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Abstract

This paper shows how the empirical implications of incomplete markets models

can be assessed using the same full-information methods that are commonly used for

representative agent models. It then asks what features of the microeconomic insurance

arrangement are important for understanding the dynamics of aggregate consumption

as it relates to aggregate labor income and employment conditions. A model with a low

level of insurance against unemployment risk and an intermediate level of insurance

against individual skill shocks provides the best fit of the aggregate data. A model

that matches the strong consumption responses to fiscal stimulus payments does not

improve the overall fit to the aggregate data.
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1 Introduction

A range of microeconomic evidence is difficult to reconcile with the complete-markets,

rational-expectations model of consumption that is now standard in most models of the

business cycle. For instance: consumption does respond to idiosyncratic income changes

(Cochrane, 1991; Attanasio and Davis, 1996) and consumption does respond to anticipated

income changes (Souleles, 1999; Parker, 1999; Johnson et al., 2006). This evidence has lead

to a large literature that explores models with incomplete markets and heterogeneous house-

holds (Deaton, 1991; Carroll, 1992; Aiyagari, 1994; Krusell and Smith, 1998). Models in

this class allow for very limited insurance against idiosyncratic income shocks as households

only have access to self-insurance through savings. Some aspects of the microeconomic data

point to households having more insurance than just self-insurance (Blundell et al., 2008;

Heathcote et al., 2012), while in other respects the data suggest less (Kaplan and Violante,

2011).

This paper asks what features of the microeconomic insurance arrangement are important

for understanding the dynamics of aggregate consumption as it relates to aggregate labor

income and employment conditions. There are several reasons to think that the level of

insurance against idiosyncratic risk could be important for aggregate consumption dynamics.

For example, a deterioration of labor market conditions that increases the idiosyncratic risk

of a prolonged unemployment spell may lead to a large drop in consumption when this

risk is uninsurable. Additionally, the presence of idiosyncratic risk and binding borrowing

constraints can lead aggregate consumption to be more sensitive to changes in income.

Methodologically, the analysis partially integrates two distinct literatures. Empirical

macroeconomists have developed a set of techniques for formally comparing structural models

to time series data. These techniques use a variety of structural shocks so that the model

generates a rich covariance structure for observed data. One then conducts inference using

the full range of empirical implications of the model (An and Schorfheide, 2007). However,

the models used in these analyses rely on a representative agent abstraction so they are

not useful for exploring the question at hand, which centers around relaxing the complete
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markets assumption underlying the representative agent.

Incomplete markets models have so far not been incorporated into the standard toolbox

of empirical macroeconomics in part due to a lack of formal methods.1 Existing work with

incomplete-markets business-cycle models has followed a calibration approach that compares

the model’s implications to selected empirical moments. The methodological contribution of

this paper is to show how these incomplete markets models can be analyzed using the full-

information approach that has previously been used to study representative agent models.

The distinction is not between estimation and calibration—the procedure I use is somewhere

between the two—but the basis upon which inference is conducted.

I use these methods to study an economy populated by households that face two idiosyn-

cratic shocks and several aggregate shocks. The idiosyncratic shocks are to the household’s

individual skill and employment status. At the aggregate level, there are shocks to the ag-

gregate wage level and shocks to the two transition probabilities that move households into

and out of unemployment. The households collectively participate in an insurance scheme

that partially insures against skill and unemployment shocks with the extent of insurance

against the two shocks depending on two parameters. With parameters corresponding to low

levels of insurance, the model is close to the standard incomplete markets model in which

households rely exclusively on self-insurance. With parameters corresponding to full insur-

ance, the model becomes a representative agent model. By varying the insurance parameters

it is also possible to analyze cases between these two extremes.

I first compare the low-insurance and full-insurance economies. The results show that

the low-insurance economy is much closer to the data primarily because it is able to generate

considerably more volatility in aggregate consumption growth, which brings the model closer

to the data. In addition, removing the insurance against idiosyncratic risk brings the model

1There are a handful of papers that estimate versions of the incomplete markets model using microeco-

nomic data, but these models are not suitable for aggregate time series data because they are either models

of a stationary aggregate environment (Gourinchas and Parker, 2002; Guvenen and Smith, 2010) or include

variation in the dispersion of household productivity levels but not in the overall level of productivity or

wages (Heathcote et al., 2012).

3



closer to the data by making consumption growth serially correlated and correlated with the

number of households entering unemployment. Using a summary measure of fit proposed

by Watson (1993), I show that the variance of residuals needed to bridge the gap between

model and data is roughly 50% larger for the full-insurance economy than it is for the low-

insurance economy. Information from the likelihood function provides a similar comparison

of the two insurance arrangements. The results in this section are related to work by Krusell

and Smith (1998) and Challe and Ragot (2013) who compare the incomplete markets models

and representative agent models by comparing model and data moments.

Second, I explore whether the aggregate data support an intermediate level of insurance.

Using microeconomic data, Blundell et al. (2008) and Heathcote et al. (2012) find evidence

in favor of a partial insurance arrangement that is between full-insurance and self-insurance

alone. I find that allowing for some degree of partial insurance against skill shocks brings the

model closer to the data than the low-insurance economy. With regard to unemployment

risks, the model fits the data best with a low level of insurance, but the presence or absence

of insurance against these risks affects the model’s overall fit much less than the insurability

of skill shocks.

Finally, Kaplan and Violante (2011) have recently observed that the standard incom-

plete markets model is inconsistent with the microeconomic evidence on the way household

consumption responds to fiscal stimulus payments as estimated by Johnson et al. (2006)

and others. This evidence suggests that households have less insurance than self-insurance

as consumption responds more strongly to transitory income changes than the standard in-

complete markets model implies. Kaplan and Violante show that illiquid assets can explain

why households behave as if they are liquidity constrained even if they have considerable

net worth. One interpretation of this explanation is that illiquid assets are less useful for

self-insurance than are liquid assets. Motivated by Kaplan and Violante’s work, I extend

the model to include a cost of adjusting household asset holdings and I calibrate this adjust-

ment cost to match the sensitivity of household consumption to transitory income changes

as measured by the response to fiscal stimulus payments. The extended model has very
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different predictions for how aggregate consumption responds to transitory shocks, but its

predictions are nearly identical to the baseline model for the response to persistent shocks.

As my estimates imply that most of the variance in aggregate consumption results from

persistent shocks, the overall dynamics for consumption and the model’s ability to match

the data are little affected.

Elements of this paper are related to work by Berger and Vavra (2012) who show that

certain features of the business cycle dynamics of aggregate durable consumption expendi-

tures can be well accounted for by a model in which heterogeneous households face fixed

costs of adjusting their stocks of durables. My work differs in that it analyzes consumption

of non-durables and services and uses a different set of empirical methods.

The paper is organized as follows: section 2 presents the model, section 3 discusses the

empirical strategy and methods used to solve the model and compare its implications to

the data, and section 4 discusses the data that the model is asked to explain as well as the

calibration and estimation of model parameters. I present the results in three sections: sec-

tion 5 compares low- and full-insurance, section 6 investigates partial insurance, and section

7 presents the extension with illiquid assets. Section 8 explores whether richer complete

markets settings provide better descriptions of consumption dynamics. Finally, section 9

concludes.

2 Model

The model is populated by a unit mass of households who differ in their employment status

and skill. Households maximize the expected discounted sum of period utilities given by

E0

∞∑
t=0

βt
c1−χ
i,t

1− χ
. (1)

The income of an individual household varies over time with shocks to its employment

status, its skill level, and the aggregate after-tax wage in the economy, wt. I assume that

the log of the aggregate after-tax wage is the sum of a persistent AR(1) process and a

transitory disturbance. The transitory disturbance is able to capture short-lived changes
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such as temporary changes in taxes. In addition to these stochastic components, the wage

grows in line with a deterministic trend. In summary,

logwt = zt + At + εTt , (2)

zt = zt−1 + g,

At = ρAAt−1 + εAt , (3)

where g is the trend growth rate. I assume that εTt and εAt are normally distributed with

mean zero and standard deviations σT and σA, respectively.

Households face two types of idiosyncratic risk: skill shocks and employment shocks. A

household with skill s ∈ S will receive after-tax labor income wts when employed and no labor

income when unemployed. I assume that all households in the economy share unemployment

and skill risk by pooling their incomes and then allocating after-transfer incomes such that

a household’s income is a function of its skill and employment status given by

yt(e, s) =
[e+ bu(1− e)]s1−bs∫

[ej,t + bu(1− ej,t)]s1−bs
j,t dj

∫
ej,twtsj,tdj, (4)

where e = 1 if the household is employed and e = 0 otherwise. The parameters bs and bu

control the degree of insurance against skill and unemployment shocks, respectively. If both

are set to zero, equation (4) simplifies to yt(e, s) = eswt, which implies no insurance. If

bs = bu = 1 all households have an equal share of aggregate income. In reality, households

can receive insurance from many sources including financial markets, informal arrangements,

and the government. I hope to capture all of these forces in the model, but the spirit of

the income pooling is more in line with an informal risk-sharing arrangement than a formal

market or government program.

Households transition between skill levels and between employment statuses according

to a Markov chain with transition matrix Tt, which describes transitions from (ei,t, si,t) to

(ei,t+1, si,t+1). Transition probabilities across skill groups are constant across time and inde-

pendent of employment status. I assume the economy has reached the ergodic distribution

over skills so the skill composition of the labor force is constant. Let T s(s, s′) be the proba-

bility of moving from s to s′.
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Employment risk differs across skill groups and across time. It is potentially important

to allow unemployment risk to depend on skill because low-skill workers are more likely to

be liquidity constrained and therefore changes in the unemployment rate may have a bigger

effect on aggregate consumption if unemployment spells are concentrated on this group. If

we take education as a measure of skill, it is well-known that unemployment rates fall with

education. Using data from the Current Population Survey, Elsby et al. (2010) show that

job-finding rates are similar across eduction groups, but job-separation rates are decreasing

with education. Moreover, their Figure 8 shows that the differences in job-separation rates

are fairly constant over the business cycle. Based on this evidence, I assume that the job-

finding probability for any unemployed worker is λt and the job-separation probability for

an employed worker with skill s is ζt + ζs. ζs is a fixed adjustment for skill-group and I

normalize it to zero for the highest skill group. The driving processes of the labor market

are the stochastic processes

ζt = (1− ρζ)ζ̄ + ρζζt−1 + εζt (5)

λt = (1− ρλ)λ̄+ ρqλt−1 + ελt , (6)

with εζ and ελ normally distributed with mean zero and standard deviations σζ and σλ.

The overall transition matrix, Tt, is constructed by combining these employment transition

probabilities with the skill transition matrix to describe the evolution of idiosyncratic states

from date t to t + 1. I assume that ζt and λt are known at t, which means the aggregate

unemployment rate for date t + 1 becomes known at date t, but individuals do not learn

their individual employment status for date t+ 1 until that date arrives.

In the model, there are no markets for insurance against idiosyncratic risk except as

reflected in the income pooling mechanism described above. Instead, households have access

to a single asset that they can use to smooth their consumption. This assets pays a risk-less

return of r per period. Households are unable to borrow.

Normalization. In the absence of aggregate shocks, household income and assets will grow

smoothly at the rate g. To render the economy stationary, I normalize these variables by ezt .
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The balanced growth path of the economy then corresponds to the stationary equilibrium

of the transformed economy in which the distribution of normalized assets and income is

constant as in Aiyagari and McGrattan (1998). For a generic variable xt, let x̃t ≡ xt/e
zt .

Decision problem. The states of an individual’s decision problem at date t includes their

assets, skill and employment status, the aggregate stochastic processes and also the distribu-

tion of households over skill and employment states, which I summarize with the unemploy-

ment rates for the three skill levels denoted U = {us : s ∈ S}. The latter becomes a state

variable because the income-pooling insurance scheme makes the take-home income of one

household depend on the pre-insurance incomes of other households. Let Ω = {A, w̃, λ, ζ, U}

denote the aggregate state variables.

After normalization, the preference ordering becomes

E0

∞∑
t=0

β̃t
c̃1−χ
i,t

1− χ
, (7)

where β̃ = β(1 + g)1−χ. A household with assets ã, skill s, and employment status e ∈ {0, 1}

solves

V (ã, e, s; Ω) = max
c̃,ã′

{
c̃1−χ

1− χ
+ β̃E [V (ã′, e′, s′; Ω′)]

}
subject to

(1 + g)ã′ + c̃ = ỹ(e, s) + (1 + r)ã

ã′ ≥ 0.

The aggregate state evolves according to the laws of motion for the exogenous processes in

Eq.s (2), (3), (5), and (6). The skill-specific unemployment rates evolve following

Ps′us′,t+1 =
∑
s

PsT
s(s, s′) [(1− λs,t)us,t + (ζt + ζs)(1− us,t)] , (8)

where Ps is the mass of households with skill level s, which is constant.

The Euler equation for this consumption decision is

c̃−χ (1 + g) ≥ β̃(1 + r)E
[
c̃′−χ

]
, (9)
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where the expectation operator in the Euler equation integrates over both aggregate and

idiosyncratic uncertainty. The Euler equation will hold with equality for all households

except those that are constrained.

3 Empirical strategy and methods

The central question is whether the joint dynamics of aggregate consumption, income and

labor market conditions generated by the model are closer to the data when the model is

parameterized with some insurance parameters as compared to others. The model takes

wages and employment conditions to be exogenous so the focus of the analysis is on the

behavior of consumption and how it co-moves with the other variables. I consider two

metrics that measure the distance between model and data. The first is the measure of fit

proposed by Watson (1993), which is a lower bound on the variance of measurement error

needed to reconcile the model with the data. The second is to evaluate the likelihood of the

data under different combinations of parameters.

Throughout, I adopt an approach of exploring the distance between model and data

at selected insurance arrangements as opposed to full-fledged estimation of the insurance

parameters. A main reason for this choice is computational feasibility as solving the model for

one vector of parameters takes too long to use the usual MCMC or numerical maximization

algorithms. Nevertheless, I believe that the information I report here gives a good sense of

which parameters values are supported by the data and which are not.

3.1 Watson’s measure of fit

Watson (1993) adopts the view that the economic model is an approximation to the stochastic

process generating the data and asks how much “measurement” error would have to be

attached to each variable to reconcile the autocovariances of the model (plus errors) with

the data. The measurement error represents the abstraction of the model and is not truly

measurement error in the typical sense. There are many measurement error processes that
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could rationalize the observed data and Watson proposes to select the one with the lowest

variance so the contribution of measurement error is kept to a minimum.2 Watson’s measure

of fit can be summarized by the ratio of the measurement error variance to the data variance

and this can be interpreted as 1 − R2 from a regression as it is akin to the residual sum of

squares over the total sum of squares. Watson’s measurement error process is computed in

the frequency domain for each frequency separately and the measure of fit can be computed

separately for different frequencies or integrated across ranges of frequencies. I will consider

the model’s fit overall as well as at high, business-cycle, and low frequencies.3

3.2 The value of the likelihood function

The likelihood of the data as a function of model parameters is the central component of

Bayesian estimation and of maximum likelihood estimation (MLE). In the case of Bayesian

estimation, the shape of likelihood will, in most cases, determine the regions of highest

posterior density and therefore inferences about parameters. In the case of MLE, the shape of

the likelihood clearly determines the estimated parameter values. Therefore, understanding

the shape of the likelihood function is at the heart of both forms of statistical analysis.

3.3 Model solution and state-space representation

Methodologically, the main challenge to confront is to develop methods to evaluate these

measures of fit for a model that includes a distribution of heterogeneous agents. While the

model I analyze is a partial equilibrium model, the methods described here can equally well

be applied to richer general equilibrium models.

To begin, it is useful to consider how one proceeds with a representative agent model.

The most common approach is to derive a linear approximation to the equilibrium conditions

and then apply a method for solving linear rational expectations models to obtain a linear

2Specifically, Watson minimizes the trace of the measurement error covariance matrix.
3Watson allows for the variables to be weighted when the measurement error variance is minimized. I

use equal weights on all variables.
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state-space representation of the model dynamics. Assuming Gaussian shocks, one can then

apply the Kalman filter to evaluate the likelihood function. For the Watson measure of fit,

one needs to find the model’s spectral density matrices, which are easily computed from the

state space representation (see Tkachenko and Qu, 2012).

My approach for the heterogeneous agent model is very similar to that for the represen-

tative agent model. It begins by solving the model using the algorithm developed by Reiter

(2009) for models with endogenously evolving distributions in the style of Krusell and Smith

(1998). This algorithm replaces the continuous distribution of wealth with a histogram with

a large number of bins and it replaces the household savings decision rules with splines with

a large number of knots. In this way, the economy is summarized by a finite-dimensional

vector, Xt, that describes the histogram, the savings rules and aggregate variables. The equi-

librium conditions of the economy are then a set of forward-looking, non-linear difference

equations that Xt must satisfy, which can be written as

F (Xt, Xt+1, ηt+1, εt+1) = 0,

where ηt+1 are forecast errors and εt+1 is a vector of aggregate shocks. In addition to

aggregate relationships, these equations describe how the distribution of wealth evolves and

require that the Euler equation holds exactly for a large number of idiosyncratic states.

Appendix B describes the specific equations used to solve the model. The Reiter algorithm

involves linearizing these equations with respect to aggregate states around the stationary

economy in which there are idiosyncratic shocks, but no aggregate shocks. The dynamics

of Xt can then be found by solving the resulting linear system using standard techniques

such as Sims (2002). The resulting solution is linear in aggregate states, but non-linear in

idiosyncratic states. This solution algorithm is useful for this application because a) it allows

for a large number of aggregate states, which allows me to incorporate a variety of persistent

shocks into the model and b) it results in a linear representation of the aggregate economy,

which is useful for statistical analysis.

The Reiter solution algorithm delivers a linear system for Xt of the form

Xt+1 = ΨXXt + Ψεεt+1.

11



Xt includes the aggregate variables that we wish to observe and an observation matrix can

be used to select them.

3.4 Model reduction

At this stage, the model solution has been expressed in state space form, but before pro-

ceeding with the analysis I undertake a model reduction step. In typical applications, the

dimension of Xt will range from several thousand to more than ten thousand, which makes

direct analysis of the system computationally demanding. Linear systems theory provides

tools to construct smaller linear systems that provide a similar mapping from any history of

shocks to observable variables. This is accomplished by identifying dimensions of the state

space that are either unlikely to be reached or that have a limited impact on observable

variables (are difficult to observe). The state space of the system can be transformed so that

dimensions of the state space that are difficult to reach are also difficult to observe. These

dimensions can then be discarded with little loss of accuracy in the full system.4 This model

reduction step reduces the dimension of Xt from more than 3,600 to fewer than 50 yet results

in a negligible loss of accuracy. Appendix B describes the methods and their implementation

in greater detail.

3.5 Discussion of methods

The approach used here has some advantages and disadvantages relative to alternative meth-

ods. The most natural alternative is to solve the model fully non-linearly and then compare

the properties of simulated data to the observed data. The first advantage concerns the

4The distance between two linear systems can be measured in terms of the discrepancy in their impulse

responses or in other terms, the impulse response of the error system. For the methods that I use, results from

linear systems theory place bounds on the maximal amplitude on the Laplace transform of these error system

impulse responses. See Antoulas (2009) for a textbook treatment of model reduction techniques. Reiter

(2010) has used these techniques to reduce the state space before applying the linear rational expectations

solver, which is more involved than the approach taken here where the solver is applied before the model

reduction step.
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number of aggregate state variables. The Reiter solution method easily accommodates large

numbers of aggregate state variables just as perturbation-based solution methods do in other

contexts. This is important because models used for empirical analysis of time series data

commonly incorporate a large number of structural shocks to reduce the colinearity of the

model generated data. For example, Smets and Wouters (2007) include seven persistent

structural shocks each of which becomes an aggregate state variable. Standard non-linear

solution methods cannot easily be applied to such high-dimensional problems due to the

curse of dimensionality. The second advantage, is that the resulting state-space representa-

tion of the economy facilitates the application of statical methods. A third advantage is that

the Reiter method is easily applied to models with rich aggregate features such as nominal

rigidities (see McKay and Reis, 2013).

The chief disadvantage relative to a fully non-linear solution is that the solution may

be less accurate especially if there are large shocks that drive the economy far from the

stationary equilibrium. To investigate the loss of accuracy, I conduct an experiment in

which I solve a version of the model using the Reiter method and using a non-linear method.

I then compare the properties of simulated data from the two models. In order to apply a

standard non-linear solution method for this comparison, I reduce the number of aggregate

shocks to two. I find that while there are some differences between the fully non-linear

solution and the partially linear solution generated by Reiter’s method, these discrepancies

are small relative to the difference between the low-insurance and full-insurance economies

or the difference between the model and the data. I also explore the effect of the model

reduction step and find that it results in no appreciable loss of accuracy. Appendix C has

the details.
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4 Data and model parameters

4.1 Data

I judge the model specifications on how well they explain the joint dynamics of consumption

of non-durable goods and services, labor income net of taxes and government transfers,5 and

two constructed variables that relate to short-term and long-term unemployment. Consump-

tion and income are deflated with the GDP deflator, expressed per capita and transformed

by 100×∆ log(·). I use quarterly data from 1966:I to 2012:III.

In the context of imperfect insurance, the choice of data on labor market conditions

is more complicated than it is under complete markets because the distribution of labor

income is now relevant to the dynamics of aggregate consumption. I ask the model to match

the contribution of aggregate hours to fluctuations in aggregate labor income, but to avoid

complicating the model I abstract from labor force participation and fluctuations in hours

per worker. Instead, I assume that all fluctuations in hours are driven by unemployment.

While this assumption overstates the amount and variability of unemployment risk, I can

use the parameter bu to smooth out this risk although this approach does complicate the

interpretation of that parameter as a replacement rate.

I use 1−ht/h̄ as the empirical observation of the unemployment rate, where ht is aggregate

hours per capita and h̄ is aggregate hours at full employment. To define a full-employment

level of aggregate hours per capita I look to 1999QIV as the quarter since 1960 with the

largest value of aggregate hours per capita. I then define full employment hours per capita

as the labor force participation rate in 1999QIV times the index of average weekly hours in

that quarter.

The unemployment rate alone does not convey information about the duration of unem-

ployment spells. I therefore use data on the composition of the unemployed pool by splitting

5These data come from NIPA Table 2.1. I use the sum of compensation of employees (line 2) and personal

current transfer receipts (line 16) less contributions for social insurance and personal current taxes (lines 25

and 26). This is equivalent to disposable personal income less proprietor’s income, rental income and asset

income.
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Figure 1: Constructed short-term and long-term unemployment data.

the pool into those with fewer than 15 weeks and at least 15 weeks of unemployment. As the

model period is one quarter, I take less than 15 weeks to be individuals who are unemployed,

but were employed in the previous quarter. These data define the shares of short-term and

long-term unemployment in total unemployment. I use these shares to split the constructed

unemployment rate into short-term and long-term unemployment pools. Figure 1 shows the

constructed unemployment rate and its decomposition by duration. From this figure, one can

see there are some low-frequency movements in the unemployment rates, which are partly

attributable to demographic factors. To remove these low-frequency trends, I detrend the

unemployment series using an HP filter with smoothing parameter 100,000 following Shimer

(2005).
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Relation between model variables and data. In the model, the mass of households in

the first period of unemployment is given by

ushort
t+1 =

∑
s

Ps(ζt + ζs)(1− ust) (10)

and the mass of households with unemployment durations greater than one period satisfies

ulong
t+1 =

∑
s

Ps(1− λt)ust . (11)

Similarly, aggregate labor income is

Yt = wt
∑
s

s(1− us,t)Ps = wt

∫
ei,tsi,tdi. (12)

Finally, aggregate consumption is simply

Ct =

∫
ci,tdi. (13)

4.2 Stochastic singularity and measurement error

As written, the model is not obviously stochastically singular—a condition that typically

arises when there are fewer structural shocks than observable variables. While the model

has only three driving processes and four observable series, the wage process is driven by

two shocks–persistent and transitory–so there are an equal number of shocks and observable

variables. In principle, independent movements in consumption growth could be explained

in terms of offsetting persistent and transitory wage shocks. However, relying on the two

wage shocks so heavily seems rather unrealistic and in practice the covariance matrices may

be close to singular. Therefore, at least one more source of uncertainty is needed to explain

movements in consumption growth that are not related to the other data series.

The literature has pursued several ways of breaking stochastic singularity. One approach

is to augment the model with additional structural disturbances.6 A second approach, which

is the one that I adopt, is to augment the model with measurement errors.7 There are two

6Early examples of this approach are Leeper and Sims (1994) and Ingram et al. (1994).
7Early examples of this approach are Sargent (1989) and McGrattan (1994).
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reasons to include measurement errors beyond the need to break stochastic singularity. First,

the measurement errors can be interpreted as bridging the gap between the abstraction of the

model and reality, which is to say they need not be considered to be measurement errors in

the typical sense but are some measure of model misspecification (Watson, 1993). Second, the

data really are measured with error as demonstrated by the disagreement between different

measures of aggregate employment or different measures of inflation (Boivin and Giannoni,

2006).

One must make some kind of assumption about the stochastic process that the measure-

ment errors follow. Here I investigate two such assumptions. First, in using the Watson

measure of fit, the measurement error process is chosen to be the one with the lowest vari-

ance while reconciling the autocovariances of the model and data. In this case, measurement

errors are assumed to enter all four data series. Second, when I construct the likelihood func-

tion, I assume that the data on aggregate consumption growth contain an i.i.d. measurement

error. In this case, the other three data series are assume to be error-free.

4.3 Calibration and driving stochastic processes

The parameters of the model are divided into four groups (see Table 1). The first group is

the insurance parameters that are the primary objects of interest. The empirical strategy

is to explore how the model’s fit changes as these parameters are varied. The next group

consists of a single parameter, the discount factor. Changes in the degree of insurance in

the economy have important consequences for the precautionary savings motive and so for

the asset-income ratio. Therefore, I increase β as I increase the insurance in the economy

so that the model’s balanced growth path matches the observed mean asset-income ratio,

which is measured as the ratio of household net worth from the flow of funds to disposable

personal income.

Panel C of Table 1 lists those parameters of the model that are calibrated on the balanced

growth path. To calibrate the skill process, I follow Domeij and Heathcote (2004) and

Heathcote (2005) to construct a three-point Markov chain that is consistent with estimates of
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Symbol Parameter Value Target/Prior

Panel A. Objects of interest
bu Unemployment insurance 0.3
bs Skill insurance 0

Panel B. Calibrated for each specification
β Discount factor 0.958 Aggregate assets 5× annual income.

Panel C. Calibrated on balanced growth path
χ Risk aversion 2
r Interest rate 0.0075 3% annual interest rate.
λ̄ Avg. job finding rate 0.679 Mean long-term unemployment.
ζ̄ Avg. high-skill job separation rate 0.037 Mean short-term unemployment.
ζs Differences in separation rate by skill See Appendix A.
T s Skill transition matrix See Appendix A.

Panel D. Estimated driving processes
g Trend income growth 0.004 Uniform[0,1].
ρA Autoregressive coefficient of A 0.951 Beta: mn. = 0.5, var. = 0.04
ρλ Autoregressive coefficient of λ 0.920 Beta: mn. = 0.5, var. = 0.04
ρζ Autoregressive coefficient of ζ 0.924 Beta: mn. = 0.5, var. = 0.04
σA Standard deviation of εA 1.040 Inverse Gamma: mn. = 1, var. = 4
σλ Standard deviation of ελ 2.591 Inverse Gamma: mn. = 1, var. = 4
σζ Standard deviation of εζ 0.432 Inverse Gamma: mn. = 1, var. = 4
σT Standard deviation of εT 0.290 Inverse Gamma: mn. = 1, var. = 4

Table 1: Parameter values, targets and priors for the low-insurance economy.
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the dynamics of wages and such that the model delivers a reasonable degree of heterogeneity

in wealth by matching the Gini coefficient and the Lorenz curve at the 40th percentile. The

mapping from parameters to the distribution of wealth depends on the insurance parameters

and I calibrate the skill process at the benchmark low insurance values of bu = 0.3 and

bs = 0. I choose the skill process to match the dispersion in wages before taxes and transfers

and in this respect it is comparable to wtsi,t in the model as opposed to yt(e, s) which is

inclusive of insurance transfers. The fixed differences in job-separation risk by skill level are

calibrated to match data on the differences in unemployment rates across education groups.

The low-skill and high-skill groups are small in the calibrated model so it is reasonable to

interpret them as high-school dropouts and college graduates, respectively. I then set the

job-separation rates for these skill groups to reflect the relative unemployment rates of high-

school dropouts and college graduates, respectively. Appendix A has additional details of

the calibration procedure for skills and the job-separation rates.

Finally, panel D shows the parameters of the driving stochastic processes, which are

estimated from the data on labor income and short-term and long-term unemployment.

I employ a Bayesian procedure and set the parameters by finding the posterior mode. To

construct the likelihood, I linearize the relevant model equations and apply the Kalman filter

as described above. Prior distributions for the parameters are listed in the table although

these do not exert a strong influence on the results. A feature of the estimated parameter

values that is particularly important for some of the results below is the decomposition

of the aggregate wage volatility between the persistent and transitory shocks. I find that

the persistent shock explains the vast majority of the variance in the (log) aggregate wage

accounting for 99% of the unconditional variance. This finding is consistent with those of

Lettau and Ludvigson (2004) who perform a permanent-transitory decomposition of after-

tax labor income and find that permanent shocks account for 97% to 100% of the variance

depending on the specification and forecast horizon.
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5 Comparing low-insurance and full-insurance

I now turn to the first set of results, which contrast the low-insurance and full-insurance

economies. In this section, I compare the models and their relation to the data using a

number of different tools in order to make clear what features of the models are closer or

further from the data. I conclude the section with the two measures of fit described above,

which summarize all of this information.

5.1 Impulse response functions

Figure 2 shows the impulse responses of consumption to one-standard deviation shocks to

the driving processes for the low-insurance economy (bu = 0.3, bs = 0) and the full-insurance

economy (bu = 1, bs = 1). The impulse responses are shown relative to the trend growth rate.

Under full insurance, the permanent income hypothesis implies that the impulse responses

are entirely flat as the representative agent adjusts consumption once and for all when the

shock occurs. With imperfect insurance however, there are extra dynamics coming from

various sources. First, some households are borrowing constrained with the result that the

dynamics of consumption are the same as the dynamics of income. This is evident in the

bottom-right panel, which shows the response to a transitory wage shock as there is a clear

spike in consumption on impact. The existence of constrained households also helps to

explain why there are hump-shaped dynamics in response to job-finding and -separation

shocks as the unemployment rate falls for several periods after the shocks. Second, the

endogenously evolving distribution of wealth and precautionary savings generate additional

dynamics for aggregate consumption.

Finally, with incomplete markets households are relatively impatient in the sense that

the discount factor is less than the inverse of the gross interest rate. This impatience is a

reflection of the precautionary savings motive, which allows the model to generate a realistic

wealth-to-income ratio despite their impatience. As a result of this impatience, consumption

becomes more sensitive to current income.
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Figure 2: Impulse response of consumption to the four shocks. The plots show 100× log

change in response to one standard deviation shock. The plot for ζ shows a negative shock

to ζ.
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5.2 Moments

Table 2 shows selected empirical and model-generated moments. The standard deviation

of consumption growth is very low for the full-insurance economy and substantially higher

for the low-insurance economy although still only half that in the data. Turning to other

data series, one can see that the income process that is fed into the model is somewhat too

volatile relative to the data.

Panel B of the table shows that consumption growth data are positively correlated with

income growth and negatively correlated with short-term unemployment. This is also true

of the low-insurance economy although the correlation with income growth is too high and

the correlation with short-term unemployment is rather low. The full-insurance economy

differs in that the correlation with the unemployment rate is almost exactly zero.

Finally, panel C of the table shows that consumption growth is positively autocorrelated

in the data and to a lesser extent in the low-insurance economy. In the full-insurance econ-

omy, however, consumption growth is not autocorrelated due to the random walk behavior

of consumption.

5.3 Spectra

A useful way of comparing the full set of second moments of models and data is to plot model

and data spectral densities as in King and Watson (1996). The spectral density matrices are

helpful in diagnosing the features of the model that drive the likelihood results in section

5.5 because the time-domain likelihood is closely approximated by the distance between the

model and data spectral density matrices (see Tkachenko and Qu, 2012).

Figure 3 shows the spectral density of consumption growth that I have estimated from

the data along with a 95% confidence interval.8 In addition, the figure shows the model-

8To estimate the spectral density non-parametrically, I apply a kernel smoother to the periodogram and

construct confidence intervals using the methods described in Brockwell and Davis (2006) and implemented

by Tkachenko and Qu (2012). The 95% confidence interval is based on the asymptotic distribution of the

smoothed periodogram.
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A. Standard deviation

∆Ct ∆Yt ushort
t ulong

t

Data 0.535 1.029 0.921 1.143

Low-insurance 0.261 1.231 0.939 0.948

Full-insurance 0.066 1.231 0.939 0.948

B. Correlation of ∆Ct with

∆Yt ushort ulong

Data 0.271 -0.339 0.064

Low-insurance 0.800 -0.039 -0.013

Full-insurance 0.789 0.001 -0.001

C. Autocorrelation of ∆Ct

Lags 1 2 3 4

Data 0.407 0.199 0.130 0.062

Low-insurance 0.099 0.085 0.074 0.068

Full-insurance -0.001 0.000 0.001 0.005

Table 2: Moments from model and data. Model moments are calculated from 10,000 quarters

of simulated data.
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Figure 3: Estimated and model-implied spectral densities. Dash-dot line refers to data with

95% confidence interval (shaded area), solid line refers to low-insurance (incomplete markets)

economy and dashed line refers to full-insurance (representative agent) economy. Vertical

lines show the range of business cycle frequencies: 1/32 cycles per quarter and 1/6 cycles

per quarter.

implied spectral density of consumption growth from the low-insurance and full-insurance

economies without measurement error. The area under the spectral density of a time series

is equal to the unconditional variance of the series. The spectral density therefore shows

how fluctuations at different frequencies contribute to the overall variance of the series.

The data show that consumption growth has more power at low frequencies than at high

frequencies. Low-frequency movements in consumption growth are well-known in the con-

texts of a declining personal saving rate and an increasing share of consumption in GDP.

For the full-insurance economy, the random walk behavior of consumption results in con-

24



sumption growth that is white noise and so the spectral density is flat across frequencies.

In addition, the spectral density is far too low at all frequencies indicating that the model

generates consumption that is too smooth at all frequencies. For the low-insurance economy,

the spectral density has some of the downward sloping shape that is seen in the data and

it has much more power at all frequencies than does the low-insurance model, but it is still

too low compared to the data except possibly at high frequencies. The downward-sloping

spectral density in the low-insurance economy is a reflection of the distribution of wealth

contributing slow-moving state variables to the dynamics of the system.

Plots (not shown here) of the spectral densities of income growth and the unemployment

rates show that the driving processes do a fairly good job of matching the volatility of these

series across different sets of frequencies.

5.4 Watson’s measure of fit

Watson’s measure of fit is one way of measuring the distance between model and data spec-

tral densities or equivalently autocovariances. Table 3 shows the ratio of the measurement

error variance to the data variance for each of the four observable variables. Larger values

of this ratio indicate that larger measurement errors are needed to reconcile the model’s

autocovariances with those of the data. As Watson’s procedure selects the measurement

error process by minimizing its variance, this ratio is a lower bound on what is needed to

bridge the gap between the model and data.

In panel A., the measurement errors for consumption growth have a variance equal to

89% of the data under full insurance while for the low-insurance economy it is much lower at

59%. Turning to the other variables, the model fits rather well across all frequencies. While

the processes for ∆Y , ushort, and ulong are the same in the two models, the measurement

error processes are not identical because the calculations allow for movements in consumption

to be partly explained by measurement errors in other series. However, the results across

models for these series are generally very similar.

The other panels of the table show the models’ fit at different frequency bands. The
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performance of both models in fitting consumption growth at low frequencies is similar to

their performance across all frequencies. At business cycle frequencies, the fit of the low-

insurance economy deteriorates somewhat. Both models fit consumption growth best at high

frequencies as compared to other frequencies and the ratio drops to 50% for the low-insurance

economy.

5.5 Likelihood

In order to compute the likelihood of the data, I need to make specific assumptions about

the measurement error process. As I demonstrate below, measurement errors can compli-

cate the identification of the insurance parameters from the likelihood function. To see this,

notice that the results so far show that the low-insurance economy comes closer than the full-

insurance economy to matching the data on consumption growth across several dimensions

with the most striking difference between the models being the standard deviation of con-

sumption growth or equivalently the height of the spectral density in Figure 3. Adding i.i.d.

measurement error to consumption growth will raise the spectral density uniformly across

all frequencies. The statistical models that result from adding i.i.d. measurement error to

the low-insurance and full-insurance economies will therefore perform relatively similarly in

this dimension, which was previously what allowed us to distinguish the two economies.

One way to proceed is to restrict the magnitude of measurement error that one is willing

to consider. Table 4 shows the likelihood of the joint dynamics of the four series for different

values of the standard deviation of measurement error for both the low-insurance and full-

insurance economies. If the variance of the measurement error is low, then the likelihood

under full-insurance is substantially below that under low-insurance. However, at the vari-

ances that maximize the likelihood function, the likelihood values are very similar as was

predicted. Allowing for autocorrelated measurement errors does not change this conclusion.

One might ask how Table 4 can be reconciled with the Watson measure of fit? The two

measures of fit take very different views of measurement error: in the case of maximizing

the likelihood function, measurement errors are a completely legitimate source of variation
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A. All frequencies

∆Ct ∆Yt ushort
t ulong

t

Low-insurance 0.592 0.127 0.225 0.266

Full-insurance 0.882 0.118 0.218 0.264

B. Low frequencies

∆Ct ∆Yt ushort
t ulong

t

Low-insurance 0.578 0.659 0.221 0.195

Full-insurance 0.928 0.597 0.222 0.194

C. Business-cycle frequencies

∆Ct ∆Yt ushort
t ulong

t

Low-insurance 0.678 0.512 0.203 0.304

Full-insurance 0.913 0.485 0.203 0.304

D. High frequencies

∆Ct ∆Yt ushort
t ulong

t

Low-insurance 0.502 0.029 0.511 1.049

Full-insurance 0.828 0.026 0.351 0.945

Table 3: Watson’s measure of fit. Each entry shows the ratio of measurement error variance

relative to data variance for the listed variable and frequency band.
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σv Low-insurance Full-insurance Difference

0.1 -2328 -2683 356

0.2 -876 -900 24

0.3 -613 -615 3

0.4 -543 -543 0

0.5 -527 -526 -1

0.5269 -526

0.5280 -526

Table 4: Log likelihood as a function of measurement error standard deviation (σv). The

bottom two rows show the respective maximum likelihood estimates of σv.

in the data and explaining the data through measurement errors makes the model just as

“successful” as explaining the data through structural innovations. By contrast, Watson’s

measure treats measurement errors as residuals whose contribution should be minimized.

Watson’s measure is the extent to which measurement errors cannot be avoided and in

this sense it penalizes them heavily. In the context of the likelihood function, penalizing

measurement errors can be interpreted as a prior that the measurement error variance should

be small. Given the shape of the likelihood shown in Table 4, if one applies a strong prior

that the measurement error variance should be small one will arrive at a marginal likelihood

that favors the low-insurance economy.

The results in Table 4 do not favor the low-insurance economy as much as the Watson

measure of fit in part because it assumes the income and labor market data are measured

without error. The low-insurance model benefits more from including measurement errors

in those series because errors in those series have more explanatory power for aggregate

consumption. The difference in explanatory power is a reflection of the impulse response

functions: measurement errors in income are better able to reconcile the consumption growth

data if a given change in the income data due to measurement error leads to a larger change

in consumption growth.
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Another way of proceeding is to use the model with measurement errors to generate

smoothed estimates of the structural shocks and then form a predicted consumption growth

series implied by these shocks in the absence of measurement errors. Fernández-Villaverde

and Rubio-Ramı́rez (2007) perform a similar exercise to summarize what fraction of the

variation in the data is accounted for by structural shocks rather than measurement errors.

For the low-insurance economy I find that the predicted consumption growth series has a

standard deviation that is 46% of that for the data and has correlation with the actual con-

sumption growth series equal to 0.29. For the full-insurance economy, the ratio of standard

deviations is 15% and the correlation is 0.21. Therefore it appears the low-insurance econ-

omy does not just generate a higher standard deviation, but also is better able to explain

the joint dynamics of consumption growth and the other series.

My interest is in how the structural model is able to explain consumption growth dy-

namics, which is best captured by the likelihood function evaluated with a low standard

deviation of measurement error. Therefore, I set σv = 0.1 in most of what follows.

6 Partial insurance

The previous section compared two extreme insurance arrangements, which are just two

points in a range of possible insurance arrangements. The parameters bs and bu allow me to

explore other levels of insurance against skill shocks and unemployment shocks, respectively.

In investigating the possibility of partial insurance, there is a similarity to the work of

Blundell et al. (2008) and Heathcote et al. (2012) who have investigated the possibility of

partial insurance using panel data on household income and consumption and have found

support for partial insurance against permanent income shocks. Here, however, I ask what

can be learned about partial insurance from aggregate time series data.

To investigate partial insurance, I explore how the model fit changes with bs and bu. For

each set of insurance parameters, I recalibrate the discount factor, β, to match the wealth-

income ratio as before while other parameter values are left unchanged. Table 5 shows

Watson’s measure of fit and the log likelihood of the data at selected insurance arrangements.
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Watson’s measure of fit Std. dev. logL

bs bu ∆Ct ∆Yt ushort
t ulong

t ∆Ct (σv = 0.1)

Low-insurance 0.0 0.3 0.592 0.127 0.225 0.266 0.261 -2328

0.3 0.3 0.561 0.128 0.226 0.266 0.293 -2242

Best fit 0.5 0.3 0.561 0.128 0.227 0.265 0.296 -2211

0.8 0.3 0.681 0.123 0.223 0.265 0.187 -2359

0.0 0.6 0.607 0.127 0.224 0.266 0.257 -2337

0.3 0.6 0.578 0.128 0.225 0.265 0.289 -2262

0.5 0.6 0.580 0.128 0.226 0.265 0.290 -2242

0.8 0.6 0.704 0.122 0.222 0.265 0.178 -2402

0.0 1 0.619 0.127 0.222 0.265 0.254 -2335

0.3 1 0.589 0.128 0.224 0.265 0.286 -2266

0.5 1 0.591 0.128 0.225 0.265 0.287 -2251

Full-insurance 1 1 0.882 0.118 0.218 0.264 0.066 -2683

Table 5: Watson’s measure of fit and standard deviation of consumption growth for alterna-

tive insurance arrangements. All frequencies are included in the calculations.

30



As one would expect from above, only the fit to ∆C is sensitive to the insurance arrangement.

Variation in the unemployment insurance parameter bu appears to have little influence on

the model fit, however, variation in the skill-insurance parameter, bs, has a strong influence.

The fit is not monotonically deteriorating as we move from low values of bs to high values.

Instead, bs = 0.5 provides a fit that is superior to bs = 0. The non-monotonicity in fit is

related to a non-monotonicity in the standard deviation of consumption growth. As the

level of insurance changes, there is a trade-off between increasing the risk that households

face, which tends to raise their marginal propensity to consume, and reducing the resources

of low-income households. If low-income households have few resources in all periods, then

their consumption must be a small part of the aggregate and their choices cannot have a

large impact on the dynamics of aggregate consumption.

7 Matching the response to tax rebates

The standard incomplete markets model has recently been criticized by Kaplan and Violante

(2011) for failing to match empirical evidence on consumption responses to transitory income

fluctuations without resorting to a counterfactual distribution of household net worth. The

data show a greater sensitivity of consumption to current income than the model is able

to generate. The model could generate more constrained households whose consumption

will move one-for-one with income, but to do so requires a counterfactually large number of

households with low net worth. There are several empirical measures of the sensitivity of

consumption to transitory income. One such measure comes from the staggered timing of

fiscal stimulus payments during recent recessions in the United States. The timing of these

payments of several hundred dollars was effectively randomized leading to comparable groups

that only differ in the timing of the payment. Johnson et al. (2006) assess the sensitivity

of the change in consumption to the receipt of the payment by regressing the change in

consumption of household i at time t on the transfer received by that household at that

date. The resulting coefficient on the tax rebate is estimated to be 20% to 40%. Further

research using new methods and new data has produced estimates of this rebate coefficient
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in the neighborhood of 20% (Misra and Surico, 2011; Parker et al., 2013).

Kaplan and Violante (2011) show that the standard incomplete markets model is inconsis-

tent with this evidence on fiscal stimulus payments and generates a response of consumption

that is just 1.8% of the transfer in their model. Conducting the same experiment in the

low-insurance economy presented above, I find an even lower response of just 0.1%.9

The rebate coefficient differs from the MPC because it compares the change in consump-

tion in a period in which a transfer is received to the change in consumption in a period

in which a transfer has already been received or is yet to be received. The MPC, by con-

trast, would compare consumption when the transfer is received to a counterfactual without

a transfer in any period. The MPC out of unanticipated transitory income is 5.6% in the

low-insurance economy. This MPC is also below empirical estimates of MPCs, which are

generally in the range of 20% to 50% with many estimates near 20%.10

Given the inconsistency between the model and microeconomic evidence on the response

of consumption to income changes, one might ask whether a model that performed better

in these dimensions would give a more accurate description of the dynamics of aggregate

consumption. To explore this, I conduct an experiment that is motivated by Kaplan and

Violante’s illiquid asset model. Kaplan and Violante show that a model that includes illiquid

assets, which make net worth less effective for smoothing consumption, is able to generate

more constrained consumption behavior and responses to transfers as high as 21%. I in-

corporate the essence of the Kaplan-Violante model by introducing an adjustment cost on

household assets that reduces their effectiveness for consumption smoothing. I then calibrate

this adjustment cost to match a 25% response to the receipt of a fiscal stimulus payment.

The Kaplan-Violante model involves two state variables to summarize a household’s

9To calculate the rebate coefficient I follow Kaplan and Violante (2011) and assume the economy is in

steady state when one group of households receives a transfer and another group of households learns that

they will receive the transfer in the following period. The two groups are identical except for the timing of the

transfer and initially represent a random sample from the model’s steady state distribution over assets and

income. I simulate the consumption behavior of these two groups and then calculate the rebate coefficient

using the same regression as in Johnson et al. (2006) described above.
10Examples include Hall and Mishkin (1982); McCarthy (1995); Lusardi (1996); Parker (1999).
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Watson’s measure of fit Std. dev. logL

∆Ct ∆Yt ushort
t ulong

t ∆Ct (σv = 0.1)

Baseline low-insurance economy 0.592 0.127 0.225 0.266 0.261 -2328

With asset adjustment cost 0.595 0.129 0.227 0.266 0.303 -2478

Table 6: Watson’s measure of fit, standard deviation of consumption growth, and log likeli-

hood with and without adjustment costs. All frequencies are included in the calculations.

portfolio. The methods I have described might in principle be applied to a model with two

continuously-distributed state variables, but there are a number of challenges in doing so.

Rather than include a second state variable for household assets, I assume a household that

enters the period with assets in amount a and wishes to save a′ for the next period must pay

a cost Γ(a, a′; ez) ≥ 0, where ez is the trend level of income. I assume that Γ is homogeneous

of degree one in all three arguments, which allows for a balanced growth path. By including

ez as an argument of the adjustment cost function, I allow for non-homogeneity in the cross-

section while still preserving the balanced growth path in the aggregate. In particular, the

portfolios of low-wealth households are dominated by liquid assets and so it is plausible that

adjustment costs are less relevant for these households (Campbell, 2006). Moreover, there

is a difficulty with specifying an adjustment cost function that is linearly homogeneous in

a and a′ alone as households can have assets near zero. To see the difficulty, consider the

commonly used quadratic adjustment cost function Φ
2

(a′−a)2

a
. The cost of increasing savings

by, say, one unit goes to infinity as assets go to zero. Therefore I use the modified adjustment

cost function Γ(a, a′; ez) = Φ1

2
(a′−a)2

a+Φ2ez
, where Φ2 is a parameter that reduces the importance

of adjustment costs at low wealth levels.

Φ1 controls the strength of the asset adjustment cost function. I choose this parameter

so that the model generates a rebate coefficient of 25%. At this calibration, the MPC

out of unanticipated transitory income is 20%. To calibrate Φ2, it is useful to rewrite

the adjustment cost function as Γ(a, a′; ez) = Φ1

2
(a′−a)2

a
a

a+Φ2ez
, where the first two terms

are the linearly homogeneous adjustment cost for illiquid assets and the third term, which
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Figure 4: Impulse response of consumption to the four shocks. The plots show 100× log

change in response to one standard deviation shock.

34



takes values in [0, 1), is the extent to which these adjustment costs apply to a household

with wealth a. Figure 3 in Campbell (2006) shows that transactions accounts are only an

important part of total household assets for very low wealth households. Therefore I set

Φ2 = 1.5 or approximately the average labor income per quarter of an employed household.

The interpretation is that a household with assets equal to one quarter’s income will face

half the “full” transaction cost. In addition to these two new parameters, I recalibrate the

low-insurance economy to match the same targets as in Table 1.11

Table 6 compares the model with the adjustment costs to the low-insurance economy

without the adjustment costs and a 5.6% marginal propensity to consume. It appears that

the adjustment cost either has little effect on the dynamics of consumption or results in a

worse fit to the data depending on which metric one uses. To understand why this is, it

is helpful to look at the impulse response functions in Figure 4. Notice that the impact

of a transitory wage shock doubles when the adjustment cost is included and it is this

response to the transitory shock that the fiscal stimulus experiment is capturing. However,

the responses to other shocks, which are more persistent, are not much affected. Suppose

that income shocks are permanent and households follow the permanent income hypothesis

consumption rule. In that case, consumption adjusts immediately in response to changes in

income and assets do not change at all rendering the adjustment costs irrelevant. This logic

provides the intuition for why the adjustment costs affect the response to the transitory

shock more than the response to the persistent shock although the case being considered

is not this extreme. Finally, notice that the transitory wage shock accounts for a small

share of the variance in total income so the change in this impulse response function has a

limited influence on the overall dynamics of consumption. This last point follows from the

low estimate of the variance of the transitory shock as reflected by the overall scale of the

impulse responses in Figure 4.

Table 6 is an example of the usefulness of the full-information analysis. The model with

11The only appreciable change in parameter values is that the discount factor rises to 0.962. Solving

the model with the adjustment costs involves the same steps as used to solve the original model with the

difference being that there are new terms that enter the household’s Euler equations and budget constraints.
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the adjustment cost generates more volatility in consumption growth and would seem to

bring the model closer to the data in this regard. But it appears that this extra volatility in

consumption growth does not fit well with the dynamics of the other series and the model

with the adjustment cost results in a substantially lower likelihood.

These findings show that the evidence on the response of consumption to transitory in-

come fluctuations does not necessarily invalidate the standard incomplete markets model

for the purpose of understanding the time series behavior of aggregate consumption. How-

ever, this evidence might be of first-order importance if one is specifically interested in the

response to a transitory shock, such as those generated by fiscal stimulus payments.

8 Alternative explanations

The full-insurance version of the model is rather simplistic so it is worth asking how the im-

provements in model fit for the low-insurance economy compare to those that can be achieved

by enriching the environment with other factors while maintaining the complete markets as-

sumption. In doing so, I show that certain modifications of the model can greatly improve

the performance of the full-insurance economy. Nevertheless, there is still a considerable

discrepancy between the model and the data. These findings suggest that incorporating

market incompleteness into richer models of the business cycle may be a useful way forward.

8.1 The role of interest rates

One of the main objections that could be raised to the analysis so far is that it assumes a

constant interest rate. Changes in expected real interest rates have direct implications for

the consumption-savings problem. Moreover, the interest rate is the key channel through

which general equilibrium effects might alter household consumption choices. An important

question is therefore whether the consumption dynamics would be more realistic if the model

were to include the observed dynamics of interest rates? Doing so will reveal whether the

low volatility of consumption growth documented above can be attributed to the constant
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Watson’s measure of fit Std. dev. logL

∆Ct ∆Yt ushort
t ulong

t rt ∆Ct (σv = 0.2)

Baseline low-insurance 0.592 0.127 0.225 0.266 0.261 -876

Baseline full-insurance 0.882 0.118 0.218 0.264 0.066 -900

Stoch. interest rates 3.349 0.160 0.239 0.279 0.399 1.344 -6200

Labor complementarity 0.599 0.118 0.226 0.271 0.193 -779

Table 7: Watson’s measure of fit, standard deviation of consumption growth and log-

likelihood for alternative complete-markets environments. All frequencies are included in

the calculations.

interest rate and it will also incorporate the real-world (as opposed to model-generated)

general equilibrium effects to the extent that they act through interest rates.

To answer this question, I expand the data to be explained to include expected real

interest rates, which I construct by regressing ex post real interest rates on lagged information

as described by Mishkin (1981).12 I then fit an AR(1) process for expected real interest rates

in the same manner that I constructed the driving processes above.13

The observed fluctuations in interest rates are not useful in explaining consumption

growth dynamics. Table 7 shows results for the full-insurance economy with a constant

interest rate and with the stochastic interest rate. One can see that the fit of consumption

growth deteriorates substantially with the stochastic interest rates. Watson’s measure of fit

is actually much above 1, which is possible if the model’s predictions are negatively correlated

with the data so the measurement errors need to explain the entirety of the data and then

some. This is in fact what is happening. As in section 5.5, I use smoothed estimates of

the shocks to the driving processes (now including interest rates) and then use these to

12For the ex post real interest rate I use the difference between the 3-month Treasury bill rate from date

t and the growth of the GDP deflator from date t to t+ 1. I then use predicted values from regressing this

ex post rate on lags of nominal interest rates and inflation rates dated t and earlier.
13The resulting process has an autoregressive coefficient of 0.941 and a standard deviation of 0.194. I

continue to assume a mean of 0.0075.
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generate a predicted consumption growth series. The correlation of this series with the

actual consumption growth data is −0.21. The same experiment with a constant interest

rate produces a correlation of 0.21. So while interest rate volatility can generate substantial

volatility in consumption growth, it is unrelated to the consumption growth data. This

disconnect between consumption growth and interest rates is not a new finding as it is what

drives the low estimates of the elasticity of intertemporal substitution in the literature (Hall,

1988; Campbell and Mankiw, 1989).

8.2 Non-separable preferences

In the model considered here, preferences are separable across time and across goods and

leisure. Would relaxing these assumptions help the model fit the consumption growth data?

The most commonly used form of intertemporal non-separability is to include external habit

formation in the preferences. Typically, the benefit of habit formation is to smooth out con-

sumption and generate hump-shaped dynamics. Notice that the incomplete markets version

of the model here is able to generate some amount hump-shape dynamics in consumption

even without habits. Habit formation, however, has the effect of reducing consumption

volatility. I have experimented with adding habit formation to the model with stochastic

interest rates and find that it can deliver the desired level of consumption volatility, but the

predicted consumption growth series is still negatively correlated with the data.

On the other hand, a non-separability between consumption of goods and leisure has

the potential to generate pro-cyclical consumption volatility if households prefer to consume

more when they are working longer hours in an expansion—i.e. consumption and labor supply

are complements.

To explore the role of non-separable preferences in generating consumption volatility, I

consider the following specification of instantaneous utility

c1−χ
t

1− χ
exp (γLt) ,

where Lt is hours worked. In modifying the preferences I am only interested in the impact of

labor-consumption non-separabilities on consumption volatility. In particular, I continue to
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assume that labor supply is exogenous. The parameter γ now controls the extent to which

labor supply and consumption are complementary. This parameter is difficult to estimate

based on microeconomic data and so I instead estimate by maximum likelihood from the

aggregate time series data and find a point estimate for γ equal to 0.766.

Table 7 shows that the consumption-labor complementarity is very useful in explaining

consumption growth and greatly increases the level of consumption volatility in the full in-

surance economy. According to the Watson measure the economy with the complementarity

performs similarly to the low-insurance economy and according to the likelihood function it

performs better.

From these results, it would seem that labor-consumption complementarities are a useful

component of the model, however, some caution is required in interpreting these results

as the estimated complementarity may reflect factors besides preferences. In particular, a

deterioration of labor market conditions that increases idiosyncratic risk may lead to a drop

in consumption through the precautionary savings channel. If this channel is not captured

by the model, one might attribute the drop in consumption to preferences. One check on

whether this explains the results is to compare the predicted consumption series from the

low-insurance economy to that from the economy with non-separable preferences. Each

series is generated by using the smoothed shocks without measurement error. The predicted

consumption series have a correlation of just 0.09, which suggests that success of the two

models is driven by distinct factors.

9 Conclusion

This paper shows how newly-developed methods for analyzing incomplete markets models

can be combined with many of the tools of empirical macroeconomics and uses these tools

to analyze the role of idiosyncratic risk in the fluctuations in aggregate consumption. Three

main substantive conclusions emerge: first, the incomplete markets version of the model

provides a much more realistic description of the data in that smaller residuals or “measure-

ment errors” are needed to reconcile the model with the data. This finding stems primarily
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from the larger response of consumption to changes in income leading to a higher variance

of consumption growth. Second, a model with partial insurance against idiosyncratic skill

shocks provides a better fit to the data than a version of the model without skill-insurance

that is close to the standard incomplete markets model. This finding from aggregate data

mirrors results in the literature from microeconomic data. The third main conclusion is

that the model’s failure to match empirical estimates of the response to transitory income

changes does not necessarily invalidate it as a model of consumption dynamics in general. I

show that the MPC out of transitory income changes can be altered without much affecting

the way consumption responds to persistent shocks. As persistent income shocks account

for most of the dynamics of consumption according to my estimates, the overall dynamics of

consumption are not very different in two versions of the model with quite different MPCs

out of transitory income. Of course, accurately predicting the response of consumption to

transitory income changes is crucial to some applications such as predicting the effects of

fiscal stimulus payments.

40



References

Aiyagari, S. R. (1994). Uninsured idiosyncratic risk and aggregate saving. The Quarterly

Journal of Economics, 109(3):659–84.

Aiyagari, S. R. and McGrattan, E. R. (1998). The optimum quantity of debt. Journal of

Monetary Economics, 42(3):447–469.

An, S. and Schorfheide, F. (2007). Bayesian analysis of dsge models. Econometric Reviews,

26(2-4):113 – 172.

Antoulas, A. C. (2009). Approximation of large-scale dynamical systems, volume 6. Society

for Industrial and Applied Mathematics.

Attanasio, O. and Davis, S. J. (1996). Relative wage movements and the distribution of

consumption. Journal of Political Economy, 104(6):pp. 1227–1262.

Berger, D. and Vavra, J. (2012). Consumption dynamics during recessions. Technical report,

Working Paper.

Blundell, R., Pistaferri, L., and Preston, I. (2008). Consumption inequality and partial

insurance. American Economic Review, 98(5):1887–1921.

Boivin, J. and Giannoni, M. (2006). Dsge models in a data-rich environment. Technical

report, National Bureau of Economic Research.

Brockwell, P. J. and Davis, R. A. (2006). Time series: theory and methods. Springer, New

York, second edition.

Campbell, J. Y. (2006). Household finance. Journal of Finance, 61:1553–1604.

Campbell, J. Y. and Mankiw, N. G. (1989). Consumption, income and interest rates: Rein-

terpreting the time series evidence. In NBER Macroeconomics Annual 1989, Volume 4,

pages 185–246. MIT Press.

41



Carroll, C. D. (1992). The buffer-stock theory of saving: Some macroeconomic evidence.

Brookings papers on economic activity, 1992(2):61–156.

Challe, E. and Ragot, X. (2013). Precautionary saving over the business cycle. Paris School

of Economics manuscript.

Cochrane, J. H. (1991). A simple test of consumption insurance. Journal of political economy,

pages 957–976.

Deaton, A. (1991). Saving and liquidity constraints. Econometrica, 59(5):1221–1248.

Domeij, D. and Heathcote, J. (2004). On the distributional effects of reducing capital taxes.

International economic review, 45(2):523–554.

Elsby, M. W., Hobijn, B., and Sahin, A. (2010). The labor market in the great recession.

Brookings Papers on Economic Activity, pages 1–48.

Fernández-Villaverde, J. and Rubio-Ramı́rez, J. F. (2007). Estimating macroeconomic mod-

els: A likelihood approach. The Review of Economic Studies, 74(4):1059–1087.

Gourinchas, P.-O. and Parker, J. A. (2002). Consumption over the life cycle. Econometrica,

70(1):pp. 47–89.

Guvenen, F. and Smith, Jr., A. A. (2010). Inferring labor income risk from economic choices:

An indirect inference approach. Technical report, Yale University.

Hall, R. E. (1988). Intertemporal substitution in consumption. Journal of Political Economy,

pages 339–357.

Hall, R. E. and Mishkin, F. S. (1982). The sensitivity of consumption to transitory income:

Estimates from panel data on households. Econometrica, 50(2):461–481.

Heathcote, J. (2005). Fiscal policy with heterogeneous agents and incomplete markets.

Review of Economic Studies, 72(1):161–188.

42



Heathcote, J., Perri, F., and Violante, G. L. (2010). Unequal we stand: An empirical analysis

of economic inequality in the united states, 1967-2006. Review of Economic Dynamics,

13(1):15 – 51.

Heathcote, J., Storesletten, K., and Violante, G. L. (2012). Consumption and labor supply

with partial insurance: An analytical framework. Research Department Staff Report 432,

Federal Reserve Bank of Minneapolis.

Ingram, B. F., Kocherlakota, N. R., and Savin, N. E. (1994). Explaining business cycles: A

multiple-shock approach. Journal of Monetary Economics, 34(3):415–428.

Johnson, D. S., Parker, J. A., and Souleles, N. S. (2006). Household expenditure and the

income tax rebates of 2001. American Economic Review, 96(5):1589–1610.

Jung, P. and Kuester, K. (2011). The (un)importance of unemployment fluctuations for the

welfare cost of business cycles. Journal of Economic Dynamics and Control, 35(10):1744

– 1768.

Kaplan, G. and Violante, G. L. (2011). A model of the consumption response to fiscal

stimulus payments. Working Paper 17338, National Bureau of Economic Research.

King, R. G. and Watson, M. W. (1996). Money, prices, interest rates and the business cycle.

The Review of Economics and Statistics, 78(1):pp. 35–53.

Krusell, P. and Smith, Jr., A. A. (1998). Income and wealth heterogeneity in the macroe-

conomy. Journal of Political Economy, 106(5):867–896.

Leeper, E. M. and Sims, C. A. (1994). Toward a modern macroeconomic model usable for

policy analysis. In NBER Macroeconomics Annual 1994, Volume 9, pages 81–140. MIT

Press.

Lettau, M. and Ludvigson, S. C. (2004). Understanding trend and cycle in asset values:

Reevaluating the wealth effect on consumption. American Economic Review, 94(1):276–

299.

43



Lusardi, A. (1996). Permanent income, current income, and consumption: Evidence from

two panel data sets. Journal of Business & Economic Statistics, 14(1):81–90.

McCarthy, J. (1995). Imperfect insurance and differing propensities to consume across house-

holds. Journal of Monetary Economics, 36(2):301–327.

McGrattan, E. R. (1994). The macroeconomic effects of distortionary taxation. Journal of

Monetary Economics, 33(3):573–601.

McKay, A. and Reis, R. (2013). The role of automatic stabilizers in the u.s. business cycle.

Working Paper 19000, National Bureau of Economic Research.

Mishkin, F. S. (1981). The real interest rate: An empirical investigation. Carnegie-Rochester

Conference Series on Public Policy, 15:151 – 200.

Misra, K. and Surico, P. (2011). Heterogeneous responses and aggregate impact of the 2001

income tax rebates. Technical report, CEPR.

Parker, J. A. (1999). The reaction of household consumption to predictable changes in social

security taxes. American Economic Review, 89(4):959–973.

Parker, J. A., Souleles, N. S., Johnson, D. S., and McClelland, R. (2013). Consumer spending

and the economic stimulus payments of 2008. American Economic Review. Forthcoming.

Reiter, M. (2009). Solving heterogeneous-agent models by projection and perturbation.

Journal of Economic Dynamics and Control, 33(3):649–665.

Reiter, M. (2010). Approximate and almost-exact aggregation in dynamic stochastic

heterogeneous-agent models. Institute for Advanced Studies, Economics Series 258.

Rouwenhorst, K. G. (1995). Asset Pricing Implications of Equilibrium Business Cycle Mod-

els., chapter 10, pages 294 – 330. Princeton:.

Sargent, T. J. (1989). Two models of measurements and the investment accelerator. Journal

of Political Economy, pages 251–287.

44



Shimer, R. (2005). The cyclical behavior of equilibrium unemployment and vacancies. The

American Economic Review, 95(1):pp. 25–49.

Sims, C. A. (2002). Solving linear rational expectations models. Computational Economics,

20(1-2):1 – 20.

Smets, F. and Wouters, R. (2007). Shocks and frictions in us business cycles: A bayesian

dsge approach. American Economic Review, 97(3):586 – 606.

Souleles, N. S. (1999). The response of household consumption to income tax refunds. The

American Economic Review, 89(4):947–958.

Tkachenko, D. and Qu, Z. (2012). Frequency domain analysis of medium scale dsge models

with application to smets and wouters (2007). In Advances in Econometrics: DSGE

Models in Macroeconomics-Estimation, Evaluation, and New Development, volume 28,

pages 319–385.

Watson, M. W. (1993). Measures of fit for calibrated models. Journal of Political Economy,

101(61).

45



A Further details of calibration procedure

A.1 Skills

I calibrate the Markov chain for skills using the procedure described in Domeij and Heathcote

(2004). The skill distribution has three points and the mean log skill is normalized to zero.

The skill transition matrix is restricted to have the form

T s =


T s11 1− T s11 0

1−T s
22

2
T s22

1−T s
22

2

0 1− T s11 T s11

 ,
which implies that households do not transit directly from low skill to high skill, the number

of workers in the low and high skill states is the same, and the probabilities of moving into

(out of) low and high skill is the same. After these restrictions there are four parameters

that need to be calibrated: two of the three skill levels, T s11, and T sss. The four targets are:

the autocorrelation and cross-sectional dispersion of log wages, Gini coefficient for wealth,

and the share of wealth held by the poorest 40% of the population.

The parameters needed to match these moments differ from those chosen by Domeij and

Heathcote (2004) because the other features of the model affect the distribution of wealth

and because here a model period corresponds to one quarter rather than one year. Domeij

and Heathcote calibrate their model to generate a variance of log labor productivity of 0.26

and an annual autocorrelation of 0.9, which are inline with commonly-used estimates from

PSID data. To adapt this strategy to a quarterly model period, I simulate an AR(1) process

at a quarterly frequency and then aggregate to annual averages. I choose the parameters of

the quarterly process so that the aggregated data matches an annual autocorrelation of 0.9,

but I increase the variance of the process to reflect wages exclusive of taxes and transfers. I

set the cross-sectional variance to 0.4, which is inline with estimates for male wages in the

CPS (Heathcote et al., 2010). The quarterly process has an autocorrelation of 0.96 and an

standard deviation of the innovation of 0.17. This procedure results in T s11 = 0.9618 and

T s22 = 0.9932. The three skill levels are 0.025, 0.960, and 63.0.
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< High school High school Some college College

Labor force 0.10 0.31 0.27 0.31

Unemployment 0.20 0.36 0.26 0.18

Table 8: Shares of labor force and unemployment pool by education 1992 - 2012. Data are

for civilians ages 25 and over and are calculated from data on the number of persons in the

labor force and unemployment as reported by the Bureau of Labor Statistics.

A.2 Unemployment risk

The model allows the job-separation rate to vary by skill level using data on unemployment

by education as a guide to the cross-sectional variation in unemployment risk. Table A.2

shows that high school dropouts account for 20% of the unemployment pool, but only 10%

of the labor force implying that their unemployment rate is twice that of the economy as a

whole. The first step in the calibration of the skill-specific job-separation rates is to construct

average unemployment rates for the three skill groups. The overall unemployment rate is

chosen to match the average in the data, which is 9.3%. I then set the low-skill unemployment

rate to twice this level and the unemployment rate of the high-skill group to 0.18/0.31 = 0.57

times this level reflecting the unemployment rate among college graduates. These low- and

high-skill groups are small, about 6% of the population, so it is reasonable to interpret them

as high school dropouts and college graduates. The unemployment rate of the middle skill

group is set to match the overall unemployment rate. With these skill-specific unemployment

rates, I then solve the following set of equations to find λ̄, ζ̂1, ζ̂2, ζ̂3

ulong = (1− λ̄)
3∑
s=1

Psus

Psus =
3∑
ŝ=1

PŝT
s(s|ŝ)

[
(1− λ̄)uŝ + ζ̂ ŝ(1− uŝ)

]
∀s = 1, 2, 3.

In these equations ulong refers to the average long-term unemployment rate, which is con-

structed as described in the text and us are the skill-specific unemployment rates described
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above. After solving these equations, I adopt the normalization ζ̄ = ζ̂3 and ζs = ζ̂s− ζ̄. This

leads to λ̄ = 0.679, ζ̄ = 0.037, ζ1 = 0.119, ζ2 = 0.029, and ζ3 = 0.

B Implementation of methods

The first step in the Reiter algorithm is to discretize the decision rules and the distribution

of wealth. There are six discrete idiosyncratic income states corresponding to the three skill-

levels and two employment statuses. For each of these, I represent the savings policy rule

using a linear spline with 99 knots, which are concentrated at low asset levels where there is

more curvature in the savings policy rule. Following Reiter, I parameterize the level of assets

at which the borrowing constraint binds and only approximate the decision rule above that

point. Therefore there are a total of 100 parameters for this approximation. To approximate

the distribution of wealth for a given idiosyncratic income state, I use a histogram with 500

bins. These too are unevenly placed and more concentrated at low asset levels.

The equations used to solve the model are as follows: first, the Euler equation must hold

with equality at the 600 points at which the savings policy rule is approximated. Second,

the evolution of the distribution of wealth is described by 3000 equations that specify how

the mass of households in one bin updates. These equations are based on Reiter (2010) and

depend on the savings rule and distribution of wealth in the previous period. If a household

wishes to choose a level of savings between two grid points, their assets are attributed between

the nearest two grid points so as to preserve the aggregate assets. Third, I use equations (2),

(3), (5), and (6), which describe the exogenous aggregate processes. Fourth, equation (8)

describes the evolution of the unemployment rates for each of the three skill levels. Finally,

there are the observables in equations (10)-(13). Equations (12) and (13) are used in logs

and I introduce a lag of logC and log Y so that I can calculate ∆ log Y and ∆ logC when

I write the model in state space form. The integral in equation (13) is calculated using the

discrete approximation to the distribution of wealth. These equations describe the evolution

of At, w̃t, λt, ζt, {us,t : ∀s ∈ S}, ushort
t , ulong

t , Yt, Ct, as well as the savings policy rules and

the distribution of wealth.

48



The model equations are differentiated by automatic differentiation as described in Re-

iter (2010) and then solved using the algorithm of Sims (2002). To reduce the size of the

resulting linear system, I compute the Hankel singular values of the system, which reveal

the contribution of each state to the input-output behavior of the overall system. Let n be

the number of Hankel singular values greater than 10−8. I then reduce the model to order n

using a balanced truncation. Calculating Hankel singular values and balanced truncation are

easily performed using the functions ‘hsvd’ and ‘balred’ from the Matlab Control Systems

Toolbox.

C Accuracy of the solution method

To assess the accuracy of the model solution method, I compare the solution that is linear in

aggregate states to a fully non-linear solution. The non-linear solution is not the true solution

as all calculations of this kind contain some amount of approximation and numerical error.

So the spirit of the exercise is to compare the solution generated by the methods used in the

paper to a solution generated by a more commonly used method that is well understood.

I conduct this check on a simplified version of the model that has fewer aggregate state

variables because the fully non-linear method faces the curse of dimensionality. In what fol-

lows, I ignore the transitory wage shock and assume that job-finding and job-separation rates

are perfectly negatively correlated so in the end there are two aggregate shock processes. In

addition to these changes, I need to eliminate the income-pooling insurance system because

this makes the pattern of unemployment across skill levels an aggregate state variable. In-

stead, I assume that when a household is unemployed they simply receive 30% of what they

would have if they were employed. Those who are employed do not make any contribution

towards this unemployment insurance. There is no insurance against skill shocks.

I approximate the aggregate shocks using two 11-state Markov chains generated using

the Rouwenhorst (1995) algorithm.14 To solve the model non-linearly, I use the endogenous

14Above, I estimated the autoregressive coefficient of λ to be 0.920 and that of ζ to be 0.924. For the

common labor market shock, I set this coefficient to 0.922. For a given persistence, the Rouwenhorst
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grid point algorithm. With the solution in hand, I simulate the solutions using the same

sequence of shocks, which are discrete following the Rouwenhorst approximation.

I compare the fully non-linear solution to the result of the Reiter method with and without

the model reduction step. Table 9 shows selected moments for the three solution methods.

The results for both versions of the Reiter method are identical because the model reduction

step leads to very small losses of accuracy. This is not surprising because the model reduction

techniques have explicit bounds on the size of errors that can result and these errors can be

reduced by including more states in the reduced model. Turning, to the non-linear model the

results show some differences from the Reiter method, but these are generally fairly small

relative to either the distance between the low-insurance and full-insurance economies or

the distance between the model and the data shown in Table 2. Much of the discussion in

section 5 centered around the standard deviation of consumption growth. Here it seems that

the Reiter method slightly exaggerates this volatility predicting 0.26 as compared to 0.23

for the non-linear solution. Compare this discrepancy to results from Table 2, which shows

a value for the full-insurance economy of 0.07 while the empirical moment is 0.54. Other

interesting points of comparison show the first-order autocorrelation of consumption growth

is higher in the non-linear solution, but again this discrepancy is fairly small relative to the

distance to the data and the full-insurance economy. The same applies to the correlation of

consumption growth and unemployment.

In addition to the properties of consumption growth, Table 9 also shows some moments of

the processes driving income and unemployment. Jung and Kuester (2011) have emphasized

the non-linearities inherent in the dynamics of unemployment. From panels A., B., and D.,

it would appear that these non-linearities result in little loss of accuracy in this application.

algorithm generates a transition matrix that is independent of the mean and variance of the process and

generates a grid for the values of the process that shifts with the mean of the process and scales by the

unconditional standard deviation of the process. Therefore, I can apply the algorithm to approximate λt

and then calculate the grid values for ζt as ζ = ζ̄ − σζ(λ− λ̄)/σλ. The results would be identical if I were to

approximate ζ and then calculate λ from that. It is as though I apply the Rouwenhorst algorithm separately

for the two processes and then assume that the transitions across states are perfectly correlated.

50



A. Mean relative to trend (×100)

∆Ct ∆Yt ushort
t ulong

t

Non-linear 0.000 0.000 6.294 3.190

Reiter 0.000 0.000 6.327 3.006

Reiter-reduced 0.000 0.000 6.327 3.006

B. Standard deviation (×100)

∆Ct ∆Yt ushort
t ulong

t

Non-linear 0.231 1.237 0.875 1.352

Reiter 0.261 1.229 0.880 1.290

Reiter-reduced 0.261 1.229 0.880 1.290

C. Correlation of ∆Ct with

∆Yt ushort ulong

Non-linear 0.768 -0.030 -0.019

Reiter 0.776 -0.009 0.005

Reiter-reduced 0.776 -0.009 0.005

D. First-order autocorrelation

∆Ct ∆Yt ushort
t ulong

t

Non-linear 0.149 0.065 0.894 0.970

Reiter 0.111 0.059 0.895 0.970

Reiter-reduced 0.111 0.059 0.895 0.970

Table 9: Moments from alternative solution methods. Model moments are calculated from

10,000 quarters of simulated data.
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