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ABSTRACT

This paper studies the quantitative impact of microprudential bank regulations on bank lend-
ing and value metrics of e�ciency and welfare in a dynamic model of banks that are financed
by debt and equity, undertake maturity transformation, are exposed to credit and liquidity
risks, and face financing frictions. We show that: (a) there exists an inverted U–shaped rela-
tionship between bank lending, welfare, and capital requirements; (b) liquidity requirements
unambiguously reduce lending, e�ciency and welfare; and (c) resolution policies contingent on
observed capital, such as prompt corrective action, dominate in e�ciency and welfare terms
(non–contingent) capital and liquidity requirements.
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I. Introduction

The 2007–09 financial crisis has been a catalyst for significant bank regulation reforms, as the

pre-crisis microprudential regulatory framework has been judged inadequate to cope with large

financial shocks.1 The new Basel III framework envisions a raise in bank capital requirements

and the introduction of new liquidity requirements. At the same time, there is an active debate

regarding how to make prompt corrective action (PCA) policies and related bank closure rules

more e↵ective in reducing the costs of government’s bank bailouts under deposit insurance.2

Yet, the relatively large literature on microprudential bank regulation presents several models

that are mostly static and seldom evaluate microprudential regulation policies in terms of

e�ciency or welfare criteria.3 To our knowledge, there is no study o↵ering a joint assessment

of capital regulation, liquidity requirements, and PCA policies in a dynamic model of banks

which perform a well-defined intermediation function and deposits are insured. Formulating

such a model is the main contribution of this paper.

We study a partial equilibrium model in the tradition of the valuation approach pioneered

by Merton (1977) and Kareken and Wallace (1978), which we design consistently with standard

corporate finance set-ups adapted to the specifics of banks, as advocated in Flannery (2012).

The economy is driven by a macroeconomic (systematic) risk factor and financial markets are in

equilibrium. The banking system is composed of banks exposed to a systematic risk factor and

an idiosyncratic risk component. Investors’ preferences are represented by a stochastic discount

factor that is parameterized as in Jones and Tuzel (2013), which delivers countercyclical risk

1We follow Brunnermeier, Crockett, Goodhart, Persaud, and Shin (2009) in referring to microprudential
regulation as regulation that concerns the stability of individual financial institutions, as opposed to macropru-
dential regulation, which refers to regulation that concerns the stability of the financial system as a whole.

2The new Basel III framework is detailed in Basel III: A global regulatory framework for more resilient banks

and banking systems, Bank for International Settlements, Basel, June 2011. The reform would increase the
minimum common equity requirement from 2% to 4.5%. The Tier 1 capital requirement will increase from 4%
to 6%. In addition, banks will be required to hold a “capital conservation bu↵er” of 2.5% to withstand future
periods of stress bringing the total common equity requirements to 7%. Two new liquidity requirements are
planned to be introduced: a short–term liquidity coverage ratio, meant to ensure the survival of a bank for one
month under stressed funding conditions, and a long–term so–called net stable funding ratio, designed to limit
asset and liabilities mismatches. For a discussion of PCA reforms, see Government Accountability O�ce, Bank
Regulation: Modified Prompt Corrective Action Framework Would Improve E↵ectiveness, Washington D.C.,
June 2011.

3For a review of the literature, see Van Hoose (2007) and Freixas and Rochet (2008). Hellwig (2010) recently
observed that “the current (regulatory) system has no theoretical foundation, its objectives are ill–specified,
and its e↵ects have not been thought through, either for the individual bank or for the system.”
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premia. With this pricing kernel, we evaluate banks’ securities, and derive measures of bank

e�ciency and welfare.

Four features characterize our model. First, we analyze banks that dynamically transform

short–term liabilities into longer–term partially illiquid assets whose returns are uncertain.

This feature is consistent with banks’ special role in liquidity transformation, as banks in our

model can be viewed as a dynamic infinite–horizon version of the intermediaries studied by

Diamond and Dybvig (1983) and Allen and Gale (2007). Second, we consider banks whose

deposits are insured. Deposit insurance is introduced since a key asserted role of capital regula-

tion is the abatement of the excessive bank risk–taking arising from moral hazard under partial

or total insurance of its liabilities. Thus, there is a potential role for capital requirements, and

their e↵ectiveness in abating banks’ probability of default can be assessed. Third, banks can

be in financial distress. Such distress can be viewed as arising from market incompleteness

of the type analyzed by Allen and Gale (2004) as well as from asymmetric information fric-

tions that make equity issuance costly and make banks unable to raise uncollateralized debt.

These assumptions are meant to capture an environment in which liquidity requirements may

in principle have a role in minimizing the risk that illiquid but solvent banks become insolvent,

and face increased costs to raise funding in case of financial distress. Lastly, we assess the

impact of microprudential bank regulation in terms of value metrics of bank e�ciency and

welfare. The first metric is enterprise value, which is interpreted as the e�ciency with which

the bank carries out its maturity transformation function. The second metric, called “social

value,” proxies the contribution to welfare associated with banking activities, as measured by

the discounted expected value of banks to all bank stakeholders and the government. In the

sequel, we refer to this metric interchangeably as social value or welfare.

The optimal polices and metrics of e�ciency and welfare of unregulated banks are our

benchmarks. Relative to these benchmarks, we compare policies and value metrics of e�ciency

and welfare of banks subject to: a) capital requirements resembling risk–based Basel II-type

capital requirements; b) capital requirements and liquidity requirements resembling Basel-

III liquidity coverage ratios, and c) a PCA provision which implements capital requirements

through restrictions on banks’ payouts and a bank closure rule, both contingent on observed

levels of capital. We assess the impact of these bank regulations quantitatively by simulating
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the model under a set of calibrated parameters, with regulatory parameters mimicking current

regulations.

Our study contributes to a sparse literature analyzing microprudential bank regulation

in the context of dynamic models of banking. Calem and Rob (1999) study a model of a

bank of fixed size that chooses its return distribution, but is not allowed to issue equity.

Bhattacharya, Plank, Strobl, and Zechner (2002) and Peura and Keppo (2006) consider capital

regulation with bank closure rules implemented under banks’ random audits. Estrella (2004)

considers bank regulatory restrictions on value at risk, while Elizalde and Repullo (2007) and

Zhu (2008)) consider capital regulation under simple bank closure rules. However, di↵ering

from our work, none of these papers analyze bank regulations in a unified framework where

banks undertake maturity transformation under deposit insurance, can issue debt and equity,

are exposed to multiple sources of risks, and value metrics of e�ciency and welfare are evaluated

quantitatively.

Our study of microprudential regulation focuses on the properties of bank optimal policies

as related to the systematic risk factor, whose evolution proxies the business cycle, and on

optimal policies and metrics of e�ciency and welfare in steady state.

The analysis of bank optimal policies along the business cycle yields two main results.

First, under a mild capital requirement and the PCA, bank lending, debt, and capital ratios

are positively correlated with the systematic risk factor, while liquidity ratios are negatively

correlated with this factor. These correlations turn out not significantly di↵erent from the ones

exhibited by unregulated banks. In particular, these results suggest that risk–based capital

regulation does not necessarily enhance the pro–cyclicality of bank lending. Second, when

liquidity requirements are added to capital requirements, the positive correlation between

capital ratios and the systematic risk factor increases especially in upturns. This happens

because liquidity requirements force banks to use retained earnings to build up liquidity bu↵ers

rather than invest in lending. As a result, capital ratios become inflated in an upturn, but

they are not di↵erent from those of banks subject to capital regulation only in a downturn.

In essence, capital regulation and the PCA provide banks with incentives to create liquidity

bu↵ers in downturns. With mandatory liquidity requirements, however, banks are forced to

build these bu↵ers during upturns as well, thereby depressing lending.
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The steady state (or unconditional) analysis of the model delivers three key results. First,

there exists an inverted U–shaped relationship between bank lending and the stringency of

capital requirements. Such relationship translates into an inverted U–shaped relationship be-

tween welfare and the stringency of capital requirements. When capital requirements are mild,

banks find it optimal to fulfill them through an increase in lending. This increase allows banks

to build up capital through increased revenues and retained earnings. Relative to unregulated

banks, the quantitative increase in bank lending due to mild capital requirement is a notable

15% in our calibration. Banks’ probability of default is also lower than that of their un-

regulated counterparts, indicating that capital requirements are successful in reducing banks’

failures. However, if capital requirements become too stringent, then banks find it optimal

to fulfill them through a reduction of lending, since lending exhibits decreasing returns, and

building up equity through increased revenues and retained earnings becomes too costly. These

novel findings suggest the existence of optimal levels of bank–specific regulatory capital under

deposit insurance.

Second, liquidity requirements reduce bank lending, e�ciency, and welfare, with these

reductions increasing monotonically with their stringency. This occurs because liquidity re-

quirements severely hamper banks’ maturity transformation, forcing banks to use retained

earnings to increase bond holdings or reduce indebtedness, rather than investing them in lend-

ing. Moreover, when liquidity requirements are added to capital requirements, they also destroy

the e�ciency and welfare benefits of mild capital requirements, since bank lending, e�ciency

and social values are reduced relative to the bank subject to capital regulation only. Quan-

titatively, the declines in bank lending and value metrics of e�ciency and welfare associated

with liquidity requirements are large, namely in the order of 20%–25% in our calibration.

Third, a resolution procedure contingent on observed bank capitalization such as the PCA

dominates both capital and liquidity requirements in e�ciency and welfare terms. Recall that

deposit insurance introduces incompleteness in deposit contracts, as deposit payments are not

contingent on the realization of states of nature. This is ine�cient, as these contingencies

may be instrumental in attaining optimality in banking environments similar to ours (see, e.g.,

De Nicolò (1996) and Allen and Gale (1998)). Non-contingent capital and liquidity require-

ments are insu�cient for, or even detrimental to, attaining optimality. By contrast, the PCA

introduces contingencies based on observed equity. These contingencies substitute for the miss-

4



ing contingencies in deposit payments due to deposit insurance. Thus, resolution procedures

such as the PCA appear a necessary tool to achieve optimality of bank regulation.

Importantly, our results arise from the full dynamic modeling of bank management of

portfolio allocations and of retained earnings. Static or finite horizon models used extensively

in the banking literature can only partially capture how banks make their policy decisions

subject to the true shadow costs associated with regulatory requirements. This explains why

our results di↵er in some important respects from those obtained by static or finite short–

horizon models used extensively in the banking literature.

The remainder of this paper comprises four sections. Section II describes the model and

the decision problem of unregulated banks. Section III introduces microprudential bank regu-

lations. Section IV illustrates some basic trade-o↵s on optimal policies through a three–period

version of the model. Section V details the results of our simulation analysis of optimal poli-

cies and value metrics of e�ciency and welfare along the business cycle as well as in steady

state. Section VI concludes. The Appendix describes some properties of the bank’s dynamic

program, the computational procedures used to map systematic and idiosyncratic risk factors

onto banks’ credit and liquidity risks, and the algorithm used to solve the model.

II. The model

Time is discrete, the horizon is infinite, and a systematic (macroeconomic) risk drives risk–

premia in a financial market equilibrium. The systematic risk is denoted by u and follows an

autoregressive process

ut = uut�1 + �u"
u
t , (1)

where "ut is i.i.d. with a truncated standard Normal distribution, u is the autocorrelation

parameter such that |u| < 1, and �u is the conditional standard deviation.

Following Jones and Tuzel (2013), the preferences of the representative investor are sum-

marized by a one–period stochastic discount factor. Given the transition to state ut+1 from

the current state, ut, the stochastic discount factor is

M(ut, ut+1) = �e�gt"ut+1�
1
2g

2
t �

2
u , (2)
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where the state–dependent coe�cient of risk–aversion is defined as gt = g(ut) = exp(�1+�2u),

with 0 < � < 1, �1 > 0 and �2 < 1. Using this pricing kernel, we will later on evaluate banks’

securities.4

There is a finite set of heterogeneous banks indexed by j. Bank managers maximize share-

holders’ value, so there are no managerial agency conflicts. Banks receive a random stream

of short–term insured deposits, can issue risk–free short–term collateralized debt, and invest

in longer term risky productive assets and short–term bonds. Thus, banks are exposed to

credit and liquidity risks. As detailed below, these risks are assumed to be a�ne functions of a

systematic risk factor and a bank idiosyncratic risk factor. The bank idiosyncratic risk factor

vj follows an autoregressive process

vjt = vv
j
t�1 + �v"

j
t , (3)

where "jt is i.i.d. with truncated standard Normal distribution, and |v| < 1. We assume that

"ut+1 is independent of "jt+1 for all j’s, and that the latter is independent across banks. The

random vector st = (ut, vt) evolves according to a stationary and monotone Markov transition

function Q(st+1 | st) jointly defined by Equations (1) and (3). We denote S the state space of

s, where S is compact.5 In the remainder of this section, we drop the superscript j, as we will

be solving a representative bank problem.

A. Bank’s balance sheet

On the asset side, a bank can invest in a liquid, one–period bond (a T-bill), which yields a

constant rate rf , and in a portfolio of risky assets, called loans. We denote with Bt the face

value of the risk–free bond, and with Lt � 0 the nominal value of the stock of loans outstanding

in period t (i.e., in the time interval (t� 1, t]). Note that since Bt can have unrestricted sign,

4Other partial equilibrium approaches based on a reduced–form stochastic discount factor are Berk, Green,
and Naik (1999) and Zhang (2005). Di↵erently from other functional forms of stochastic discount factors, the
one assumed by Jones and Tuzel (2013) has the convenient property of having a state–independent risk–free
discount factor: in our case, the gross yield of a risk–free zero coupon bond is 1/Et [Mt+1], where Et [Mt+1] =

�e

� 1
2 g2t �

2
u · Et

h
e

�gt"
u
t+1

i
= �.

5As detailed in Appendix C, the support of each state variable u and v is a compact set discretized using
Rouwenhorst (1995) approach.
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we assume it is the net position in bonds, thereby allowing the bank to simultaneously borrow

or lend at the rate rf . Similarly to Zhu (2008), we make the following assumptions.

Assumption 1 (Revenue function). The total revenue from loan investment is given by Zt⇡(Lt),

where ⇡(Lt) satisfies ⇡(0) = 0, ⇡ > 0, ⇡0 > 0, and ⇡00 < 0.

This assumption is empirically supported, as there is evidence of decreasing return to scale

of bank investments.6 In our model loans can be viewed as including traditional loans as well

as risky securities. Zt = Z(ut, vt) is a random credit shock realized on loans in the same time

period, which captures variations in banks’ total revenues as determined by the systematic and

idiosyncratic shocks. Note that the choice variables Bt and Lt are set at the beginning of the

period, while Zt is realized only at the end of the period.

The maturity of deposits is set to one period. Bank maturity transformation is introduced

with the following

Assumption 2. A constant proportion � 2 (0, 1/2) of the existing stock of loans at t, Lt,

becomes due at t+ 1.

The parameter � < 1/2 indexes the average maturity of the existing stock of loans, which

is 1/��1 > 1.7 Thus, the bank is engaging in maturity transformation of short–term liabilities

into longer–term investments, as in Diamond and Dybvig (1983). Under Assumption 2, the

law of motion of Lt is

Lt = Lt�1(1� �) + It, (4)

where It is the investment in new loans if it is positive, or the amount of cash obtained by

liquidating loans if it is negative.

Convex asymmetric loan adjustment costs as in the Q-theory of investment (see, e.g., Abel

and Eberly (1994)) are introduced to capture banks’ information production costs about credit

quality through long–term banking relationships, with the following
6See for instance, Berger, Miller, Petersen, Rajan, and Stein (2005), Carter and McNulty (2005), Cole,

Goldberg, and White (2004).
7The (weighted) average maturity of existing loans at date t, assuming the bank does not default nor it makes

any adjustments on the current investment in loans, is
P1

s=0 s
�Lt+s

Lt
= 1

� � 1, as the residual loans outstanding
at date t+ s, s � 0, is Lt+s = Lt(1� �)s.
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Assumption 3 (Loan Adjustment Costs). The adjustment–costs function for loans is quadratic:

m(It) = |It|2
�

�{It>0} ·m+ + �{It<0} ·m�� , (5)

where �{A} is the indicator of event A, m+ > 0 and m� > 0 are the unit cost parameters, and

costs are deducted from profits.

According to Assumption 3, a bank incurs screening and monitoring per–unit costs m+

when it increases lending, and per–unit liquidation costs m� when loans are reduced. If

m� > m+, then there is costly reversibility, since a bank would face higher costs to liquidate

investments rather than expanding them. This would be consistent with costs of breaking

bank relationships higher than those associated with an expansion of lending to old as well as

new customers.8 The magnitude of these loan adjustment costs will be pinned down in our

calibration.

On the liability side, the bank receives a random amount of one-period deposits Dt+1 =

D(ut, vt) at the beginning of period t + 1, and this amount remains outstanding during the

period. Considering random and exogenous short–term deposits is an assumption that simpli-

fies banks’ optimal problem.9 The interest rate on deposits is rd  rf , where the di↵erence

between the rate on bonds and the remuneration of deposits captures implicit costs of payment

services associated with deposits. The change Dt+1�Dt is an exogenous liquidity shock driven

by the realizations of systematic and idiosyncratic shocks.

Deposits are insured according to the following

Assumption 4 (Deposit insurance). The deposit insurance agency insures all deposits. In the

event that a bank defaults on deposits and on the related interest payments, depositors are

paid interest and principal by the deposit insurance agency, which absorbs the relevant loss.

Under this assumption, with no change in the model, the depositor can be viewed as the

deposit insurance agency itself, whose claims are risky, while deposits are e↵ectively risk–free

from depositors’ standpoint. Thus, the di↵erence between the ex–ante yield on deposits and

8For a review of bank relationships, see Boot (2000). For the costs associated with breaking up bank
relationships as forgone monopoly rents due to holdup problems, see Rajan (1992) and Sharpe (1990). A
portion of liquidation costs m� could also be viewed as capturing fire sales costs arising from financial distress
(see, e.g., Acharya, Shin, and Yorulmazer (2011) and Hanson, Kashyap, and Stein (2011)).

9Banks’ increasing reliance on market funding in the past decade may suggest that modeling them as active
seekers of liquidity may be an important extension of the current model, as mentioned in our conclusions.
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the rate on bonds can be viewed as including a subsidy that the agency provides to the bank,

as the cost of this insurance is not charged to either banks or depositors.

To fund operations, a bank can issue one–period bonds and equity. Following Hennessy

and Whited (2005), we assume that a bank is constrained to issue fully collateralized bonds, so

that the bond yield is the rate rf . We denote Bt < 0 the notional amount of the bond issued

at t� 1 and outstanding until t. The collateral constraint is described below.

To summarize, at t�1 (i.e., at the beginning of period t), after the investment and financing

decisions have been made, a bank’s balance sheet equation is

Lt +Bt = Dt +Kt, (6)

where K denotes the ex–ante book value of equity, or bank capital. Note that B > 0 denotes

a positive risk–free investment (net of issued bonds), whereas B < 0 denotes the face value of

issued bond (net of risk–free investment).

B. Bank cash flow

Once Zt and Dt+1 are realized at t, the current state (before a decision is made) is summarized

by the vector xt = (Lt, Bt, Dt, ut, vt), as a bank enters date t with loans, bonds and deposits

in amounts Lt, Bt, and Dt, respectively. Prior to investment, financing and cash distribution

decisions, the total internal cash available to a bank is

Wt = W (xt) = yt � T (yt) +Bt + �Lt + (Dt+1 �Dt). (7)

Equation (7) says that total internal cash Wt equals earnings before taxes (EBT),

yt = y(xt) = ⇡(Lt)Zt + rfBt � rdDt, (8)

minus corporate taxes T (yt), plus the principal of one–year investment in bond maturing at t,

Bt > 0 (or alternatively the amount of maturing one–year debt, Bt < 0), plus the repayment

of maturing loans �Lt, plus the net change in deposits, Dt+1 �Dt.
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Consistently with current dynamic models of a non–financial firm (see, e.g., Hennessy and

Whited (2007)), corporate taxation is introduced with the following

Assumption 5 (Taxation). Corporate taxes are paid according to a convex function of EBT:

T (yt) = ⌧+max {yt, 0}+ ⌧�min{yt, 0}, (9)

where ⌧� and ⌧+, 0  ⌧�  ⌧+ < 1, are the marginal corporate tax rates in case of negative

and positive EBT, respectively.

The assumption ⌧�  ⌧+ is standard in the literature, as it captures a reduced tax benefit

from loss carryforward or carrybacks. Note that convexity of the corporate tax function creates

an incentive to manage cash flow risk, as noted by Stulz (1984).

Given the available cash Wt as defined in Equation (7) and the residual loans, Lt(1 � �),

a bank chooses the new level of investment in loans, Lt+1 and the amount of risk–free bonds

Bt+1 (purchased if positive, issued if negative). As a result, Equation (6) applies to Bt+1, Lt+1,

Dt+1, and both Lt+1 and Bt+1 remain constant until the next decision date, t+ 1.

These choices may di↵er according to whether a bank is, or is not, in financial distress.

If total internal cash Wt is positive, it can be retained or paid out to shareholders. If Wt is

negative, a bank is in financial distress, since absent any action, it would be unable to honor

part, or all, of its obligations towards either the tax authority, or depositors, or bondholders.

When in financial distress, a bank can finance the shortfall Wt by liquidating loans, by issuing

bonds (Bt+1 < 0), or by injecting equity capital. Overcoming this shortage of liquidity is

expensive because all these transactions generate either explicit of implicit costs. In liquidating

loans, a bank incurs the downward adjustment cost defined by Equation (5), bond issuance

is subject to a collateral restriction that can limit bank debt capacity, and underwriting costs

are paid when seasoned equity is o↵ered. We now present these latter two restrictions on the

financial channels of a bank.

Bond issuance is constrained by the following

Assumption 6 (Collateral constraint). If Bt < 0, the amount of bond issued by the bank must

be fully collateralized. In particular, the constraint is

Lt �m(�Lt(1� �)) + ⇡(Lt)Zd � T (ymin
t )� rd)Dt +Bt(1 + rf ) +Dd �Dt � 0, (10)
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where Zd is the worst possible credit shock (i.e., the lower bound of the support of Z), Dd is

the worst case scenario flow of deposits, and ymin
t = ⇡(Lt)Zd + rfBt � rdDt is the EBT in the

worst case end–of–period scenario for current Lt, Bt and Dt.

The constraint in Equation (10) reads as follows: the end–of–period amount Bt(1 + rf )

that the bank has to repay must not be higher than the after–tax operating income, ⇡(Lt)Zd�

rdDt�T (ymin
t ) in the worst case scenario, plus the total available cash obtained by liquidating

the loans, Lt � m(�Lt(1 � �)), plus the flow of new deposits in the worst case scenario, Dd,

net of the claim of current depositors, Dt. Available cash would then be the sum of the loans

that will become due, Lt�, plus the amount that can be obtained by a forced liquidation of the

loans, Lt(1� �) net of the adjustment cost m(�Lt(1� �)), as per Equation (5).10 An obvious

implication of this constraint is that a bank’s indebtedness will be always bounded above.

We denote with �(Dt) the feasible set for a bank when the current deposit is Dt, defined

as the set of (Lt, Bt) such that condition (10) is satisfied if Bt < 0, with no restrictions being

imposed when Bt � 0:

�(Dt) = {(Lt, Bt) |

Lt �m(�Lt(1� �)) +Dd + ⇡(Lt)Zd(1� ⌧min
t )

1 + rd(1� ⌧min
t )

+Bt
1 + rf (1� ⌧min

t )

1 + rd(1� ⌧min
t )

� Dt,

Bt < 0} [ {Bt � 0} , (11)

where ⌧min
t = ⌧+ if ymin

t > 0 and ⌧min
t = ⌧� if ymin

t < 0.

Similarly to Cooley and Quadrini (2001), we assume that issuing equity is costly (for

instance because of underwriting fees):

Assumption 7 (Equity issuance costs). A bank raises capital by issuing seasoned shares incur-

ring a proportional cost � > 0 on the value of new equity issued.

Observe that when banks are not in financial distress, total costs of equity issuance will be

just a proportion of the total amount of equity issued. When banks are in financial distress,

however, the cost of equity issuance will be increased by the additional amount that the bank

10By Assumption 9 introduced below, the support for deposits and credit shock processes is compact, implying
that the collateral constraint is well defined.
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has to raise owing to loan liquidation costs. Therefore, the more severe the financial distress,

the larger is the transaction cost incurred to raise equity financing.11

As a result of the choice of (Lt+1, Bt+1), the residual cash flow to shareholders at date t is

Ut = U(xt, Lt+1, Bt+1) = Wt �Bt+1 � Lt+1 + Lt(1� �)�m(It+1). (12)

If Ut is positive, it is distributed to shareholders (as either dividends or stock repurchases). If

Ut is negative, it equals the amount of newly issued equity inclusive of the higher cost due to

underwriting fees. Hence, the actual cash flow to equity holders is

et = e(xt, Lt+1, Bt+1) = max{Ut, 0}+min{Ut, 0}(1 + �). (13)

Figure 1 depicts the evolution of the state variables and the related bank’s decisions when

the bank is solvent.

Lastly, bank’s insolvency occurs according to the following

Assumption 8 (Insolvency). In the case of default, bank shareholders exercise the limited

liability option (i.e., equity value is zero), and the assets are transferred to the deposit insurance

agency, net of bankruptcy costs in proportion ⌘ > 0 of the size of a bank, proxied by the face

value of deposits, Dt. Right after default a bank is reorganized as a new entity endowed with

deposits Dt+1 and new capital Kt+1 = Du�Dt+1 � 0, where Du is the upper bound of deposit

process. The restructured bank invests initially only in risk–free bonds, Bt+1 = Du, so that

Lt+1 = 0. The capital injected by the government in the new bank is financed with general

tax proceeds.

Assumption 8 embeds three features. First, since default is irreversible, a new bank fi-

nanced with initial public capital is formed to replace a defaulted bank in order to preserve

intermediation services. Second, when the government intervenes and sets up a new bank,

it does not incur any underwriting cost, since no new shares are issued in the open market.

11Note that even though we make the simplifying assumption that the costs of debt and equity issuance costs
are independent, thus assuming some segmentation of equity and debt markets, the shadow costs associated with
these two forms of financing are not necessarily independent, since the shadow cost of debt will be determined by
the extent to which banks have spare debt capacity, while, as observed, total equity issuance costs are increasing
in the degree of financial distress.
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Lastly, the government is assumed to be able to finance any recapitalization of an individual

bank with general tax proceeds.12

The mapping of systematic and idiosyncratic risk factors onto credit and liquidity risks is

defined by the following

Assumption 9. The random vector Xt = (Zt, logDt+1) is an a�ne function of the state variable

st = (ut, vt):

Xt = µ+Nst, (14)

for given two–dimensional vector µ and two–times–two non–singular matrix N .

In particular, this assumption translates into the following law of motion for (Zt, logDt+1):

Zt = (1� Z)Z + ZZt�1 + ⇠Zt

logDt+1 = (1� D) logD + D logDt + ⇠Dt .
(15)

In the above equations, Z is the persistence parameter, �Z is the conditional volatility, and

Z is the long–term average of the credit shock; D is the persistence parameter for the deposit

process, �D is the conditional volatility, and D is the long–term level of deposits. The error

terms (⇠Zt , ⇠
D
t ) are related to ("ut , "t) and have correlation coe�cient ⇢. The parameters of the

process (Zt, Dt+1) are estimated on data. In Appendix B we detail how the parameters of the

process (ut, vt) are related to the parameters of the process (Zt, Dt+1).

12Observe that no default can occur if Bt < 0 owing to the collateral constraint. From Equation (12), the
cash flow to shareholders is

[Lt �m(It+1) + ⇡(Lt)Zt � T (yt) +Bt(1 + rf )�Dt(1 + rd) +Dt+1]�Bt+1 � Lt+1.

The collateral constraint implies

Lt �m(�Lt(1� �)) + ⇡(Lt)Zd � T (ymin
t ) +Bt(1 + rf )�Dt(1 + rd) +Dd � 0,

and therefore, the part in square brackets in the cash flow expression is non–negative. Hence, the cash flow to
equity holders can be negative only if Lt+1 is significantly higher than Bt+1. However, if the bank defaults, such
a policy will be undone (and set at levels Bt+1 = Du, Lt+1 = 0, as specified in Assumption 8), and shareholders
will avoid default to get a positive value of their claim. Therefore, in the model, default of a non–regulated
bank may occur only when Bt � 0.
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C. The unregulated bank program and the valuation of securities

Let E denote the market value of bank’s equity. Given the state, xt = (Lt, Bt, Dt, ut, vt),

bank’s equity value is the result of the following program

E(xt) = max
{(Li+1,Bi+1)2�(Di+1),i=t,...,T}

Et

2

4

T
X

i=t

e(xi, Li+1, Bi+1)
i
Y

j=t

M(xj�1, xj)

3

5 , (16)

where Et[·] is the expectation operator conditional on Dt, on the state variables at t, (ut, vt),

and on the decision (Lt+1, Bt+1); M(xt, xt+1) is a discount factor defined in Equation (2)

(which depends only on the component ut of xt), such that M(xt�1, xt) = 1 at t; (Li+1, Bi+1)

is the decision at date i, for i = t, . . ., and T is the default date. Because the model is stationary

and the Bellman equation involves only two dates (the current, t, and the next one, t+1), we

can drop the time index t and use the notation without a prime for the current value of the

variables, and with a prime to denote next–period value of the variables. The value of equity

satisfies the following Bellman equation

E(x) = max

⇢

0, max
(L0,B0)2�(D0)

�

e(x, L0, B0) + E
⇥

M(x, x0)E(x0)
⇤ 

�

. (17)

Compactness of the feasible set of a bank and standard properties of the value function are

described in Appendix A.

When a bank is solvent, the value of equity satisfies the following Bellman equation:

E(x) = max
(L0,B0)2�(D0)

�

e(x, L0, B0) + E
⇥

M(x, x0)E(x0)
⇤ 

. (18)

We denote with (L⇤(x), B⇤(x)) the optimal policy when the bank is solvent. When it is

insolvent, shareholders exercise the limited liability option, which puts a lower bound on E at

zero. The default indicator function is denoted �(x).
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We solve Equation (17) to determine the value of equity and the optimal policy, including

the optimal default policy, �, as functions of the current state, x. We denote ', the state

transition function based on the optimal policy:

'(x) =

0

B

B

@

L⇤

B⇤

D0

1

C

C

A

(1��) +

0

B

B

@

0

Du

D0

1

C

C

A

�. (19)

Equation (19) says that the new state is (L⇤, B⇤, D0) if the bank is solvent, and (0, Du, D
0)

if the bank defaults. In case of default, a new bank is started endowed with seed capital

Du �D0 and deposits, D0, and a cash balance Du, and no loans. This new bank will revise its

investment (together with the financing) policy in the following decision dates.

The end–of–year cash flow from current deposits, Dt+1, for a given realization of the ex-

ogenous state variables, (Zt+1, Dt+2), and on the related optimal policy, is

f(xt+1 | '(xt+1)) = Dt+1(1 + rd)(1� ⌘�(xt+1)). (20)

Hence, the ex–ante fair value of newly issued deposits at t, from the viewpoint of the deposit

insurance agency (i.e, incorporating the risk of bank’s default), is

F (xt) = Et [M(xt, xt+1)f(xt+1 | '(xt+1))] = Dt+1(1 + rd) (1� ⌘P (xt)) , (21)

where P (xt) = Et [M(xt, xt+1)�(xt+1)] is the price of the relevant default contingent claim.

Dropping the dependence on the calendar date,

F (x) = D0(1 + rd) (1� ⌘P (x)) . (22)

D. Value metrics of bank e�ciency and welfare

A standard valuation concept is the market value of bank assets E(x)+f(x)�B�, where f(x) =

D(1+rd)(1�⌘�(x)) from Equation (20), B� = min{B, 0}, which includes the contribution of

(cash–equivalent) one-period bondsB to bank’s value, since bond investment helps reducing the

potential costs triggered by high cash flows volatility. However, this definition of market value
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does not capture the role of banks as maturity transformers of liquid liabilities into longer–

term productive assets (loans). One of the key economic contributions of banks identified

in the literature is their role in e�ciently intermediating funds toward their best productive

use (see, e.g., Diamond (1984) and Boyd and Prescott (1986)). Banks play no such role if

they just raise funds to acquire risk–free (cash–equivalent) bonds. A suitable metric of bank

e�ciency is the enterprise value of a bank, defined as EV (x) = (E(x) + f(x)�B�) � B+,

with B+ = max{B, 0}. The enterprise value is thus the market value of equity plus the value

of deposits net of cash balances, or plus short–term debt, capturing a bank’s ability to create

“productive” intermediation.13 Because B = B+ + B�, the enterprise value of the bank can

be also written as EV (x) = E(x) + f(x)�B.

Our welfare metric of bank activities, called “social value,” is defined as the sum of the

values of banks’ activities to the government and to all banks’ stakeholders. In essence, this

metric measures the contribution to welfare of bank activities. The welfare metric is given by:

SV (x) = E(x) +D(1 + rd)�B +G(x), (23)

where D(1 + rd) is the book value of current deposits, and G(x) is the value of the net payo↵

to the government, defined by the recursive equation

G(x) = (1��(x))
�

T (y0) + E[M(x, x0)G(x0)]
�

��(x)
�

⌘D(1 + rd) +K 0� (24)

with �(x) denoting the default indicator at x. Equation (24) reads as follows: so long as

the bank is solvent (�(x) = 0), taxes are collected, where E[M(x, x0)G(x0)] is the present dis-

counted value of future tax proceeds. If the bank is insolvent (�(x) = 1), then the government

incurs direct bankruptcy costs ⌘D, and injects new equity capital K 0 = Du �D0.14

13For the use of enterprise value as a metric of e�ciency in the context of dynamic models of non–financial
firms see, e.g., Gamba and Triantis (2008) and Bolton, Chen, and Wang (2011).

14Note that if the net payo↵ to the government is positive along a given path, the tax proceeds collected
from a bank in the past are su�cient to cover the recapitalization of a new bank. Otherwise, the shortfall of
the government will be covered by tax proceeds raised from other agents in the economy. In either case the
government value metrics of Equation (24) captures the net cost of banks to the government. Equivalently, the
welfare metric is the sum of enterprise value gross of bankruptcy costs, plus G(x), which is net of bankruptcy
costs incurred by the government.
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III. Bank regulation

In this section we define capital requirements, liquidity requirements, and a policy of prompt

corrective action, illustrating their implications for the feasible choice set of a bank.

A. Capital requirement

In our model the capital ratio is the ratio of the book value of capital over the book value

of loans. Basel II–type capital regulation establishes a lower bound Kd on the book value of

equity, set by the regulator as a function of bank’s risk exposure at the beginning of the period.

In particular, this requirement is a weighted average of risks associated to a bank’s exposure

of assets of di↵erent riskiness.15 Since our model has just one composite risky asset, we set

the weight applied to loans equal to 100%. Thus, in our setting the required capital Kd is

at least a proportion k of loans outstanding at the beginning of the period, L, or Kd = kL.

This requirement is equivalent to constraining net worth to be positive ex–ante. Given the

definition of bank capital in Equation (6), under the capital requirement, the bank’s feasible

choice set is

⇥(D) = {(L,B) | (1� k)L+B � D} . (25)

When we compare the feasible choice set under the collateral constraint in Equation (11)

with the feasible set under the capital requirement, in general neither �(D) ⇢ ⇥(D) nor

⇥(D) ⇢ �(D) in a proper sense. Figure 2 shows how the capital requirement is related to the

collateral constraint for a specific set of parameters.

If a bank is short–term borrowing, B < 0. For a given D, the capital constraint results in

a restriction of the bank’s choice set if ⇥(D) ⇢ �(D). Alternatively, if a bank is short–term

lending, B � 0. Then, the capital requirement restricts the choice set if L < D/(1�k) because

it forces the bank to have a fairly large cash balance B, while the constraint is not binding if

L � D/(1� k).

The Bellman equation for the equity value of a currently solvent bank under a capital

requirement is given by Equation (18), the only di↵erence being a feasible set �(D0) \ ⇥(D0)

15The specific norm is in International Convergence of Capital Measurement and Capital Standards, Bank for
International Settlements, Basel, June 2006, Part 2: The First Pillar - Minimum Capital Requirements, Ia The
Constituents of Capital A. Core Capital (Basic Equity or Tier 1).
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in place of �(D0), since the bank is forced to comply ex–ante with the capital requirement.

However, at the end of each period, when the credit shock on existing loans Z 0 and the new

deposit D0 are realized, a bank may still face default risk if the innovations of the state variables

are particularly unfavorable.

B. Liquidity requirement

Current Basel III regulation introduces a mandatory liquidity coverage ratio as a defense against

the potential onset of severe liquidity stress. According to this requirement, banks should hold

a stock of high quality liquid assets such that the ratio of this stock over the predicted net cash

outflows over a 30-day time period in the case of acute stress–as defined by the regulator–is

not lower than a certain percentage threshold.

In our model, the stock of high quality liquid assets over the net cash outflows over a

bank’s planning period is given by the total cash available at the end of the period over the

total net cash flow in the worst case scenario for both credit and liquidity shocks. Formally,

this liquidity coverage ratio should be not lower than a level ` defined by the regulator, or

�L+ Zd⇡(L)� T (ymin) +B(1 + rf )

D(1 + rd)�Dd
� `. (26)

Hence, the feasible set for a bank complying with the liquidity requirement is

⇤(D) =

⇢

(L,B) | �L+ `Dd + Zd⇡(L)(1� ⌧min)

`(1 + rd)� ⌧minrd
+B

1 + rf (1� ⌧min)

`(1 + rd)� ⌧minrd
� D

�

. (27)

Thus, the liquidity ratio is the end–of–period total cash available in the worst case scenario

over the end–of–period net cash outflows due to a variation in deposits.

Figure 2 shows a comparison of the liquidity requirement to the collateral constraint for

a specific choice of parameters. The liquidity constraint may turn out to restrict the bank’s

feasible choice set relative to the collateral constraint for a wide range of parameter values.

It is apparent that when considered together, capital and liquidity constraints may create

considerable restrictions on a bank’s feasible choices.
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C. Prompt Corrective Action (PCA)

An important objective of bank regulation is the minimization of losses of the deposit insurance

fund. This is achieved by PCA policies, which force banks to liquidate assets or suspend

payouts contingent on pre–specified observed levels of capitalization, or close a distressed bank

if capitalization is lower than a given threshold.

Correspondingly, we define a PCA rule contingent on observed ex–post bank capital. For-

mally, ex–post bank capital in period t (as opposed to K, which is the ex–ante bank capital

in period t), is

V = L+B �D + y � T (y) = K + y � T (y).

The regulator implements PCA according to the following

Assumption 10 (PCA). If at time t the ex–post bank capital satisfies the ex-ante capital ratio,

i.e., V � kL, no action is taken. If the ex-post bank capital is such that 0 < V < kL, the deposit

insurer forces the distressed bank to restore capital in the current period by replenishing the

shortfall kL�V and to satisfy the regulatory ratio next period. If the ex–post bank capital is

negative (V  0), the bank is closed at time t and taken over by the deposit insurance agency.

The PCA thus establishes that banks with a positive ex–post capital, but lower than that

satisfying the regulatory ratio, are forced to finance the shortfall by liquidating assets, raising

collateralized debt, suspending payouts or issuing new equity. From Equation (12) we have

U = y � T (y) +K �K 0 �m(I) = V �m(I)�K 0.

When V < kL, a bank is forced to finance the shortfall kL�V , as well as to set the capital for

next period to the required level, so that: K 0 = V �m(I)�U � kL0+(kL�V ). On the other

hand, when the ex-post bank capital is negative, the closure rule applies: a bank is expropriated

from shareholders and is transferred to the government. New capital K 0 = Du�D0 is injected

net of the positive value of the bank’s capital, E(x) > 0. In both cases, the government agency

does not incur bankruptcy costs (⌘ = 0).

Note that the PCA actually implements a contingent enforcement of a capital requirement.

When triggered, such requirement is more stringent than the ex-ante capital requirement for

two reasons. First, the PCA implements a more restrictive rule on ex–ante book capital

19



contingent on certain (low) realizations of ex-post capital. Second, the risk of expropriation

of shareholders based on the realization of negative ex-post capital imposes a higher shadow

cost on the current capital requirement. For these reasons, we consider the PCA as a proper

regulation in itself, so that we can compare the impact of a contingent capital requirement

plus a closure rule, as implemented by the PCA just defined, with (non–contingent) capital

requirements.16

For banks subject to the PCA, the Bellman equation of the solution of the bank’s program

when the bank is solvent (i.e., Vt is positive) is as in Equation (18). Under the PCA closure

rule, the value of the net payo↵ to the government is defined by the recursive equation

G(x) = (1��(x))
�

T (y0) + E[M(x, x0)G(x0)]
�

��(x)
�

K 0 � E(x)
�

, (28)

with �(x) denoting the indicator of the event V < 0 at x.

As before, the government is assumed to be able to finance any recapitalization shortfall of

an individual bank with general tax proceeds. However, in the specific case V  0 and the debt

issuance, B < 0, is fully collateralized, bond holders, (old) depositors, and the government are

paid in full.17 In this case, the financing shortfall (net obligations minus available liquid funds)

of the bank is (1 + rd)D � (1 + rf )B + T (y) � (D0 + ⇡(L)Z). A portion of loan portfolio is

liquidated and the proceeds match (net of loan liquidation costs) the shortfall:

L� L0 �m(L(1� �)� L0) = (1 + rd)D � (1 + rf )B + T (y)� (D0 + ⇡(L)Z).

By solving this equation with respect to L0, a new level of loans, L⇤, is determined, which

is positive because the bank satisfies the collateral constraint. Clearly, in this reorganization

procedure, an indirect cost is still incurred because of loan liquidation costs, m(L(1� �)�L⇤).

16In practice, however, PCA–type policies apply to banks that are already subject to other regulations, such
as capital requirements. In the sequel, we will also consider the impact of the PCA when implemented together
with capital and liquidity requirements.

17This is because the collateral constraint in Equation (10) is

L+ ⇡(L)Zd + (1 + rf )B � (1 + rd)D � T (ymin) � m(�L(1� �))�Dd,

the closure rule V  0 gives

L+ ⇡(L)Z + (1 + rf )B � (1 + rd)D � T (y)  0,

and the left–hand side of the second inequality is higher than the corresponding side of the first inequality.
Therefore, all stakeholders can be paid by liquidating the assets.
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IV. Regulations in a simplified version of the model

To illustrate in a simple way some trade–o↵s on bank optimal policies implied by capital and

liquidity requirements, and to point out the restrictions implied by assuming banks are short–

lived, we collapse our model to three periods. Now t+ 1 is the decision date, t+ 2 is the final

date, and the bank initial conditions are determined at t.

We make the following simplifying assumptions. The discount factor is deterministic, so

M(xt, xt+1) = �. There are no taxes, no adjustment costs, deposits are deterministic and

constant (Dt = Dt+1 = Dt+2 = D > 0), � = 0, �  (1 + rf )�1, and rd = rf . Furthermore,

we assume a simple two–point credit shock distribution: ZH with probability p 2 (0, 1), and

Zd otherwise, where Zd is such that Zd = ZLLt+1

⇡(Lt+1)
, with ZH > 0 � ZL � �1. Under these

assumptions, the collateral constraint for Bt+1 < 0, denoted with (C), the capital constraint,

denoted with (K), and the liquidity constraint, denoted with (L), are:

Bt+1 �
rf

1 + rf
D � 1 + ZL

1 + rf
Lt+1, (C)

Bt+1 � D � (1� k)Lt+1, (K)

Bt+1 �
`rf

1 + rf
D � ZL

1 + rf
Lt+1. (L)

Recall that by Equation (13), the cash flow to shareholders is Ut = Wt +Lt �Bt+1 �Lt+1

if Ut > 0, and Ut(1 + �) if Ut < 0, as the bank issues new equity at a cost � � 0.

The bank chooses (Lt+1, Bt+1) to maximize

et + �Et [et+1] = (Wt + Lt)(1 + �)� (1 + �� �p(1 + rf ))Bt+1 � (1 + �)Lt+1

+ �
⇥

p
�

ZH⇡(Lt+1)� (1 + rf )D + Lt+1
�

+ (1� p)max
�

0, (1 + ZL)Lt+1 + (1 + rf )Bt+1 � (1 + rf )D)
 ⇤

. (29)

Since 1 + � > �p(1 + rf ), it is optimal to maximize debt (Bt+1 < 0), because profits are

increasing in debt in the good state, while in the bad state losses are bounded to be non-

negative by limited liability. This implies that at most one of the constraints (C), (K), and

(L) will be binding.

21



The unregulated bank maximizes Equation (29) subject to constraint (C). Inserting (C)

into Equation (29), the max{·} term in the third line of Equation (29) vanishes. Therefore,

the optimal loan level Lc
t+1 satisfies the (necessary and su�cient) first order condition

�pZH⇡0(Lc
t+1) = 1 + �� �p� (1 + �� �p(1 + rf ))

1 + ZL

1 + rf
. (30)

Suppose now that the capital constraint (K) is tighter than (C), that is, (K) is binding.

The third line of Equation (29) becomes max{0, (1 + ZL � (1 + rf )(1� k))Lt+1}.

The optimal loan investment when (K) is binding, defined by Lk
t+1, satisfies:

�pZH⇡0(Lk
t+1) = 1 + �� �p� (1 + �� �p(1 + rf ))(1� k). (31)

By comparing the right–hand sides of Equations (30) and (31), it is straightforward to verify

that Lk
t+1 > Lc

t+1 when (1+ZL) < (1+ rf )(1� k), owing to the strict concavity of function ⇡.

Observe that the inequality (1 + ZL) < (1 + rf )(1 � k) holds for relatively low levels of

k, but it is reversed for values of k close to one. Thus, there exists a threshold value k̂ such

that Lk
t+1 < Lc

t+1 for all k > k̂. In other words, under a su�ciently mild capital constraint

(or k < k̂), lending is higher than in the unregulated case. Thus, when (K) is binding,

depending on parameters, lending could be higher than in the unregulated case under mild

capital requirements, even though borrowing is lower (Bk
t+1 > Bc

t+1 holds when constraint

(K) is more stringent than (C)). This is because the capital requirement lowers the return

of holding cash relative to the expected return on loan investment. In sum, there may exist

parameter configurations such that the relationship between loans and capital requirements is

inverted U-shaped. Interestingly, this result may (but needs not) hold for any � � 0.

Consider now the addition of a liquidity requirement to the capital requirement and suppose

that the liquidity constraint (L) is tighter than (K) at the optimal choice Lk
t+1, that is, (L) is

binding. Replacing (L) in Equation (29), the max{·} term turns into max{0, Lt+1 + (rf (` �

1)� 1)D}.

If at the optimal solution Lt+1 + (rf (`� 1)� 1)D  0, then L`
t+1 satisfies

pZH⇡0(L`
t+1) = rf � (1� p)ZL. (32)

22



Otherwise, L`
t+1 satisfies

pZH⇡0(L`
t+1) = rf � ZL. (33)

Comparing Equation (32) with Equation (30), it is easy to verify that the right hand side

of Equation (30) is always strictly lower than that of Equation (32). By strict concavity of

the revenue function, this implies that L`
t+1 < Lk

t+1: the liquidity constraint unambiguously

reduces lending relative to the bank subject to a (binding) mild capital constraint. Comparing

Equation (30) with Equation (33), the same result is obtained if p is close to 1. Thus, there

may exist parameter configurations such that the liquidity constraint reduces lending relative

to the capital constraint.

Summing up, this simplified version of our model illustrates cases –depending on parameters–

in which an inverted U-shaped relationship with the stringency of capital regulation may arise,

and where a liquidity requirement may reduce lending. However, these conclusions may, or

may not, hold under complex dynamic trade-o↵s arising from the fully dynamic version of our

model. Contrary to the short finite–horizon bank just described, the full dynamics takes into

account bank management of retained earnings and optimal portfolio allocations under the

true shadow costs of regulatory restrictions. Importantly, in our model the default decision of

a bank is endogenous, rather than being exogenously imposed.

V. The impact of bank regulation

In this section we illustrate the results of the calibration and simulation of the model. Sub-

section A describes a set of benchmark parameters calibrated using selected statistics from

U.S. banking data, some previous studies, and regulatory and tax parameters. Subsection B

analyzes optimal bank policies along the business cycle, while Subsection C analyzes the steady

state and its welfare properties.

A. Calibration

Our calibration is based on three sets of parameters, summarized in Table I. The first set

comprises parameters of the credit shock and deposits process. We estimated the VAR in
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Equation (15) using U.S. yearly aggregate time series for the period 1983-2009 for the entire

universe of banks included in the Federal Reserve Call Reports constructed by Corbae and

D’Erasmo (2011). The shock process was proxied by the return on bank investments before

taxes, given by the ratio of interest and non-interest revenues to total lagged assets. As can

be seen in Table I, the shock process exhibits high persistence and the correlation with the

process of (log) deposit is negative. Estimates of the autocorrelation process for (log) deposit

produced estimates closed to unity, indicating the possibility that such process has a unit root.

To guarantee convergence of the fixed point algorithm, we set this parameter equal to 0.98.

The second set of parameters is taken from previous research. The parameters of the

stochastic process of the macroeconomic risk factor u, u and �u are set equivalent, on an

annual basis, to the quarterly values of 0.98 and 0.007 reported in Jones and Tuzel (2013).

The parameters of the stochastic discount factor, �1 = 3.22 and �2 = �15.30, are also taken

from Jones and Tuzel (2013). The annual discount factor � is 0.95, equal to that used by Zhu

(2008) and Cooley and Quadrini (2001). The rate, rf , is set to 2.5% and the deposit rate, rd,

is set to 0. These values are consistent with the average e↵ective cost of funds documented in

Corbae and D’Erasmo (2011). With regard to corporate taxation, recall that the tax function

is defined by the marginal tax rates, ⌧+ and ⌧�, for positive and negative income, respectively.

Since we do not explicitly consider dividend and capital gain taxation for shareholders, or

interest taxation for depositors and bond holders, the two marginal rates for corporate taxes

need to be considered net of the e↵ect of personal taxes. For this reason we choose ⌧+ = 15%,

which is close to the values determined by Graham (2000) for the marginal tax rate. The

marginal tax rate for negative income is ⌧� = 0 to allow for convexity in the corporate tax

schedule.

Furthermore, the proportional bankruptcy cost is ⌘ = 0.10, This is a value close to the

(structural) estimate of 0.104 based on data for U.S. non–financial firms found by Hennessy

and Whited (2007). Since this estimate is based on non–financial firms, it can be viewed as

a lower bound for bankruptcy costs incurred in the financial sector. The annual percentage

of reimbursed loan is 20%, so that the average maturity of outstanding loans is 4 years, in

line with the assumption made by Van den Heuvel (2009). The underwriting cost for seasoned

equity issuance is 6%, not far from the estimates provided by Altinkilic and Hansen (2000)

and Hennessy and Whited (2005).
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The revenue function from loan investment is ⇡(L) = L↵ as in Zhu (2008), and our base

case value for ↵ is set equal to 0.90, which is a value in line with that used in other studies.

Lastly, we obtain m+ = 0.04 and m� = 0.05 by matching two moments from empirical data.

The first moment is the average ratio of bank credit over deposits, where bank credit includes

loans and other financial investments. From our dataset, this ratio is 1.271. The second

moment we match is bank’s book leverage, defined as deposits plus other financing liabilities

over loans and other financial investments. In the data, the average book leverage is 0.89.

The corresponding unconditional moments from a Monte Carlo simulation of the model with

the selected parameters are respectively 1.1153 and 0.9043. Hence, our calibration delivers

per–unit loan liquidation costs higher than per–unit costs of loan extensions (m� > m+).

The third set of parameters is based on regulatory prescriptions. These are the ratio of

capital to risk–weighted assets and the liquidity coverage ratio. The benchmark capital ratio

k is set equal to 4%, while the benchmark liquidity ratio is set equal to ` = 20%.

The relationships between the credit and liquidity shocks a↵ecting the banking system, the

systematic (macroeconomic) risk factor and the idiosyncratic factor are derived in Appendix B

and illustrated in Figure 3. As expected, credit risk is positively correlated with the systematic

risk factor, as credit quality and loan demand increase in an upturn, and decline in a downturn.

On the other hand, liquidity risk, as captured by the dynamics of insured deposits, turns out

to be mildly negatively correlated with the systematic risk factor. This pattern is consistent

with an increase in savings in a downturn, as insured deposits are a component of savings,

and with the reallocation of agents’ portfolios towards safer assets. Lastly, the correlations

between idiosyncratic risk and credit and liquidity risks are fairly small, slightly negative for

the former, and almost null for the latter.

B. Bank policies along the business cycle

The correlations between optimal bank policies and the systematic (macroeconomic) risk factor,

viewed as a proxy measure of the business cycle, are summarized in Figure 4 and Tables II-

IV. Five cases are considered: unregulated banks, banks subject to capital requirements only,

subject to both capital and liquidity requirements, subject to the PCA only, and subject to

the PCA and capital requirements. Specifically, Figure 4 depicts lending and debt policies for
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a given set of states centered around the steady state (unconditional) median values.18 Tables

II-IV are based on Monte Carlo simulation (the design of the simulation exercise is detailed in

Appendix C). In these tables we report bank lending, capital ratios, and liquidity ratios for

solvent banks sorted against quartiles of total risk (the sum of systematic and idiosyncratic

shocks, u+v). In the top panel of each table the sorting of these variables is based on the whole

sample. The influence of the business cycle is obtained by sorting variables conditional on the

state of the economy being in a business cycle upturn (with u = 0.0352), or in a downturn

(with u = �0.0352).

B.1. Unregulated banks

As shown in Figure 4 and Table II, lending and debt are positively correlated with the system-

atic shock. Recall that such a shock translates into a positive credit shock, Z, and a negative

liquidity shock, since deposits are negatively correlated with the systematic shock. Thus, a

positive systematic shock prompts banks to increase lending, but also increases their need

of financing when deposits become relatively scarce, inducing them to increase debt as well.

Thus, a positive correlation between lending, debt, and the systematic shock is a feature of

banks’ optimal policies independently of bank regulations.

As shown in Table III, capital ratios are positively correlated with the systematic shock,

owing to lower deposits in an upturn (deposits are a negative component of the ratio), while

changes in loans and short–term debt almost o↵set each other.19 By contrast, as shown in

Table IV, liquidity ratios are negatively correlated with the systematic shock, because in a

downturn debt declines and deposits increase. The opposite holds in an upturn.

18The analysis is centered at the steady states for both deposits (D = 2) and credit shock (Z = 0.0717), while
choosing B = 0 to avoid the impact of current liquidity, and L = 4.7, which is close to the unconditional median
of L for several versions of the model. As a result, bank’s capital is K = 2.7.

19Note that (book) capital ratios may be negative for some realizations of systematic and idiosyncratic shocks.
Since there is no restriction on book capital and, as is standard in the literature, the (concave) loan function
has the book value of loans as an input, in the presence of debt a bank can be operating as long as the market
value of its capital is positive, even though its book capital can be negative.
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B.2. Capital regulation

Similarly to unregulated banks, banks under the base capital requirement exhibit a positive

correlation between the systematic shock, lending, and debt (see Figure 4). However, banks

invest more in loans and choose less debt than their unregulated counterparts for all realizations

of the systematic shock. This implies that a bank subject to a mild capital requirement finds

it optimal to satisfy it by increasing loans at a rate proportionally higher than the capital ratio

coe�cient (see Equation (25)), rather than by reducing lending. In essence, a mild capital

requirement reduces the rate of return on short–term debt relative to the expected returns

on loans, prompting a higher investment in loans. In turn, higher revenues generated by

higher lending are employed in the building up of capital. Interestingly, in a downturn banks

subject to a mild capital requirement reduce lending less than unregulated banks. This implies

that risk–based capital regulation does not necessarily amplify the contraction of lending in a

downturn.

These mechanisms are reflected in the evolution of the capital and liquidity ratios along the

cycle. A mild capital requirement encourages banks to build–up capital bu↵ers in upturns to

reduce the risk of costly loan liquidations in downturns: this is witnessed by the lower positive

correlation between capital ratios and the systematic shock relative to unregulated banks (see

Table III). On the other hand, under a mild capital requirement, the negative correlation

between liquidity ratios and the systematic shock is reduced relative to unregulated banks.

This occurs because in a downturn banks use retained earnings and the financial resources

freed by the reduction in lending to strengthen their liquidity position. In other words, a mild

capital requirement contributes to strengthen banks’ liquidity position in a downturn.

B.3. Liquidity requirements

The addition of a liquidity requirement to a capital requirement changes bank optimal policies

significantly. A shown in Figure 4 and Table II, banks’ lending and debt shrink for every

realization of the systematic shock, with the reduction in debt being the most dramatic. Thus,

the liquidity requirement turns out to be far more restrictive than the capital requirement,

forcing banks to reduce both debt and lending. Moreover, relative to the case of banks subject
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to capital regulation only, the positive correlation between lending and the systematic shock

is drastically reduced.

The dominant tightness of the liquidity requirement is also reflected in the evolution of

capital ratios along the business cycle. As shown in Table III, capital ratios become inflated,

being pushed up by a relatively large net bond holding (the numerator of the ratio) and a lower

investment in loans (the denominator of the ratio). Note that the mechanism driving this result

is totally di↵erent from that induced by capital regulation: in that case, the capital ratio is

pushed up by retained earnings generated by higher revenues from lending, while in this case,

the capital ratio is mainly pushed up by a significant reduction of lending. Therefore, under

a liquidity requirement the positive correlation between the capital ratio and the systematic

shock increases significantly. This increased correlation is the result of banks being forced

to reduce lending significantly in an upturn. In a downturn, however, capital ratios are not

significantly di↵erent from those attained by banks subject only to capital regulation.

As shown in Table IV, liquidity ratios are significantly higher than the prescribed level

(` = 20%), since the (shadow) cost associated with the liquidity constraint forces banks to

hold precautionary cash to avoid hitting that constraint. On the other hand, the negative

correlation between the liquidity ratios and systematic shocks is reduced, as witnessed by a

comparison of the values under an upturn and a downturn. As a result, in a downturn the

increase in liquidity holdings does not lead to liquidity ratios significantly di↵erent from those

attained by banks subject to capital regulation only.

B.4. PCA

Under the PCA, the correlations between lending, debt, capital, and liquidity ratios are similar

to those under capital regulation. However, as shown in Table III, the correlation of the capital

ratio with the systematic shock is higher than that under capital regulation, primarily owing

to capital ratios significantly lower in downturns. The lower capital ratios under the PCA in a

downturn indicate that banks will implement a lower reduction in lending, while keeping open

their options to either liquidate loans or issuing equity in the event the realization of current

earnings is unfavorable. In essence, in a downturn the PCA appears to provide banks some

flexibility which is unavailable under an (unconditional) ex-ante capital requirement. In the
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next section, we will show that the closure rule embedded in the PCA limits banks’ incentives

to abuse such flexibility.

B.5. Summary

Our analysis of banks’ optimal policies along the business cycle delivers two results relevant

to the issue of whether bank regulation enhances the procyclicality of lending, as captured in

our model by the correlation between lending and the systematic risk factor.

First, relative to unregulated banks, mild capital requirements and the PCA reduce the pos-

itive correlation between lending, debt, and capital ratios, as well as the negative correlation

with liquidity ratios, relative to unregulated banks. Specifically, in an upturn banks increase

lending at a rate consistent with the build–up of capital bu↵ers through retained earnings

generated by higher lending revenues, while in a downturn they reduce debt by building up

liquidity bu↵ers. Perhaps not surprisingly, these results di↵er from those obtained in static or

semi–static models that do not allow banks to issue equity or debt and to manage retained

earnings. For example, procyclicality is enhanced by capital requirements in the model of Re-

pullo and Suarez (2013), who consider short–lived banks that do not manage retained earnings,

and are not allowed to issue either debt or equity.

Second, the addition of liquidity requirements to capital requirements reduces the procycli-

cality of lending and debt, but also increases the procyclicality of capital ratios. Yet, capital

bu↵ers in downturns are not significantly di↵erent from those resulting from banks subject

only to capital regulation. In essence, the reduction in lending procyclicality is skewed toward

upturns, significantly hampering lending.

C. Bank policies, e�ciency and welfare in steady state

We now turn to the analysis of bank optimal policies and the metrics of e�ciency and welfare

in steady state obtained through Monte Carlo simulation of the numerical solution of the

bank’s optimal program (see Appendix C for details). Table V presents statistics of policies,

assets and liabilities, welfare and e�ciency metrics, and default frequency, when banks are not

regulated, when they are subject to capital requirements only, and when they are subject to
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both capital and liquidity requirements. Table VI presents a comparison of the same statistics

for banks under the PCA, and for banks subject to the PCA superimposed on capital and

liquidity requirements. In Table VII we report the same statistics under perturbed parameters

of underwriting costs, loan liquidation costs, and the degree of bank’s maturity transformation.

C.1. Capital requirements

Compared to the unregulated case, Table V shows that banks operating under the base case

capital requirement (k = 4%) lend more and have less debt. Remarkably, the steady state

percent increase in lending relative to the unregulated case is a significant 15%. Since deposits

are not a control variable and follow the same exogenous process of the unregulated case, the

bank can fund these additional loans by reducing payouts and increasing retained earnings and

equity issuance. Specifically, from Equations (12) and (13), given the choice of Lt+1 and Bt+1,

more earnings are retained from Wt, or shares are issued (incurring underwriting costs) if Ut

is negative.

As a result of these optimal policies, banks also hold a higher capital ratio than that

prescribed by regulation. This is because the positive shadow price of the capital constraint

forces banks to manage their earnings and investments so as to maintain a capital bu↵er

that minimizes the risk that the constraint is hit. In such an event, it would become too

expensive to either liquidate loans or inject new equity capital to comply with the regulatory

restriction. These findings reflect the well-known result that constraints may not be binding on

equilibrium paths (see, e.g., Ayagari (1995)). Importantly, capital regulation results in a bank

with a lower probability of default than in the unregulated case. Thus, a capital requirement

is unambiguously successful in abating default risk under deposit insurance.

With regard to the e�ciency and welfare metrics, a mild capital requirement results in

a small decrease in banks’ enterprise value (about 1%), which is o↵set by an increase in

government value. The higher government value stems from higher tax receipts accruing from

a larger taxable profit base, as well as from a lower probability of bank default, which reduces

expected bailout costs. As a result, the welfare metrics is larger than that of the unregulated

case.
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However, the benefits of capital regulation can turn into welfare–reducing costs if such

regulation becomes too stringent. An increase in the capital requirement (from k = 4% to

k = 12%) results in reductions of lending, debt, as well as in the e�ciency and welfare metrics.

Recall that banks satisfy a relatively mild capital requirement by an increase in loans financed

with a combination of debt and retained earnings. But when the capital requirement becomes

too stringent, such a strategy becomes too costly. In such a case, payouts need to be signifi-

cantly reduced since it may become too expensive either to raise new equity capital owing to

equity issuance costs, or to reduce investment owing to loan liquidation costs in unfavorable

states of nature. Thus, banks are compelled to reduce both lending and debt. Thus, there

exists an inverted U–shaped relationship between lending and welfare associated with capital

requirements. This further suggests the existence of optimal levels of regulatory capital as a

function of banks’ characteristics. In other words, under a mild capital requirement, banks op-

timally choose to increase lending so as to generate higher revenues supporting the building up

of capital; if capital requirements are too high, however, banks find it optimal to satisfy them

by reducing lending. This latter reduction also impacts negatively on welfare, as it reduces

both the enterprise and government values of bank activities.

C.2. Liquidity requirements

When liquidity requirements are added to capital requirements, Table V shows that lending

contracts dramatically relative to the bank subject only to the base capital requirement (by

about 26%). The e�ciency and welfare metrics declines significantly as well (by about 20%).

As noted earlier, the liquidity requirement generates over–bloated banks’ book capital ratios.

Such high ratios may be viewed as an indication of safe but very ine�cient banks.

Furthermore, an increase in the capital requirement (from k = 4% to k = 12%) for the

bank already subject to a liquidity requirement (` = 20%), implies only small positive changes

in lending and the e�ciency and welfare metrics. Similarly, an increase in the liquidity re-

quirement (from ` = 20% to ` = 50%, with constant k = 4%) implies relatively small changes

in lending, e�ciency and welfare. These results are due to the significant stringency of the

liquidity requirement, which makes banks’ optimal policies relatively insensitive to changes in

capital requirements.
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C.3. PCA

As shown in Table VI, the PCA prompts banks to increase lending relative to the unregulated

case, as in the case of banks subject to capital regulation only. Importantly, however, the PCA

also achieves higher lending, capital, and higher levels of the e�ciency and welfare relative to

banks subject only to a capital requirement, even though default (in the form of bank closure)

is more frequent. Notably, our calibration implies that immediate capital restoration when

0 < V < kL is triggered only 0.27% of the times, so banks rarely incur this additional burden.

This is because the potential costs generated by the PCA to banks generate a shadow cost of

violation large enough to prompt banks to choose policies that minimize the probability of these

ex–post violations. In essence, the PCA de facto implements a contingent transfer of control

of banks from the shareholders to the deposit insurance authority that allows shareholders to

get the upside potential of investment, while giving the controlling authority a way to mitigate

the welfare costs of liquidations and bailouts.

The superiority of the PCA over (non–contingent) capital and liquidity requirements stems

in part from the resolution of the di�culties introduced by the absence of contingencies in

deposit payments due to deposit insurance. In set–ups similar to ours, when demandable

deposits are either fully contingent on the realization of the states, as in De Nicolò (1996), or

contingencies are introduced allowing deposit runs, as in Allen and Gale (1998), an optimal

banking allocation is achieved. Deposit insurance eliminates state contingency, and non–

contingent capital and liquidity requirements do not replace the lack of contingencies of deposit

payments. By contrast, the PCA is a state contingent intervention scheme that substitutes

for the lack of contingencies in demandable deposits, with these contingencies being induced

now by a regulator acting as a representative of depositor. Under deposit insurance, state

contingencies are moved to states of the world in which there is still equity value remaining.

It is interesting to assess the impact of the PCA depending on whether a bank is hit by

a systematic or idiosyncratic shock. In the sample generated by our simulation, we find that

the PCA is never triggered for any realization of the idiosyncratic shock when the systematic

shock is positive. Moreover, conditional on a negative systematic shock, when the idiosyncratic

shock is positive, the PCA is triggered with a low frequency (0.08%), whereas it occurs more

frequently when such a shock is negative (0.19%). Therefore, the PCA is triggered di↵erently
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according to weather shocks are systematic or idiosyncratic: bank closures and restructuring

occur more often in the case of an adverse systematic shock, whereas forced recapitalizations

and restructuring of payouts are more frequent in the case of an adverse idiosyncratic shock.

Finally, when the PCA is introduced in addition to banks subject to capital requirements,

banks are forced to hold a capital ratio higher than k in all states, and this requirement is

made more demanding by the PCA when V falls short kL. Relative to the case of capital

requirement only, the addition of the PCA results in small reductions in lending, e�ciency

and welfare metrics. Moreover, the marginal e↵ect of PCA is negligible when applied to banks

that are already subject to capital and liquidity requirements, owing primarily to the dominant

stringency of liquidity requirements, which nullify the benefits of the PCA.

C.4. The role of issuance costs, loan liquidation costs, and the degree of maturity

transformation

Here we examine the impact of capital and liquidity requirements under di↵erent parameters

of underwriting costs, loan liquidation costs, and the degree of bank’s maturity transformation.

In Table VII we consider: no issuance costs, as well as an increase of � from the benchmark

value 0.06 to 0.2; an increase of loan liquidation costs, m�, from 0.05 to 0.08; a reduction of

�, the parameter gauging maturity transformation, from 20% to 10%, indicating a longer loan

maturity (from 4 years to 9 years).

To what extent do underwriting costs contribute to determine the inverted U-shaped re-

lationship between capital requirements and lending and welfare? On the one hand, with no

issuance costs, Table VII shows that the inverted U–shaped relationship between lending, wel-

fare, and capital requirements is strengthened. This is perhaps not surprising, since banks can

cope with distress at a lower cost and find it optimal to increase lending even under higher

levels of capital requirements. On the other hand, increasing issuance costs relative to the

benchmark generates a decline in lending, enterprise, and social values, but this decline is

relatively small. Note that these results hold for banks subject to capital requirements only, as

well as for banks subject to both capital and liquidity requirements. Thus, the role of issuance
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costs in determining the costs of more stringent capital requirements appears relatively less

important than the management of retained earnings.20

To what extent do di↵erent levels of loan liquidation costs change the impact of capital

and liquidity requirements? When we increase the relevant parameter (m�) in our simulation,

we find that lending, enterprise, and social values do not change significantly relative to the

base case. This result reveals again the key role of retaining earnings in supporting bank

optimal choices: when facing higher loan liquidation costs, a bank would respond by increasing

lending and retained earnings, with the latter increase aimed at minimizing the probability

of incurring in large loan liquidation costs in the event of distress. However, the addition of

liquidity requirements to capital requirements still results in lower lending and a worsening of

the e�ciency and welfare metrics, as in all previous simulations. Therefore, the benefits of

mild capital requirements may be even more important when loan liquidation costs are high.21

Lastly, the role of liquidity requirements in hampering the maturity transformation function

of banks is starkly illustrated by the case in which banks have a longer loan maturity. Under

capital requirements only, banks with a larger maturity mismatch undertake a more intense

maturity transformation, as witnessed by higher levels of lending relative to banks with a milder

maturity mismatch. When liquidity requirements are added to capital requirements, however,

the reduction in lending, e�ciency and welfare is significantly greater than that witnessed banks

whose loan maturity is shorter under capital requirements only. Again, liquidity requirements

turn out to be the more detrimental to lending, e�ciency, and welfare, the more intense is

banks’ transformation of short–term liabilities into longer–term assets.

20We run simulations treating equity issuance costs as undervaluation costs. In this case, while underpricing
of newly issued equity a↵ects current shareholders, it benefits new shareholders because they can buy a share in
the bank’s capital for a lower price. Therefore, these costs are not deadweight costs but just a wealth transfer
from old to new shareholders, and are added to the welfare function. The qualitative results we obtain are
essentially the same as those just presented.

21As a robustness check, we considered loan liquidation costs as fire sales costs, since these costs have been
identified as one of the key sources of systemic risk in the financial crisis of 2007–09 (see, e.g., Kashyap, Brener,
and Goodhart (2011)). The welfare criterion now includes these costs, since fire sales a↵ect negatively current
shareholders, but benefit investors who can buy assets at low fire sales prices. While all other statistics remain
unchanged, the social values are higher than those obtained in Table V, but still hump–shaped.
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C.5. Summary

Mild capital requirements induce banks to increase lending, resulting in higher welfare relatively

to unregulated banks, but these welfare gains are destroyed when requirements become too

strict. This result is consistent with the finding of relatively high welfare costs associated

with capital regulation by Van den Heuvel (2008). Thus, attaining the benefits of capital

requirements is not a free lunch. The resulting inverted U-shaped relationship between lending,

welfare, and the level of capital requirements is also robust to di↵erent levels of underwriting

costs and loan liquidation costs.

When liquidity requirements of the type currently envisioned in regulatory proposals are

added to capital requirements, they undo the benefits of mild capital requirements, since

they prompt significant reductions in lending, e�ciency, and welfare. In essence, liquidity

requirements constraint banks’ maturity transformation function, forcing them to under-invest

in lending and over-invest in unproductive liquidity bu↵ers.

Importantly, the PCA as a contingent resolution procedure dominates (unconditional) cap-

ital and liquidity requirements in terms of lending, e�ciency and welfare, since it provides

stronger incentives for banks to manage risk relative to requirements set ex-ante. This is ac-

complished by introducing contingencies based on observed equity, which e↵ectively replace

those contingencies in deposit payments that might improve bank e�ciency and welfare, but

that are ruled out by deposit insurance.

The above findings remain essentially unchanged under di↵erent configurations of key pa-

rameters. In sum, PCA-type policies may be best (and mild capital requirements second best)

under a wide range of business strategies chosen by banks, as well as with regard to di↵erent

configurations of credit and liquidity risks they may be exposed to. By contrast, high capi-

tal requirements and liquidity requirements place non–contingent restrictions on bank optimal

policies that produce no gain in terms of lending, e�ciency, and welfare.
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VI. Concluding remarks

This paper has formulated a dynamic model of banks under deposit insurance that are ex-

posed to credit and liquidity risks arising from systematic and idiosyncratic shocks, undertake

maturity transformation, invest in risky loans, issue secured debt, costly equity, and may face

financial distress. In this environment, we assessed the impact of capital regulation, liquidity

requirements, and the PCA on banks’ optimal policies and value metrics of bank e�ciency and

welfare.

Along the business cycle, capital requirements do not appear to increase lending procycli-

cality, while the addition of liquidity requirements to capital requirements reduces lending

procyclicality. In particular, capital requirements give banks incentives to accumulate liquid-

ity bu↵ers in a downturn. In steady state, we uncovered an inverted U–shaped relationship

between bank lending, welfare, and regulatory capital ratios, suggesting the existence of opti-

mal bank-specific levels of regulatory capital. By contrast, liquidity requirements significantly

reduce lending as well as bank e�ciency and welfare, as a result of the severe repression of the

maturity transformation function of bank intermediation. Importantly, the implementation

of contingent capital requirements with a bank closure rule embedded in the PCA dominates

non–contingent capital and liquidity requirements in terms of lending, bank e�ciency, and

welfare.

Overall, these results support the argument by Admati, DeMarzo, Hellwig, and Pfleiderer

(2011) that capital requirements can be a substitute for liquidity requirements. Yet, they do

not support proposals of sharp increases in the stringency of capital requirements. Rather, the

dominance of the PCA over non–contingent regulatory prescriptions supports the desirability

of recent proposals to introduce contingencies in the regulation of capital structure, such as

those advanced in the pioneering work by Flannery (2005), Flannery (2009), and more recently

by Hart and Zingales (2011).

We should note that in our model bank risk choices arise from the dependence of the

volatility of cash flows on the level of lending owing to the concavity of the loan revenue

function. A risk shifting problem would just arise if equity holders decided to liquidate loan

and distribute dividends. This would be a decision that would potentially shift NPV value

from debt holders and depositors to equity holders. However, the collateral constraint prevents
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such a behavior. Thus, in our model a bank’s choice of risk is not a choice of a loan revenue

distribution.

Our set-up therefore di↵ers from set–ups such as those analyzed by Blum (1999) and

Calem and Rob (1999). In these set–ups a bank makes a choice of a loan revenue distribution.

Incentives for risk shifting might be induced by capital requirements when banks are poorly

capitalized and the costs of issuing equity are too high or prohibitive, leading banks to “gamble

for resurrection.” A similar finite–horizon set–up characterizes the model by Calomiris, Heider,

and Horeova (2012), who show examples where liquidity requirements might be a substitute for

capital requirements. Yet, these results are obtained under the assumption of an exogenously

given choice of default in the final period, so that a positive bond investment (as a “liquid”

component of capital) that could be used to avoid default to preserve the (continuation) value of

a bank is ruled out, since there is no continuation value. In other words, default is exogenous.

In Calem and Rob (1999) dynamic (infinite–horizon) model, bank risk–taking increases if

capital requirements are su�ciently high. Yet, in their model equity issuance is ruled out and

the size of a bank is fixed, so that banks cannot liquidate assets. Extending our model by

allowing banks to choose a loan revenue distribution might be useful to assess the robustness

of the foregoing conclusions. In any event, a contingent resolution policy such as the PCA

would likely eradicate at the source the potential risk-shifting problems pointed out by these

contributions.

Our quantitative results are in line with some empirical findings. As noted earlier, the result

that optimal capital ratios are always higher than required ratios along equilibrium paths is

a straightforward implication of bank optimal policies derived in a fully dynamic framework,

and is consistent with the empirical evidence presented in Flannery and Kasturi (2008) and

Flannery (2005).

The procyclicality of lending induced by capital requirements has been mainly examined

in the context of macroeconomic models with either short–lived banks, or long–lived banks

whose optimal policies have been proxied by ad–hoc capital adjustment rules (see Panetta

and Angelini (2009) and Angelini, Enria, Neri, Panetta, and Quagliarello (2010) for reviews

of this literature). Recent central banks’ e↵orts to quantify the impact of increases in capital

requirements and the introduction of liquidity requirements on banks’ lending and the real
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economy have produced mixed results as well.22 Kashyap, Stein, and Hanson (2010) review

the empirical literature on U.S. banks, and assess the impact of increases in capital requirements

through regression analyses, finding relatively large reductions in lending in the transition to a

steady state with higher capital requirements, but small reductions of lending in steady state.

Yet, many of the results of this empirical literature are obtained with reduced-form statistical

models, rather than informed by a “structural” model of the type characterizing our approach.

Our calibration results suggest that implementing non-trivial increases in capital require-

ments and the introduction of liquidity requirements may be associated with significant reduc-

tion of lending, as well as with e�ciency and welfare costs. The estimated magnitude of these

costs appears significantly larger than that obtained with currently available reduced–form

estimates. Designing and introducing resolution procedures with appropriate contingencies re-

lated to observed levels of capital, such as the PCA, might be a necessary step to move towards

optimal bank regulation.

22Basel Committee on Banking Supervision (2010) evaluates the long–term economic impact of the proposed
capital and liquidity reforms using a variety of models, including dynamic stochastic general equilibrium models.
This study finds that the net economic benefits of these reforms, as measured as a reduction in the expected
yearly output losses associated with a lower frequency of banking crises, are positive for a broad range of capital
ratios, but become negative beyond a certain range. Yet, these quantitative assessments are surrounded by
notable uncertainty. Moreover, measurement errors in the computation of net economic benefits also arise from
the use of banking crises classifications which record government responses to crises rather than adverse shocks
to the banking system (see Boyd, De Nicolò, and Loukoianova (2010)).

38



References

Abel, A. B., and J. C. Eberly, 1994, A Unified Model of Investment under Uncertainty, Amer-

ican Economic Review 85, 1369–1384.

Acharya, V., S. H. Shin, and T. Yorulmazer, 2011, Crisis Resolution and Bank Liquidity,

Review of Financial Studies 24, 2121–2165.

Admati, A., P. DeMarzo, M. Hellwig, and P. Pfleiderer, 2011, Fallacies, Irrelevant Facts and

Myths in the Discussion of Capital Regulation: Why Bank Capital is Not Expensive, Stan-

ford GSB Research Paper No. 2065.

Allen, F., and D. Gale, 1998, Optimal Financial Crises, Journal of Finance Vol. LIII, pp.

1245–1284.

Allen, F., and D. Gale, 2004, Financial Intermediaries and Markets, Econometrica 72, 1023–

1061.

Allen, F., and D. Gale, 2007, Understanding Financial Crises. (Oxford University Press New

York, NY).

Altinkilic, O., and R. S. Hansen, 2000, Are there economies of scale in underwriting fees?

Evidence of rising external financing costs, Review of Financial Studies 13, 191–218.

Angelini, P., A. Enria, S. Neri, F. Panetta, and M. Quagliarello, 2010, Prociclicality of Capital

Regulation: Is It a Problem? How to Fix It?, Banca d’Italia Occasional Paper.

Ayagari, S.R., 1995, Optimal Capital Income Taxation with Incomplete Markets, Borrowing

Constraints, and Constant Discounting, Journal of Political Economy 103, 1158–1175.

Berger, A. N., N. H. Miller, M. A. Petersen, R. G. Rajan, and J. C. Stein, 2005, Does Function

Follow Organizational Form? Evidence from the Lending Practices of Large and Small

Banks, Journal of Financial Economics 76, 237–269.

Berk, Jonathan B., Richard C. Green, and Vasant Naik, 1999, Optimal Investment, Growth

Options, and Security Returns, Journal of Finance 54, 1553–1607.

Bhattacharya, S., M. Plank, G. Strobl, and J. Zechner, 2002, Bank capital regulation with

random audits, Journal of Economic Dynamics and Control 26, 1301–1321.

39



Blum, J., 1999, Do Capital Adequacy Requirements Reduce Risks in Banking?, Journal of

Banking and Finance 23, 755–771.

Bolton, P., H. Chen, and N. Wang, 2011, A unified Theory of Tobin’s Q, Corporate Investment,

Financing and Risk Management, Journal of Finance 66, 1545–1578.

Boot, A., 2000, Relationship Banking: What Do We Know?, Journal of Financial Intermedi-

ation 9, 7–25.
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Appendix

A. Properties of the unregulated bank program

Compactness of the feasible set of the bank can be shown as follows. Given the strict concavity

of ⇡(L), there exists a level Lu such that ⇡(Lu)Zu � rLu = 0, where r (which can be either rf

or rd) is the cost of capital of the marginal dollar raised either through deposits or short–term

financing.23 Thus, any investment L > Lu would be unprofitable. This establishes an upper

bound on the feasible set of L, given by [0, Lu] for some Lu. With an upper bound on L, and

because the stochastic process D has compact support, the collateral constraint sets a lower

bound Bd (i.e., an upper bound on bond issuance). Specifically, this is obtained by putting

Dd in place of Dt and Lu in place of Lt in Equation (10).

Lastly, an upper bound on B can be obtained assuming that the proceeds from risk–free

investments made by the bank are taxed at a higher rate than the personal tax rate and that

floatation costs are positive. Specifically, assume that the current deposits D are all invested

in short–term bonds, B, with no investments in loans. To further increase the investment in

bonds of one dollar, the bank must raise equity capital. A shareholder thus incurs a cost 1+�,

where � is the floatation cost. This additional dollar is invested at the rate rf , so that at the

end of the year, the proceeds of this investment that can be distributed are (1 + rf (1� ⌧+)).

Alternatively, the shareholder can invest 1 + � in a risk–free bond, obtaining (1 + �)(1 + rf ).

Because ⌧+ � 0 and � � 0, then (1+�)(1+ rf ) � (1+ rf (1� ⌧+)), there is no incentive of the

bank to have a cash balance larger than D as long as either � or ⌧+ are strictly positive. The

foregoing argument is made for simplicity. If the shareholders are taxed on their investment

proceeds at a rate ⌧p, they obtain (1+�)(1+ rf (1� ⌧p)) from their investment in the risk–free

asset. If ⌧p  ⌧+, then (1 + �)(1 + rf (1 � ⌧p)) > (1 + rf (1 � ⌧+)), and the bank has no

incentive to increase the investment in risk–free bonds beyond D. Moreover, if floatation costs

associated with equity issuance are strictly increasing in the amount issued, no assumption

about di↵erential tax rates are needed to establish an upper bound on B. In conclusion, the

feasible set of the bank can be assumed to be [0, Lu]⇥ [Bd, Bu].

23Deposits and short–term bonds are the cheapest form of financing. If the same dollar were raised by issuing
equity, the cost would be higher owing both to the higher cost of equity capital and to floatation costs. In this
case the upper bound would be even lower.
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Furthermore, standard arguments establish the existence of a unique value function E(x) =

E(L,B,D, u, v) that satisfies Equation (18) and is continuous in all its arguments. The exis-

tence and uniqueness of the value function E follow from the Contraction Mapping Theorem

(Theorem 3.2 in Stokey and Lucas (1989)). The continuity of E follow from the continuity of

e and the Monotonicity of the Markov transition function of the process (u, v).

B. The dynamics of deposits and credit shocks

Introducing a more compact notation, the joint dynamics of the systematic and idiosyncratic

risk is described by equation

st = Hst�1 + ⇣t, (34)

where
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0
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and ("ut , "t) are standard Normal variates with truncated support. The dynamics of (Zt, logDt+1)

in (15) is

Xt = X +KXt�1 + ⇠t (35)
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In the bank’s model, to achieve the stochastic structure in Equation (35), we have intro-

duced the transformation (14), X = µ+Ns, where µ = (µ1, µ2), and N is a matrix

N =

0

@

⌫Z,u ⌫Z,v

⌫D,u ⌫D,v

1

A
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such that detN 6= 0. While the bank’s program will be solved (and simulated) in the state

space S, we will use the above a�ne transformation to calculate the values of the variables Z

and D.

The parameters of the stochastic discount factor are taken from Jones and Tuzel (2013).

Therefore, we are left with eight unknown parameters describing the stochastic structure of the

model: µ1, µ2, v, �v, ⌫Z,u, ⌫D,u, ⌫Z,v, ⌫D,v. From empirical data we calculate seven moment

conditions: Z, logD, Z , �Z , D, �D, ⇢, as reported in Table I. In what follows, we derive

the equations that relate the unknown parameters to the moment conditions. From Equation

(14), we have s = N�1 (X � µ). Replacing this in Equation (34), after some manipulations we

have

Xt =
�

I �NHN�1
�

µ+NHN�1Xt�1 +N⇣t.

This dynamics is equal to the dynamics in Equation (35) if the following conditions are simulta-

neously true: µ =
�

I �NHN�1
��1

X, NHN�1 = K, NTN 0 = ⌃. Given the second equation,

µ = (I �K)�1X, so that the solution for µ = (µ1, µ2), is found in closed form relative to

known moments conditions. The second and third conditions set seven equations (three from

NTN 0 = ⌃, given that the two matrices are symmetric, and four from NHN�1 = K) in the

remaining six unknowns. We find a least square solution to this overidentified system of seven

non–linear equations. Using the parameter values in Table I in the paper, with the additional

parameters for the macroeconomic risk, u = 0.98, �u = 0.007, the robust solution obtained

with a global optimization routine is µ1 = 0.0717, µ2 = 0.6931, v = 0.901992, �v = 0.009548,

⌫Z,u = 1.660682, ⌫D,u = �2.988127, ⌫Z,v = �0.798126, and ⌫D,v = 0.044359. Although the

model is overidentified, the proposed calibration procedure does a good job at matching a

number of moments of the process X, from Equation (15), with moments of X̂ = µ + Ns,

where s is the process in Equation (34) with the above estimated parameters. This is can be

seen in Table VIII.

To understand the relationship that this calibration generates between the variables (u, v)

and the variables (Z,D), we plot the values of Z and logD resulting from a numerical approx-

imation of the dynamic of (u, v) in Figure 3. The variable logD appears strongly counter–

cyclical, and depends only marginally on the idiosyncratic component, whereas the credit

shocks Z are pro–cyclical and negatively correlated with idiosyncratic risk.
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C. Numerical solution and simulation of the valuation problem

Given the dynamics of (u, v), we solve the program

E(x) = max

⇢

0, max
(L0,B0)2A(D)

�

e(x, L0, B0) + E
⇥

M(x, x0)E(x0)
⇤ 

�

,

where function e(x, L,B), is defined in Equation (13), and A(D) is the case specific feasible

set defined di↵erently for the unregulated and the regulated case. The solution of the Bellman

equation above is obtained numerically by a value iteration algorithm. The valuation model

for bank’s equity is a continuous–decision and infinite–horizon Markov Decision Processes.

The solution method is based on successive approximations of the fixed point solution of the

Bellman equation. Numerically, we apply this method to an approximate discrete state-space

and discrete decision valuation operator.24

The variables u and v are discretized using the numerical approach proposed by Rouwen-

horst (1995), as the stochastic process of systematic risk is quite persistent. The feasible

interval for loans, [0, Lu], and for the face value of bonds, [Bd, Bu] (with Bd < 0 < Bu), is set

so that they are never binding for the equity maximizing program. We discretize [Ld, Lu], to

obtain a grid of nL points

eL =
n

eLj = Lu(1� �)j | j = 1, . . . , nL � 1
o

[ {LnL = 0}

such that, if the bank chooses inaction, the loan’s level is what remains after the portion �L

has been repaid. The interval [Bd, Bu] is discretized into nB equally–spaced values, making up

the set eB. To keep the notation simple, we also denote x = (s, L,B) the generic element of

the discretized state.

For the set of parameters in Table I, we use Lu = 18, Bd = �7 and Bu = 3. Given the

properties of the quadrature scheme, we solve the model using only 5 points for u, 7 points for

v. However, we need to allow for many more points when discretizing the control variables, so

we choose nL = 29, and NB = 34. The tolerance for termination of the value function iteration

is set at 10�5.
24See Rust (1996) or Burnside (1999) for a survey on numerical methods for continuous decision infinite

horizon Markov Decision Processes.
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Given the optimal solution, we can determine the optimal policy and the transition function

'(x) in Equation (19) based on the arg-max of equity value at the discrete states x. The optimal

policy is used to generate 50 simulated economies, each characterized by a specific path of the

systematic shock, and comprising 2,000 independent paths/banks for the idiosyncratic shock,

for 100 periods (years). In particular, given the simulated dynamics of the state variables

(u, v) by application of the recursive formula in Equation (15), we start from Z(0) = Z and

D(0) = Dd. Then, setting a feasible initial choice L(0) = 0 and B(0) = Du (so that the

initial bank capital is Du �Dd), we apply the transition function ' along each simulated path

recursively. If a bank defaults at a given step, then the current depositors receive the full value

of their claim, while the deposit insurance agency pays the bankruptcy cost. Afterwards, a

seed capital Du �Dd is injected in the bank. Together with deposit Dd, the total amount Du

is momentarily invested in bonds, B = Du, while L = 0. Then the “new” bank follows on the

same path by applying the optimal policy. To limit the dependence of our results on the initial

conditions, we drop the first 50 steps.
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Z annual persistence of the credit shock 0.88
�Z annual conditional std. dev. of the credit shock 0.0139
Z unconditional average of the credit shock 0.0717
D annual persistence of the log of deposits 0.98
�D annual conditional std. dev. of the log of deposits 0.0209
D unconditional average of deposits $2
⇢ correlation between log–deposit and credit shock -0.85

� time discount factor 0.95
�1 constant price of risk parameter 3.22
�2 time varying price of risk parameter -15.30

rf annual rate on bonds 2.5%
rd annual rate on deposits 0%
⌧+ corporate tax rate for positive earnings 15%
⌧� corporate tax rate for negative earnings 0%
� annual percentage of reimbursed loan 20%
⌘ bankruptcy costs 0.10
� flotation cost for equity 0.06
↵ return to scale for loan investment 0.90
m+ unit price for loan investment 0.04
m� unit price for loan fire sales 0.05

k percentage of loans for capital regulation 4%
` liquidity coverage ratio 20%

Table I: Base case model parameters
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Unconditional

eu+v 0.99 1.01 1.02 1.06

Unregulated 1.12 1.01 0.87 0.73
Capital 1.18 1.13 1.00 0.91
Cap + Liq 0.92 0.81 0.76 0.63
PCA 1.23 1.13 1.03 0.86
PCA + Cap 1.18 1.13 1.01 0.87

Upturn

eu+v 1.02 1.04 1.05 1.09

Unregulated 2.14 1.85 1.77 1.53
Capital 2.07 2.03 1.83 1.68
Cap + Liq 1.50 1.38 1.31 0.99
PCA 2.07 2.02 1.83 1.67
PCA + Cap 2.07 2.03 1.83 1.68

Downturn

eu+v 0.95 0.97 0.98 1.02

Unregulated -0.04 -0.08 -0.08 -0.07
Capital 0.06 -0.03 -0.06 -0.07
Cap + Liq 0.07 -0.03 -0.02 -0.03
PCA 0.06 -0.05 -0.08 -0.09
PCA + Cap 0.06 -0.03 -0.05 -0.06

Table II: Loan investment policy. This table shows the simulated ratios L⇤/((1 � �)L), where

L⇤ is the optimal solution for a solvent bank, sorted against quartiles of total risk, eu+v, under the

unregulated, the capital requirement, the capital and liquidity requirement cases, the PCA case, and

the one with PCA and capital requirement. We report the values from the total sample (top panel),

the values conditional on the economy being in an upturn, when the systematic risk u = 0.0352 (middle

panel), or in a downturn, when u = �0.0352 (bottom panel). These results are based on the numerical

solution of the valuation problem in Equation (18) and the simulation of the optimal solution, as

described in Appendix C, based on the parameter values in Table I. The table presents the averages

across the economies of the time series averages of the cross-sectional sortings.



Unconditional

eu+v 0.99 1.01 1.02 1.06

Unregulated -5.75 -3.30 -1.10 -1.79
Capital 0.11 0.15 0.15 0.14
Cap and Liq 0.33 0.36 0.34 0.32
PCA 0.06 0.04 0.02 0.01
PCA + Cap 0.11 0.16 0.15 0.15

Upturn

eu+v 1.02 1.04 1.05 1.09

Unregulated 0.18 0.14 0.12 0.06
Capital 0.19 0.18 0.15 0.13
Cap and Liq 0.62 0.60 0.59 0.53
PCA 0.19 0.19 0.15 0.13
PCA + Cap 0.19 0.18 0.15 0.13

Downturn

eu+v 0.95 0.97 0.98 1.02

Unregulated -29.00 -23.49 -13.04 -14.29
Capital 0.06 0.20 0.19 0.19
Cap and Liq 0.07 0.21 0.20 0.19
PCA -0.07 -0.14 -0.17 -0.21
PCA + Cap 0.06 0.20 0.19 0.19

Table III: Capital ratios. This table shows the simulated capital ratios (i.e., bank capital over loans,

or K⇤/L⇤ = (L⇤ + B⇤ � D0)/L⇤, where (L⇤, B⇤) is the optimal solution for a solvent bank and D0 is

the new possible level of deposits, sorted against quartiles of total risk, eu+v, under the unregulated,

the capital requirement, the capital and liquidity requirement cases, the PCA case, and the one with

PCA and capital requirement. We report the values from the total sample (top panel), the values

conditional on the economy being in an upturn, when the systematic risk u = 0.0352 (middle panel), or

in a downturn, when u = �0.0352 (bottom panel). These results are based on the numerical solution

of the valuation problem in Equation (18) and the simulation of the optimal solution, as described in

Appendix C, based on the parameter values in Table I. The table presents the averages across the

economies of the time series averages of the cross-sectional sortings.
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Unconditional

eu+v 0.99 1.01 1.02 1.06

Unregulated -535.32 -270.79 -182.18 -129.10
Capital -534.41 -270.23 -181.53 -128.61
Cap and Liq 25.10 8.99 9.05 6.22
PCA -535.18 -270.67 -181.97 -128.52
PCA + Cap -534.41 -270.22 -181.51 -128.22

Upturn

eu+v 1.02 1.04 1.05 1.09

Unregulated -26.32 -24.45 -23.35 -21.82
Capital -26.56 -25.43 -24.38 -23.01
Cap and Liq 0.91 0.75 0.91 0.70
PCA -26.77 -25.54 -24.45 -22.86
PCA + Cap -26.56 -25.42 -24.36 -22.88

Downturn

eu+v 0.95 0.97 0.98 1.02

Unregulated -0.26 -0.12 -0.05 -0.01
Capital 2.59 3.01 3.20 3.34
Cap and Liq 3.04 3.40 3.42 3.52
PCA 2.53 2.98 3.15 3.31
PCA + Cap 2.58 3.01 3.21 3.39

Table IV: Liquidity ratios. This table shows the simulated liquidity ratios (i.e., end–of–period total

cash available in the worst case scenario over the end–of–period net cash outflows due to a variation in

deposits, or (�L⇤ + ⇡(L⇤)Zd � T (ymin) +B⇤(1 + rf ))/(D0(1 + rd)�Dd), where (L⇤, B⇤) is the optimal

solution for a solvent bank and D0 is the new possible level of deposits, sorted against quartiles of total

risk, eu+v, under the unregulated, the capital requirement, the capital and liquidity requirement cases,

the PCA case, and the one with PCA and capital requirement. We report the values from the total

sample (top panel), the values conditional on the economy being in an upturn, when the systematic

risk u = 0.0352 (middle panel), or in a downturn, when u = �0.0352 (bottom panel). These results

are based on the numerical solution of the valuation problem in Equation (18) and the simulation of

the optimal solution, as described in Appendix C, based on the parameter values in Table I. The table

presents the averages across the economies of the time series averages of the cross-sectional sortings.

52



Unreg. Capital Capital & Liquidity

k = 4% k = 12%
k = 4% k = 12% k = 4%
` = 20% ` = 20% ` = 50%

Loans (book) 4.41 5.08 4.96 3.71 3.75 3.71
Net Bond Holdings (book) -2.75 -2.30 -2.05 0.34 0.32 0.38
Bank Capital (book) -0.32 0.80 0.92 2.07 2.09 2.12
Equity (mkt) 6.97 7.32 7.36 7.65 7.66 7.69
Deposits (mkt) 1.89 1.89 1.89 1.89 1.89 1.89
Enterprise Value (mkt) 11.70 11.61 11.40 9.29 9.33 9.29
Government Value (mkt) 0.82 0.97 0.97 0.90 0.90 0.91
Social value (mkt) 12.52 12.58 12.37 10.19 10.23 10.19
Default (%) 1.30 0.00 0.00 0.00 0.00 0.00

Table V: The impact of bank regulation. The table presents di↵erent dimensions of the bank,

based either on book or market values. The columns represent di↵erent choices of parameters: the

“Unregulated” case is obtained with the parameters in Table I. The case with capital constraint

(“Capital”) has either k = 4% or k = 12%. The case with both capital and liquidity restrictions

(“Capital & Liquidity”) is obtained for the base case parameters (k = 4% and ` = 20%), and two

alternative combinations, with k = 12% and ` = 20%, and with k = 4% and ` = 50%, respectively.

These results are based on the numerical solution of the valuation problem in Equation (18) and the

simulation of the optimal solution, as described in Appendix C, based on the parameter values in

Table I. The table presents the averages across the simulated economies of the time series averages of

the cross–sectional averages (computed on non–defaulted instances) of the di↵erent metrics.
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Unreg. PCA Cap.
PCA+

Cap.&Liq.
PCA+

Cap. Cap.&Liq.

Loan (book) 4.41 5.12 5.08 5.03 3.71 3.72
Net Bond Holdings (book) -2.75 -2.38 -2.30 -2.25 0.34 0.34
Bank Capital (book) -0.32 0.77 0.80 0.80 2.07 2.07
Equity (mkt) 6.97 7.46 7.32 7.30 7.65 7.65
Deposits (mkt) 1.89 1.88 1.89 1.89 1.89 1.89
Enterprise Value (mkt) 11.70 11.81 11.61 11.53 9.29 9.30
Government Value (mkt) 0.82 0.97 0.97 0.98 0.90 0.91
Social value (mkt) 12.52 12.78 12.58 12.50 10.19 10.20
Default (%) 1.30 3.71 0.00 0.00 0.00 0.00
PCA frequency (%) – 0.27 – 0.02 – 0

Table VI: Prompt Corrective Action. The table presents di↵erent dimensions of the bank, based

either on book or market values. The columns o↵er a comparison among the three cases (unregulated

bank, capital requirement, and capital plus liquidity requirement) without and with the Prompt Cor-

rective Action (PCA). These results are based on the numerical solution of the valuation problem in

Equation (18) and the simulation of the optimal solution, as described in Appendix C, based on the

parameter values in Table I. The table presents the averages across the simulated economies of the time

series averages of the cross–sectional averages (computed on non–defaulted instances) of the di↵erent

metrics.
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Unreg. base � = 0 � = .2 m� = .08 � = .1

Capital

Loans (book) 4.41 5.08 5.13 4.98 5.09 7.38
Net Bond Holdings (book) -2.75 -2.30 -2.32 -2.24 -2.31 -2.98
Bank Capital (book) -0.32 0.80 0.83 0.75 0.80 2.41
Equity (mkt) 6.97 7.32 7.35 7.22 7.29 10.30
Deposits (mkt) 1.89 1.89 1.89 1.89 1.89 1.89
Enterprise Value (mkt) 11.70 11.61 11.65 11.44 11.57 15.26
Government Value (mkt) 0.82 0.97 0.99 0.95 0.97 1.37
Social value (mkt) 12.52 12.58 12.64 12.40 12.55 16.63

Capital & liquidity

Loans (book) 4.41 3.71 3.85 3.57 3.69 5.64
Net Bond Holdings (book) -2.75 0.34 0.31 0.38 0.35 0.64
Bank Capital (book) -0.32 2.07 2.18 1.97 2.06 4.30
Equity (mkt) 6.97 7.65 7.80 7.49 7.64 10.86
Deposits (mkt) 1.89 1.89 1.89 1.89 1.89 1.89
Enterprise Value (mkt) 11.70 9.29 9.47 9.09 9.27 12.20
Government Value (mkt) 0.82 0.90 0.93 0.87 0.90 1.34
Social value (mkt) 12.52 10.19 10.40 9.96 10.17 13.54

Table VII: The role of equity issuance costs, adjustment costs and maturity transformation.

The table shows two panels: on top the case of a bank with capital requirement, and at the bottom

the case of a bank subject to both capital and liquidity restrictions. The table presents di↵erent

dimensions of the bank, based either on book or market values. The columns represent di↵erent choices

of parameters: the column denoted “base” is the base case, with the parameters in Table I. The others

are obtained by changing only the parameter used to denominate the column (e.g., in “� = 0” all

the parameters are at the base case value, but �, which is set to zero). These results are based on

the numerical solution of the valuation problem in Equation (18) and the simulation of the optimal

solution, as described in Appendix C, based on the parameter values in Table I. The table presents

the averages across the simulated economies of the time series averages of the cross–sectional averages

(computed on non–defaulted instances) of the di↵erent metrics.
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Original X X̂

E[Z] 0.0717 0.0718 0.0723
�[Z] 0.0293 0.0236 0.0429

E[logD] 0.6931 0.6926 0.6920
�[logD] 0.0669 0.0471 0.0701

(1� Z)Z 0.0086 0.0129 0.0039
Z 0.8800 0.8184 0.9357
�Z 0.0139 0.0135 0.0150

(1� D) logD 0.0347 0.0733 0.0374
D 0.9500 0.8940 0.9450
�D 0.0209 0.0210 0.0226
⇢ -0.8500 -0.7514 -0.8503

Table VIII: Calibration. Results from the calibration procedure described in Appendix B. Column

“Original” reports the value of the moments from Table I. In Column “X” there is the mean value of

the moments estimated from a simulation of X. Column “X̂” reports the mean value of the moments

estimated from a simulation of s in Equation (34), and than using at each step of the simulated sample

the transformation in Equation (14) to obtain X̂.
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Figure 1: Bank’s dynamic. Evolution of the state variables (credit shock, Z, and deposits, D) and

of the bank’s control variables (cash and liquid investments, B, and loans, L) assuming the bank is

solvent at each date.
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Figure 2: Comparison of constraints. This figure presents the three feasible regions of (L,B) defined

by the collateral constraint, �(D) in Equation (11), the capital requirement, ⇥(D) from Equation (25),

and by the liquidity requirement, ⇤(D) from Equation (27). The plot is based on the parameter values

in Table I, for a current D = 2.
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Figure 3: Credit shock and deposit against systematic and idiosyncratic risk. The values are

from the numerical solution of the model using 9 points for u, 11 points for v, based on the estimated

parameter values in Appendix B.
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Figure 4: Bank’s policy. This figure illustrates the impact of regulatory restrictions on the bank’s

policy related to loan investment represented by the ratio L⇤/L(1��) and to short–term investment and

financing with bonds, B⇤, for the non–regulated case, for the cases with capital constraint, with both

capital and liquidity constraints altogether, and the PCA case. These values are plotted against the

macroeconomic risk factor, u, in the upper panels and the idiosyncratic risk factor, v, in the remaining

panels, and are obtained assuming that the bank is currently at the steady state (so that the credit

shock is 0.0717, and the deposits from the previous date are D = 2, respectively), while B = 0, and

L = 4.7 so that the current bank capital (right before making the decision) is K = 2.7. The investment

and financing policies are given by averaging out idiosyncratic risk when plotted against u and averaged

across the systematic risk when plotted against v. These results are based on the numerical solution of

the valuation problem in (18), as described in Appendix C, based on the parameter values in Table I.
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Figure 5: Value loss associated with regulatory restrictions. This figure illustrates the impact

of regulatory restrictions by comparing the enterprise value (i.e., value of deposits plus market value of

equity net of cash balance, or plus short–term debt), and the social value (i.e., book value of deposits

plus market value of equity plus the value to the government, plus the present value of issuance costs)

of the bank, for the case with capital constraint, with both capital and liquidity constraints, and the

PCA case, as a proportion of the value from the non–regulated case. These values are plotted against

the systematic shock, u, in the upper panels and the idiosyncratic shock, v, in the lower panels, and

are obtained assuming that the bank is currently at the steady state (so that the credit shock is 0.0717,

and the deposits from the previous date are D = 2, respectively), while B = 0, and L = 4.7 so that

the current bank capital (right before making the decision) is K = 2.7. The value ratios are given

by averaging out idiosyncratic risk when plotted against u and averaged across systematic risk when

plotted against v. These results are based on the numerical solution of the valuation problem in (18),

as described in Appendix C, based on the parameter values in Table I.
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