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Abstract

We develop a new class of nonlinear time-series models to identify nonlinear-

ities in the data and to evaluate nonlinear DSGE models. U.S. output growth

and the federal funds rate display nonlinear conditional mean dynamics, while

inflation and nominal wage growth feature conditional heteroskedasticity. We

estimate a DSGE model with asymmetric wage/price adjustment costs and use

predictive checks to assess its ability to account for nonlinearities. While it is

able to match the nonlinear inflation and wage dynamics, thanks to the esti-

mated downward wage/price rigidities, these do not spill over to output growth

or the interest rate. (JEL C11, C32, C52, E32)
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are now widely used for

empirical research in macroeconomics, as well as for forecasting and quantitative

policy analysis in central banks. In these models, decision rules of economic agents

are derived from assumptions about agents’ preferences and production technologies

utilizing some fundamental principles such as optimization, rational expectations,

and competitive equilibrium. In practice, this means that the functional forms and

parameters of equations that describe the behavior of economic agents are tightly

restricted by the equilibrium conditions. Consequently, a careful evaluation of the

DSGE model-implied restrictions is an important aspect of empirical research.

Until recently, much of the research that estimates DSGE models used first-order

approximations to the equilibrium decision rules. This made linear models such as

vector autoregressions (VARs) appropriate for evaluating the restrictions of the DSGE

model. With the advance of methods to estimate DSGE models using higher-order

approximations, as developed in Fernández-Villaverde and Rubio-Ramı́rez (2007), an

important avenue of research has opened. The end of the Great Moderation also

makes nonlinear models all the more relevant for empirical macroeconomics.1 While

there is a burgeoning literature on both the methods to solve nonlinear DSGE models

and their applications, there does not seem to be an obvious nonlinear time-series

model in use to evaluate these DSGE models.

The objective of this paper is to develop a class of time-series models that mimic

1There are in principle two types of nonlinearities that can appear in a nonlinear DSGE model.

First are (approximately) smooth nonlinearities, where decision rules display curvature and possibly

asymmetries such as those that are generated by asymmetric loss or cost functions. Second are kinks

in decision rules such as those that are generated by the zero lower bound on nominal interest rates.

This paper is about the former. While the latter is also crucial and we intend to extend our work to

address this type of nonlinearities, solving and estimating DSGE models with kinks in decision rules

is very difficult. See, for example, Gust, Lopez-Salido, and Smith (2012), Aruoba and Schorfheide

(2013), Bocola (2013), and references therein.
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nonlinearities of DSGE models and to use these models as a benchmark for the eval-

uation of a nonlinear DSGE model. Motivated by the popular second-order pertur-

bation approximations of DSGE model dynamics, we consider autoregressive models

that involve quadratic terms of lagged endogenous variables as well as interactions

between current-period innovations and lagged endogenous variables, which generate

conditional heteroskedasticity. These time-series models are derived from a perturba-

tion solution to a nonlinear difference equation and have a recursively linear structure

that makes it straightforward to characterize stability properties and derive moments.

While multivariate extensions are possible, we focus in this paper on univariate spec-

ifications, which we refer to as QAR(p,q) models, where “Q” stands for quadratic.2

In the empirical work, we use p = q = 1.

After documenting some of the theoretical properties of the QAR models, the

first step of the empirical analysis is to fit QAR(1,1) models to growth of real gross

domestic product (GDP), inflation, nominal wage growth, and interest rate data for

the U.S. We start our sample in 1960 but consider various subsamples, using 1983

(the end of the Volcker era and the start of the Great Moderation) and 2007 (the end

of the Great Moderation and the start of the Great Recession) as additional start

and end points. We find three sets of important nonlinearities across the variables

and samples we consider. First, GDP growth displays pronounced nonlinearities in

the post-1983 samples with sharp output losses during recessions and relatively slow

recoveries. Second, for inflation and wage growth the long samples that start in 1960

and extend beyond the 1990s exhibit high volatility in times of high inflation and

wage growth, which is mainly driven by the observations in the 1970s. Finally, QAR

estimates for interest rates imply an asymmetric behavior by the Federal Reserve,

cutting interest rates faster but not increasing them as fast in the post-1983 era.

The second step of the empirical analysis consists of the estimation of a DSGE

model. In our application we focus on the estimation and evaluation of a New Keyne-

2The abbreviation QAR has previously been used for quantile autoregressions; see Koenker and

Xiao (2006).
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sian DSGE model with asymmetric price and wage adjustment costs, building on work

by Kim and Ruge-Murcia (2009). This model can generate downward nominal wage

and price rigidity and is interesting for several reasons. First, it is well known that

in the absence of the zero-lower-bound (ZLB) constraint on nominal interest rates,

unrealistically large shocks, or high degrees of risk aversion, New Keynesian DSGE

models do not generate significant nonlinearities (see, for instance, An (2007)). How-

ever, once one allows for asymmetric adjustment costs, agents’ decision rules can

become strongly nonlinear. Thus, ex ante, to the extent that there are nonlinearities

in the data, the model may be able to deliver some of these.

Second, downward rigidity is a well-documented feature of nominal wage changes

at the micro level, e.g., Gottschalk (2005), Barattieri, Basu, and Gottschalk (2010),

and Daly, Hobijn, and Lucking (2012). Third, a number of papers have incorporated

downward nominal wage rigidity into DSGE models to study its macroeconomic ef-

fects. For instance, Kim and Ruge-Murcia (2009) study optimal monetary policy in

the presence of downward nominal wage rigidity. Schmitt-Grohe and Uribe (2013)

use downward nominal wage rigidity to generate large output losses and a jobless

recovery in a deflation (or liquidity-trap) equilibrium of a New Keynesian model with

ZLB constraint. Thus, a careful evaluation of the nonlinearities that this mechanism

generates is important.

In estimating the DSGE model, we use the same data set as in the estimation of

the univariate QAR models and consider two samples, one long and one short, both

of which end in 2007 to avoid using data where the ZLB starts to bind. By and large,

the parameter estimates for the DSGE models are consistent with estimates that

have been reported elsewhere in the literature. In particular, our estimates indicate

asymmetries in the adjustment costs for both prices and nominal wages that make

increases less costly than decreases.

The final and most important step of the analysis is to conduct a posterior pre-

dictive check of the DSGE model that compares coefficient estimates obtained from
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data simulated from an estimated DSGE model to coefficient estimates obtained from

actual data. The predictive check amounts to assessing how far the QAR estimates

obtained from the actual data lie in the tails of the predictive distribution. The

general conclusion is that the DSGE model does not generate very strong nonlinear-

ities except for inflation and nominal wage growth, both of which show conditional

heteroskedasticity. This means that the asymmetric adjustment costs in prices and

wages are able to deliver asymmetric behavior in inflation and nominal wage growth

in line with the data, but this asymmetry does not spill over to real GDP growth or

to the policy instrument of the Federal Reserve.

Our work is related to several branches of the literature. There exists a large body

of work on nonlinear time-series models.3 However, none of these model classes seem

to be directly usable for our purposes since either the nonlinearities do not match

the nonlinearities of DSGE models solved with higher-order perturbation methods,

or the models have undesirable instability properties.

The proposed QAR family is most closely related to generalized autoregressions

(GAR) discussed in Mittnik (1990) in the sense that the conditional mean of the

dependent variable yt is a polynomial function of its lags. Our QAR models also in-

volve interactions between lagged dependent variables yt−j and innovations ut, which

is a defining property of bilinear models and linear autoregressive conditional het-

eroskedasticity (LARCH) models, e.g., those in Giraitis, Robinson, and Surgailis

(2000). However, rather than simply augmenting a linear autoregressive model by

quadratic terms and interactions between lagged endogenous variables and innova-

tions, we derive its structure from a second-order perturbation approximation to the

solution of a nonlinear difference equation along the lines of Holmes (1995). To the

extent that both conditional mean and variance depend on quadratic functions of

3These include regime-switching models, e.g., Hamilton (1989) and Sims and Zha (2006), time-

varying coefficient models, e.g., Cogley and Sargent (2002) and Primiceri (2005), threshold and

smooth-transition autoregressive models, e.g., Tong and Lim (1980) and Teräsvirta (1994), and

bilinear models, e.g., Granger and Andersen (1978) and Rao (1981).
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the innovations ut our model is also related to the class of (G)ARCH-M models, e.g.,

those in Engle, Lilien, and Robins (1987) and Grier and Perry (1996). Finally, the

QAR model can be viewed as a set of tight restrictions on the coefficients of a Volterra

(1930) representation of a nonlinear time series.

There exists an abundant literature that develops methods to evaluate DSGE

models based on comparisons with more flexible and densely parameterized time-series

models. However, much of the existing econometric work is based on linearized DSGE

models. A natural benchmark for the evaluation of such models is provided by vector

autoregressions (VARs) that relax the cross-coefficient restrictions. In fact, there

exists an extensive literature that develops and applies methods to evaluate DSGE

models based on comparisons with VARs, e.g., Cogley and Nason (1994), Schorfheide

(2000), Christiano, Eichenbaum, and Evans (2005), Del Negro, Schorfheide, Smets,

and Wouters (2007), and Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Watson

(2007).

In this paper we use so-called posterior predictive checks to evaluate a prototyp-

ical DSGE model. A general discussion of the role of predictive checks in Bayesian

analysis can be found in Lancaster (2004) and Geweke (2005). Canova (1994) is the

first paper that uses predictive checks to assess implications of a DSGE model. While

Canova (1994)’s checks were based on the prior predictive distribution, we use poste-

rior predictive checks in this paper as, for instance, in Chang, Doh, and Schorfheide

(2007). Finally, Abbritti and Fahr (2013) use a model with asymmetric wage adjust-

ment costs and search and matching frictions to investigate the ability of the model

to deliver nonlinearities, focusing on skewness and turning-point statistics.

The remainder of the paper is organized as follows. In Section 2 we review the

structure of second-order perturbation approximations of DSGE models. The QAR

model is developed in Section 3, where we discuss some of its theoretical properties as

well as Bayesian inference. Estimates of the QAR model for U.S. data are presented

in Section 4. The DSGE model with asymmetric price and wage adjustment costs
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is introduced in Section 5. The estimation and evaluation of the DSGE model is

presented in Section 6 and Section 7 concludes. An online appendix contains detailed

derivations of the properties of the QAR model, as well as details about the Markov

chain Monte Carlo (MCMC) methods employed in this paper.

2 DSGE Model Nonlinearities

Most estimated nonlinear DSGE models are solved with perturbation methods be-

cause they can be efficiently applied to models with a large state space. A DSGE

model solved by second-order perturbation can be generically written as

ci,t = ψ1i(θ) + ψ2ij(θ)xj,t + ψ3ij(θ)zj,t

+ψ4ijk(θ)xj,txk,t + ψ5ijk(θ)xj,tzk,t + ψ6ijk(θ)zj,tzk,t

xi,t+1 = ζ1i(θ) + ζ2ij(θ)xj,t + ζ2ij(θ)zj,t (1)

+ζ4ijk(θ)xj,txk,t + ζ5ijk(θ)xj,tzk,t + ζ6ijk(θ)zj,tzk,t

zi,t+1 = ξ2ij(θ)zj,t + ξ3i(θ)εi,t+1,

where θ denotes the parameters of the model and the DSGE model variables are

grouped into control variables ci,t, e.g., consumption; endogenous state variables xi,t,

e.g., the capital stock; and exogenous state variables zi,t, e.g., total factor productivity.

The notation aijkxj,txk,t in (1) is shorthand for
∑n

j=1

∑n
k=1 aijkxj,txk,t. Since not all

of the control and state variables are observable, it is common to augment the system

by a measurement equation of the form

yi,t = A1i(θ) + A2ij(θ)cj,t + A3ij(θ)xj,t + A4ij(θ)zj,t + ei,t, (2)

where the ei,t’s are measurement errors. Typically, the vector of observables yt is

composed of a subset of the state and control variables such that the A matrices are

simple selection matrices.

Nonlinear features may arise endogenously or exogenously. Curvature in utility

functions, adjustment cost function, and production functions can generate nonlinear
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decision rules of households and firms endogenously. An example of an exogenous

nonlinearity is stochastic volatility in the exogenous shocks that generate business

cycle fluctuations. In (1) the endogenous nonlinearity is captured by the quadratic

functions of xt and zt that appear in the law of motion of the control variables ci,t

and the endogenous state variables xi,t+1. The representation assumes there are no

exogenous nonlinearities as the exogenous states xexoi,t evolve according to a linear

autoregressive process.

The objective of this paper is to propose an econometric method to assess the em-

pirical adequacy of the nonlinear terms in the DSGE model solution (1). The DSGE

model generates cross-coefficient restrictions between the first-order terms and the

higher-order terms that may or may not be correctly specified. In principle, one

could try to estimate two versions of the state-space model given by (1) and (2): a re-

stricted version that imposes the functional relationship between the low-dimensional

DSGE model parameter vector θ and the state-space coefficients ψ(·), ζ(·), and ξ(·)

and an unrestricted version in which the ψ’s, ζ’s, and ξ’s are freely estimated. The

discrepancy between the restricted and unrestricted estimates provides a measure of

empirical adequacy. However, due to the large number of parameters and some in-

herent identification problems, the unrestricted estimation of the state-space system

(1) and (2) is difficult to implement. In fact, even the literature that evaluates lin-

earized DSGE models has by and large abstained from trying to estimate unrestricted

state-space representations.

A more common approach in the literature on linearized DSGE models is to

compare properties of the DSGE model to properties of an unrestricted VAR. This

comparison can take many different forms, e.g., assessing the discrepancy between

unrestricted VAR coefficient estimates and the DSGE-model-implied VAR approx-

imation as in Smith (1993), or the comparison of VAR and DSGE model impulse

responses as in Cogley and Nason (1994) or Christiano, Eichenbaum, and Evans

(2005). Since our goal is to identify nonlinearities, a linear VAR would not be of any

use. Instead, we compare parameter estimates of nonlinear autoregressive time-series
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models obtained from actual U.S. data and data simulated from a nonlinear DSGE

model. If the DSGE model is well specified, then the estimates of the auxiliary mod-

els ought to be very similar. This comparison is formalized as a Bayesian posterior

predictive check. We proceed by providing a detailed description of the auxiliary

time-series model that is used for the DSGE model evaluation.

3 Quadratic Autoregressive Models

The most popular (and empirically successful) nonlinear time-series models are those

capturing time variation in the coefficients of linear time-series models, e.g., Markov-

switching models, time-varying coefficient models, GARCH models, and stochastic

volatility models. However, none of these models provides a good characterization of

the nonlinearity generated endogenously by the DSGE model solution in (1). For this

reason we develop a new class of nonlinear autoregressive time-series models that are

more closely tied to the DSGE model solution in (1).

We introduce the specification of a first-order quadratic autoregressive (QAR)

model in Section 3.1. We subsequently characterize some of its important properties

in Section 3.2 and describe the implementation of posterior inference in Section 3.3.

Section 3.4 provides generalizations of the basic specification and discusses the rela-

tionship of our QAR models to other nonlinear time-series models.

3.1 Specification of the QAR(1,1) Model

The starting point is a perturbation approximation of the solution for a nonlinear

difference equation of the form

yt = f(yt−1, ωut), ut
iid∼ N(0, 1). (3)

We assume that the process characterized by (3) has a unique deterministic steady

state that solves the equation y∗ = f(y∗, 0). Following the literature on perturbation
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methods, e.g., Holmes (1995) and Lombardo (2011), we construct an approximate

solution of the form

y∗t = y
(0)
t + ωy

(1)
t + ω2y

(2)
t . (4)

It turns out that this solution is second-order accurate in the sense that

yt = y∗t +Op(ω3) (5)

as ω −→ 0.

To obtain y∗t , we take a second-order Taylor expansion of the function f around

yt = y∗ and ω = 0:

yt − y∗ = fy(yt−1 − y∗) + fuωut (6)

+
1

2
fy,y(yt−1 − y∗)2 + fy,u(yt−1 − y∗)ωut

+
1

2
fu,u(ωut)

2 + higher-order terms,

where fx,y denotes the (x, y)’th derivative of f evaluated at the point (yt = y∗, ω = 0).

Substituting (4) into (6) and neglecting terms of order Op(ω3), one obtains:

y
(0)
t − y∗ + ωy

(1)
t + ω2y

(2)
t

= fy

(
y
(0)
t−1 − y∗ + ωy

(1)
t−1 + ω2y

(2)
t−1

)
+ fuωut

+
1

2
fy,y

(
y
(0)
t−1 − y∗ + ωy

(1)
t−1 + ω2y

(2)
t−1

)2
(7)

+
1

2
fy,u

(
y
(0)
t − y∗ + ωy

(1)
t−1 + ω2y

(1)
t−1

)
ωut +

1

2
fu,uω

2u2t +Op(ω3).

We set y
(0)
t = y

(0)
t−1 = y∗ and then match terms of the same ω-order on the left-hand

side and the right-hand side of (7) to obtain the laws of motion for y
(1)
t and y

(2)
t :

y
(1)
t = fyy

(1)
t−1 + fuut,

y
(2)
t = fyy

(2)
t−1 +

1

2
fy,y

(
y
(1)
t−1

)2
+

1

2
fy,uy

(1)
t−1ut +

1

2
fu,uu

2
t .

Notice that y
(1)
t follows an AR(1) process and that conditional on y

(1)
t the dynamics

of y
(2)
t are also linear. Substituting the expressions for y

(1)
t and y

(2)
t into (4) and
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collecting terms, we obtain that a second-order accurate perturbation approximation

of the nonlinear difference equation (3) is given by the system:

yt = y∗ + fy(yt−1 − y∗) +
1

2
fy,y

(
ωy

(1)
t−1

)2
+

(
fu +

1

2
fy,uy

(1)
t−1

)
ωut +

1

2
fu,uω

2u2t

y
(1)
t = fyy

(1)
t−1 + fuut. (8)

We undertake a few additional modifications. We define st ≡ ωy
(1)
t and introduce the

parameters

φ0 = y∗, φ1 = fy, φ̃2 =
1

2
fy,y, γ̃ =

1

2ω
fy,u, σ = fuω.

Moreover, we drop the term 1
2
fu,uu

2
t to obtain a conditional Normal distribution of

yt. Overall, this leads to the nonlinear state-space model:

yt = φ0 + φ1(yt−1 − φ0) + φ̃2s̃
2
t−1 + (1 + γ̃s̃t−1)σut (9)

s̃t = φ1s̃t−1 + σut, ut
iid∼ N(0, 1).

To complete the specification of the time-series model we assume that the initial

values in period t = −T∗ have distribution F−T∗ and that the innovations ut are

normally distributed:

(y−T∗ , s̃−T∗) ∼ F−T∗ , ut
iid∼ N(0, 1). (10)

We refer to (9) as the QAR(1,1) model. The first number indicates the number of

lags in the conditional mean function, and the second number indicates the number

of lags that interact with the innovation ut.

It is convenient to reparameterize the QAR(1,1) model as follows. Define φ2, γ,

and st such that

φ2 = φ̃2
σ2

1− φ2
1

, γ =
σ√

1− φ2
1

γ̃, and st =

√
1− φ2

1

σ
s̃t. (11)

Under the reparameterization, the coefficients φ2 and γ interact with standardized

versions of s2t−1 and st−1, respectively. Thus, (9) becomes

yt = φ0 + φ1(yt−1 − φ0) + φ2s
2
t−1 + (1 + γst−1)σut (12)

st = φ1st−1 +
√

1− φ2
1ut, ut

iid∼ N(0, 1).
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3.2 Important Properties of the QAR(1,1) Model

In order to appreciate two of the important implications of the recursively linear

structure of the QAR(1,1) model given by (12), consider the alternative specification

(omitting the constant term and the volatility dynamics) yt = φ1yt−1 + φ2y
2
t−1 + ut,

0 < φ1 < 1 and φ2 > 0. It is straightforward to verify that this specification has two

steady states: y
(1)
∗ = 0 and y

(2)
∗ = (1 − φ1)/φ2. The second steady state arises as an

artefact of the quadratic representation even if the underlying nonlinear model (3) has

only a single steady state. Moreover, from writing ∆yt = (−1 + φ1 + φ2yt−1)yt−1 + ut

notice that the system becomes explosive if a large shock has pushed yt−1 above y
(2)
∗ .

This explosiveness can arise regardless of the value of φ1.

The multiplicity of steady states and the undesirable explosive dynamics have been

pointed out in the context of second-order perturbation solutions of DSGE models

by Kim, Kim, Schaumburg, and Sims (2008), who proposed an ex-post modification

of quadratic autoregressive equations to ensure that unwanted higher-order terms do

not propagate forward and generate explosive behavior not present in the underly-

ing nonlinear model. This modification is called “pruning” in the literature.4 Our

derivation of the QAR model in Section 3.1 automatically generates a recursively

linear structure with a unique steady state and nonexplosive dynamics for suitably

restricted values of φ1. If the marginal distribution of s−T∗ is N(0, 1), then the process

st, t ≥ −T∗, is strictly stationary under the restriction |φ1| < 1. In turn, the vector

process zt = [st−1, s
2
t−1, ut]

′ is strictly stationary and we can rewrite the law of motion

4Lombardo (2011) constructs a pruned perturbation solution of a DSGE model directly rather

than by ex-post adjustment. Lan and Meyer-Gohde (2013) solve DSGE models by constructing

approximate second-order Volterra series expansions for the model variables, which also eliminates

unwanted higher-order terms. Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2013) derive

the moments of observables from a general state-space representation for pruned DSGE models to

facilitate moment-based estimation.
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of yt in (9) as

yt = φ0 + φ1(yt−1 − φ0) + g(zt) = φ0 +
∞∑
j=0

φj1g(zt−j). (13)

This representation highlights that yt is a stationary process. Since g(zt) is a nonlinear

function of ut and its history, the process is, however, not linear in ut anymore. In

fact, under the assumption that yt was initialized in the infinite past (T∗ −→ −∞),

we obtain the following representation:

yt = φ0+σ
∞∑
j=0

φj1ut−j+σ
∞∑
j=0

∞∑
l=0

γ̃I{l > j}φl−j1 + φ̃2

min {j,l}∑
k=0

φj+l−k1

ut−jut−l. (14)

(14) is a discrete-time Volterra series expansion, in which the Volterra kernels of order

one and two are tightly restricted and the kernels of order larger than two are equal to

zero.5 The recursively linear structure also facilitates the computation of higher-order

moments of yt. Further details are provided in the appendix.

For the purpose of the empirical analysis the most important characteristic of (9)

is that the model is able to generate nonlinear dynamics that are akin to the nonlinear

dynamics of DSGE models solved with perturbation methods. In particular, impulse

responses defined as

IRFt(h) = Et[yt+h|ut = 1]− Et[yt+h]

are state dependent. For instance, for h = 1 we obtain

IRFt(0) = σ(1 +γst−1), IRFt(1) = σ

(
φ1(1 + γst−1) + 2φ1φ2

√
1− φ2

1st−1

)
. (15)

Moreover, the model generates conditional heteroskedasticity. The conditional vari-

ance of yt is given by

Vt−1[yt] = (1 + γst−1)
2σ2. (16)

5The infinite sequences of coefficients on terms {ut−j}j≥0, {ut−jut−l}j≥0,l≥0,

{ut−jut−lut−k}j≥0,l≥0,k≥0, etc. are called Volterra kernels.
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3.3 Posterior Inference for the QAR(1,1) Model

We estimate the QAR(1,1) model using Bayesian methods. Starting point is a joint

distribution of data, parameters, and initial states:

p(Y0:T , θ, s0) = p(Y1:T |y0, s0, θ)p(y0, s0|θ)p(θ),

where p(Y1:T |y0, s0, θ) is a likelihood function that conditions on the initial values of

y0 and s0, p(y0, s0|θ) characterizes the distribution of the initial values, p(θ) is the

prior density of the QAR(1,1) parameters, and θ = [φ0, φ1, φ2, γ, σ
2]′. Since for large

values of |st−1| the term (1 + γst−1) in (12) may become close to zero or switch signs,

we replace it by (
(1− ϑ) exp

[
γ

1− ϑ
st−1

]
+ ϑ

)
, (17)

where 1 + γst−1 is the first-order Taylor series expansion of (17). The exponential

transformation guarantees non-negativity of the time-varying standard deviation, and

the constant ϑ provides some regularization ensuring that the shock standard devia-

tion is strictly greater than σ exp(ϑ) in all states of the world.

It is convenient to factorize the likelihood function into conditional densities as

follows:

p(Y1:T |y0, s0, θ) =
T∏
t=1

p(yt|y0:t−1, s0, θ).

Given s0 and θ, it is straightforward to evaluate the likelihood function iteratively.

Conditional on st−1 the distribution of yt is normal. The equation for yt in (12) can be

solved for ut to determine st, which completes iteration t. In addition to the likelihood

function, we need to specify an initial distribution p(y0, s0|θ). We assume that the

system was in its steady state in period t = −T∗, that is, y−T∗ = φ0 and s−T∗ = 0.

Based on iterating the original system (9) forward we compute a mean and variance

for (y0, s0) and assume that the initial values are normally distributed. Further details

of this initialization are provided in the appendix. Since the dimension of θ is small,

we use a single-block random walk Metropolis (RWM) algorithm to generate draws

from the posterior of θ.
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3.4 Further Discussion

The QAR(1,1) model in (8) has a straightforward generalization in which we include

additional lag terms:

yt = φ0 +

p∑
l=1

φ1,l(yt−l − φ0) +

p∑
l=1

p∑
m=l

φ̃2,lmst−lst−m +

(
1 +

q∑
l=1

γ̃lst−l

)
σut(18)

s̃t =

p∑
l=1

φ1,lst−l + σut.

We refer to (18) as the QAR(p,q) model. As in the standard AR(p) model, the

stationarity of yt is governed by the roots of the lag polynomial 1 −
∑p

l=1 φ1,lz
l.

The quadratic terms generate an additional p(p+ 1)/2 coefficients in the conditional

mean equation for yt. Since the number of coefficients grows at rate p2, a shrinkage

estimation method is required even for moderate values of p, in order to cope with

the dimensionality problem. The QAR model can also be extended to the vector

case, which is an extension that we are pursuing in ongoing research. The empirical

analysis presented in Section 6 is based on the QAR(1,1) specification.

The QAR model is closely related but not identical to some of the existing nonlin-

ear time-series models. For γ = 0, the QAR(1,1) can be viewed as a pruned version of

the generalized autoregressive model (GAR) discussed in Mittnik (1990), which aug-

ments the standard AR model by higher-order polynomials of the lagged variables.

The conditional heteroskedasticity in (9) has a linear autoregressive structure. For

φ2 = 0, our model is a special case of the LARCH model studied in Giraitis, Robin-

son, and Surgailis (2000). Since the conditional variance of yt can get arbitrarily close

to zero, likelihood-based estimation of LARCH models is intrinsically difficult. We

circumvent these difficulties by introducing exponential transformation in (17).

Grier and Perry (1996, 2000) have estimated GARCH-M models on macroeco-

nomic time series. GARCH-M models provide a generalization of the ARCH-M mod-
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els proposed by Engle, Lilien, and Robins (1987) and can be written as

yt = φ0 + φ1(yt−1 − φ0) + φ2(σ
2
t − σ2) + σtut

σ2
t − σ2 = γ1(u

2
t−1 − σ2) + γ2(σ

2
t−1 − σ2).

Under suitable parameter restrictions, yt can be expressed as a nonlinear function

of ut and its lags. As in the case of the QAR model, yt depends on the sequence

{u2t−j}. In addition, the term σtut introduces interactions between ut and u2t−j, j > 1.

However, coefficients on terms of the form ut−jut−l, j 6= l are restricted to be zero.

From our perspective, the biggest drawback of the GARCH-M model is that nonlinear

conditional mean dynamics are tied to the volatility dynamics: In the absence of

conditional heteroskedasticity, the dynamics of yt are linear. The QAR model is

much less restrictive in this regard: yt can be conditionally homoskedastic (γ = 0)

but at the same time have nonlinear conditional mean dynamics, that is, φ2 6= 0.

4 QAR Empirics

We begin the empirical analysis by fitting the QAR(1,1) model to per capita out-

put growth, nominal wage growth, GDP deflator inflation, and federal funds rate

data.6 The choice of data is motivated by the DSGE model that is being evaluated

subsequently. The DSGE model features potentially asymmetric wage and price ad-

justment costs, and we will assess whether the nonlinearities generated by this DSGE

6All series are quarterly and obtained from the FRED database of the Federal Reserve Bank of

St. Louis. Output growth is the log difference of real GDP (GDPC96). We compute log differences

of civilian noninstitutional population (CNP16OV) and remove a one-sided eight-quarter moving

average to smooth population growth. The smoothed population growth series is used to obtain

per capita GDP growth rates. Inflation is the log difference of the GDP deflator (GDPDEF).

Nominal wage growth is the log difference of compensation per hour in the nonfarm business sector

(COMPNFB). For interest rates, we use quarterly averages of monthly effective federal funds rates

(FEDFUNDS).



16

Table 1: Estimation Samples and Pre-Samples

Sample Estimation Sample Pre-Sample for Prior

1 1960:Q1 - 1983:Q4 1955:Q1 - 1959:Q4

2 1960:Q1 - 2007:Q4 1955:Q1 - 1959:Q4

3 1960:Q1 - 2012:Q4 1955:Q1 - 1959:Q4

4 1984:Q1 - 2007:Q4 1955:Q1 - 1983:Q4

5 1984:Q1 - 2012:Q4 1955:Q1 - 1983:Q4

model are consistent with the nonlinearities in U.S. data. We report parameter esti-

mates for the QAR model in Section 4.1 and explore the properties of the estimated

models in Section 4.2.

4.1 Estimation of QAR(1,1) Model on U.S. Data

We estimate QAR(1,1) models for output growth, inflation, nominal wage growth, and

interest rates using five different sample periods, which are summarized in Table 1.

The longest sample spans the period from 1960:Q1 to 2012:Q4. This sample includes

the high-inflation episode of the 1970s, the subsequent disinflation period, and the

Great Recession of 2008-09. We then split this sample after 1983:Q4 into a pre-

Great-Moderation sample that ranges from 1960:Q1 to 1983:Q4 and a post-Great-

Moderation sample from 1984:Q1 to 2012:Q4. Since the 2008-09 recession involves

large negative GDP growth rates that may be viewed as outliers, and the federal

funds rate has been at or near the lower bound of 0% since 2008, we consider two

additional samples that exclude the Great Recession data and end in 2007:Q4.

To specify the prior distribution for the QAR parameters we use normal distri-

butions for φ0, φ2, and γ. The autoregressive coefficient φ1 is a priori also normally

distributed, but the normal distribution is truncated to ensure stationarity of the

QAR model. Finally, the prior distribution of σ is of the inverted gamma form. We
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use pre-sample information to parameterize the priors. The pre-sample periods for

our five estimation samples are provided in the last column of Table 1. Throughout

the estimation the tuning constant ϑ in (17) is fixed at ϑ = 0.1. The prior distribu-

tions for φ1, the first-order autoregressive coefficient, are centered at the pre-sample

first-order autocorrelations of the four time series. The inverse Gamma distribution

of σ is centered at the residual standard deviation associated with the pre-sample

estimation of an AR(1) model. Finally, the prior mean of φ0 is specified such that the

implied E[yt] of the QAR(1,1) model corresponds to the pre-sample mean of the re-

spective time series. The priors for φ2 and γ are centered at zero and have a standard

deviation of 0.1. Further details are provided in the appendix.

Figure 1 summarizes the posterior distributions of φ2 and γ. Detailed estimation

results for the remaining QAR(1,1) parameters are tabulated in the appendix. The

φ2 posteriors for GDP growth using the three samples starting in 1960 are essentially

centered at zero with the 90% credible interval covering both positive and negative

values. The γ posterior medians for the same samples are slightly negative, around

-0.05, but the 90% credible sets also cover positive values, providing only some mild

evidence for conditional variance dynamics. For the two post-Great-Moderation sam-

ples, the φ2 estimates drop to about -0.1 and the credible set now excludes zero. The

strongest evidence for nonlinearity in GDP growth is present in the 1984-2012 sample,

which includes large negative growth rates of output during the Great Recession, in

the form of φ2 < 0 and γ < 0. Nonlinearities in wages and inflation are reflected in

positive estimates of γ. These nonlinearities are most pronounced for the 1960-2007

and the 1960-2012 samples. For the federal funds rate we obtain estimates of φ2 near

zero and estimates for γ of about 0.4 for samples that include the pre-1984 obser-

vations. For samples that start after the Great Moderation, the pattern is reversed:

The estimates of φ2 are around -0.2 and the estimates of γ are close to zero. We will

discuss the interpretation of these estimates in Section 4.2.

Figure 2 depicts log marginal likelihood differentials for the QAR(1,1) versus a

linear autoregressive AR(1) model. The AR(1) models are estimated by setting φ2 =
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Figure 1: Posterior Medians and Credible Intervals for QAR Parameters
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Notes: The solid bars indicate posterior medians and the shaded boxes delimit 90% equal-tail-
probability credible intervals.

γ = 0 and using the same priors for φ0, φ1, and σ as in the estimation of the QAR(1,1)

model. A positive value indicates evidence in favor of the nonlinear QAR(1,1). Under

equal prior probabilities, the difference in log marginal data density between the two

models has the interpretation of log posterior odds. By and large, the marginal

likelihood differentials favor the QAR(1,1) specification. The evidence in favor of the

nonlinear specification is strongest for the federal funds rate. Marginal likelihood

differentials range from 20 to 60. For output growth, there is substantial evidence in

favor of the QAR model for the post-Great-Moderation samples, whereas for inflation
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Figure 2: Log Marginal Data Density Differentials: QAR(1,1) versus AR(1)
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Notes: The figure depicts log marginal data density differentials. A positive number provides evi-
dence in favor of the QAR(1,1) specification.

large positive log marginal likelihood differentials are obtained for the 1960-2007 and

the 1960-2012 samples. For wage growth, the evidence in favor of the nonlinear

specification is less strong: Log marginal likelihood differentials are around 2.

4.2 Properties of the Estimated QAR Models

In this section we discuss what the nonlinearities we identified in the previous section

mean for each variable. For ease of exposition, we focus on the subsample that

“maximizes” the nonlinearities for each variable, which roughly corresponds to picking

the subsample that has the largest marginal data density differential between the

AR(1) and the QAR(1,1) models.

GDP Growth. Our results show that the posterior medians of φ2 and γ for GDP

growth are less than zero. The largest estimates (in absolute terms) are obtained for

the 1984-2012 sample. As (16) shows, with a negative γ, the periods of below-mean

growth (likely to be recessions) are also periods where volatility is higher, which is a
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Figure 3: Impulse Responses of GDP Growth (in Absolute Terms)

Notes: 1984-2012 sample. Solid and dashed lines correspond to median impulse responses to one-
standard-deviation shocks and shaded bands represent 60% credible intervals (equal tail probability).
To initialize the latent state s0 we compute two-quarter moving averages based on the states associ-
ated with the estimated QAR model and calculate the minimum and the maximum of the smoothed
series. For the left panel (large negative s0) the initialization is based on the minimum and in the
right panel (large positive s0) it is based on the maximum.

well-known business cycle fact. A negative φ2 along with a negative γ also implies that

the response to shocks is a function of the initial state s0. Using the formulas in (15),

Figure 3 depicts the absolute responses of GDP growth to a negative and a positive

one-standard-deviation shock. In the left panel, we assume that the initial state s0

takes on large negative values, whereas the responses in the right panel condition

on large positive s0’s.
7 This figure highlights, that regardless of the initial state,

negative shocks are more persistent than positive shocks. Moreover, both shocks

are more persistent in recessions. Combining these results, we deduce that multiple

positive shocks are necessary to recover from a recession, while a small number of

negative shocks can generate a recession.

The impulse-response findings are consistent with the time-series plot of GDP

growth, which is provided in Figure 4. In this figure, and all the other time-series plots

7To obtain the s0 for a given draw, we compute a two-period moving average to smooth the st

series and use the minimum and the maximum values for this smoothed series.
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Figure 4: Annualized GDP Growth
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Notes: Shaded areas indicate NBER recessions and the dashed horizontal line represents the sample
mean of the series.

below, shaded areas indicate NBER recessions and the solid vertical line indicates

the year 1984, which is the starting point of two of the five estimation samples. The

unconditional mean of the variable is shown as a horizontal dashed line. In the post-

1983 sample, the most extreme observations are all during recessions, confirming the

effect of γ < 0. Looking at the quarters just prior to and just after NBER recessions,

we see that the declines in GDP growth are always very sharp, but the recoveries,

defined as getting back to and staying at pre-recession levels, take much longer.

It is easy to see why the nonlinearities identified in the samples starting in 1984

are not as pronounced in the samples that start in 1960. First, prior to 1984 there are

more episodes of large positive GDP growth rates. These are, in absolute terms, as

large as the negative growth rates observed between 1960 and 2012. Thus, recessions

are not necessarily periods of higher volatility. Second, the recoveries from recessions

are as sharp as the entries, not displaying the clear asymmetry in the later sample.

These findings explain why a linear AR(1) is a good description of GDP growth
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pre-1984.8

Inflation and Wage Growth. The nonlinearities in the inflation dynamics are most

pronounced in the 1960-2007 sample with γ > 0 and φ2 = 0. Once again referring

to the conditional variance formula in (16), we conclude that periods of above-mean

inflation are associated with high volatility. In fact, Figure 5 shows that the period

from 1970 to 1980 has high and volatile inflation. A similar conclusion can be reached

in the post-1983 sample, but to a lesser degree. Figure 6 shows that nominal wage

growth displays properties similar to inflation. In the 1960-2007 sample, which is also

the relevant one for nominal wage growth, volatility tends to be high when the level

is high. Because nominal wage growth is more volatile than inflation, and there are

many large negative observations, the estimate of γ is smaller for the former series.

Federal Funds Rate. Figure 7 shows the plot of the federal funds rate. Based on

the QAR(1,1) estimation results, there are two samples with strong nonlinearities. In

the 1960-2007 sample, we find a positive γ. As was the case for inflation and nominal

wage growth, this is due to the observations from late the 1960s to the mid-1980s,

which are typically above the unconditional mean; thus, volatility is higher when the

level is higher. For the 1984-2012 sample we find φ2 < 0 and γ = 0. In this period

the extreme observations are equally likely to be positive or negative and thus γ = 0

is reasonable. φ2 < 0 implies that interest rates fall faster than they rise. This seems

to be consistent with the Federal Reserve’s operating procedures in the post-1983

sample, and it can have two separate explanations. First, the Federal Reserve may

have an asymmetric policy rule, in which reactions to deviations from targets may

8Qualitatively, our results for GDP growth are in line with findings by Brunner (1997), who

estimated three nonlinear models for real gross national product. Based on a sample from 1947

to 1990 the author obtained strong evidence of countercyclical volatility, that is, recessions are

periods of high volatility. Moreover, Brunner (1997) detects nonlinear conditional mean dynamics:

According to the impulse responses, the effects of a negative shock accumulate faster than those of a

positive shock, in line with our findings. Similarly, McKay and Reis (2008) find that the brevity and

violence of contractions and expansions are about equal in a sample that encompasses our longest

sample, once again in line with our results.
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Figure 5: Annualized GDP Deflator Inflation
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Figure 6: Annualized Nominal Wage Growth
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Notes: Shaded areas indicate NBER recessions and the dashed horizontal line represents the sample
mean of the series.



24

Figure 7: Federal Funds Rate
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Notes: Shaded areas indicate NBER recessions and the dashed horizontal line represents the sample
mean of the series.

depend on the sign of the deviation. This can happen, for example, if the Federal

Reserve is risk averse and wants to avoid recessions: When GDP growth falls, the

central bank is willing to cut the policy rate quickly, but when GDP growth starts to

improve, it is reluctant to increase the policy rate immediately. Second, the variables

that the Federal Reserve tracks may have asymmetries themselves. Given our finding

that φ2 < 0 for GDP in this sample, the second explanation is certainly reasonable.

There is some evidence for the first explanation as well. For example, Dolado, Maria-

Dolores, and Ruge-Murcia (2004) and Cukierman and Muscatelli (2008) estimate

a nonlinear Taylor rule using GMM and find that U.S. monetary policy is better

characterized by a nonlinear policy rule after 1983, especially with respect to the

reaction to output gap deviations.

To sum up, the estimation of QAR(1,1) models provides evidence of interesting

and substantial nonlinearities in the U.S. macroeconomic time series. For the two

samples that start in 1960 and extend beyond the 1990s the nonlinearities are re-
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flected in the run-up in inflation in the 1970s, with spillovers to nominal wage growth

and the federal funds rate. In the shorter post-1983 samples, there are two important

nonlinearities: the asymmetries in GDP growth, which are particularly pronounced

if the 2008-09 recession is included in the sample, and the federal funds rate. In the

remainder of this paper we examine whether a DSGE model with asymmetric adjust-

ment costs for prices and wages can possibly generate the nonlinearities documented

in this section.

5 A DSGE Model with Asymmetric Price and Wage

Adjustment Costs

By now there exists a large empirical literature on the estimation of New Keyne-

sian DSGE models, including small-scale models such as the one studied in Lubik

and Schorfheide (2004) and Rabanal and Rubio-Ramı́rez (2005), as well as variants

of the Smets and Wouters (2007) model. It turns out that, in the absence of zero-

lower-bound constraints on nominal interest rates, high degrees of risk aversion, large

shocks, or exogenous nonlinearities such as stochastic volatility, these models do not

generate strong nonlinearities, in the sense that first-order and higher-order perturba-

tion approximations deliver very similar decision rules. In order to generate stronger

nonlinearities that can be captured in higher-order perturbation approximations, we

consider a model with potentially asymmetric price and wage adjustment costs that

builds on that of Kim and Ruge-Murcia (2009).

The model economy consists of a final good producing firm, a continuum of in-

termediate goods producing firms, a representative household, and a monetary and

a fiscal authority. The model replaces Rotemberg-style quadratic adjustment cost

functions by linex adjustment cost functions, which can capture downward (as well

as upward) nominal price and wage rigidities. Our model abstracts from capital

accumulation. In the subsequent empirical analysis we examine whether the asym-



26

metric adjustment costs can generate the observed nonlinearities in inflation and wage

growth and whether the effects of asymmetric adjustment costs translate into nonlin-

earities in GDP growth and the federal funds rate. In a nutshell, asymmetric price

adjustments should lead to asymmetric quantity adjustments. To the extent that

the central bank sets interest rates in response to inflation and output movements,

nonlinearities in the target variables may translate into nonlinearities in the interest

rate itself.

Final Good Production. The perfectly competitive, representative, final good

producing firm combines a continuum of intermediate goods indexed by j ∈ [0, 1]

using the technology

Yt =

(∫ 1

0

Yt(j)
1−λp,tdj

) 1
1−λp,t

. (19)

Here, 1/λp,t > 1 represents the elasticity of demand for each intermediate good. The

firm takes input prices Pt(j) and output prices Pt as given. Profit maximization

implies that the demand for intermediate goods is

Yt(j) =

(
Pt(j)

Pt

)−1/λp,t
Yt. (20)

The relationship between intermediate goods prices and the price of the final good is

Pt =

(∫ 1

0

Pt(j)
λp,t−1

λp,t dj

) λp,t
λp,t−1

. (21)

Intermediate Goods. Intermediate good j is produced by a monopolist who has

access to the following production technology:

Yt(j) = AtHt(j), (22)

where At is an exogenous productivity process that is common to all firms. Interme-

diate goods producers buy labor services Ht(j) at a nominal price of Wt. Moreover,

they face nominal rigidities in terms of price adjustment costs. These adjustment

costs, expressed as a fraction of the firm’s revenues, are defined by the linex function

Φp(x) = ϕp

(
exp (−ψp (x− π)) + ψp (x− π)− 1

ψ2
p

)
, (23)
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where we let x = Pt(j)/Pt−1(j) and π is the steady-state inflation rate associated with

the final good. The parameter φp governs the overall degree of price stickiness, and

ψp controls the asymmetry of the adjustment costs. Taking as given nominal wages,

final goods prices, the demand schedule for intermediate products, and technological

constraints, firm j chooses its labor inputs Ht(j) and the price Pt(j) to maximize the

present value of future profits:

IEt

[ ∞∑
s=0

βsQt+s|t

(
Pt+s(j)

Pt+s

(
1− Φp

(
Pt+s(j)

Pt+s−1(j)

))
Yt+s(j)−

1

Pt+s
Wt+sHt+s(j)

)]
.

(24)

Here, Qt+s|t is the time t value of a unit of the consumption good in period t + s to

the household, which is treated as exogenous by the firm.

Labor Packers. Labor services used by intermediate goods producers are supplied

by a perfectly competitive labor packer. The labor packer aggregates the imperfectly

substitutable labor services of households according to the following technology:

Ht =

(∫ 1

0

Ht(k)1−λwdk

) 1
1−λw

. (25)

The labor packer chooses demand for each type of labor in order to maximize his

profits, taking as given input prices Wt(k) and output prices Wt. Optimal labor

demand is then given by

Ht(k) =

(
Wt(k)

Wt

)− 1
λw

Ht. (26)

Perfect competition implies that labor cost Wt and nominal wages paid to workers

are related as follows:

Wt =

(∫ 1

0

Wt(k)
λw−1
λw dk

) λw
λw−1

. (27)

Households. Each household consists of a continuum of family members indexed

by k. The family members provide perfect insurance to each other, which equates

their marginal utility in each state of the world. A household member of type k

derives utility from consumption Ct(k) relative to a habit stock. We assume that the

habit stock is given by the level of technology At. This assumption ensures that the



28

economy evolves along a balanced growth path even if the utility function is additively

separable in consumption, real money balances, and leisure. The household member

derives disutility from hours worked Ht(k) and maximizes

IEt

[
∞∑
s=0

βs

(
(Ct+s(k)/At+s)

1−τ − 1

1− τ
− χH

H
1+1/ν
t+s (k)

1 + 1/ν

)]
, (28)

where β is the discount factor, 1/τ is the intertemporal elasticity of substitution, and

χH is a scale factor that determines the steady-state hours worked. Moreover, ν is

the Frisch labor supply elasticity.

The household member is a monopolist in the supply of labor services. As a

monopolist, he chooses the nominal wage and labor, taking as given the demand

from the labor packer. We assume that labor market frictions induce a cost in the

adjustment of nominal wages. Adjustment costs are paid as a fraction of labor income

and they have the same linex structure assumed for prices:

Φw(x) = ϕw

(
exp (−ψw (x− γπ)) + ψw (x− γπ)− 1

ψ2
w

)
, (29)

where x = Wt(k)/Wt−1(k), γπ is the growth rate of nominal wages, and γ is the

average growth rate of technology defined below. In addition to his labor choices,

the household member faces a standard consumption/saving trade-off. He has access

to a domestic bond market where nominal government bonds Bt(k) are traded that

pay (gross) interest Rt. Furthermore, he receives aggregate residual real profits Dt(k)

from the firms and has to pay lump-sum taxes Tt. Thus, the household’s budget

constraint is of the form

PtCt(k) +Bt(k) + Tt

= Wt(k)Ht(k)

(
1− Φw

(
Wt(k)

Wt−1(k)

))
+Rt−1Bt−1(k) + PtDt(k) + PtSCt,

where SCt(k) is the net cash inflow that household k receives from trading a full set

of state-contingent securities. We denote the Lagrange multiplier associated with the

budget constraint by λt. The usual transversality condition on asset accumulation

applies, which rules out Ponzi schemes.



29

Monetary and Fiscal Policies. Monetary policy is described by an interest rate

feedback rule of the form

Rt = R∗ 1−ρRt RρR
t−1e

εR,t , (30)

where εR,t is a monetary policy shock and R∗t is the (nominal) target rate. Our

specification of R∗t implies that the central bank reacts to inflation and deviations of

output growth from its equilibrium steady state γ:

R∗t = rπ∗
( πt
π∗

)ψ1
(

Yt
γYt−1

)ψ2

. (31)

Here, r is the steady-state real interest rate, πt is the gross inflation rate defined

as πt = Pt/Pt−1, and π∗ is the target inflation rate, which in equilibrium coincides

with the steady-state inflation rate. The fiscal authority consumes a fraction ζt of

aggregate output Yt, where ζt ∈ [0, 1] follows an exogenous process. The government

levies a lump-sum tax (subsidy) to finance any shortfalls in government revenues (or

to rebate any surplus).

The model economy is perturbed by four exogenous processes. Aggregate produc-

tivity evolves according to

lnAt = ln γ + lnAt−1 + ln zt, where ln zt = ρz ln zt−1 + εz,t. (32)

Thus, on average, technology grows at the rate γ, and zt captures exogenous fluctu-

ations of the technology growth rate. Define gt = 1/(1− ζt). We assume that

ln gt = (1− ρg) ln g + ρg ln gt−1 + εg,t. (33)

The inverse-demand elasticity for intermediate goods evolves according to a first-order

autoregressive processes in logs:

lnλp,t = (1− ρp) lnλp + ρp lnλp,t−1 + εp,t. (34)

Finally, the monetary policy shock εR,t is assumed to be serially uncorrelated. The

five innovations are independent of each other at all leads and lags and are normally

distributed with mean zero and standard deviations σz, σg, σp, and σR, respectively.
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6 Estimation and Evaluation of the DSGE Model

The estimation and evaluation of the DSGE model proceeds in three steps. In Sec-

tion 6.1, the DSGE model is estimated for two samples: 1960-2007 and 1984-2007,

using the same series that were studied in Section 4. In Section 6.2, we use posterior

predictive checks that are based on posterior mean estimates of QAR(1,1) parame-

ters to assess whether the nonlinearities captured in the second-order approximated

DSGE model are commensurate with the nonlinearities captured by the QAR(1,1)

model. Finally, in Section 6.3 we assess the effect of adjustment cost asymmetries on

the model’s ability to generate nonlinear inflation and wage growth dynamics.

6.1 DSGE Model Estimation on U.S. Data

The second step in the empirical analysis consists of estimating the DSGE model

based on the same data used to estimate the QAR(1,1) models in Section 4. The

marginal prior distributions for the DSGE model parameters are summarized in Ta-

ble 2. We use pre-sample evidence to quantify a priori beliefs about the average

growth rate of the economy, as well as average inflation and real interest rates. We

use the same priors for both samples. The prior mean for τ implies a risk-aversion

coefficient of 2. Our prior for the Frisch labor supply elasticity covers some of the low

values estimated in the microeconometrics literature, as well as a value of 2 advocated

in the real-business-cycle literature based on steady-state considerations. The prior

for the price-adjustment-cost parameter ϕp is specified indirectly through a prior for

the slope κ(ϕp) of the New Keynesian Phillips curve. This prior encompasses values

that imply an essentially flat as well as a fairly steep Phillips curve. The prior for

the wage rigidity is directly specified on ϕw and spans values ranging from 0 to 30.

The priors for the asymmetry parameters ψp and ψw are centered at zero (symmetric

adjustment costs) and have a large variance, meaning that the asymmetries could po-

tentially be strong. We do not restrict the signs of ψp and ψw, i.e., we allow a priori

for both downward and upward price and wage rigidities. The priors for the monetary
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Table 2: Prior for Structural Parameters of DSGE Model

Parameter Distribution Para (1) Para (2)

400
(

1
β
− 1
)

Gamma 2.00 1.00

πA Gamma 3.00 1.00
γA Gamma 2.00 1.50
1/g Fixed 0.85
τ Gamma 2.00 1.00
ν Gamma 0.50 1.00
κ(ϕp) Gamma 0.30 0.20
ϕw Gamma 15.0 7.50
ψw Uniform -200 200
ψp Uniform -300 300
ψ1 Gamma 1.50 0.50
ψ2 Gamma 0.20 0.10
ρr Beta 0.50 0.20
ρg Beta 0.80 0.10
ρz Beta 0.20 0.10
ρp Beta 0.60 0.20
100σr InvGamma 0.20 2.00
100σg InvGamma 0.75 2.00
100σz Beta 0.75 2.00
100σp Beta 0.75 2.00

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta, Gamma, and
Normal distributions; the upper and lower bound of the support for the Uniform distribution; and s

and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2

. The effective prior
is truncated at the boundary of the determinacy region.

policy rule coefficients are centered at 1.5 (reaction to inflation), 0.2 (output growth),

and 0.5 (interest rate smoothing). Finally, we use priors for the parameters associated

with the exogenous shock processes, then generate a priori reasonable magnitudes for

the persistence and volatility of the observables.

The DSGE model presented in Section 5 is solved using a second-order approx-

imation, which leads to a nonlinear state-space representation. We use the particle

filter developed in Fernández-Villaverde and Rubio-Ramı́rez (2007) to evaluate the

likelihood function of the DSGE model. To facilitate the likelihood evaluation with
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Table 3: Posterior Estimates for DSGE Model Parameters

1960:Q1-2007:Q4 1984:Q1-2007:Q4
Parameter Mean 90% Interval Mean 90% Interval

400
(

1
β
− 1
)

0.47 [0.08, 1.04] 1.88 [0.47, 3.01]

πA 3.19 [2.57, 3.84] 3.34 [2.44, 4.32]
γA 2.04 [1.57, 2.77] 1.98 [1.59, 2.36]
τ 4.83 [2.75, 7.28] 4.10 [2.35, 6.06]
ν 0.37 [0.21, 0.52] 0.10 [0.05, 0.17]
κ(ϕp) 0.02 [0.01, 0.04] 0.21 [0.12, 0.35]
ϕw 18.7 [8.47, 38.1] 11.7 [5.34, 20.2]
ψw 67.4 [33.2, 99.5] 59.4 [21.7, 90.9]
ψp 150 [130, 175] 165 [130, 192]
ψ1 1.77 [1.51, 2.12] 2.57 [1.93, 3.26]
ψ2 1.41 [0.97, 1.85] 0.79 [0.42, 1.18]
ρr 0.81 [0.23, 0.72] 0.73 [0.64, 0.80]
ρg 0.95 [0.92, 0.98] 0.96 [0.94, 0.98]
ρz 0.48 [0.23, 0.72] 0.07 [0.01, 0.20]
ρp 0.89 [0.86, 0.94] 0.90 [0.76, 0.98]
100σr 0.17 [0.14, 0.21] 0.17 [0.12, 0.23]
100σg 0.88 [0.58, 1.29] 0.83 [0.49, 1.30]
100σz 0.44 [0.31, 0.62] 0.47 [0.38, 0.56]
100σp 2.62 [0.46, 7.23] 6.54 [4.56, 9.37]

Notes: For 90% credible interval we are reporting the 5th and 95th percentile of the posterior
distribution.

the particle filter, the measurement equation contains mean-zero iid Gaussian mea-

surement errors. The measurement error variances are set equal to 10% of the sample

variances of GDP growth, inflation, interest rates, and nominal wage growth. Poste-

rior inference is implemented with a single-block RWM algorithm, described in detail

in An and Schorfheide (2007). Theoretical convergence properties of so-called particle

MCMC approaches are established in Andrieu, Doucet, and Holenstein (2010).

Posterior summary statistics for the DSGE model parameters are reported in

Table 3. The most interesting and important estimates are those of the asymmetry

parameters in the price and wage adjustment cost function. The wage and price
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rigidity estimates differ substantially across subsamples. For instance, the estimated

slope of the New Keynesian Phillips curve is 0.02 for the 1960-2007 sample, whereas

it increases to 0.2 for the post-1983 sample. Likewise, the estimated wage rigidity

is larger over the long sample. The positive estimates of ψp and ψw imply that it is

more expensive to lower prices and wages than to raise them and that the asymmetry

in prices is more pronounced than in wages. The asymmetry of the adjustment costs

is more pronounced for prices (ψ̂p equals 150 and 165, respectively) than for wages

(ψ̂w equals 67 and 59, respectively).

Compared to the estimates reported by Kim and Ruge-Murcia (2009) and Abbritti

and Fahr (2013), who report estimates of ψ̂w = 3, 844 and ψ̂w = 24, 700, respectively,

our estimates of the ψw’s are considerably smaller.9 In our experience, such large

values of ψw lead to a clear deterioration of the model’s ability to track U.S. data.

Moreover, the second-order solution of the DSGE model relies on a third-order ap-

proximation of the linex cost function that becomes very inaccurate for large values

of ψ. In particular, we found that for values of ψw above 500 the adjustment costs

for large positive wage changes (that lie in the support of the ergodic distribution)

would become negative due to the polynomial approximation of the linex function.

We estimate the risk-aversion parameter τ to be fairly large, around 4, and the

Frisch labor supply elasticity to be fairly low, ranging from 0.1 to 0.4. The estimates of

ν are in line with those reported in Ŕıos-Rull, Schorfheide, Fuentes-Albero, Kryshko,

and Santaeulalia-Llopis (2012). The policy rule coefficient estimates are similar to the

ones reported elsewhere in the DSGE model literature. The coefficient ψ1 on inflation

9Kim and Ruge-Murcia (2009) estimated their DSGE model simulated method of moments

(SMM). While they also used consumption and hours-worked data in their estimation, the SMM

objective function includes only second moments. The authors find that the covariance of consump-

tion and hours worked, respectively, with wage growth playing a crucial role in their estimation.

Abbritti and Fahr (2013) use a calibration approach to parameterize their model. Given their pre-

ferred calibration of the exogenous technology, discount factor, and monetary policy shocks, they

find that a very large value of ψw is needed to match the volatility and skewness of wage growth

observed in the data.
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is larger for the post-1983 sample, which is consistent with the view that following the

Volcker disinflation the Federal Reserve has responded more aggressively to inflation

movements. The government spending shock, which should be viewed as a generic

demand shock, is the most persistent among the serially correlated exogenous shocks:

ρg is approximately 0.95. The estimated autocorrelation ρz of technology growth

shock, which generates most of the serial correlation in output growth rates, drops

from 0.48 for the long sample to 0.07 for the post-1983 sample.

6.2 Posterior Predictive Checks

We proceed by examining whether QAR(1,1) parameter estimates obtained from

data that are simulated from the estimated DSGE model are similar to the esti-

mates reported in Section 4 computed from actual data. This comparison is for-

malized through a posterior predictive check. The role of posterior predictive checks

in Bayesian analysis is discussed in the textbooks by Lancaster (2004) and Geweke

(2005) and reviewed in the context of the evaluation of DSGE models in Del Ne-

gro and Schorfheide (2011). The posterior predictive check is implemented with the

following algorithm.

Posterior Predictive Check. Let θ(i) denote the i’th draw from the posterior

distribution of the DSGE model parameter θ.

1. For i = 1 to n:

(i) Conditional on θ(i) simulate a pre-sample of length T0 and an estimation

sample of size T from the DSGE model. The second-order approximated

DSGE model is simulated using the pruning algorithm described in Kim,

Kim, Schaumburg, and Sims (2008). A Gaussian iid measurement error is

added to the simulated data. The measurement error variance is identical

to the one imposed during the estimation of the DSGE model. Denote the

simulated data by Y
(i)
−T0+1:T .
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(ii) Based on the simulated trajectory Y
(i)
−T0+1:T estimate the QAR(1,1) model

as described in Section 4.1. The prior for the QAR(1,1) parameters is

elicited from the pre-sample Y
(i)
−T0+1:0 and the posterior is based on Y

(i)
1:T . De-

note the posterior median estimates of the QAR parameters by S
(
Y

(i)
−T0+1:T

)
.

2. The empirical distribution of
{
S
(
Y

(i)
−T0+1:T

)
}ni=1 approximates the posterior pre-

dictive distribution of S|Y−T0+1:T . Examine how far the actual value S(Y1:T ),

computed from U.S. data, lies in the tail of its predictive distribution. �

The predictive check is carried out for each QAR(1,1) parameter estimate sepa-

rately. The results are summarized in Figure 8. The top panel corresponds to the

1960-2007 sample, whereas the bottom panel contains the results from the 1984-2007

sample. The red dots signify the posterior median estimates obtained from U.S. data

and correspond to the horizontal bars in Figure 1. The blue rectangles delimit the

90% credible intervals associated with the posterior predictive distributions, and the

solid horizontal bars indicate the medians of the predictive distributions. The length

of the credible intervals reflects both parameter uncertainty, i.e., the fact that each

trajectory Y
(i)
−T0+1:T is generated from a different parameter draw θ(i), and sampling

uncertainty, meaning that if one were to hold the parameters θ fixed, the variabil-

ity in the simulated finite-sample trajectories generates variability in posterior mean

estimates. Because the posterior variance of the DSGE model parameters is fairly

small, these intervals mostly capture sampling variability. Accordingly, they tend to

be larger in the bottom panel (short sample) than in the top panel (long sample).

By and large, the QAR parameter estimates for output growth, wage growth, and

inflation from model-generated data are very similar to those obtained from actual

data, in the sense that most actual estimates do not fall far in the tails of their respec-

tive posterior predictive distributions. Only interest rates exhibit large discrepancies

between actual and model-implied estimates of the QAR(1,1) parameters.

Overall, the estimated DSGE model does not generate very strong nonlinearities.

Posterior predictive distributions for φ̂2 and γ̂ typically cover both positive and nega-
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Figure 8: Predictive Checks Based on QAR(1,1)Estimates
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Notes: Dots correspond to posterior median estimates from U.S. data. Solid horizontal lines indicate
medians of posterior predictive distributions for parameter estimates and the boxes indicate 90%
credible intervals associated with the posterior predictive distributions.

tive values. The only exceptions are the predictive distributions for wage growth and

inflation γ̂ conditional on the 1960-2007 sample, which imply that γ̂ is positive. Recall

from Table 3 that, for this sample, we estimate sizable adjustment costs (κ̂ = 0.02 and
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ϕ̂w = 18.7). Moreover, the asymmetry parameter estimates are substantially larger

than zero: ψ̂p = 150 and ψ̂w = 67.4. The model-implied positive estimates of γ imply

that high inflation and wage-growth rates are associated with high levels of volatility,

which describes the experience of the U.S. economy in the 1970s and early 1980s.

However, the nonlinear inflation and wage dynamics do not generate any spillovers

to nonlinearities in GDP growth or the interest rate. Figure 8 indicates that the

predictive distributions for the corresponding φ̂2 and γ̂ are centered at zero. For the

1984-2007 sample the overall magnitude of the estimated adjustment costs is smaller,

which flattens the adjustment cost functions, makes the asymmetries less important

for equilibrium dynamics, and shifts the predictive distribution for the inflation and

wage growth γ̂’s toward zero.

Two types of nonlinearities present in the data are not predicted by the estimated

DSGE model. First, for the short sample φ̂2 for GDP growth is negative, because the

post-1983 sample exhibits a pronounced drop in output growth during the recessions

but does not feature positive growth rates of similar magnitudes in early parts of

expansions. Second, the interest rate exhibits strong nonlinearities in the data, i.e.,

a large positive γ̂ in the 1960-2007 sample and a large negative φ̂2 in the 1984-2007

sample, which the DSGE model is unable to reproduce.

To sum up, of the nonlinearities we identified in Section 4, the only ones the

DSGE model seems able to deliver are the conditional heteroskedasticity in inflation

and nominal wage growth. It is able to do so by relying on the asymmetric adjustment

costs that penalize downward adjustments more than upward adjustments. However,

while ex-ante reasonable, these asymmetries in prices do not spill over to quantities.

Moreover, since the interest rate feedback rule in the model does not feature any

asymmetries, which would result from the central bank having an asymmetric loss

function, and since there are no asymmetries in GDP growth in the model, the policy

instrument does not display the asymmetry we identified in the data.
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6.3 The Role of Asymmetric Adjustment Costs

To further study the role of asymmetric adjustment costs in generating nonlinear

wage and inflation dynamics, we repeat the predictive checks based on φ̂2 and γ̂

for alternative choices of ψp and ψw. We focus on the 1960-2007 sample because the

nonlinearities are more pronounced there than in the post-1983 sample. For each draw

θ(i) from the posterior distribution of the DSGE model parameters, we replace ψ
(i)
p

and ψ
(i)
w with alternative values ψ̄p and ψ̄w. In particular, we consider an elimination

of the asymmetries, i.e., ψ̄p = ψ̄w = 0 and an increase to ψ̄p = ψ̄w = 300. The

results are plotted in Figure 9. A decrease of the asymmetry in the adjustment costs

moves the predictive distributions of φ̂2 and γ̂ toward zero, whereas an increase shifts

them further away from zero. Relative to the overall width of the predictive intervals

the location shifts are fairly small. This highlights that a precise measurement of

nonlinearities is very difficult using quarterly observations.

For nominal wage growth, the increase in the asymmetry parameters essentially

eliminates the gap between the median of the posterior predictive distributions for

φ̂2 and γ̂ and the estimates obtained from actual data, which are -0.05 and 0.14, re-

spectively. For inflation, the medians of the predictive distributions for φ̂2 and γ̂ shift

slightly upward, toward 0.05 and 0.06, respectively. This implies that the actual value

of φ̂2 lies further in the tail of the predictive distribution if ψw is increased, whereas

the actual value of γ̂ is less far in the tails. While an increase of ψw improves the

outcome of the predictive check constructed from the QAR parameter estimates for

nominal wage growth, if judged from the overall posterior distribution, the increased

asymmetries lead to a deterioration of fit in other dimensions of the model, which is

why the posterior estimates for ψp and ψw are only about 150 and 68, respectively.
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Figure 9: Effect of Adjustment Costs on Nonlinearities
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median estimates based on U.S. data.

7 Conclusion

Building on the specification of generalized autoregressive models, bilinear models,

and LARCH models, this paper uses a perturbation approximation of a nonlinear

difference equation to obtain a new class of nonlinear time-series models that can be

used to assess nonlinear DSGE models. We use these univariate QAR(1,1) models

to identify nonlinearities in the U.S. data and to construct predictive checks to as-

sess a DSGE models ability to capture nonlinearities that are present in the data.

The QAR(1,1) estimates obtained from U.S. data highlight nonlinearities in output

growth, inflation, nominal wage growth, and interest rate dynamics. Output growth

displays sharp declines and slow recoveries in the post-1983 sample. Inflation and

nominal wage growth both display conditional heteroskedasticity in the 1960-2007

sample. Finally, downward adjustments in the federal funds rate seem to be easier

than upward adjustments in the post-1983 sample.
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Among the nonlinearities identified through estimation of the QAR models, the

only ones our estimated DSGE model seems able to capture are the conditional het-

eroskedasticity in inflation and nominal wage growth. The model does so by relying

on the asymmetric adjustment costs that penalize downward adjustments more than

upward adjustments. The model is not able to generate the apparent nonlinearities

in output growth and the federal funds rate.

The tools developed in this paper can be used to identify nonlinearities in any time

series: Doing this for other key series, such as labor market variables in the U.S., and

for key variables in other countries will be a useful exercise. The predictive checks

simply require a simulation from the model and can be applied to any model, whether

or not it is estimated, and should be a part of the toolbox for researchers working

with DSGE models. Finally, we leave to future research multivariate extensions of

the QAR model, where the main challenge is to cope with the dimensionality of the

model.

References

Abbritti, M., and S. Fahr (2013): “Downward Wage Rigidity and Business Cycle

Asymmetries,” Journal of Monetary Economics, forthcoming.

An, S. (2007): “Bayesian Estimation of DSGE Models: Lessons from Second-Order

Approximations,” Manuscript, Singapore Management University, Available at

http://www.mysmu.edu/faculty/sungbae/.

An, S., and F. Schorfheide (2007): “Bayesian Analysis of DSGE Models,” Econo-

metric Reviews, 26(2-4), 113–172.

Andreasen, M. M., J. Fernández-Villaverde, and J. F. Rubio-Raḿırez
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A QAR(1,1) Model

This section shows how to derive important moments for the QAR(1,1) model given

by

yt = φ1yt−1 + φ2s
2
t−1 + (1 + γst−1)σut, ut ∼ iidN(0, 1) (A.1)

st = φ1st−1 + σut, |φ1| < 1 (A.2)

by exploiting the recursively linear structure of the model. The model corresponds

to (9) in the main text. To simplify the presentation, we dropped the tildes for φ2,

γ, and s.

A.1 Moments

We now derive the time-invariant mean and autocovariances for yt, assuming the

process is stationary and was initialized in the infinite past. Due to the recursively

linear structure of the model, we begin with the derivation of the moments of st.

Moments of st. The process st in (A.2) is linear and has a moving average repre-

sentation of the form

st = σ

∞∑
j=0

φj1ut−j.

The mean and the autocovariances of st are given by

E[st] = 0, µs2 = E[s2t ] =
σ2

1− φ2
1

, E[stst−h] = φh1µs2 .
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Since the innovations ut are iid standard normal variates, we obtain the following

third and fourth moments:

E[s3t ] =
∞∑
j=0

φ3j
1 E[u3t−j] = 0, E[s4t ] =

∞∑
j=0

φ4j
1 E[u4t−j] =

3σ4

1− φ4
1

.

Mean of yt. Taking expectations on both sides of (A.1) we obtain

E[yt] = φ1E[yt−1] + φ2µs2 + (1 + γE[st−1])σE[ut] = φ1E[yt] +
φ2σ

2

1− φ2
1

.

Here we used the expression for µs2 obtained previously as well as the fact that ut

and st−1 are independent. In turn,

µy = E[yt] =
φ2σ

2

(1− φ1)(1− φ2
1)
. (A.3)

Variance of yt. Consider the centered second moment of yt:

V[yt] = E
[
(φ1(yt−1 − µy) + φ2(s

2
t−1 − µs2) + σ(1 + γst−1)ut)

2
]

= E
[
φ2
1(yt−1 − µy)2 + φ2

2(s
2
t−1 − µs2)2 + σ2(1 + γst−1)

2u2t

2φ1φ2(yt−1 − µy)(s2t−1 − µs2) + 2φ2σ(s2t−1 − µs2)(1 + γst−1)ut

+2φ1σ(1 + γst−1)(yt−1 − µy)ut
]

= φ2
1E[(yt−1 − µy)2] + φ2

2E[(s2t−1 − µs2)2] + σ2(1 + γ2µs2)

+2φ1φ2E[(yt−1 − µy)(s2t−1 − µs2)].

The time-invariant solution is

V[yt] =
1

1− φ2
1

[
φ2
2V[s2t ] + σ2(1 + γ2E[s2t ]) + 2φ1φ2Cov[yt, s

2
t ]

]
,

where

Cov[yt, s
2
t ] = E

[
(φ1(yt−1 − µy) + φ2(s

2
t−1 − µs2) + (1 + γst−1)σut)

×(φ2
1(s

2
t−1 − µs2) + 2φ1σst−1ut + σ2(u2t − 1))

]
= φ3

1E[(yt−1 − µy)(s2t−1 − µs2)] + φ2
1φ2E[(s2t−1 − µs2)2]

+2φ1γσ
2µs2 ,
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which implies

Cov[yt, s
2
t ] =

1

1− φ3
1

[
φ2
1φ2V[s2t ] + 2φ1γσ

2E[s2t ]

]
.

Interestingly,

Cov[yt, st] = E
[
(φ1(yt−1 − µy) + φ2(s

2
t−1 − µs2) + (1 + γst−1)σut)(φ1st−1 + σut)

]
= φ2

1Cov[yt−1, st−1] + σ2.

All other terms drop out because E[ut] = E[st] = E[s3t ] = 0. Thus, solving for the

time-invariant solution leads to the “first order” variance expression

Cov[yt, st] = E[s2t ] =
σ2

1− φ2
1

.

Autocovariances of yt. Consider E[(yt − µy)(yt−1 − µy)]:

Cov[yt, yt−1] = E
[
(φ1(yt−1 − µy) + φ2(s

2
t−1 − µs2) + (1 + γst−1)σut)(yt−1 − µy)

]
= φ1V[yt−1] + φ2Cov[yt−1, s

2
t−1].

In general, higher-order autocovariances can be computed recursively:

Cov[yt, yt−h] = E
[
(φ1(yt−1 − µy) + φ2(s

2
t−1 − µs2) + (1 + γst−1)σut)(yt−h − µy)

]
= φ1Cov[yt−1, yt−h] + φ2Cov[yt−h, s

2
t−1].

The term Cov[yt−h, s
2
t−1] can also be calculated recursively:

Cov[yt−h, s
2
t−1] = E

[
(yt−h − µy)(φ2

1(st−2 − E[s2t−2]) + 2φ1st−2σut−1 + σ(ut−1)
2 − 1)

]
= φ2

1Cov[yt−h, s
2
t−2].

A.2 Initialization and Identification

In order to compute the likelihood function recursively, it is necessary to initialize s0.

We write the joint distribution of observables, initial state, and parameters as

p(Y0:T , θ, s0) = p(Y1:T |y0, s0, θ)p(y0, s0|θ)p(θ)
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and use MCMC methods to generate draws from the posterior

p(θ, s0|Y0:T ) ∝ p(Y1:T |y0, s0, θ)p(y0, s0|θ)p(θ).

We will approximate the distribution of (y0, s0) using a normal distribution y0

s0

 ∣∣∣∣θ ∼ N

 µy

µs

 ,
 Σyy Σys

Σsy Σss

 . (A.4)

The moments of this normal distribution are calculated as follows. We will assume

that the system was in its steady state in period t = −T∗, i.e., s−T∗ = 0 and y−T∗ = φ0.

In principle, T∗ could be infinite, but this will create some problems if φ1 = 1. In

order to simplify the time subscripts a bit, we shift the time index by T∗ periods.

Starting from s0 = 0 and y0 = φ0, we will calculate the first and second moments of

yt, st, and s2t recursively, starting with

E[s0] = 0, E[y0] = φ0, V[s0] = 0, V[y0] = 0, (A.5)

Cov[y0, s0] = 0, Cov[y0, s
2
0], V[s20] = 0.

The process for st is linear autoregressive of order one and we obtain

E[st] = φ1E[st−1], V[st] = φ2
1V[st−1] + σ2. (A.6)

Since the innovations εt are iid standard normal variates, we see that the third moment

is zero:

E[s3t ] =
t−1∑
j=0

φ3j
1 E[ε3t−j] = 0.

Now consider

V[s2t ] = E[(s2t − V[st])
2] (A.7)

= E[(φ2
1(s

2
t−1 − V[st−1]) + 2φ1st−1σεt + σ2(ε2t − 1))2]

= φ4
1V[s2t−1] + 4φ2

1σ
2V[st−1] + 2σ4.

A formula for the mean of yt is obtained by taking expectations of the observation

equation:

E[yt] = φ0(1− φ1) + φ1E[yt−1] + φ2V[st−1]. (A.8)
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The covariance between yt and st is given by

Cov[yt, st] = E[(yt − E[yt])st] (A.9)

= E
[(
φ1(yt−1 − E[yt−1]) + φ2(s

2
t−1 − E[s2t−1]) + (1 + γst−1)σεt

)(
φ1st−1 + σεt

)]
= φ2

1Cov[yt−1, st−1] + σ2.

All other terms drop out because the first and third moments of st−1 and εt are equal

to zero. The covariance between yt and s2t is given by

Cov[yt, s
2
t ] = E[(yt − E[yt])(s

2
t − V[st])] (A.10)

= E
[
(φ1(yt−1 − E[yt−1]) + φ2(s

2
t−1 − V[st−1]) + (1 + γst−1)σεt)

×(φ2
1(s

2
t−1 − V[st−1]) + 2φ1σst−1εt + σ2(ε2t − 1))

]
= φ3

1Cov[yt−1, s
2
t−1] + φ2

1φ2V[s2t−1] + 2φ1γσ
2E[s2t−1].

The variance of yt can be computed as follows:

V[yt] = E
[
(φ1(yt−1 − E[yt−1] + φ2(s

2
t−1 − V[st−1]) + σ(1 + γst−1)εt)

2
]

(A.11)

= φ2
1V[yt−1] + φ2

2V[s2t−1] + σ2(1 + γ2V[st−1])

+2φ1φ2Cov[yt−1, s
2
t−1].

We can iterate Equations (A.6) to (A.11) forward for T∗ periods to obtain the moments

for the initial distribution of (y0, s0) in (A.4).

Note, that for γ = φ2 = 0, s0 and y0 become perfectly correlated conditional on

θ since for a linear model y0 = s0 + φ0. This may affect our posterior sampler when

we include s0 into the parameter vector. To avoid the singularity we add a small

constant to the covariance matrix of (y0, s0).

A.3 MCMC Implementation

The RWM algorithm mentioned in Section 3.3 is used to implement the posterior

inference. Using a preliminary covariance for the proposal distribution in the RWM
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algorithm that is constructed from the prior variance of the QAR parameters, we

generate an initial 100,000 draws from the posterior. Based on the last 50,000 draws,

we compute a covariance matrix that replaces the preliminary covariance matrix of the

proposal distribution. We then continue the chain, generating an additional 60,000

draws and retaining the last 50,000 to construct summary statistics for the posterior.
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A.4 Detailed Estimation Results

Table A-1: Prior Distribution for QAR(1,1) Model, Samples Starting in 1960

GDP Growth Wage Growth Inflation Fed Funds Rate

φ0 N
(
0.48, 2

)
N
(
1.18, 2

)
N
(
2.38, 2

)
N
(
2.50, 2

)
φ1 N †(0.36, 0.5) N †(−0.02, 0.5) N †(0.00, 0.5) N †(0.66, 0.5)

σ IG(1.42, 4) IG(0.82, 4) IG(1.87, 4) IG(0.58, 4)

φ2 N(0, 0.1) N(0, 0.1) N(0, 0.1) N(0, 0.1)

γ N(0, 0.1) N(0, 0.1) N(0, 0.1) N(0, 0.1)

Notes: (†) The prior for φ1 is truncated to ensure stationarity. The IG distribution

is parameterized such that pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.

Table A-2: Prior Distribution for QAR(1,1) Model, Samples Starting in 1984

GDP Growth Wage Growth Inflation Fed Funds Rate

φ0 N
(
0.43, 2

)
N
(
1.58, 2

)
N
(
4.38, 2

)
N
(
6.08, 2

)
φ1 N †(0.28, 0.5) N †(0.34, 0.5) N †(0.85, 0.5) N †(0.94, 0.5)

σ IG(1.33, 4) IG(0.88, 4) IG(1.83, 4) IG(1.45, 4)

φ2 N(0, 0.1) N(0, 0.1) N(0, 0.1) N(0, 0.1)

γ N(0, 0.1) N(0, 0.1) N(0, 0.1) N(0, 0.1)

Notes: (†) The prior for φ1 is truncated to ensure stationarity. The IG distribution

is parameterized such that pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

.
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Table A-3: Posterior Estimates for QAR(1,1) Model, 1960:Q1 to 1983:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.42 0.28 -0.02 -0.05 1.16 1.42

[0.11 , 0.69] [0.11 , 0.46] [-0.14 , 0.09] [-0.17 , 0.06] [0.91 , 1.53] [1.02 , 1.85]

WAGE 1.75 0.41 -0.05 0.04 0.52 0.89

[1.49 , 1.98] [0.23 , 0.58] [-0.13 , 0.04] [-0.05 , 0.15] [0.40 , 0.68] [0.63 , 1.15]

INFL 4.24 0.87 -0.01 0.16 1.52 -1.97

[2.28 , 5.84] [0.80 , 0.95] [-0.08 , 0.07] [0.04 , 0.27] [1.08 , 2.12] [-4.68 , 0.79]

FFR 4.84 0.92 0.02 0.38 0.62 -1.56

[0.86 , 6.75] [0.88 , 0.96] [-0.05 , 0.05] [0.30 , 0.47] [0.41 , 1.00] [-4.21 , 0.14]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.

Table A-4: Posterior Estimates for QAR(1,1) Model, 1960:Q1 to 2007:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.48 0.29 -0.02 -0.06 0.69 1.37

[0.33 , 0.63] [0.16 , 0.41] [-0.07 , 0.04] [-0.13 , 0.01] [0.58 , 0.82] [1.19 , 1.56]

WAGE 1.41 0.44 -0.03 0.12 0.48 1.22

[1.25 , 1.59] [0.33 , 0.55] [-0.09 , 0.02] [0.05 , 0.20] [0.40 , 0.57] [1.00 , 1.42]

INFL 3.51 0.85 -0.01 0.23 1.06 -1.31

[2.74 , 4.47] [0.79 , 0.91] [-0.06 , 0.05] [0.16 , 0.31] [0.81 , 1.38] [-2.90 , 0.31]

FFR 2.96 0.96 0.04 0.44 0.28 -0.74

[2.16 , 4.16] [0.95 , 0.97] [0.02 , 0.06] [0.37 , 0.52] [0.22 , 0.42] [-1.27 , 0.45]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.
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Table A-5: Posterior Estimates for QAR(1,1) Model, 1960:Q1 to 2012:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.45 0.33 -0.03 -0.07 0.68 1.41

[0.28 , 0.60] [0.22 , 0.44] [-0.08 , 0.03] [-0.14 , 0.00] [0.58 , 0.81] [1.19 , 1.61]

WAGE 1.29 0.43 -0.01 0.08 0.54 1.31

[1.12 , 1.46] [0.32 , 0.53] [-0.06 , 0.04] [0.01 , 0.15] [0.46 , 0.63] [1.11 , 1.50]

INFL 3.23 0.84 0.02 0.22 1.09 -1.26

[2.55 , 4.16] [0.78 , 0.90] [-0.04 , 0.09] [0.15 , 0.30] [0.87 , 1.36] [-2.82 , 0.22]

FFR 3.54 0.96 -0.01 0.41 0.22 0.43

[2.29 , 5.06] [0.94 , 0.97] [-0.02 , 0.00] [0.33 , 0.50] [0.13 , 0.37] [-0.94 , 1.47]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.

Table A-6: Posterior Estimates for QAR(1,1) Model, 1984:Q1 to 2007:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.57 0.26 -0.07 0.01 0.25 1.06

[0.44, 0.70] [0.10 , 0.44] [-0.13 , -0.02] [-0.10 , 0.11] [0.20 , 0.32] [0.91,1.21]

WAGE 1.09 0.24 -0.06 0.07 0.41 0.10

[0.93,1.21] [0.06,0.42] [-0.12,0.02] [-0.03,0.17] [0.32,0.53] [-0.09,0.29]

INFL 2.72 0.63 -0.06 0.07 0.68 2.42

[2.30,3.13] [0.48,0.78] [-0.14,0.04] [-0.06,0.19] [0.52,0.89] [1.76,2.93]

FFR 9.80 0.91 -0.16 0.08 0.22 0.79

[8.68,11.56] [0.87,0.93] [-.23,-.10] [-0.03,0.17] [0.15,0.32] [-0.26,1.64]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.
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Table A-7: Posterior Estimates for QAR(1,1) Model, 1984:Q1 to 2012:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.53 0.36 -0.09 -0.07 0.28 1.09

[0.38 , 0.66] [0.22 , 0.52] [-0.15 , -0.03] [-0.17 , -0.00] [0.23 , 0.35] [0.87 , 1.28]

WAGE 0.98 0.18 -0.04 0.03 0.48 0.20

[0.83 , 1.14] [0.02 , 0.36] [-0.10 , 0.04] [-0.06 , 0.12] [0.38 , 0.60] [0.03 , 0.37]

INFL 2.51 0.63 -0.02 0.07 0.76 2.54

[2.12 , 2.93] [0.48 , 0.77] [-0.10 , 0.06] [-0.03 , 0.19] [0.61 , 0.97] [1.80 , 3.00]

FFR 10.00 0.92 -0.17 0.01 0.19 1.00

[8.72 , 11.43] [0.90 , 0.94] [-0.25 , -0.12] [-0.05 , 0.11] [0.15 , 0.29] [0.05 , 1.40]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.



Online Appendix A.11

B The DSGE Model

B.1 First-Order Conditions

Intermediate Goods Producers. Taking as given nominal wages, final good prices,

the demand schedule for intermediate products, and technological constraints, firm

j chooses its labor inputs Ht(j) and the price Pt(j) to maximize the present value

of future profits. After using the production function to substitute our Yt(j) from

the present value of future profits in (24) (see main text) we can write the objective

function of the firm as

IEt

[ ∞∑
s=0

βsQt+s|t

(
Pt+s(j)

Pt+s

(
1− Φp

(
Pt+s(j)

Pt+s−1(j)

))
At+sHt+s(j)−

1

Pt+s
Wt+sHt+s(j)

)]
.

(A.12)

This objective function is maximized with respect to Ht(j) and Pt(j) subject to

At+sHt+s(j) =

(
Pt(j)

Pt

)−1/λp,t
Yt+s.

We use µt+sβ
sQt+s|t to denote the Lagrange multiplier associated with this constraint.

Setting Qt|t = 1, the first-order condition with respect to Pt(j) is given by

0 =
1

Pt

(
1− Φp

(
Pt(j)

Pt−1(j)

))
AtHt(j)−

Pt(j)

PtPt−1(j)
Φ′p

(
Pt(j)

Pt−1(j)

)
AtHt(j) (A.13)

− µt
λp,tPt

(
Pt(j)

Pt

)−1/λp,t−1
Yt + βEt

[
Qt+1|t

P 2
t+1(j)

Pt+1P 2
t (j)

Φ′p

(
Pt+1(j)

Pt(j)

)
At+1Ht+1(j)

]
.

Taking first-order conditions with respect to Ht(j) yields

Wt

Pt
=
Pt(j)

Pt

(
1− Φp

(
Pt(j)

Pt−1(j)

))
At − µtAt. (A.14)

Households. The first-order condition with respect to consumption is given by

Ptλt =

(
Ct(k)

At

)−τ
1

At
. (A.15)

We define

Qt+1|t =
λt+1Pt+1

λtPt
. (A.16)
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Using this definition, the first-order condition for bond holdings becomes

1 = βEt
[
Qt+1|t

Rt

πt+1

]
. (A.17)

Member k is a monopolistic competitor with respect to his wage choice. Taking into

account the demand for labor of type k the relevant portion of the utility function

for the wage decision is

IEt

[
∞∑
s=0

βs

(
· · · − χH

1

1 + 1/ν

(
Wt+s(k)

Wt+s

)−(1+1/ν)/λw

H
1+1/ν
t

)]
.

The relevant portion of the budget constraint after substituting Ht+s(k) by the labor

demand schedule is

· · · = Wt+s(k)

(
Wt+s(k)

Wt+s

)−1/λw
Ht+s

(
1− Φw

(
Wt+s(k)

Wt+s−1(k)

))
+ · · · ,

where the demand for aggregated labor services Ht+s is taken as given. Taking first-

order conditions with respect to Wt(k) yields

0 =
χH
λwWt

(
Wt(k)

Wt

)− 1+1/ν
λw
−1

H
1+1/ν
t + λt

(
Wt(k)

Wt

)−1/λw
Ht

(
1− Φw

(
Wt(k)

Wt−1(k)

))
nonumber(A.18)

− λt
λw

Wt(k)

Wt

(
Wt(k)

Wt

)−1/λw−1
Ht

(
1− Φw

(
Wt(k)

Wt−1(k)

))
(A.19)

−λt
Wt(k)

Wt−1(k)

(
Wt(k)

Wt

)−1/λw
HtΦ

′
w

(
Wt(k)

Wt−1(k)

)
+βEt

[
λt+1

W 2
t+1(k)

W 2
t (k)

(
Wt+1(k)

Wt+1

)−1/λw
Ht+1Φ

′
w

(
Wt+1(k)

Wt(k)

)]
.

B.2 Equilibrium Relationships

We consider the symmetric equilibrium in which all intermediate-goods-producing

firms, as well as households, make identical choices when solving their optimization

problem. Therefore, we can drop the index k and j. In slight abuse of notation, let

∆Xt = Xt/Xt−1 and πt = ∆Pt. We use wt = Wt/Pt to denote the real wage. Since

the non-stationary technology process At induces a stochastic trend in output, con-

sumption, and real wages, it is convenient to express the model in terms of detrended

variables yt = Yt/At, ct = Ct/At and w̃t = wt/At.
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Intermediate Goods Producers. Using the above notation, multiplying (A.13)

by Pt, and replacing Yt by Atyt. we can simplify the first-order condition for Pt(j) as

follows:

0 =
(
1− Φp(πt)

)
Atyt − πtΦ′p(πt)Atyt −

µt
λp,t

Atyt + βEt
[
Qt+1|tπt+1Φ

′
p(πt+1)At+1yt+1

]
.

Dividing by Atyt and replacing At+1/At by γ exp(zt+1) we obtain

0 =
(
1− Φp(πt)

)
− πtΦ′p(πt)−

µt
λp,t

+ βEt
[
Qt+1|tπt+1Φ

′
p(πt+1)∆yt+1γ exp(zt+1)

]
.

We proceed by rewriting (A.14) as

w̃t =
(
1− Φp(πt)

)
− µt. (A.20)

Households. In terms of detrended consumption we can express Qt+1|t as

Qt+1|t =

(
ct+1

ct

)−τ
1

γ
exp(−zt+1). (A.21)

The consumption Euler equation remains unchanged:

1 = βEt
[
Qt+1|t

Rt

πt+1

]
. (A.22)

We now divide (A.19) by λt and replace λt by c−τt /(AtPt):

0 =
χH
λw

1

w̃t
cτtH

1+1/ν
t +Ht

(
1− Φw(πt∆wt)

)
− 1

λw
Ht

(
1− Φw(πt∆wt)

)
−πt∆wtHtΦ

′
w(πt∆wt) + βEt

[
Qt+1|tπt+1∆w

2
t+1Ht+1Φ

′
w(πt+1∆wt+1)

]
.

Aggregate Resource Constraint. The aggregate production function (in terms of

detrended output) is

yt = Ht. (A.23)

The intermediate goods producers’ dividend payments to the households are given by

Dt =
(
1− Φp(πt)

)
Yt − wtHt. (A.24)
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Combining the household budget constraint and the government budget constraint

and detrending all variables leads to the aggregate resource constraint

ct + ζyt =
(
1− Φp(πt)

)
yt − w̃tytΦw(πt∆wt),

where ∆wt = ∆w̃tγ exp(zt).

The model economy has a unique steady state in terms of the detrended variables

that is attained if the innovations εR,t, εg,t, and εz,t are zero at all times. The steady-

state inflation π equals the target rate π∗ and

R =
γ

β
π∗, µ = λp, c =

(
(1− λp)(1− λw)g−

1
ν

χH

) 1
τ+1/ν

, y = gc̃, H = y, w̃ = (1−λp).

B.3 Posterior Simulator

We first estimate a log-linearized version of the DSGE model using the random walk

Metropolis (RWM) algorithm described in An and Schorfheide (2007). Using the

same covariance matrix for the proposal distribution as for the linearized DSGE

model, we then run the RWM algorithm based on the likelihood function associated

with the second-order approximation of the DSGE model. The covariance matrix of

the proposal distribution is scaled such that the RWM algorithm has an acceptance

rate of approximately 50%. We use 80,000 particles to approximate the likelihood

function of the nonlinear DSGE model, while the variance of measurement errors

is set to 10% of the sample variance of the observables. We generate 120,000 draws

from the posterior distribution of the nonlinear DSGE model. The summary statistics

reported in Table 3 in the main paper are based on the last 100,000 draws of this

sequence.
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Table A-8: Posterior Estimates for DSGE Model Parameters: Linear Model

1960:Q1 to 2007:Q4 1984:Q1 to 2007:Q4

Parameter Mean 90% Interval Mean 90% Interval

400
(

1
β
− 1
)

0.48 [0.06, 1.01] 1.31 [0.60, 2.17]

πA 3.46 [2.94, 3.97] 2.80 [2.33, 3.29]

γA 1.86 [1.39, 2.34] 1.88 [1.53, 2.24]

τ 6.54 [4.37, 9.24] 4.78 [2.57, 8.70]

ν 0.09 [0.06, 0.13] 0.08 [0.03, 0.15]

κ(ϕp) 0.01 [0.01, 0.02] 0.18 [0.09, 0.30]

ϕw 62.33 [44.48, 83.14] 14.89 [6.15, 25.88]

ψw N/A

ψp N/A

ψ1 1.45 [1.24, 1.68] 2.67 [2.10, 3.30]

ψ2 0.80 [0.54, 1.09] 0.76 [0.41, 1.11]

ρr 0.77 [0.73, 0.82] 0.71 [0.61, 0.79]

ρg 0.97 [0.96, 0.98] 0.96 [0.93, 0.98]

ρz 0.26 [0.10, 0.41] 0.07 [0.01, 0.19]

ρp 0.99 [0.98, 0.99] 0.93 [0.87, 0.98]

100σr 0.18 [0.14, 0.22] 0.18 [0.13, 0.25]

100σg 0.65 [0.44, 0.95] 0.76 [0.39, 1.34]

100σz 0.75 [0.64, 0.85] 0.47 [0.37, 0.56]

100σp 15.28 [12.66, 18.18] 7.63 [5.96, 9.48]

Notes: Estimation sample is 1984:Q1 to 2010:Q4. For 90% credible interval we are

reporting the 5th and 95th percentile of the posterior distribution.


