67.2% 72.4% 59.1%
(0.7%) (0.6%) (0.8%) (1.0%) (0.6%)

Cross-sectional variance 3.72% 3.60% 2.91% 3.64% 3.51%
(0.20%) (0.19%) (0.15%) (0.22%) (0.10%)

Serial correlation −.050 −.057 −.033 −.032 −.043
(0.0024) (0.0002) (0.0001) (0.0001) (0.0001)

Share of total employment 25.0% 27.7% 16.0% 31.3% 100%

NOTE: We compute the above statistics using the monthly micro price data underlying the PPI and CPI. The
time periods are from 1998 through 2005, and 1998 through 2009, respectively. We compute all statistics for
firms with less than 3 goods (bin 1), with 3-5 goods (bin 2), with 5-7 goods (bin 3), >7 goods (bin 4), and the
full sample. First, we compute the time-series mean of the number of goods per firm. We then report the
mean (median) number of goods across all firms. Second, we start by computing the time-series mean of the
absolute value of log price changes for each good in a firm. We take the median across goods within each
firm, then report means across firms. Standard errors across firms are given in brackets. Third, we compute
the monthly within variance ratio as the ratio of two statistics: first, the sum of squared deviations of the
absolute value of individual log price changes from their average within each firm, summed across firms;
second, the sum of squared deviations of the absolute value of individual log price changes from their cross-
sectional average. We then report the time-series mean. Standard errors across monthly means are given
in brackets. Fourth, we estimate the first-order auto-correlation coefficient of non-zero price changes using
a median quantile regression. Fifth, we compute the monthly cross-sectional variance of absolute log price
changes and then report standard errors of this monthly statistic. Finally, we compute the share of employment
relative to total employment in each category at the time of re-sampling in 2005.
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Table 2: Multi-Product Firms and Within-Firm Variance Ratio, Robustness

CPI 1-3 Goods 3-5 Goods 5-7 Goods >7 Goods All

Within variance ratio of ∆p
Mean 8.8% 32.8% 45.6% 64.7% 35.9%

Median 9.2% 32.7% 44.5% 62.0% 35.2%
Std. Error (0.2%) (0.3%) (0.4%) (0.5%) (0.6%)

PPI

Within variance ratio of ∆p
Mean 18.4% 31.2% 44.3% 54.0% 38.1%

Median 18.1% 30.1% 44.4% 53.3% 37.4%
Std. Error (0.7%) (0.9%) (1.1%) (1.0%) (0.7%)

NOTE: We compute the above statistics using the monthly micro price data underlying the PPI and CPI. The time periods
are from 1998 through 2005, and 1998 through 2009, respectively. We compute all statistics for firms with less than 3 goods
(bin 1), with 3-5 goods (bin 2), with 5-7 goods (bin 3), >7 goods (bin 4), and the full sample. We compute the monthly
within variance ratio as the ratio of two statistics: first, the sum of squared deviations of the individual log price changes,
including zeros, from their average within each firm, summed across firms; second, the sum of squared deviations of
individual log price changes, including zeros, from their cross-sectional average. We then report the time-series mean
and medians. Standard errors across monthly means are given in brackets.

Table 3: Moments from the PPI and the Model

1-3 Goods 3-5 Goods 5-7 Goods >7 Goods All

Absolute size of price changes, data 8.5% 7.9% 6.8% 6.5% 7.8%
Absolute size of price changes, model 8.5% 8.5% 8.5% 8.5% 8.5%

Serial correlation, data −.050 −.057 −.033 −.032 −.043
Serial correlation, model −.050 −.050 −.050 −.050 −.050
Within-firm variance ratio, data 36.5% 54.6% 67.2% 72.4% 59.1%
Within-firm variance ratio, model 36.5% 54.5% 60.5% 63.5% 53.8%

NOTE: We report moments predicted by the model in section 5.5 in italics. We contrast them with the moments
from the data presented in Table 1.
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Table 4: Moments from the CPI and the Model, N=2

data κ = 5 κ = 6 κ = 7 κ = 8 κ = 9 κ = 10 κ = 30

absolute size of price changes 9.6% 9.61% 9.65% 9.67% 9.70% 9.70% 9.73% 9.75%
serial correlation −0.29 −0.291 −0.290 −0.290 −0.290 −0.289 −0.288 −0.289
within-firm var. ratio 51.6% 50.12% 50.04% 50.01% 50.01% 50.01% 50.04% 50.15%
cross-sectional variance 2.65% 7.22% 7.28% 7.31% 7.32% 7.33% 7.34% 7.36%
κ∗a (2) 0.219 0.309 0.473 0.676 0.920 1.212 8.123
cumulated price response 51.67% 57.82% 71.97% 80.73% 86.14% 90.02% 97.98%
(relative to frictionless prices)

NOTE: As discussed in section 5.7, the table shows moments computed from the data and their counterparts generated by the
model for N=2 using different values for firms’ capacity to process information.

Table 5: Moments from the CPI and the Model, N=4

data κ = 10 κ = 11 κ = 12 κ = 13 κ = 14 κ = 15 κ = 30

absolute size of price changes 9.60% 9.50% 9.54% 9.58% 9.60% 9.62% 9.66% 9.74%
serial correlation -0.291 -0.292 -0.2908 -0.291 -0.2911 -0.2901 -0.2895 -0.2893
within-firm var. ratio 51.60% 50.99% 51.27% 51.53% 51.77% 51.85% 51.91% 52.11%
cross-sectional variance 2.65% 7.16% 7.21% 7.24% 7.25% 7.28% 7.29% 7.35%
κ∗a (4) 0.31 0.37 0.44 0.52 0.62 0.72 3.31
cumulated price response 60.17% 64.74% 70.50% 75.32% 79.33% 82.60% 98.46%
(relative to frictionless prices)

NOTE: As discussed in section 5.7, the table shows moments computed from the data and their counterparts generated by the
model for N=2 using different values for firms’ capacity to process information.
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Table 6: Value of Information Capacity and the Number of Goods

N = 1 N = 2 N = 4 N = 8

λ(N) 3.3348 3.3348 3.3348 3.3348
absolute size of price changes 9.62% 9.60% 9.60% 9.60%
serial correlation -0.291 -0.291 -0.291 -0.291
within-firm variance ratio 0.00% 50.12% 51.59% 51.58%
cross-sectional variance 7.26% 7.25% 7.23% 7.25%
κa(N) 0.1935 0.2606 0.4429 0.6867
cumulated price response 51.81% 53.48% 72.05% 82.70%
(relative to frictionless prices)
loss 0.21% 0.20% 0.24% 0.21%

NOTE: We calibrate our model with homogeneous firms to moments for the
whole sample of CPI data as we vary N. Firms’ information processing capacity
is calibrated such that its shadow price is invariant to N.
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Figure 1: Equations (14) and (16) in the space (α, κa)

NOTE: The figure illustrates the fixed point problem of attention allocation given by
equations (14) and (16). Equation (14) is drawn in red, while equation (16) is drawn in
blue. Equation (16) is invariant to N, but N affects the drift and slope of equation (14).
Under conditions described in Proposition 2 the drift of equation (14) is increasing in
N. An upwards shift of this function is represented in green.
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Figure 2: Response of prices to a 1% impulse in qt for sections 5.1 and 5.2
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NOTE: We illustrate the response of prices to a 1% monetary shock as we vary N in our model
calibrated to moments from the CPI data. The black line is for frictionless prices, the dashed blue
line is for the benchmark of rationally inattentive prices with N=1, the red line with circles is for
rationally inattentive prices with N=2, the dashed green line with squares is for rationally inattentive
prices with N=4, and the dashed magenta line with dots is for is for rationally inattentive prices
with N=8. The response of prices quickly becomes closer to that of frictionless prices as N increases.
Details are given in sections 5.1 and 5.2.
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Figure 3: Response of prices to a 1% impulse in qt for section 5.3
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NOTE: We illustrate the response of prices to a 1% monetary shock as we vary the persistence of
idiosyncratic shocks in our model calibrated to moments from the CPI data. The black line is for
frictionless prices, the dashed blue line is for our benchmark with highly persistent idiosyncratic
shocks, the red line with circles is for rationally inattentive prices that have serial correlation of -0.05,
the dashed green line with squares is for rationally inattentive prices that have serial correlation of
-0.29. Section 5.3 contains further details.
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Figure 4: Response of prices to a 1% impulse in qt for section 5.5
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NOTE: We illustrate the response of prices to a 1% monetary shock as we vary N in our model
calibrated to moments of the PPI data by bins. The black line is for frictionless prices, the dashed
blue line is for rationally inattentive prices in bin 1, the red line with circles is for rationally inattentive
prices in bin 2, the dashed green line with squares is for rationally inattentive prices in bin 3, and the
dashed magenta line with dots is for is for rationally inattentive prices in bin 4, and the black solid
line with dots is for aggregate rationally inattentive prices. Section 5.5 contains further details.
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Figure 5: Trade-Off between Monetary Non-Neutrality and Frictional Cost
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NOTE: We illustrate the relationship between monetary non-neutrality, measured as the cu-
mulative response of rational inattentive prices relative to frictionless prices, and the frictional
cost of as we vary firms’ information processing capacity in our model calibrated to moments
of the PPI data. Section 5.7 contains further details.
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A APPENDIX: The Problem of the Firm with White Noise Shocks

We start by computing the frictionless non-stochastic steady state in this economy. Let Q̄, F̄i = F̄
∀i and Z̄j = Z̄ ∀j be the steady state level of these variables. Without frictions, it must hold that

π1 (1, 1, Yt, F̄, Z̄) = 0,

which follows from the optimality of prices. This equation solves for the steady-state level of real
aggregate demand Ȳ, and equation (4) for the steady-state aggregate price level P̄ = Q̄/Ȳ.

A second-order approximation of the problem of firm i around this steady-state is

max
{pnt}n∈ℵi

∑
n∈ℵi

{
π̂1 pnt +

π̂11
2 p2

nt + π̂12 pnt pt + π̂13 pntyt + π̂14 pnt fit + π̂15 pntznt

+ terms independent o f pnt.

}

with π̂1 = 0, π̂11 < 0, π̂12 = −π̂11 and all parameters identical for all goods and all firms.

The optimal frictionless pricing rule for each good n ∈ ℵi for all i is

p♦nt = pt +
π̂13

|π̂11|
yt +

π̂14

|π̂11|
fit +

π̂15

|π̂11|
znt ≡ ∆t +

π̂14

|π̂11|
fit +

π̂15

|π̂11|
znt (20)

where the compound variable ∆t collects aggregate variables.

Since this is a linear pricing rule, the optimal price of good n ∈ ℵi of an arbitrary firm i that
solves (8) is

p∗nt = E [∆t | sa
it] +

π̂14

|π̂11|
E
[

fit | s f
nt

]
+

π̂15

|π̂11|
E
[
zjt | sz

nt
]

. (21)

given the signal structure
{

sa
it, s f

it, sz
nt

}
. We must solve now for firms’ optimal choice of signals. To

do so, we recast the firms’ problem up to second order as the minimization the discounted sum
of firms’ expected loss in profits due to the friction (the “frictional costs” hereafter) for all goods
produced by the firm:

∞

∑
t=1

βt ∑
n∈ℵi

{
|π̂11|

2
E

[(
p♦nt − p∗nt

)2
]}

(22)

We assume now that shocks qt, fit and zjt are white noise, with variances σ2
q , σ2

f for any firm
i ∈

[
0, 1

N

]
and σ2

z for any good j ∈ [0, 1]. This assumption allows us to obtain analytical solution.19

Given this assumption, we guess that the log-deviation of aggregate prices respond linearly to
a monetary shock, pt = αqt, so the compound aggregate variable ∆t is given by

∆t =

[
α +

π̂13

|π̂11|
(1− α)

]
qt. (23)

19The appendix relaxes this assumption and presents the numerical algorithm used to solve for it. We use this general
problem to obtain our quantitative results in Section 5.
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In addition, signals chosen by firm i ∈
[
0, 1

N

]
are restricted to have the structure

sa
it = ∆t + ε it,

s f
it = fit + eit,

sz
nt = znt + ψnt,

where σ2
εi, σ2

ei and σ2
ψn are the variance of noise ε it, eit and ψnt.20

Therefore, given signals
{

sa
it, s f

it, sz
nt

}
, the optimal pricing rule (21) solves as

p∗nt =
σ2

∆

σ2
∆ + σ2

εi
sa

it +
π̂14

|π̂11|
σ2

f

σ2
f + σ2

ei
s f

it +
π̂15

|π̂11|
σ2

z

σ2
z + σ2

ψn
sz

nt.

Replacing p♦nt and p∗nt in (22) and using the functional form of information flow in (6) because
shocks are Gaussian white noise, the problem of the firm becomes

min
κa,κ f ,{κn}n∈ℵi

β

1− β

|π̂11|
2

[
2−2κa σ2

∆N +

(
π̂14

π̂11

)2

2−2κ f σ2
f N +

(
π̂15

π̂11

)2

∑
n∈ℵi

2−2κn σ2
z

]
(24)

subject to
κa + κ f + ∑

n∈ℵi

κn ≤ κ (N) . (25)

where

κa ≡
1
2

log2

(
σ2

∆

σ2
εi
+ 1
)

;

κ f ≡
1
2

log2

(
σ2

f

σ2
ei
+ 1

)
;

κn = log2

(
σ2

z

σ2
ψn

+ 1

)
.

B APPENDIX: The Problem of the Firm for a General Structure of Shocks

This appendix displays the analytical representation of firms’ problem in the setup of section 5 and
explains the numerical algorithm applied to solve it. This appendix adapts to our setup a similar
presentation by Mackowiak and Wiederholt (2007). Assume that firms are exposed to three types
of shocks:

qt =
∞

∑
l=0

alvt−l ,

20Mackowiak and Wiederholt (2009) show that this structure of signals is optimal. This result is not affected by the
modifications to their model introduced here.
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fit =
∞

∑
l=0

blξt−l ,

zjt =
∞

∑
l=0

clζt−l ,

where qt is a nominal aggregate demand shock (interpreted as a “monetary” shock), fit is a shock
idiosyncratic to each firm i ∈

[
0, 1

N

]
, zjt is a shock idiosyncratic to each good j ∈ [0, 1], and

{vt−l , ξt−l , ζt−l}∞
l=0 are innovations following Gaussian independent processes.

We guess that the log-deviation of aggregate prices follows

pt =
∞

∑
l=0

αlvt−l

which, given the definition of ∆t in (20) and yt = qt − pt, implies

∆t =

(
1− π̂13

|π̂11|

) ∞

∑
l=0

αlvt−l +
π̂13

|π̂11|

∞

∑
l=0

alvt−l ≡
∞

∑
l=0

dlvt−l (26)

The problem of firm i ∈
[
0, 1

N

]
has two stages. In the first stage, firms must choose conditional

expectations for ∆t , fit and {znt}n∈ℵi
to minimize the deviation of prices with respect to frictionless

optimal prices subject to the information capacity constraint:

min
∆̂it,{ẑnt}n∈ℵi

∑
n∈ℵi

{
∞

∑
t=1

βt |π̂11|
2

E

[(
p♦nt − p∗nt

)2
]}

which is equivalent to

min
∆̂it, f̂it,{ẑnt}n∈ℵi


E

[(
∆t − ∆̂it

)2
]

N +
(

π̂14
|π̂11|

)2
E

[(
fit − f̂it

)2
]

N

+
(

π̂15
|π̂11|

)2
∑n∈ℵi

E
[
(znt − ẑnt)

2
]


subject to the process of ∆t, fit and {znt}n∈ℵi

and the information capacity constraint

I
(

∆t, ∆̂it

)
+ I

(
fit, f̂it

)
+ ∑

n∈ℵwe

I (znt, ẑnt) ≤ κ (N) .

The function I (·) is the information flow. For instance, this function for ∆t takes the form:

I
(

∆t, ∆̂it

)
≡ − 1

4π

∫ π

−π
log2

[
1− C∆t,∆̂it

(ω)
]

dω

where C∆t,∆̂it
(ω) is called coherence function, which is defined as follows. Let describe the condi-
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tional expectations ∆̂it as

∆̂it =
∞

∑
l=0

glvt−l +
∞

∑
l=0

hlεt−l ,

then

C∆,∆̂we
(ω) ≡

G(e−iω)G(eiω)
H(e−iω)H(eiω)

G(e−iω)G(eiω)
H(e−iω)H(eiω)

+ 1
,

where G
(
eiω) = g0 + g1eiω + g2ei2ω + ... and H

(
eiω) = h0 + h1eiω + h2ei2ω + ...

If the conditional expectations f̂it and {ẑnt}n∈ℵi
are described by

f̂ ∗it =
∞

∑
l=0

rlξt−l +
∞

∑
l=0

slεt−l ,

ẑ∗nt =
∞

∑
l=0

wnlζt−l +
∞

∑
l=0

xnlent−l for n ∈ ℵi.

Then the problem may be represented as

min
g,h,r,s,{wn,xn}n∈ℵi


[

∞
∑

l=0
(dl − gl)

2 +
∞
∑

l=0
h2

l

]
N +

(
π̂14
|π̂11|

)2
N
[

∞
∑

l=0
(bl − rl)

2 +
∞
∑

l=0
s2

l

]
+
(

π̂15
|π̂11|

)2
∑n∈ℵwe

[
∞
∑

l=0
(cl − wnl)

2 +
∞
∑

l=0
x2

nl

]


s.t. I
(

∆t, ∆̂it

)
+ I

(
fit, f̂it

)
+ ∑

n∈ℵwe

I (znt, ẑnt) ≤ κ (N)

where g, h, r, s, {wn, xn}n∈ℵi
represent vectors of coefficients. The first order conditions for g and h

are

gl : 2 (d∗l − g∗l ) N = − µa

4π log (2)

∫ π

−π

∂ log
[
1− C∆,∆̂∗we

(ω)
]

∂gl
dω,

hl : 2h∗l N =
µa

4π log (2)

∫ π

−π

∂ log
[
1− C∆,∆̂∗we

(ω)
]

∂hl
dω

where µa is the Lagrangian multiplier. Similar conditions must be satisfied by r∗ and s∗ and by
{w∗n, x∗n}n∈ℵi

but without N.

The second stage of the problem is to obtain optimal signals structures that deliver ∆̂∗it =

∆̂it (κ
∗
a (N) , N) and ẑ∗nt = ẑnt (κn (N) , N). Since we are interested in the aggregate implications

of the model, we do not solve this part.

Numerically, we truncate the memory of all processes to 20 lags, which is the same order
assumed for the MA process for qt. Then we start from a guess for α to compute d, we find
g∗, h∗, r∗, s∗, {wn, xn}n∈ℵi

by using the Levenberg-Marquardt algorithm to solve the system of first-
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order conditions plus the information flow constraint after imposing symmetry in {wn, xn}n∈ℵi
.

With these vectors, we compute I
(

∆t, ∆̂it

)
= κ∗a (N), I

(
fit, f̂it

)
= κ∗f (N) and I (znt, ẑnt) = κ∗z (N)

and the vector α. We use this α as guess for a new iteration upon convergence on α.

C APPENDIX: Extensions

This appendix relaxes some expositional assumptions made in the set up studied in the main text.
These extensions yield no substantive changes to our conclusions or counterfactual predictions.

Common Signals

In the main text we have assumed that there exists an independent signal for each good-specific
idiosyncratic shock. We relax this assumption and instead we assume that there exists a signal

sz
it = ∑

n∈ℵi

znt + ψit.

In words, firms receive only one common signal regarding all its good-specific shocks. Un-
der this assumption, we are in the same situation as in Proposition 1, where firms’ attention to
aggregate shocks is inviariant in the number of goods that this firm produces, but its prices per-
fectly comove. This latter result is clear from observing the form of optimal prices under rational
inattention:

p∗nt =
σ2

∆

σ2
∆ + σ2

εi
sa

it +
σ2

f

σ2
f + σ2

ei
s f

it +
σ2

z

Nσ2
z + σ2

ψi
sz

it

which only responds to aggregate and firm-specific components.

Persistent shocks

We now solve for a simplified version of our model that allows for persistent shocks and keeps at
least partial closed solution. Assume that the process of qt is such that ∆t is AR (1) with persistency
ρ∆. Idiosyncratic shocks fit and zjt are also AR (1) respectively with persistency ρ f for all i and ρz

for all j. The starting guess is now

pt =
∞

∑
l=0

αlvt−l , (27)

where {vt−l}∞
l=0 is the history of nominal aggregate demand innovations.
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The firms’ problem may be cast in two stages. In the first stage, firms choose

min
∆̂it,{ẑnt}n∈ℵi

∑
n∈ℵi

{
∞

∑
t=1

βt |π̂11|
2

E

[(
p♦nt − p∗nt

)2
]}

→ min
∆̂it,{ẑnt}n∈ℵi

β

1− β

|π̂11|
2

 E
(
∆t − ∆̂it

)2
N +

(
π̂14
|π̂11|

)2
E
(

fit − f̂it

)2
N

+
(

π̂15
|π̂11|

)2
∑n∈ℵi

E (znt − ẑnt)
2


subject to

I
({

∆t, ∆̂it
})
≤ κa,

I
({

fit, f̂it

})
≤ κ f ,

I ({znt, ẑnt}) ≤ κn, f or n ∈ ℵi

κa + ∑
n∈ℵie

κn ≤ κ(N)

For the second stage, firms choose the signals that deliver ∆̂∗it, {ẑ∗nt}n∈ℵwe
. As in Appendix B,

we omit this stage. Our representation for the firm’s problem follows from a result in Sims (2003):
The solution of

min
b,c

E (Ut −Ot)
2

where Ut is an unobservable and Ot is an observable variable, subject to

Ut = ρUt−1 + aut,

Ot =
∞

∑
l=0

blut−l +
∞

∑
l=0

clεt−l ,

κ ≥ I ({Ut, Ot})

yields

E (Ut −O∗t )
2 = σ2

T
1− ρ2

22κ − ρ2 .

Therefore, firms’ problem may be represented as

min
κa,κ f ,{κn}n∈ℵi

β

1− β

|π̂11|
2

[
1− ρ2

∆

22κa − ρ2
∆

Nσ2
∆ +

(
π̂14

π̂11

)2 1− ρ2
f

22κ f − ρ2
f

Nσ2
f +

(
π̂15

π̂11

)2

∑
n∈ℵi

1− ρ2
z

22κz − ρ2
z

σ2
z

]

subject to
κa + κ f + ∑

n∈ℵi

κn ≤ κ(N).

This problem is identical to that solved in section 5 for ρ∆ = ρz = 0. Its first order conditions
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are

κ∗a + f (ρ∆, κ∗a ) = κ∗f + f
(

ρ f , κ∗f

)
+ log2 x̃1

κ∗a + f (ρ∆, κ∗a ) = κ∗z + f (ρz, κ∗z ) + log2 x̃2
√

N

where x̃1 ≡ |π̂11|σ∆(1−ρ∆)

π̂14σf (1−ρ f )
, x̃2 ≡ |π̂11|σ∆(1−ρ∆)

π̂14σz(1−ρz)
and f (ρ, κ) = log2

(
1− ρ22−2κ

)
.

The function f (ρ, κ) is weakly negative and increasing in κ, so the difference in attention to
aggregate and good-specific shocks, κ∗a − κ∗z , is still increasing in N. As before, the difference
κ∗a − κ∗f remains invariant to N. The function f (ρ, κ) is also decreasing in |ρ|. Hence, a decrease in
persistency of idiosyncratic shocks ρ f and ρz implies an increase of κ∗a relative to κ∗f and κ∗z .

Interdependent Profits

We now depart from our assumption in the main text that firms are decision units but not produc-
tion units. We now assume that firms’ production or commercialization processes are integrated
such that the pricing decision of goods produced by a single firm are interdependent. We capture
this ’interdependence’ by assuming that the contribution to profits of a given good n ∈ ℵi to its
producing firm i is now

π
(

Pnt, Pt, Yt, Fit, Znt, {P−nt}−n∈ℵi

)
.

Our notation remains identical to the main text for aggregate prices Pt, real aggregate demand
Yt, firm-specific shocks Fit and good-specific shocks Znt. The novelty comes in the last argument,
{P−nt}−n∈ℵi

, which represents the prices set by firm i for all its produced goods but good n.

Optimal frictionless prices now solve

P♦nt = arg max
Pnt

E

[
∑
n

π
(

P∗nt, Pt, Yt, Fit, Znt, {P∗−nt}−n∈ℵi

)]

This problem is identical to the one in the main text with the exception that optimal frictionless
prices must take into account their effect on the contribution to profits of all goods produced by
the same firm. The optimality of prices implies that in steady state prices must solve

π1

(
1, 1, Yt, F̄, Z̄, {1}−n∈ℵi

)
+ (N − 1)π6

(
1, 1, Yt, F̄, Z̄, {1}−n∈ℵi

)
= 0;

which implicitly assumes equal marginal effect of the price of any good on other good’s profits.
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A second order approximation of the total profits function is

(π̂1 + π̂6 (N − 1)) pnt +
1
2 (π̂11 + π̂66 (N − 1)) p2

nt + (π̂12 + π̂62 (N − 1)) pnt pt

+ (π̂13 + π̂63 (N − 1)) pntyt + (π̂14 + π̂64 (N − 1)) pnt fit + π̂15 pntznt

+ ∑
−n∈ℵi

π̂65 pntz−nt + 2 ∑
−n∈ℵi

π̂16 pnt p−nt

+ terms independent o f pnt.

Hence, the optimal frictionless price solves

p♦nt =
π̂12 + π̂62 (N − 1)
|π̂11 + π̂66 (N − 1)| pt +

π̂13 + π̂63 (N − 1)
|π̂11 + π̂66 (N − 1)|yt +

π̂14 + π̂64 (N − 1)
|π̂11 + π̂66 (N − 1)| fit +

π̂15

|π̂11 + π̂66 (N − 1)| znt + ∑
−n∈ℵi

π̂65

|π̂11 + π̂66 (N − 1)| z−nt + ∑
−n∈ℵi

2π̂16

|π̂11 + π̂66 (N − 1)| p
♦
−nt.

The interdependence between profit functions has two implications on optimal frictionless
prices. First, frictionless prices respond to all good-specific shocks that hit a given firm. Sec-
ond, frictionless prices respond to other prices set by the same firm. If we represent this linear
pricing rule by

p♦nt = b0 pt + b1yt + b2 fit + b3znt + b4 ∑
−n∈ℵi

z−nt + b5 ∑
−n∈ℵi

p♦−nt,

then a reduced form of this rule is

p♦nt =
1

1− (N − 1) b5

 b0 pt + b1yt + b2 fit +
(

b3 − (N−1)b5(b3−b4)
1+b5

)
znt

+
(

b4 +
b5(b3−b4)

1+b5

)
∑
−n∈ℵi

z−nt


with a short-hand representation as

p♦nt = a0 pt + a1yt + a2 fit + a3znt + a4 ∑
−n∈ℵi

z−nt.

Note that a0, a1, a2, a3 and a4 are functions of N. Further, to obtain neutrality of frictionless
prices,

a0 = 1

and to ensure that a1 > 0, parameters must satisfy

1− (N − 1) b5 ≡ |π̂11 + π̂66 (N − 1)| − 2 (N − 1) π̂16 > 0.

Turning to solve for optimal prices under rational inattention, we start by computing the
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second-order approximation for

∑
n,−n∈ℵi

{
π̃

(
p♦nt, pt, yt, fit, znt,

{
p♦−nt

}
−n∈ℵi

)
− π̃

(
p∗nt, pt, yt, fit, znt, {p∗−nt}−n∈ℵi

)}

which solves

|π̂11 + π̂66 (N − 1)|
2 ∑

n∈ℵi

(
p♦nt − p∗nt

)2
− π̂16 ∑

n∈ℵi

∑
−n∈ℵi

(
p♦nt − p∗nt

) (
p♦−nt − p∗−nt

)
.

Guessing pt = αqt, defining ∆t ≡ pt + a1yt, imposing

p∗nt =
σ2

∆

σ2
∆ + σ2

εi
sa

it + a2
σ2

f

σ2
f + σ2

ei
s f

it + a3
σ2

z

σ2
z + σ2

ψn
sz

nt + a4 ∑
−n∈ℵi

σ2
z

σ2
z + σ2

ψn
sz

nt,

and using the definitions of κa, κ f and {κn}n∈ℵi
, the problem of a decision unit taking Ñ pricing

decisions within a firm that produces N goods is

min
κa,κ f ,{κn}n∈ℵi


|π̂11+π̂66(N−1)|

2

[(
2−2κa σ2

∆ + a2
22−2κ f σ2

f

)
Ñ +

(
a2

3 + (N − 1) a2
4

)
∑n∈ℵi

2−2κn σ2
z

]
−π̂16 (N − 1)

[(
2−2κa σ2

∆ + a2
22−2κ f σ2

f

)
Ñ +

(
2a3a4 + a2

4 (N − 2)
)

∑n∈ℵi
2−2κn σ2

z

]  .

subject to
κa + κ f + ∑

n∈ℵi

κn ≤ κ
(

Ñ
)

We make the distinction between Ñ and N because firms now are both production units and
decision units. A firm that has an integrated productive process for its N goods may still decide
to keep separated pricing processes such that a single decision unit decides Ñ < N prices. A
decision unit is endowed by information capacity κ

(
Ñ
)

which, as in the main text, may depend

on the number Ñ of prices that this decision unit must set. To do so, a decision unit must take into
account the cross effects of all prices set within the firm, which is captured by the optimal pricing
rules for p♦nt and p∗nt obtained above.

The first-order conditions for the allocation of attention are now

κ∗a = κ∗f + log2 (x̃1 (N)) ,

κ∗a = κ∗n + log2

(
x̃2 (N)

√
Ñ
)

, ∀n ∈ ℵi.

As in the main text, the economies of scope in information processing are captured by
√

Ñ in
the second condition. The interdependence of profits introduced here are captured in x̃1 (N) and
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x̃2 (N), which in the main text are parameters and here are functions of N:

x̃1 ≡
σ∆

a2σf
,

x̃2(N) ≡


(
|π̂11+π̂66(N−1)|

2 − π̂16 (N − 1)
)

σ2
∆

σ2
z

|π̂11+π̂66(N−1)|
2

(
a2

3 + (N − 1) a2
4

)
− π̂16 (N − 1)

(
2a3a4 + a2

4 (N − 2)
)


1
2

We then follow a similar logic than in Proposition 6. We discipline κ
(

Ñ
)

by assuming that

the information capacity of decision units depends on the number Ñ of decisions they take such
that they have no incentives to merge or delegate their pricing decisions. This assumption is
equivalent to assume that the frictional cost per good produced in a firm that produces N goods
is independent of the number Ñ of decisions taken by decision units within the firm. Under this
assumption, we can establish that

κ∗a

(
Ñ; N

)
= κ∗a (1; N) +

1
2

log2

(
Ñ + 2

3

)
+

1
2

log2

σ2
∆

(
Ñ; N

)
σ2

∆ (1; N)

 .

This expression is identical to Proposition 6, but its interpretation is more subtle. In an economy
where firms produce N goods, the attention paid to aggregate shocks is increasing in the number
Ñ of pricing decisions that single decision units must take within firms. As in the main text, this
result highlights the importance of economies of scope in information processing on the aggregate
predictions of the rational inattention model. In the literature, these economies of scope are shut
down by the assumption that firms produce only one good and decide only one price.

Finally, we drop the distinction between N and Ñ, that is, N = Ñ, to produce a version of
proposition 4. This assumption is consistent with the evidence that a single decision unit prices
all goods in the firm’s portfolio of goods.

If we arrange parameters such that firms’ attention to monetary shocks is invariant in N,
κ∗a (N) = κa, then the frictional cost at the optimum is

Cn (N) =

(
|π̂11 + π̂66 (N − 1)|

2
− π̂16 (N − 1)

)
(N + 2) 2−2κa σ2

∆

and the shadow price of information-processing capacity is

λ (N) = − β

1− β

(
|π̂11 + π̂66 (N − 1)|

2
− π̂16 (N − 1)

)
N log (2) 2−2κa σ2

∆

which are both increasing in N unless π̂16 > 0 and high enough. If this is the case, then the term

|π̂11 + π̂66 (N − 1)|
2

− π̂16 (N − 1)
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is decreasing in N. However, this expression also governs the complementarity in pricing (a1),
so this complementarity would be increasing in N. As in the main text, the complementarity in
pricing is deduced from aggregate data.

In addition, if this expression is decreasing in N, then the per-good expected profits of the firm
falls as N increases. This contradicts our assumption that the number of produced goods by firms
is exogenous and the observation that firms produce multiple goods.
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