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Abstract:  As a result of federal efforts to hold individual teachers accountable 

for student learning based on the standardized test results of their students (Race to the 

Top, U.S. Department of Education, 2009), the use of value-added models of teacher 

performance as a component of teacher evaluation has been spreading rapidly. Often 

researchers and policymakers alike feel comfortable with imprecision in the models 

because they are usually employed primarily to identify teachers in the high and low ends 

of the distribution in effectiveness.  Using these models to reward teachers at the top and 

sanction those at the bottom seems a relatively attainable goal. 

However, the question of whether we can “get the tails of the distribution right” 

has not been adequately resolved in the research literature. Related to this is the issue of 

measurement error in student test scores. This paper addresses the issue of measurement 

error and its potential to introduce bias in the tails of the effectiveness distribution and 

sound a warning note that identifying teachers at the top and bottom of the scale may be 
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less straightforward than previously thought.  We produce simulation evidence on the 

performance of various value-added estimators in the presence and absence of 

measurement error and show that under certain conditions test measurement error can 

induce a visible bias in estimation. Moreover, we find that estimators found in the 

literature that attempt to correct for measurement error are shown to be largely unbiased 

when assignment is based on true scores (which contain no measurement error) but 

biased when assignment is based on observed scores (which contain measurement error).  

 

 

Section 1: Introduction 

 

As a result of federal efforts to hold individual teachers accountable for student 

learning based on the standardized test results of their students (Race to the Top, U.S. 

Department of Education, 2009), the use of value-added models of teacher performance 

as a component of teacher evaluation has been spreading rapidly.  McGuinn (2012) 

reported that at least 43 states required annual teacher evaluations and 32 incorporated 

student performance measures.  That number has likely risen since then. 

Value-added models have come under strong criticism for their imprecision and 

potential for bias (e.g., Rothstein, 2008; Baker et al., 2010).  However, a working paper 

by Kane and Staiger (2008) and a recent one by Chetty, Friedman, and Rockoff (2011) 

have largely assuaged fears about bias in these models. Both use clever strategies to elicit 

comparisons of value-added within and across teachers. Kane and Staiger (2008) 

compare experimental VAM estimates for a subset of Los Angeles teachers with earlier 
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non-experimental estimates for those same teachers and find that they are similar, 

suggesting that they are valid. Chetty et al. (2011) find that student achievement responds 

in expected ways to the entry and exit of teachers with differing value-added to a school.   

Given these findings and the pressures to incorporate test-based performance 

measures into teacher evaluation, policymakers have forged ahead in their efforts to 

implement and attach stakes to these measures.  Often, researchers and policymakers 

alike accept the imprecision in the models because they are usually employed primarily 

to identify teachers in the high and low ends of the distribution in effectiveness.  Using 

these models to reward teachers at the top and sanction those at the bottom seems a 

relatively attainable goal. 

However, the question of whether we can “get the tails of the distribution right” 

has not been adequately resolved in the research literature. Studies of the intertemporal 

correlations of value-added for individual teachers suggest a fair amount of fluctuation 

from year to year with regard to who falls in the tails—e.g., the bottom or top ten or 

twenty percent (e.g., Newton et al., 2010; Aaronson, Barrow & Sander, 2007).   

Moreover, up till now, a side issue in the debate over the proper use and 

construction of value-added models has been the issue of measurement error in student 

test scores.  Most models either do not address the possibility that measurement error 

could be affecting value-added estimates in important ways or employ measurement error 

correction techniques derived from other applications to deal with the problem without 

sufficiently exploring how well they work.   

In this paper, we address the issue of measurement error and its potential to 

introduce bias in the tails of the effectiveness distribution and sound a warning note that 
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identifying teachers at the top and bottom of the scale may be less straightforward than 

previously thought.  

We produce simulation evidence on the performance of various value-added 

estimators in the presence and absence of measurement error and show that under certain 

conditions measurement error can induce a visible bias in estimation. Included in the set 

of estimators that we consider are estimators that explicitly “correct” for this problem.   

Two issues have the potential to make value-added estimation in the presence of 

measurement error problematic. The first concerns non-uniform measurement error, 

which make test score measurement error mechanically correlated with the true 

achievement level of a student.  The second is an issue of non-random assignment of 

teachers to students when assignment is based on the observed test score.  In this case, the 

measurement error is correlated not only with the prior year test score, but also the 

teacher assignment indicator.  

We find that estimators found in the literature that attempt to correct for 

measurement error are shown to be largely unbiased when assignment is based on true 

scores (which contain no measurement error) but biased when assignment is based on 

observed scores (which contain measurement error).  Moreover, these correction 

techniques may exacerbate rather than mitigate the problem of diagnosing teachers in the 

tails of the distribution.   

This paper is organized as follows. Section 2 describes the sources of 

measurement error in student test scores. Section 3 describes our simulation 

methodology. Section 4 describes our findings. Section 5 concludes.   
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Section 2: Sources of Measurement Error in Assessing Student Achievement 

A typical representation of measurement error is as follows, in which student i’s 

measured achievement A*ig on the test for grade g is a linear function of true achievement 

and a measurement error eig.  

𝐴!"∗ = 𝐴! + 𝑒!" (1) 
 

There are multiple possible sources of the errors, 𝑒, generally classified in three 

categories:  examinee-related factors, administration-related factors, and test design 

factors (Boyd et al., 2012; Crocker & Algina, 2008; Raykov & Marcoulides, 2011; 

Thorndike, 2005). Examinee-related factors are due to student attributes or conditions 

that are irrelevant to their true achievement level.  For example, students differ in their 

familiarity with test-taking as well as in test anxiety, which might depend on grade levels 

as well as test experience. Their performance might also be affected by individual 

students’ temporary moods or physical conditions during testing. The perceived pressure 

from families, teachers and peers to receive high scores varies among students. 

Administration-related factors also influence individual test scores. For example, there 

could be auditory distracters depending on the environment. Those sources of error are 

likely unpredictable and randomly occurring. This study, however, focuses on more 

predictable errors that stem from the intrinsic characteristics of a test itself, the test-

design factors – i.e., the limited number of items and characteristics of the items. If an 

unlimited number of items could be administered to students and the items covered all 

levels of difficulty, we could get more precise approximation of student learning levels. 

In practice, we select a feasible number of items, and a test is likely to have more items 
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targeting a certain range of achievement level, depending on the purpose of the test. As a 

result, the combination of items chosen alters the relationship between observed scores, 

𝐴∗, and errors, 𝑒, in a test. In this paper, we focus on the effect of these systematic 

measurement errors, as a function of test items and student true achievement, on teacher 

value-added measures.  

In the item response theory (IRT) framework, which has been widely applied in 

most state testing programs, each test item’s response is modeled as a function of item 

characteristics and a person’s ability (Lord, 1980; Hambleton, et al., 1991; Reckase, 

2009). There is some variation among item response models depending on the number of 

identified item parameters or the number of response categories. We applied the 3-

parameter logistic (3PL) model1, which specifies the three parameters for each item k in 

which the response is dichotomous:  𝑎!, a discrimination parameter; 𝑏!, a difficulty 

parameter; and 𝑐!, a guessing parameter. The 3PL model in equation (2) shows2, the 

probability that person i with a “true” achievement of 𝐴! will give a correct answer to 

item k, P(𝑢! = 1|  𝐴!), can be modeled as a function of the item’s characteristics as well 
                                                

1 Different state testing programs apply different models for IRT calibration, depending 

on the number of item parameters to be estimated - the 1PL, 2PL or 3PL. We chose the 

3PL model for this study because it is the most sophisticated among the typically used 

models, and it was also used by the state from which we obtained a set of item-

parameters.  

2 In the equation, 1.7 is a scale constant typically used to minimize the difference 

between the logistic function and the normal cumulative function.  
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as the person’s true achievement. Students’ true achievement cannot be directly observed 

in practice and can only be estimated given a set of item responses. It is also assumed in 

this model that a set of items assesses only one common construct of interest.3 

 

P(𝑢! = 1|  𝐴!) = 𝑐! + (1 − 𝑐!)
𝑒!.!!! !!!!!

1 + 𝑒!.!!! !!!!!
 

 
(2) 

 

Uncertainty about student achievement estimates based on a given set of items 

can be quantified as the variability among students at the same level of achievement in 

the probability of a correct answer to each item. The variability is heteroskedastic across 

the levels of estimated achievement and is called the conditional standard error of 

measurement (CSEM).  As shown in Equation (3), a test’s CSEM is the sum of each 

item’s CSEM; each item’s CSEM is determined by the expected probability of a correct 

answer; the expected probability of a correct answer is determined by the estimated 

person achievement level as well as item parameter.   

 

𝜎!! 𝐴 𝐴∗ = 𝑃! 𝐴∗ ∙ 𝑄! 𝐴∗
!

!
 

𝑤ℎ𝑒𝑟𝑒  𝑃! 𝐴∗ ∙ 𝑄! 𝐴∗ =
𝑃! 𝐴∗ 1 − 𝑐! !

𝛼!! 1 − 𝑃! 𝐴∗ 𝑃! 𝐴∗ − 𝑐! ! 

 
 
where 𝐴∗  is the estimated student ability; 𝑃! 𝐴∗  is the 

probability of correct answer to item k conditional on A*; 𝑄! 𝐴∗  is 

(3) 

                                                

3 Test multi-dimensionality (Reckase & Li, 2007) or construct-shift over grade levels 

(Martineau, 2006) is an emerging issue in VAM but is outside the scope of this study.    
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the probability of an incorrect answer to item k conditional on A*; n 
is the number of items 

 

Figure 1 shows an example of conditional standard errors of estimate computed 

by the authors using testing data from a large, diverse anonymous southern state for 

which we have item-level testing data.   

The degree of the uncertainty of estimated student achievement is smaller in the 

middle of the achievement level, specifically between -1 and 0. It is much larger at the 

extremely low or high scores. The U-shape is not symmetric. This is distinct from a 

universal measurement error, which is usually defined in classical test theory as a single 

value for each test. Classical measurement error is the average, across persons, of the 

variance of test scores as shown in Equation (4).   

𝜎!! = 𝜎!∗
! 1 − 𝜎!! 𝜎!∗!  (4) 

 

 

Section 3: Simulation Methodology 

To investigate the impact of test-design induced measurement error on teacher 

value-added estimates, we conduct simulated experiments.  For these experiments, we 

generate “observed” student test scores based on the students’ true achievement level and 

the characteristics of testing items we create.  The students’ true achievement levels are a 

function of their baseline achievement, their heterogeneous individual time-constant 

ability, their teachers’ effectiveness levels, and a random error.   The test characteristics 

are modeled on those of standardized tests in the state mentioned above.   
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We consider two types of teacher effects—null effects and varying effects.  That 

is, in a first set of experiments, we set teacher effects to zero, so that all teachers have 

equal null effects.  In a second set of experiments, we allow for varying teacher effects. 

We also allow for different ways of assigning students to teachers.  Across all of 

these different teacher effectiveness and assignment scenarios, we assess the ability of 

different types of value-added estimators to accurately capture the true teacher effects 

that were embedded in the data generating process.   Below, we describe our 

methodology in greater detail. 

3.1. Score Generating Processes  

We simulated observed test-scores for cohorts of 320 students each that were 

created based on hypothetical student true scores and hypothetical achievement test 

items. The process was carried out in five steps.  

First, we generated each student’s true achievement scores for three consecutive 

years using the following simple value-added model for achievement, where achievement 

is a cumulative process. We assume that the value-added model holds for the true 

achievement level of students. 

 

We chose to call the baseline achievement level grade 3 achievement,  A!!, 

because grade 3 is the earliest grade required to take a state test in most states. The 

baseline achievement score is drawn from a normal distribution with mean 0 and standard 

A!! = 𝜆A!! + E!!β + c! + ϵ!! 
 

      A!! = 𝜆A!! + E!!β + c! + ϵ!! 
 

(5) 
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deviation 1 and is also correlated to c!, which was normally distributed with a mean of .5 

and a standard deviation of .5. The correlation between A!! and c! was .5.  The true 

achievement level for student i in grades A!! or A!!, is a function of the student’s prior 

year true achievement level, a vector of educational inputs, 𝐸!" (in this case teacher 

dummy variables), a student fixed effect, 𝑐!, and an idiosyncratic error term, ϵ!". We 

assume a persistence parameter, 𝜆, of .5, corresponding to the level of decay found in 

prior studies (e.g., Andrabi et al., 2009).4  

As mentioned above, we explore two types of teacher effects. Our first thought 

experiment involves setting all teacher effects to 0—in other words, we wanted to create 

a situation in which all of the true underlying teacher effects were identical.  In this way, 

we could clearly see whether and how the estimated effects might be biased in the 

presence of measurement error under various student-teacher assignment scenarios.  Thus 

in these simulations, both the mean and the variance of the teacher effects was set to 0.  

In the second thought experiment, the teacher effects vary and are drawn from a normal 

distribution with a mean 0 and a standard deviation of .25.   

In the second step, we determined our hypothetical test characteristics by 

specifying a set of test item parameters for each grade: each item is characterized by its 

own difficulty, discrimination, and guessing parameters according to the 3PL model 

shown in Equation (2). We created three item parameters per item (difficulty, 

discrimination, and guessing parameters) modeled on those of the aforementioned 
                                                

4 We test the sensitivity of this choice by setting lambda to .75 and 1. For brevity, these 

results are not reported in the paper.   
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southern state’s tests were used to create approximately 50 dichotomous items each for 

grade 3 (the base year), grade 4 and grade 5 in our simulation, respectively.5  

In the third step, the probability that each simulated student with his or her given 

level of true ability gave a correct answer to each item in the test was computed based on 

the 3PL model in equation (2) with the student’s true abilities and the item’s parameters 

plugged into the model. 

Fourth, given the computed probabilities, individual student responses to the set 

of items were predicted introducing a random error in each student’s item response level 

in the following manner. The individual’s computed probability of a correct answer to an 

item, P(𝑢! = 1|  𝐴!), was compared with a random number drawn from a uniform 

distribution bounded between 0 and 1. If P(𝑢! = 1|  𝐴!) was larger than the random 

number, then ‘1’ (for a correct answer) was assigned; otherwise, ‘0’ (for an incorrect 

answer) was assigned.  

Finally, in the fifth step, each student’s observed achievement score was 

estimated from the generated item responses based on the IRT model in equation (2) 

assuming their true scores were unknown6.  
                                                

5 These item parameters were obtained by the authors by calibrating the actual 

state test’s student item response data in these three grades – we only include 

dichotomous items – using PARSCALE.  

 

6 We estimate each student’s A!"∗ by maximum likelihood estimation of equation (2) using 

that student’s set of item responses for all items on the test for grade g.  
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3.2. Grouping and Assignment Scenarios 

 In order to investigate bias in teacher value-added estimates under different 

contextual conditions, we simulated different ways of assigning teachers to students. In 

the first step, students were grouped into 16 classrooms of 20 students in one of two 

ways. Students were either randomly grouped into classrooms (RG) or dynamically 

grouped (DG) into classrooms, meaning that students were grouped in classrooms based 

on their prior achievement level. Some randomness was included in the dynamic 

grouping process, so that classrooms were not formed of, say, the 20 absolute worst 

students.  In each grade, 16 classrooms were formed where the first classroom tended to 

contain the students with the worst prior year score and the 16th classroom tended to have 

the best.  

 We conduct the simulated experiments twice, once using the observed test scores 

and once using the true student achievement scores to highlight the impact of test-

induced measurement error on teacher value added estimates.   

   

3.3. Estimators 

We consider five commonly used estimators, including two measurement error 

correction estimators. For the estimator that we term Dynamic Ordinary Least Squares 

(DOLS), we regresses current scores – either true scores,  𝐴!", or our “observed” IRT 

scale scores,  𝐴!"∗  depending on the simulation– on the prior year’s score, either 𝐴!"!! or 

𝐴!"∗ , and teacher indicators.  Guarino, Reckase, and Wooldridge (forthcoming) found this 
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estimator to be the most robust estimator across a variety of simulated student grouping 

and assignment conditions because it essentially controls for or closely proxies the 

assignment mechanism under nonrandom assignment.  However, that study considered 

only true scores and scores with the addition of classical measurement error.  How DOLS 

performs under test-induced measurement error was not investigated.   

For the estimator that we term Pooled OLS (POLS), we regress the gain score in 

achievement (the current minus the prior score) on teacher indicators. POLS implies a no 

decay assumption on prior achievement. For both estimators, the regression coefficients 

associated with each teacher indicator are regarded as the teacher value-added estimates.  

A well known result is that under classical measurement error assumptions, 

inclusion of a variable measured with error can bias OLS estimates of not only the 

coefficient on the mismeasured variable but also coefficients on other regressors. When 

measurement error, 𝑒!", is added to the achievement measures, the general value-added 

model shown in Equation (5) will be changed as follows:  

 

The estimate of the coefficient on the prior year test score is attenuated towards 

zero under classical measurement error—i.e., when 𝑒!" is randomly distributed across 

prior achievement levels.  The bias for other covariates is difficult to characterize 

generally, but depends partially on the correlation between the covariate and the 

mismeasured variable. In the case of no correlation between the covariate and the 

mismeasured variable, the estimates of the coefficient for that covariate are not affected 

by the measurement error in the mismeasured variable.  

A!" = 𝜆A!,!!! + E!"β + c! + ϵ!" +   𝑒𝑖𝑔 −   𝜆𝑒!,!!!         (6) 
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In general it is even more difficult to characterize the size or direction of the bias 

caused by measurement error that does not conform to the classical case (such as the type 

of measurement error generated through the IRT process in our simulated observed 

scores).  It is no longer necessarily the case that the estimates are attenuated.  In general, 

even the direction of the bias for the mismeasured variable is unclear.  For covariates, 

correlated with mismeasured independent variables, it is also unclear. 

In the case of test score floors and ceilings, the true achievement level of the 

student and the test score are mechanically correlated with one another.  In this case, then 

measurement error in the dependent variable can also cause bias in the estimates. 

In our simulations, we consider two estimators that attempt to “correct” estimates 

for measurement error.  The first is generally termed the Errors in Variables Regression 

(EIVReg) estimator.  This estimator is in frequent use in policy (see, for example, the 

NYC 2010 technical report (Value-Added Research Center 2010) and in the value-added 

literature (e.g., Walsh & Isenberg, 2013). The estimator is similar to OLS except that an 

estimate of the measurement error variance is subtracted from the diagonals of the X’X 

matrix to adjust the estimates for measurement error.  In our case, the estimator is: 

 

It can be shown that under classical measurement error assumptions and under the 

assumption that the measurement error in 𝐴!,!!!is uncorrelated with 𝑋!,!, then this 

estimator is consistent (Fuller 1987). 

 

(9) 
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Another approach potential way to adjust for measurement error is regression 

calibration, which involves forming the best linear predictor of the true prior year 

achievement level given the IRT score and the other covariates. We use the 

Heteroskedastic Errors in Variables (HEIV) version of this estimator, which takes into 

account the heteroskedastic nature of the measurement error when forming the best linear 

predictor.  A full explanation is given in Sullivan (2001) and Andrabi et al. (2011).   

Generally speaking, it can be shown that by regressing the IRT achievement score 

on the best linear predictor of the prior year achievement score and the other covariates 

using OLS, one can consistently estimate the teacher effects in equation (6).  In the 

typical formulas used to form the best linear predictor, it is assumed that any 

measurement error is uncorrelated with the true prior year achievement level as well as 

the other regressors.  When this assumption is violated, the estimator does not generally 

give consistent estimates.   

 An additional issue that warrants attention is the case in which principals group 

and assign students to teachers based on their observed scores. In this case the teacher 

assignment variable is correlated with the measurement error as well as the underlying 

true score. In this case, it is theoretically unclear whether using one of the measurement 

error corrected estimators is superior to using a method that ignores measurement error.  

In the case of the DOLS estimator, the moment conditions required to consistently 

estimate the parameters are violated in two ways under nonrandom assignment of this 

nature.  The measurement error is correlated with both the lagged achievement score and 

the teacher assignment indicators.  Whether the bias is worse or better for teacher value-
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added estimators than in the case where grouping and assignment is based on true scores 

is difficult to say in general. 

In the case of the EIVReg estimator, the moment condition is corrected in the case 

of the lagged test score, but not for the teacher assignment indicators, so some bias may 

emerge when grouping is done in this way. 

The regression calibration estimators also fail, because in these methods the 

measurement error is assumed to be uncorrelated with not only the true score but also all 

other covariates in the regressions.  When this assumption is not met, the steps used to 

create the best linear predictor of the lagged true scores are not generally valid.   

A final estimation approach that we consider is the growth percentile method, such as 

that used in the Colorado Growth Model (CGM) as described in Betebenner (2011, 

2012).  Since this estimation process is based on multiple steps involving predicted 

quantiles, it does not conform to the discussion above.  The literature on how 

measurement error affects quantile regression is less developed (one example of a study 

on this topic is Hausman 2001).  However, given that the CGM is commonly used in 

practice, it is unclear how the estimator will perform empirically under measurement 

error, and we thus investigate its performance in our simulation.  

Section 4: Results 

Results from Experiment with Null Teacher Effects 

We first report on the simulations containing null teacher effects.  We present the 

teacher value added estimates from the 100 simulation replications per scenario in the 

form of box and whisker plots, which allow us to examine both the precision and bias of 

value-added estimators over the simulation repetitions. In each of the 100 replications per 
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scenario, the teachers are consistently assigned to classrooms in rank order of prior 

scores.  In other words, teacher 1 always gets the lowest scoring classroom and teacher 

16 always gets the highest ranked classroom.  Thus the box and whisker plots depict a 

probability distribution of the value-added estimates for each teacher under these 

classroom assignment conditions over 100 sample draws.  Another way of thinking about 

this experiment is to consider how the value-added estimates for a single teacher might 

differ under 16 different types of classroom environments.   

In the plots, the line near the center of each box represents the median teacher 

value-added estimate.  The bottom of the box represents the 25th percentile, and the top of 

the box represents the 75th percentile from the 100 simulation repetitions. Since all the 

teacher effects are zero in the simulation, a scenario in which the majority of a teacher’s 

VAM estimates over the 100 repetitions differ from zero indicates some bias.  

The first set of boxplots, shown in Figures 2 and 3, show the value-added 

distributions for our set of five estimators computed in the most basic manner (i.e., with 

only one lag of test scores and with no nonlinear functions of prior test scores, such as 

polynomials or b-splines, on the right-hand-side).  For each simple estimator, we show 

two plots.  In the first plot, we see value-added distributions when test scores are true 

scores—i.e., we use the underlying true score for each student without computing 

observed scores from them.  Thus in these plots, the scores have no measurement error.  

The second plot for each estimator depicts the distributions when we use observed scores 

in our regressions and as a basis for classroom assignment.    

For DOLS in Figure 2, we see no bias in the case in which true scores are used 

but a notable tendency for bias in teacher value-added when we go from true scores to the 
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observed IRT scores, with the teacher of classroom 16—i.e., the classroom with the best 

students—falsely appearing, by and large, to be more effective.   

For POLS in Figure 2, we see bias in both the true score case and the observed 

score case.  POLS, which uses a gain score as the dependent variable and contains no 

lagged test score on the right-hand-side, has no way of controlling for the grouping of 

students into classrooms.   Thus it is biased even when true scores are used.  The 

transition to observed scores only serves to accentuate the bias.  It is interesting to note 

that the bias is in the opposite direction of that seen for DOLS under test measurement 

error.   

For the CGM also shown in Figure 2, we find evidence of bias when true scores 

are used.  In the observed score scenario, that bias is somehow compensated for, and the 

picture shows only a slight nonlinear pattern in bias.  It should be noted here that this 

estimator does not correspond to the actual CGM in policy use because it does not 

contain multiple lags of test scores or a B-spline function of these lags. It is rarely applied 

in the simple manner shown here.  The CGM with its usual features appears in a later 

figure.  

Figure 3 shows the results for the two estimators that attempt to “adjust” for 

measurement error.  Both these estimators are equivalent to DOLS in the case in which 

true scores are used (this is because the computed reliabilities reduce to an adjustment 

factor of 1).  Thus both estimators will be unbiased under true scores.  When observed 

scores are used, EIV does not inspire confidence, particularly on the lower tail, and HEIV 

suffers from severe bias.  
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Since the IRT process is a nonlinear transformation of true scores, we also 

investigate what happens when we include nonlinear functions of the lagged test score in 

DOLS and the CGM.  With regard to the latter approach, the lagged test score is 

generally entered into the quantile regressions using a B-spline function, thus this version 

corresponds more accurately to the version used in practice.  

Figure 4 shows the results when these more flexible estimators are applied to the 

observed scores.  The simple inclusion of multiple lags of test scores in DOLS in panel A 

(in our simulation there are three lags available for the “5th” grade reported here) does 

nothing to mitigate bias.  The application of polynomials to DOLS—we include squares 

and cubes of all prior test scores—changes the picture to restore a median of around zero. 

However, there is a visible loss of precision in the tails.  Not surprisingly, the same 

pattern emerges with the use of a B-spline function in prior test scores rather than a 

polynomial.  The CGM with the B-spline looks best but the tails appear slightly biased 

downward.   

In summary, this simple thought experiment in which teacher effects do not vary 

but classroom achievement does has demonstrated that bias may creep into teacher value-

added estimation due to test-based measurement error.  The direction of bias may vary 

with the estimation approach used.  In particular, the tails of the teacher effectiveness 

distribution may not be trustworthy when simple estimators are employed.   

Results from Experiment with Varying Teacher Effects 

For the experiment in which we vary teacher effects, we report our results in the 

form of tables displaying rank correlations between the true teacher effects and the 

estimated ones.  The tables show these correlations for different estimators (columns) and 
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different teacher-student grouping scenarios (rows).  In these simulations, we create a 

more complete set of scenarios for grouping students into classrooms and assigning the to 

teachers.  We group students in classrooms both randomly and dynamically (based on 

prior test scores).  Also we can assign these classrooms to teachers in different ways 

depending on whether teachers are randomly chosen to teach certain classrooms or 

nonrandomly chosen.  In the latter case, the teacher to classroom assignment can be 

“positive,” meaning that the better teachers are assigned to the classrooms with higher 

prior test scores, or “negative,” meaning that the better teachers are assigned to the 

classrooms with lower prior test scores. 

Table 1 shows results for the simple estimators and the two measurement error 

correction estimators discussed in Figures 2 and 3 of the previous experiment.  Whereas 

the simple DOLS estimator does best in this group under true scores, it struggles 

somewhat with negative assignment under observed scores. POLS, EIV, and HEIV all 

show severe bias in one of the two dynamic grouping/nonrandom assignment scenarios in 

the directions expected as a result of the prior discussion.  The simpleCGM performed 

more evenly under negative and positive assignment but still underperformed in both 

scenarios relative to DOLS. 

Table 2 shows results for the estimators that include multiple lags, polynomials, 

and splines. Here we see that DOLS with two lags performs substantially better than the 

CGM and surpasses any of the estimators in the previous table under observed score 

scenarios.   

These findings are, for the most part, consistent with those in the experiment with 

null teacher effects.  Measurement error correction techniques appear to be of limited use, 
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and, although flexible specifications of DOLS appear to labor less in recovering teacher 

effects than other approaches, neither set of simulation experiments permits us to feel 

comfortable about effect estimates in the tails of the teacher effectiveness distribution.   

 

Section 5: Conclusion 

 

This paper has shown that under certain conditions—namely, when teachers are 

assigned high or low performing students and measurement error is present in student test 

scores—value added models may mischaracterize teachers as highly effective or 

ineffective. Moreover, models may disagree as to who is thus characterized. Surprisingly, 

models that attempt to correct for measurement error appear to fail in this effort.   

These findings, although preliminary, should give pause to the research and 

policy community in attaching stakes to value-added measures of teacher performance.  

More research is needed to investigate the extent and impact of measurement error and its 

interaction with classroom assignment in actual data, and we are currently in the process 

of conducting such investigations. It may be that the conditions for producing bias are 

present only to a negligible degree, and there is little need to worry about this problem. 

Unless this is established, however, we should be circumspect before we assert that we 

have correctly estimated who belongs in the “tails” of the distribution of effective 

teachers.
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Tables and Figures 

 

Table 1. Rank Correlation between True Teacher Effects and Value-added Estimates under True 
and Observed Score Scenarios 

Estimator Score type 
Grouping and Assignment Scenario 

Random-
Random 

Dynamic-
Random 

Dynamic-
Positive 

Dynamic-
Negative 

DOLS TRUE 0.84 0.84 0.86 0.83 
 Observed 0.81 0.81 0.85 0.57 
POLS TRUE 0.83 0.81 0.61 0.88 
 Observed 0.77 0.66 0.11 0.86 
CGM TRUE 0.74 0.70 0.14 0.77 
 Observed 0.76 0.75 0.53 0.50 
EIV Observed 0.80 0.79 0.87 0.21 
HEIV Observed 0.81 0.80 0.86 0.24 
 

 

Table 2. Rank Correlation between True Teacher Effects and Value-added Estimates based on 
Multiple Lags, Polynomials, and Splines under Observed Score Scenarios 

Estimator Score type 
Grouping and Assignment Scenario 

Random-
Random 

Dynamic-
Random 

Dynamic-
Positive 

Dynamic-
Negative 

DOLS-Two Lags Observed 0.80 0.81 0.81 0.80 
DOLS-Polynomial Observed 0.81 0.81 0.76 0.63 
DOLS-B-spline Observed 0.81 0.81 0.76 0.63 
CGM-B-spline Observed 0.76 0.74 0.52 0.50 
 

 

 

 

 



 
A) 

 
B) 
Figure 1. Examples of the Simulated Student True and Observed Score Distribution and the 

Conditional Standard Error of Measurement. A) Scatter plot of the simulated true and observed 

scores. B) Conditional standard error of measurement of the simulated tests
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C) 

 
D) 

 
E) 

 
F) 

Figure 2: Simple Estimators under True and Observed Score Scenarios.  All Teachers Have Null 

Effects. 



 
A) 

 
B) 
Figure 3: Measurement Error Correction Estimators.  All Teachers Have Null Effects.  All 

Scores Used are IRT Scores. 
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C)

 

D)

 
Figure 4: All Estimators Use Multiple Lags.  All Teachers Have Null Effects.  A) DOLS with 

multiple lags entered linearly.  B) DOLS with multiple lags and a cubic polynomial in all three 

lags.  C)  DOLS with multiple lags and B-spline function in all three lags.  D) Colorado Growth 

Model with multiple lags and B-spline function in all three lags. 
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