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Abstract

We study efficient and stable mechanisms in many-to-one matching markets when

the number of agents is large and individuals’ preferences are drawn randomly from a

class of distributions allowing for both common value and idiosyncratic components.

In this context, as the market grows large, all Pareto efficient mechanisms (includ-

ing top trading cycles, serial dictatorship, and their randomized variants) generate

total payoffs that converge to the utilitarian upper bound. This result implies that

Pareto-efficient mechanisms are asymptotically payoff equivalent in the population

distribution sense — that is, “up to the renaming of agents.” If objects’ priorities are

also randomly drawn but agents’ common values for objects are heterogenous, then

well-known mechanisms such as deferred acceptance and top trading cycle mecha-

nisms fail either efficiency or stability even in the asymptotic sense. We propose a

new mechanism that is asymptotically efficient, asymptotically stable and asymptot-

ically incentive compatible.
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1 Introduction

Assigning indivisible resources such as housing, public school seats, employment contracts,

branch postings and human organs are of central interest in modern market design.1 Ef-

ficiency and stability are typically two goals in designing such matching markets. Pareto

efficiency is an important goal since its failure means that a reassignment would make

some participants strictly better off without harming the others. Meanwhile, stability of

an assignment promotes long-term sustainability of a matching market by eliminating in-

centives for participants to block the assignment (Roth and Sotomayor, 1990); and even

when strategic blocking is not an issue (e.g., because the supply of the resources is under

the control of a non-strategic entity such as a public agency), stability possesses a desirable

fairness property.2

Due to the recent progress in matching theory research, there is by now a well-established

mechanism for attaining each of these two goals and for balancing the tradeoffs between

the two goals when they are in conflict. For instance, mechanisms such as a serial dictator-

ship and top trading cycles (henceforth, TTC) are known to generate efficient assignments

(Shapley and Scarf, 1974) and Gale and Shapley’s deferred acceptance algorithms (in short,

DA) are known to produce stable matchings (Gale and Shapley, 1962). Further, the DA

achieves stability with a minimal efficiency loss,3 and there is a sense in which TTC using

the priorities of the suppliers produces an efficient matching with a minimal incidence of

instabilities (Abdulkadiroglu, Che, and Tercieux, 2013).4

These knowledges are clearly useful. Yet, they leave open several fundamental and

1Cite Nobel lecture...
2Stability implies the so-called “no justified envy” (see Balinski and Sönmez (1999) and Abdulkadiroglu

and Sonmez (2003)), namely that whenever a participant envies another, then the supplier of the object

that the envied agent receives prefers that agent over the one who envies.
3It is well known that – with strict preferences – DA yields a stable matching that Pareto dominates

all other stable matchings for the participants (on the proposing side) (Gale and Shapley, 1962). Further,

there is no individually rational assignment that makes all participants on the proposing side strictly better

off relative to the DA.
4More precisely, in the one-to-one matching, any mechanism that is efficient, strategy-proof and weakly

dominates in stability TTC in the sense that pairs that do not block under TTC do not wish to block

must coincide with the TTC. This result does not extend to the many-to-one matching, however. See

Abdulkadiroglu, Che, and Tercieux (2013).
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practical questions. First, Pareto efficiency is a very weak standard for efficiency, compat-

ible with many different outcomes, including some apparently unreasonable and/or unfair.

There are multitude of efficient mechanisms that lead to vastly different outcomes that treat

individual participants very differently. For instance, a serial dictatorship can span the en-

tire set of Pareto efficient outcomes, depending on the serial order chosen, and likewise TTC

can lead to different outcomes depending on how that participants’ endowments or suppli-

ers’ priorities are set. We do not yet know how they differ in terms of the aggregate profile

of participants’ payoffs (e.g., payoff distribution of participants or utilitarian welfare), and

the literature has yet to produce a clear prescription on which efficient mechanism should

be chosen out of so many.

Second, while the tradeoff between efficiency and stability is well understood, it remains

unclear how best to resolve the tradeoff when both goals are important. As noted above,

the standard approach is to attain one goal with the minimal sacrifice of the other. Whether

this is the best way to resolve the tradeoff is far from clear. For instance, one can imagine a

mechanism that is neither stable nor efficient but may be superior to DA and TTC because

it involves very little loss on each account.

The purpose of the current paper is to answer these questions and in the process provide

useful insights on practical market design. These questions remain outstanding since our

analytical framework is so far driven primarily by the “qualitative” notions of the two

goals. To make progress, we therefore need to relax them “quantitatively.” To do so

requires some structures on the model. First, we consider markets that are “large” in

the number of participants as well as in the number of object types. Large markets are

clearly relevant in many settings. For instance, in the US Medical Match, each year about

20,000 applicants participate to fill a position in one hospital program out of 3,000 to

4,000 programs. In NYC School Choice, about 90,000 students apply each year to 500

school programs. Second, we assume that participants’ preferences are generated at random

according to some reasonable distributions. Specifically, we consider a model in which each

agent’s utility from an object depends on a common component (i.e., that does not vary

across agents) and an idiosyncratic component that is drawn at random independently (and

thus varies across the agents).

Studying the limit properties of a large market with random preferences generated in
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this way provides a framework for answering our questions. In particular, this framework

enables us to perform meaningful “quantitative” relaxations of the two desiderata: we can

look for mechanisms that are asymptotically efficient in the sense that, as the economy

becomes large, with high probability (i.e., approaching one), the fraction of agents who

would gain more than some arbitrarily small amount from a Pareto improving assignment

goes to zero, and mechanisms that are asymptotically stable in the sense that as the

economy becomes large, with high probability, the fraction of agents and objects who would

each gain more than some arbitrarily small payoff from forming a blocking pair goes to zero.

Our findings are as follows.

First, all Pareto efficient mechanisms yield aggregate payoffs, or utilitarian welfare,

that converge to the same limit—more precisely the utilitarian optimum—as the economy

grows large (in the sense described above). This result implies that as the economy grows

large the alternative efficient mechanisms become virtually indistinguishable in terms of

the aggregate payoff distribution of the participants; with the probability approaching one,

they become virtually identical. In other words, up to the “renaming” of agents, agents’

payoffs are asymptotically equivalent across different efficient mechanisms. The practical

implication of this result is that if one cares only about efficiency, and the assumptions of

the model is valid, one need not distinguish the alternative efficient mechanisms at least in

terms of the aggregate payoff profiles. For instance, SD with a random serial order or TTC

with random endowments or random (non intrinsic) priorities would achieve efficiency with

desirable ex ante fairness property.

Second, considering an environment in which the agents’ priorities at the objects are

drawn at random (e.g., possibly due to the use of lotteries), we find that the efficiency loss

from the DA and the stability loss from TTC do not disappear when the objects differ

significantly in qualities, namely in terms of the common components of the agents’ prefer-

ences. Possible inefficiencies of DA and possible instabilities of TTC are well known from

the existing literature; what we are adding here is that they remain “quantitatively” sig-

nificant in the large market. The reasons can be explained in intuitive terms. Suppose the

objects come in two tiers, high quality and low quality, and despite the idiosyncratic pref-

erence shocks every high-quality object dominates every low-quality objects for each agent.

In this case, the (agent-proposing) DA has all agents compete first for every high-quality

object before they start proposing to a low-quality object. Hence, a stable assignment—
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even the agent-optimal stable matching—is largely dictated by the priorities/preferences of

the objects (more precisely their suppliers), with the agents’ preferences having very little

influence on the outcome. In other words, the competition among agents causes the stabil-

ity requirement to entail a significant efficiency loss for the agents. Meanwhile, in the same

environment, under TTC, a significant fraction of agents assigned low-quality objects can

form blocks with a significant number of high-quality objects whose priorities/preferences

are ignored when they are traded among agents. This finding is not only an interesting

theoretical finding, but it has an important implication for practical market design, since

it suggests that the standard approach of achieving one goal with the minimal sacrifice of

the other may not be the best.

Indeed, our third finding is that there is a novel mechanism that is both asymptotically

efficient and asymptotically stable. This mechanism runs a (modified) DA in multiple

stages. Specifically, all agents are ordered in some way, and in each step an agent applies

one at a time according to the serial order to the best object that has not yet rejected

him5 and the proposed object accepts or rejects the applicant, much as in the standard

DA. If at any point an agent applies to an object that holds an application, one agent

is rejected, and the rejected agent in turn applies to the best object among those that

have not rejected him. This process goes on until an agent is rejected by more than a

certain “threshold” number of times. Then the stage is terminated at that point, and all

the tentative assignments up to that point become final. The next stage then begins with

the last agent (who triggered termination of the last stage) applying to the best remaining

object. The stages proceed in this way until no rejection occurs.

This “staged” version of DA resembles the standard DA except for one crucial difference:

the mechanism periodically terminates a stage and finalizes the tentative assignment up to

that point. The event triggering the termination of a stage is that an agent is rejected a

number of times during the stage exceeding a certain threshold. Intuitively, the mechanism

turns on a “circuit breaker” whenever the competition “overheats” to a point that puts an

agent at the risk of losing an object he ranks highly to an agent who ranks it relatively lowly

(more precisely below the threshold rank). This feature ensures that an object assigned at

each stage does go to an agent who ranks it relatively highly among those objects available

5DA where offers are made according to a serial order was first introduced by McVitie and Wilson

(1971).
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at that stage.

Given the independent drawing of idiosyncratic shocks, the “right” threshold turns out

to be 3 log2(n). Given the threshold, the DA with a circuit breaker produces an assignment

that is both asymptotically stable and asymptotically efficient. The analytical case for this

mechanism rests on the limit analysis, but the mechanism appears to perform well even

away from the limit. Our simulation based on the case with n = 100, 200, 500, 1,000, 2,000

shows that our mechanism generates a significantly higher surplus to the agents with hardly

any loss on the objects side.

One potential concern about this mechanism is its incentive property. While the mech-

anism is not strategy proof, the incentive problem does not appear to be severe. A manip-

ulation incentive arises only when an agent is in a position to trigger the circuit breaker

since then the agent may wish to apply to some object safer instead of a more popular one

with high probability of rejecting him. The probability of this is one out of the number of

agents assigned in the current stage, which is in the order of n, so with a sufficient number

of participants, the incentive issue is rather small. Formally, we show that the mechanism

induces truthful reporting as an ε-Bayes Nash equilibrium. Further, any symmetric Bayes

Nash equilibrium is asymptotically efficient and asymptotically stable.

Our DA mechanism with a circuit breaker bears some resemblance to the features that

are found in popular real-world matching algorithms. The “staged termination” feature is

similar to the school choice program used to assign students to colleges in China (Chen and

Kesten (2013)). More importantly, the feature that prohibits an agent from “outbidding”

another over an object that the former ranks lowly but the latter ranks highly is present

in the truncation of participants’ choice lists, which is practiced in virtually every imple-

mentation of the DA in real settings. Our large market result could provide a potential

rationale for the practice that is common in actual implementation of DA but has been

so far difficult to rationalize (see Haeringer and Klijn (2009), Calsamiglia, Haeringer, and

Klijn (2010) and Pathak and Sömez (2013)).

Relation to the Literature

The present paper is connected with several strands of literature. First, it is related to

the literature that studies large matching markets, particularly those with large number
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of object types and random preferences; see Immorlica and Mahdian (2005), Kojima and

Pathak (2008), Lee (2012), Knuth (1996), Pittel (1989) and Ashlagi, Kanoria, and Leshno

(2013). The first three papers are concerned largely with the incentive issues arising in

DA. The last three papers are concerned with the ranks of the partners achieved by the

agents on the two sides of the market under DA, so they are closely related to the current

paper whose focus is on the payoffs achieved by the agents. In particular, our asymptotic

inefficiency result of DA follows directly from Ashlagi, Kanoria, and Leshno (2013). Unlike

these papers, our paper considers not just DA but also other mechanisms and also has

broader perspectives dealing with efficiency and stability.

Another strand of literature studying large matching markets considers a large number

of agents matched with a finite number of object types (or firms/schools) on the other

side; see Abdulkadiroglu, Che, and Yasuda (2008), Che and Kojima (2010), Kojima and

Manea (2010), Azevedo and Leshno (2011), Azevedo and Hatfield (2012) and Che, Kim,

and Kojima (2013), among others. The assumption of finite number of object types enables

one to use a continuum economy as a limit benchmark in these models. At the same time,

this feature makes both the analysis and the insights quite different. The two strands

of large matching market models capture issues that are relevant in different real-world

settings and thus complement each other.6

Methodologically, the current paper utilizes the framework developed in the random

graph and random mapping theory; see Bollobas (2001) and Dawande, Keskinocak, Swami-

nathan, and Tayur (2001) for instance.

2 Set-up

We consider a model in which a finite set of agents are matched with a finite set of objects,

at most one object for each agent. Since our exercise will involve studying the limit of

6The latter model is more appropriate for situations in which there are a relatively small number of

institutions each with a large number of positions to feel. School choice in some district such as Boston

Public Schools could be a suitable application, since only a handful of schools each enroll hundreds of

students. The former model is descriptive of settings in which there are numerous participants on both

sides of the market. Medical matching and school choice in some district such as New York Public Schools

would fit the description.
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a sequence of infinite economy, it is convenient to index the economy by its size n. An

n-economy En = (In, On) consists of agents In and object types On, where |In| = n.

For much of the analysis, we shall suppress the superscript n for notational ease.

The object types can be interpreted as schools or housing types. Each object type

o has qo ≥ 1 copies or quotas. Since our model allows for qo = 1 for all o ∈ On,

one-to-one matching is a special case of our model. We assume that total quantity is:

Qn =
∑

o∈On qo = n. In addition, we assume that the number of copies of each object is

uniformly bounded, i.e., there is q̄ ≥ 1 s.t. qo ≤ q̄ for all o ∈ On and all n. The assumption

that Qn = n is only for convenience as long as it grows at order n our results will go

through. Similarly, the assumption that the number of copies of each object is uniformly

bounded is not necessary as long as it grows at a rate which is low enough.7

Throughout, we shall consider a general class of random preferences that allows for a

positive correlation among agents on the objects. Specifically, each agent i ∈ In receives

utility from obtaining object type o ∈ On:

Ui(o) = U(uo, ξi,o),

where uo is a common value, and the idiosyncratic shock ξi,o is a random variable drawn

independently and identically from [ξ, ξ̄] ⊂ R+ according to the uniform distribution.8

We further assume that the function U(·, ·) takes values in R+, is strictly increasing

in the common values and strictly increasing and continuous in the idiosyncratic shock.

The utility of remaining unmatched is assumed to be 0 so that all agents find all objects

acceptable.

We assume that the agents’ common value for object o ∈ O, uo, takes an arbitrary value

in [0, 1] in an n-economy, and its population distribution is given by DDF,

Xn(u) =

∑
o∈On:uo≥u qo

n

interpreted as the fraction of the objects whose common value is greater than or equal to

u, and by

Y n(u) =
|{o ∈ On|uo ≥ u}|

n
,

7As we will see (footnote 13), we can allow q̄ to evolve with n but then q̄ must be O(n/log(n)).
8The uniform distribution is without loss. See Lee (2012).
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interpreted as the fraction of the object types whose common value exceeds u.

We assume that these DDFs have well-defined limits. That is, Xn and Y n converge

uniformly to X and Y , respectively, where X, Y are nonincreasing and left-continuous, and

X(·) − Y (·) ≥ 0. We further assume that X(0) = 1 and Y (0) > 0.The first assumption

means that each object type may possibly have multiple copies, so the model allows for

many-to-one matching but also includes as a special case an one-to-one matching with

X(·) = Y (·). The last assumption means that the number of object types increase linearly

in n. We allow X and Y to be fairly general, allowing for atoms, but only at finitely many

points.

Two special cases of this model are of interest. The first is a finite-tier model. In this

model, the objects are partitioned into finite tiers, {On
1 , ...., O

n
K}, where ∪k∈KOn

k = On and

On
k ∩ On

j = ∅. (With a slight abuse of notation, the largest cardinality K denotes also the

set of indexes.) In this model, the CDFs Xn and Y n are step functions with finite steps.

This model offers a good approximation of situations in which the objects have clear tiers,

as will be the case in situations in which schools are distinguished in different categories

or by regions, and houses may come in clearly distinguishable tiers. For the most part, the

finite model serves as an analytical vehicle that will be used to analyze the general model.

From this perspective, the finite model is useful to focus on since it brings out, in the most

transparent way, the insight of the random-graph theory framework that we use.

Another special case of our model the full-support model in which the limit distribu-

tion Y is strictly increasing in its support. This model is very similar to Lee (2012), who

also considers random preferences that consist of common and idiosyncratic terms. One

difference is that his framework assumes that the common component of the payoff is also

drawn uniform randomly from a positive interval. Our model assumes common values to

be arbitrary, but with full support assumption, the values can be interpreted as realizations

of random draws (drawn according to the CDF Y ). Viewed in this way, the full-support

model is comparable to Lee (2012)’s, except that current model also allows for atoms in

the distribution of Y .

Unless specified, we are referring to a general model that has these two as special cases.

Fix an n-economy. We shall consider a class of matching mechanisms that are Pareto

efficient. A matching µ in an n-economy is a mapping µ : I → O ∪ {∅} such that
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|µ−1(o)| ≤ qo, with the interpretation that agent i with µ(i) = ∅ is unmatched. Let M

denote the set of all matchings. All these objects depend on n, although their dependence

are suppressed for notational convenience.

In practice, a particular matching chosen will depend on the realized preferences of the

agents as well as other features of the economy that the matching institution may condition

on. For instance, if the objects O are institutions or individuals, their preferences on their

matching partners will typically impact on what matching will arise. Alternatively, one

may wish the matching to respect the existing rights that the individuals may have over

the objects, for instance, the objects may be housing, and some units may have existing

tenants who may have priority over these units. Likewise, the objects may be schools,

and the agents are students, and assignment to a school may favor the students whose

siblings already attend the school or those living close to the school. Some of these factors

are random depending on the features (not captured by their idiosyncratic component)

that are random. We collect all assignment-relevant variables, call its generic realization

a “state,” and denote it by ω = ({ξi,o}i∈I,o∈O, θ), where {ξi,o}i∈I,o∈O is the realized profile

of idiosyncratic component of payoffs, and θ is the realization of all other variables that

influence the particular matching that is selected, and let Ω denote the set of all possible

states.

A matching mechanism is a function that maps from a state in Ω to a matching

in M . With a slight abuse of notation, we shall use µ = {µω(i)}ω∈Ω,i∈I to denote a

matching mechanism, which selects a matching µω(·) in state ω. Let M denote the set of

all matching mechanisms. For convenience, we shall often suppress the dependence of the

matching mechanism on ω.

A matching µ ∈ M is Pareto efficient if there is no other matching µ′ ∈ M such that

Ui(µ
′(i)) ≥ Ui(µ(i)) for all i ∈ I and Ui(µ

′(i)) > Ui(µ(i)) for some i ∈ I. A matching

mechanism µ ∈M is Pareto efficient if, for each state ω ∈ Ω, the matching it induces, i.e.,

µω(·), is Pareto efficient.

A Pareto efficient matching may arise from a number of different matching mechanisms

in a variety of circumstances. Let M∗ be the set of all Pareto efficient mechanisms.
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3 Cardinal Payoff implication of Pareto Efficiency

The first question of the present paper is whether a Pareto efficient matching approaches a

utilitarian efficient outcome. To answer this question, it is useful to consider a utilitarian

benchmark. For this purpose, the following thought experiment is useful. Suppose first we

assign the agents to objects just to maximize their common component of their payoffs.

Clearly, this can be done by assigning the agents with objects in the order of their common

values, starting from the object (type) with the highest common value, and once exhausting

those, assigning those with lower common values. (Since such an assignment does not

address the idiosyncratic component of agents’ payoffs, there is no guaranteeing that the

assignment will attain utilitarian or even Pareto efficiency.) Since the maximum value of the

idiosyncratic payoff cannot exceed ξ, however, we can at least say that the per-capital payoff

for agent cannot exceed the utilitarian upper bound for the n-economy
∫ 1

0
U(u, ξ)dXn(u)

which converges to the limit utilitarian upper bound:

U∗ :=

∫ 1

0

U(u, ξ)dX(u).

The aggregate payoff distribution of an economy, whether it is a finite n-economy or

its limit, can be represented by a decumulative distribution function, i.e., a nonincreasing

left-continuous function F̄ mapping from [0, U(1, ξ)] to [0, 1] with F̄ (U(0, ξ)) = 1. The

number F̄ (z) is interpreted as the fraction of the agents with payoff no less than z. Any

matching µ also induces an aggregate payoff distribution representable by a DDF. Hence,

a mechanism µ induces a random DDF, denoted F̄ µ. For a later purpose, it is convenient

to introduce a notion of distance between two DDFs, called Lévy metric: For any DDFs,

F̄ and Ḡ, let

L(F̄ , Ḡ) := inf
{
δ > 0|F̄ (z + δ)− δ ≤ Ḡ(z) ≤ F̄ (z − δ) + δ, ∀z ∈ R+

}
.

One can simply think of this as the distance of two DDFs measured on the points of

continuity.9

Consider a sequence of mechanisms {µn} and let {F̄ µn} denote the sequence of aggregate

payoff distributions resulting from them. For any (non-random) decumulative distribution

9Convergence of DDFs in Lévy metric boils down to a pointwise or weak convergence, by the Portman-

teau’s lemma.
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function (DDF) F̄ , we say that a sequence of mechanisms {µn} converges to F̄ in payoff

distribution if for any ε > 0, υ > 0, there exists N ∈ N such that for all n > N ,

Pr
[
L(F̄ µn , F̄ ) ≥ ε

]
< υ.

In words, the notion means that the fraction of the agents enjoying any given payoff

under µn can be made arbitrarily similar to the fraction of agents enjoying an arbitrarily

similar payoff under the benchmark distribution F̄ with an arbitrarily high probability if

n is made sufficiently large. The definition thus speaks to the asymptotic probabilistic

convergence of population distribution of payoffs under a sequence of mechanisms. Impor-

tantly, it does not speak about the convergence of a payoff of a particular agent or agent

types. It thus more apt to interpret the convergence in payoffs as a convergence of payoffs

up to renaming of agents.

It is of particular interest to consider mechanisms converging in payoff to the limit

utilitarian upper bound. Let F̄ ∗ denote the population payoff distribution corresponding

to the limit utilitarian upper bound. That is, F̄ ∗(z) = X(U−1(z; ξ)) for each z. We say

that a sequence of mechanisms {µn} converges to the limit utilitarian upper bound

if it converges in payoff to F̄ ∗.

We shall also consider a class of mechanisms converging to a benchmark payoff distribu-

tion in a certain uniform sense. A sequence of families of mechanisms, {M̂n}, where

M̂n ⊂ Mn, equi-converges in payoff to F̄ if, for any ε > 0, υ > 0, there exists N ∈ N
such that for all n > N ,

Pr

[
sup

µn∈M̂n

L(F̄ µn , F̄ ) ≥ ε

]
< υ.

Uniform convergence to the limit utilitarian upper bound is analogously defined. An im-

plication of uniform convergence for a sequence of families of mechanisms is that the payoff

distribution within that family becomes very similar to each other.

We say that a class of mechanisms, M̂ ⊂M, is asymptotically payoff equivalent

if, for any ε > 0, υ > 0, there exists N ∈ N such that for all n > N ,

Pr

[
sup

µn,µ̃n∈M̂n

L(F̄ µn , F̄ µ̃n) ≥ ε

]
< υ.

Again it is important to note that the payoff equivalence in the sense of the aggregate

payoff distribution. Roughly speaking, if a class of mechanisms are asymptotically payoff
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equivalent, the payoffs of the agents are similar “up to renaming” across the different

mechanisms within that class uniformly in the limit as the economy grows large.

Our key argument exploits a result in random graph theory. Hence, we begin with the

relevant model of random graph and the result. A bipartite graph G consists vertices,

V1 ∪ V2, and edges E ⊂ V1 × V2 across V1 and V1 (with no possible edges within vertices

in each side). An independent set is V̄1 × V̄2 where V̄1 ⊆ V1 and V̄2 ⊆ V2 for which no

element in V̄1 × V̄2 is an edge of G. An independent set is balanced if
∣∣V̄1

∣∣ =
∣∣V̄2

∣∣ and

we refer to a balanced independent set with the maximum size (i.e., the cardinality of V̄i)

as a maximal balanced independent set. A random bipartite graph B = (V1 ∪ V2, p),

p ∈ (0, 1), is a bipartite graph with vertices V1 ∪ V2 in which each pair (v1, v2) ∈ V1 × V2

is linked by an edge with probability p independently (of edges created for all other pairs).

The following result will prove crucial for our subsequent results.

Lemma 1. Consider a random bipartite graph B = (V1 ∪ V2, p) where 0 < p < 1 is a

constant and for each i ∈ {1, 2} and |V1| = n and |V2| = m = O(n). For any γ ∈ (0, 1),

Pr
[
∃ an independent set V̂1 × V̂2 with |V̂1| = |V̂2| ≥ γn

]
≤ κ

(
1

n!

)2

for some strictly positive constant κ.

Proof. See Appendix A. �

Remark 1. Given a graph with vertices V1∪V2, V̄1× V̄2 is a biclique if and only if V̄1× V̄2 is

an independent set in its complement graph. Thus, in an environment where |V1| = |V2| =
n, Theorem 2.6. in Dawande, Keskinocak, Swaminathan, and Tayur (2001), yields that

the probability that there exists a balanced independent set of size |V̂1| = |V̂2| ≥ γ log(n)

tends to 0 as n goes to infinity. Our argument follows their proof. Beyond the fact that our

environment allows for the possibility that |V1| 6= |V2|, we focus on balanced independent

sets of size |V̂1| = |V̂2| ≥ γn, while they focus on balanced independent sets of size |V̂1| =

|V̂2| ≥ γ log(n). Because our requirement on the size of the balanced independent set is

weaker, the rate of convergence (of order
(

1
n!

)2
in our case) turns out to be much faster

than in their case (of order
(

1
log(n)!

)2

).

We now study the limit implication of any Pareto efficient mechanism. To this end, we

first partition the set of objects in each n-economy based on their common values into finite
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tiers. That is, let sup(supp(Y )) =: u1 > u2 > ... > uK = 0. In the finite-tier economy,

the tiers here can be defined to correspond to the finite common values. In the general

model, any such tiers will induce a DDF which will approximate the true distribution Y n

from below (as K increases). Define On
≤k := {o ∈ On|uo ≥ uk} be the set of objects in

tier k or better, and let Y n
≤k := Y n(uk) and Xn

≤k := Xn(uk), denote the associated mass of

objects and the associated mass of copies of objects. Define similarly Y≤k := Y (uk) and

X≤k := X(uk) for the limit economy. From now on, for notational ease, we shall suppress

n except for Xn and Y n to avoid confusion with their limit counterparts.

Now, consider any Pareto efficient mechanism µ ∈ M∗. By a well known result (e.g.,

Abdulkadiroglu and Sönmez (1998)), any Pareto efficient matching can be equivalently

implemented by a serial dictatorship mechanism with a suitably chosen serial order. Let

SDfµ be the serial dictatorship mechanism where for each state ω a serial order fµ(ω) : I →
I, a bijective mapping, is chosen so as to implement µω(·). That is, for each state ω ∈ Ω,

the serial order fµ is chosen so that SD
fµ(ω)
ω (i) = µω(i) for each i ∈ I. Since the matching

µ arising from the mechanism depends on the random state ω, so is the serial order f

implementing µ. In the sequel, we shall study a Pareto efficient matching mechanism µ via

the associated SDfµ . To avoid clutter, we shall now suppress the dependence of f on µ.

Given an n-economy, for any Pareto efficient mechanism µ and the associated serial

order f , let

I≤k(µ) := {i ∈ I|f(i) ≤ QnXn
≤k}.

be the set of agents who have a serial order within the total supply of objects in tiers k or

better (in the equivalent serial dictatorship implementation). For any ε, the set

Ī≤k(µ) =
{
i ∈ I≤k(µ)|Ui(SDf (i)) ≤ U(uk, ξ − ε)},

consists of the agents who realize payoff no greater than U(uk, ξ − ε) while having a serial

order within QnXn
≤k. The following lemma will be crucial for the main result.

Lemma 2. For any ε > 0 and γ > 0,

Pr

[
∃µ ∈M∗ s.t.

|Ī≤k(µ)|
|I≤k(µ)|

≥ γ

]
≤ κ

(
1

n!

)2

for some constant κ > 0.
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Proof. See Appendix A. �

Theorem 1. The Pareto efficient mechanisms equi-converge in payoff to the limit utilitar-

ian upper bound.

Proof. See Appendix A. �

A simple corollary is:

Corollary 1.

inf
µ∈M∗

E
[∑

i∈I Ui(µ(i))

|I|

]
→ U∗ as n→∞.

As mentioned earlier, the following payoff equivalence holds across Pareto efficient mech-

anisms.

Corollary 2. The class of Pareto efficient mechanisms is asymptotically payoff equiva-

lent.

4 Balancing Efficiency and Stability

We now consider matching mechanisms that rely on ordinal preference messages on both

sides of the market. Most common mechanisms used in practice in fact use ordinal pref-

erences messages, with the deferred acceptance mechanism and the top trading cycles

mechanism being two notable examples (these two mechanisms are defined in section 4.1

below).

For simplicity, we suppose that objects have priorities (in the sequel, we use the term

priorities which could be understood as preferences if, for instance, objects are interpreted

as being institutions like firms) that are random. Specifically, each object o ∈ O receives

utility from getting matched with individual i ∈ I:

Vi(o) = V (ηi,o),

where idiosyncratic shock ηi,o is a random variable drawn independently and identically

from [η, η̄] ⊂ R+ according to the uniform distribution.10 We further assume that the

10Again, the uniform distribution is without loss.
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function V (·) takes values in R+, is strictly increasing and continuous in the idiosyncratic

shock. The utility of remaining unmatched is assumed to be 0 so that all objects find all

individuals acceptable. In addition to this, we will restrict out attention to the finite-tier

model where the objects are partitioned into finite tiers, {O1, ...., OK}. For each k, we

denote the proportion of objects in Ok, i.e., |Ok||O| , by xk. We also restrict our attention to

the one-to-one case.

4.1 Two mechanisms

� Top trading cycle (TTC) mechanisms:

Following Abdulkadiroglu and Sonmez (2003), we define the top trading cycles mech-

anism, denoted TTC, as follows:11 Fix t ≥ 1. Then, Round t proceeds as follows. Each

individual i ∈ I points to his most preferred object (if any). Each object o ∈ O points to

the individual to which it assigns the highest priority. Since the number of individuals and

objects are finite, the directed graph so obtained has at least one cycle, Every individual

who belongs to a cycle is assigned to the object he is pointing at. Any individual who

has been assigned an object as well as any object which has been assigned an individual is

removed. The algorithm terminates when all individuals have been assigned; otherwise, it

proceeds to Round t+ 1.

This algorithm terminates in a finite number of rounds. Indeed, at the end of each

round, at least one individual is removed and there are finitely many individuals. The TTC

mechanism is defined as a function which for each realization of individuals’ preferences as

well as objects’ priorities selects a matching obtained by the above algorithm.

As is well-known, TTC is a Pareto-efficient matching mechanism and is not stable. It

is also strategy-proof, i.e., it is a dominant strategy to report preferences truthfully. The

top trading cycles mechanism is one of the few mechanisms regularly used in practice.

For instance, in the school choice context, it was used until recently in New Orleans and

recently, San Francisco announced plans to implement a top trading cycles mechanism. A

generalized version of TTC is also used to assign kidneys to sick patients (see Sonmez and

Unver (2011)).

11Shapley and Scarf (1974) first introduced a simplified version of the top trading cycle mechanism in

the housing market setting. The original idea is attributed to David Gale by Shapley and Scarf (1974).
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� The deferred acceptance (DA) mechanism

The original deferred acceptance (DA) algorithm was defined by Gale and Shapley

(1962). An alternative equivalent algorithm has been proposed by McVitie and Wilson

(1971). For convenience, we only refer to this alternative formulation. The DA algorithm

is defined recursively as follows.

Step 0: Linearly order individuals in I.

Step 1: Let individual 1 make an offer to his most favorite object in O. This object

tentatively holds individual 1, and go to Step 2.

Step i ≥ 2: Let agent i make an offer to his most favorite object o in O among

the objects to which he has not yet made an offer. If o is not tentatively holding any

individual, then o tentatively holds i. whenever i = n, end the algorithm; otherwise iterate

to Step i + 1. If however o is holding an individual tentatively—call him i∗—object o

chooses between i and i∗ accepting tentatively the one who is higher in its preference list,

and rejecting the other. The rejected agent is named i and we go back to the beginning of

Step i.

This process terminates in finite time and yields to a matching µ. The DA mechanism

is defined as a function which for each realization of individuals’ preferences as well as

objects’ priorities selects a matching obtained by the above algorithm.

While the DA mechanism is stable, it is not Pareto-efficient. However, it is known to

be student-optimal stable: given individuals’ preferences as well as objects’ priorities, it

produces a stable matching which is the matching that is weakly preferred to any other

stable matching by all individuals. It is also strategy-proof, i.e., it is a dominant strat-

egy to report preferences truthfully (Dubins and Freedman (1981); Roth (1982)). Here

again the DA mechanism is one mechanism regularly used in practice. It has been imple-

mented in both New York City (Abdulkadiroglu, Pathak, and Roth (2005)) and Boston

(Abdulkadiroglu, Pathak, Roth, and Sonmez (2005)).

� Asymptotic Notions of Efficiency and Stability

Now, we define two notions that will be central to our analysis. A matching mechanism

µ is asymptotically efficient if for any mechanism µ′ that weakly Pareto-dominates µ
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for the agents I, for any ε, γ, υ, there exists N ∈ N such that for all n > N , we have

Pr

{
|Iε(µ′|µ)|

n
≥ γ

}
< υ,

where

Iε(µ
′|µ) := {i ∈ I|Ui(µ(i)) < Ui(µ

′(i))− ε}.

In words, a matching is asymptotically efficient if, as the economy gets large, with high

probability any Pareto improving rematching, if there is any, could make only an arbitrarily

small fraction of agents more than ε better off.

A matching mechanism µ is asymptotically stable if, for any ε, γ, υ, there exists

N ∈ N such that for all n > N , we have

Pr

{
|Jε(µ)|
n(n− 1)

≥ γ

}
< υ,

where

Jε(µ) := {(i, o) ∈ I ×O|Ui(o) > Ui(µ(i|ω)) + ε and Vo(i) > Vo(µ(o|ω)) + ε}.

To apply this notion, we first consider an ε-block, i.e., a pair of unmatched agent and

object who each would gain ε or more from matching each other rather than matching

its original partner. Asymptotic stability then requires that for any ε > 0, with high

probability the fraction of these ε-blocks out of all n(n − 1) “possible” blocking pairs is

vanishing as the economy grows large. Hence, in a large market, an asymptotically stable

matching will not admit a large number of agents and objects with discrete motive to block

them. It is still possible that a large number of agents may be willing to form blocks with

some objects, but in that case the number of such objects will be small relative to the

willing agents, accommodating only a small number. In such a case, the By contrast, if

a matching is not asymptotically stable, with some some probability bounded below from

zero, a non-vanishing fraction of agents and objects can form blocks simultaneously, so it

can be a destabilizing force. In this sense, the notion is natural and useful for large markets.

� Preliminary Results

We first consider the case in which the participants’ preferences for the objects are

uncorrelated. That is, the support of the common component of the agents’ utilities are
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degenerate. In our finite-tier model, it is equivalent to saying that the number of tiers

k = 1. In this case both DA and TTC involve little tradeoff:

Proposition 1. If the support of Y (·) is degenerate, then DA is asymptotically efficient,

and TTC is asymptotically stable.

The former follows from Pittel (1992), which shows that under DA with high probability

all participants are assigned objects which they rank within 3 log2(n). Since this number

grows much slowly relative to n, we get that the agents attain payoffs arbitrarily close to

the upper bound ξ̄ as the economy grows large. Hence, DA is asymptotically efficient.12

Asymptotic stability of TTC follows from Theorem 1. Since TTC is a Pareto efficient

mechanism, Theorem 1 implies that for any ε > 0, γ > 0, υ > 0, for all sufficiently high n,

the fraction of the set I≤1 of agents realizing payoffs less than u0
1 +u− ε being greater than

γ can occur with probability at most of υ. Since I≤1 ⊃ Jε(TTC), the asymptotic stability

of TTC follows in this case.

As we show below, Proposition 1 no longer holds when the agents’ preferences are

correlated, in particular, when some objects are perceived by “all” agents to be better

than the other objects. This situation is quite common in many contexts, such as school

assignment, since schools have distinct qualities that students and parents evaluate in a

similar fashion.

To consider such an environment in a simple way, we shall suppose the objects are

divided into two tiers O1 and O2 such that |I| = |O1| + |O2| = n. As assumed earlier,

limn→∞
|Oi|
n

= xi > 0. In addition, we assume that each object in O1 is considered by every

agent to be better than each object in O2: U(u0
1, 0) > U(u0

2, ξ)), where u1 and u2 are com-

mon values of the objects from tier 1 and tier 2, respectively. The preferences/priorities by

the objects are given by idiosyncratic random shocks, as assumed above. In this environ-

ment, we shall show that the standard tradeoff between DA and TTC extends to the large

markets even in the asymptotic sense — namely, DA is not asymptotically efficient and

TTC is not asymptotically stable. This observation runs counter to the common wisdom

based on finite market that correlation of preferences on one side usually renders stable

12Our notion of efficiency focuses on one side of the market: the individuals’ side. It is worth noting

here that even if we were to focus only on the other side: the objects’ side, efficiency would still follow

from from Pittel (1992) even though we are using DA where individuals are the proposers.
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allocations efficient or efficient allocations stable.

4.2 Asymptotic Instability of TTC

Our first result is that, with correlated preferences, TTC fails to be asymptotically stable.

Theorem 2. In our model with two tiers, TTC is not asymptotically stable. More precisely,

there exist ε, υ, γ all strictly positive, such that, for all n > N ,

Pr

{
|Jε(TTC)|
n(n− 1)

≥ γ

}
> υ,

for some N .

We shall provide a proof for the remainder of this subsection. To begin, we call a cycle

of length 2 — namely, an agent points to an object, which points back to the agent —-

a short cycle, and any cycle of length greater than 2 will a long cycle. For the proof,

we shall observe that the objects in O1 assigned via long cycles do not enjoy high payoffs

(since the trade along such cycles ignores objects’ preferences), and that many of these

objects can form ε-blocks with the agents that are assigned to objects in O2. Since the

latter agents are significant (i.e., in the order of n), the important part of the argument

will be to show that the objects that are assigned via long cycles and are willing to form

ε-blocks with them are also significant in numbers.

To begin, let Ô denote the random set of objects in O1 that are assigned in TTC via

long cycles, and let I2 := {i ∈ I|TTC(i) ∈ O2} be the random set of agents who are

assigned under TTC to objects in O2. Appendix B establishes the following result.

Lemma 3. There exist γ > 0, δ > 0, N > 0 s.t.

Pr

{
|Ô|
n

> δ

}
> γ,

for all n > N .

Proof. See Appendix B. �

While this result is quite intuitive, its proof is not trivial. Using an appropriate extension

of “random mapping theory,” we can compute the expected number of objects in O1 that
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are assigned via long cycles in the first round of TTC. But, this turns out to be insufficient

for our purpose since the number of objects that are assigned in the first round of TTC (in

the the order of
√
n) comprises a vanishing fraction of n as the market gets large. Extending

the random mapping analysis to the subsequent rounds of TTC is difficult, however, since

the preferences of the agents and objects remaining after the first round are no longer i.i.d.

Hence it is necessary to investigate the precise random structure of the preferences that

evolve over time. Appendix B does this. In particular, we establish that the number of

objects (and thus agents) assigned in each round of TTC follows a simple Markov structure,

implying that the number of agents cleared in each round is not subject to the conditioning

issue. The composition of the cycles, in particular short versus long cycles, is subject to the

conditioning issue, however. Nevertheless, we managed to show that the number of objects

assigned in each round of TTC can be bounded above. And this bound, combined with

the Markov property of the number of objects assigned in each round, produces Lemma 3.

We next establish that any randomly selected (unmatched) pair from Ô and I2 forms

an ε-block with positive probability for sufficiently small ε > 0.

Lemma 4. There exist ε > 0, ζ > 0 such that, for all n > N , for any ε ∈ [0, ε),

Pr
[
ηjo ≥ ηTTC(o)o + ε

∣∣∣o ∈ Ô, j ∈ I2

]
> ζ.

Proof. See Appendix A. �

Let Î2(o) := {i ∈ I2|ηio > ηTTC(o)o + ε} be the set of agents that are assigned to objects

in O2 and but could serve partners of ε-blocks for objects in O1. The implication of Lemma

4 is that there are non-vanishing number of such agents for any objects in O1 that are

assigned via long cycles.

Corollary 3. For any ε > 0 sufficiently small, there exist ζ > 0, N > 0 such that, for all

n > N ,

E

[
|Î2(o)|
n

∣∣∣o ∈ Ô] ≥ x2ζ

Proof. See Appendix A. �

The theorem follows from Lemma 3 and Corollary 3. The former implies that as the

economy grows, the number of objects assigned via long cycles remain significant. The
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latter implies that each of such object finds many agents assigned by TTC to O2 desirable

for forming ε-blocks. More precisely, for any sufficiently small ε ∈ (0, U(u0
1, 0)− U(u0

2, ξ)),

we get that, for any large n,

E
[
|Jε(TTC)|
n(n− 1)

]
≥ E

∑
o∈Ô

|Î2(o)|
n(n− 1)


≥ E

∑
o∈Ô

|Î2(o)|
n(n− 1)

∣∣∣|Ô| ≥ δn

Pr{|Ô| ≥ δn}

≥ E

E

∑
o∈Ô

|Î2(o)|
n(n− 1)

∣∣∣|Ô| ≥ δn, Ô

 γ

= E

∑
o∈Ô

E

[
|Î2(o)|
n(n− 1)

∣∣∣|Ô| ≥ δn, Ô, o ∈ Ô

] γ

≥ δnE

[
|Î2(o)|
n(n− 1)

∣∣∣o ∈ Ô] γ
≥ δE

[
|Î2(o)|
n

∣∣∣o ∈ Ô] γ ≥ δζx2γ > 0.

The stated result of Theorem 2 follows from this.

4.3 Asymptotic Inefficiency of DA

Our second result is the asymptotic inefficiency of DA.

Theorem 3. In our two tier model, DA is not asymptotically efficient. More precisely,

there exists a matching µ that Pareto dominates DA and strictly positive numbers ε, υ, γ

such that

Pr

{
|Iε(µ|DA)|
|I|

≥ γ

}
≥ υ,

for all n > N for some N .

Proof. See Appendix A. �

The intuition behind this result is as follows. Correlation in agents’ preferences means

nontrivial competition for some objects. When agents compete for an object, the object is
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assigned based on their priorities at the object (or the preferences by the initial supplier of

the object). Hence, nontrivial competition in terms of a large number of agent preferring

the same set of objects, means that the ranks and thus the idiosyncratic payoffs that the

agents enjoy are likely to be high. To put it differently, the stability requirement (and

the preferences on the side of the objects) do not constitute a significant constraint when

agents’ preferences are diverse enough not to compete each other but they do constitute

significant enough constraint to undermine asymptotic efficiency in the large market, when

their preferences are correlated.

4.4 DA with Circuit Breaker

As we just saw, two of the most prominent mechanisms fail to find matchings which, with

high probability, are asymptotically stable and asymptotically efficient. In the sequel, we

define a new mechanism which finds such matchings. To be more precise, we define a class

of mechanisms indexed by some κ. We will show how an appropriate value of κ can be

chosen in order to achieve our goal.

Given a value κ, the DA with Circuit Breaker algorithm (DACB) is defined recursively

on three objects Î and Ô the set of remaining agents and objects, respectively, and a counter

for each agent that records the number of times the agent was rejected. We first initialize

Î = I and Ô = O, and set the counter for each agent to be zero.

Step 0: Linearly order individuals in Î.

Step 1: Let individual 1 make an offer to his most favorite object in Ô. This object

tentatively holds individual 1, and go to Step 2.

Step i ≥ 2: Let agent i make an offer to his most favorite object o in Ô among

the objects to which he has not yet made an offer. If o is not tentatively holding any

individual, then o tentatively holds i. whenever i = n, end the algorithm; otherwise iterate

to Step i + 1. If however o is holding an individual tentatively—call him i∗—object o

chooses between i and i∗ accepting tentatively the one who is higher in its preference list,

and rejecting the other. The counter for the rejected agent increases by one. There are two

cases:

1. If counter of the rejected agent is greater than or equal to κ, then each agent who
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is assigned tentatively to an object in Steps 1, ..., i is assigned to that object. Reset

Ô to be the set of unassigned objects and Î to be the set of unassigned individuals.

Reset the counter of the agent rejected at step i to be zero. If Î is non-empty, go

back to step 0, otherwise, terminate the algorithm.

2. If the counter of the agent rejected at Step i is below κ. The rejected agent is named

i and we go back to the beginning of Step i.

This process terminates in finite time and yields to a matching µ. This algorithm

modifies the McVitie and Wilson (1971) version of DA where the tentative assignments are

periodically finalized. We say that a stage begins whenever Ô is reset, and the stages are

numbered 1, 2, .... serially. For our purpose we set κ := 3 log2(n). The next theorem shows

that this choice of κ is appropriate: the mechanism so defined is efficient and stable in the

asymptotic sense.

Theorem 4. DACB is asymptotically efficient and asymptotically stable.

The Theorem directly follows from the proposition below.

Proposition 2. Fix any k ≥ 1. As n → ∞, with probability approaching one, stage k of

the DACB ends at step |Ok| + 1 and all objects in Ok are assigned. In addition, for any

ε > 0 and γ

Pr

[
|{i ∈ Ik|Ui(DACB(i)) ≥ U(uk, ξ̄)− ε}|

|Ik|
≥ γ

]
→ 1

as n→∞; where Ik := {i ∈ I|DACB(i) ∈ Ok}. Similarly,

Pr

[
|{o ∈ Ok|Vo(DACB(o)) ≥ V (η̄)− ε}|

|Ok|
≥ γ

]
→ 1

as n→∞.

Before we move to the proof of this proposition, we begin with a preliminary result. In

the sequel, to avoid additional notations, we sometimes assume that ξ = 0 and ξ̄ = 1.

Lemma 5. Fix any ε > 0. Let Î and Ô be two sets such that both |Î| and |Ô| are in between

αn and n for some α > 0. For each i ∈ Î, let Xi be the number of objects in Ô for which

ξio ≥ ξ̄ − ε. For any ε′ < ε

Pr{∃i with Xi ≤ ε′|Ô|} → 0

as n→∞.
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Proof. Xi follows a binomial distribution B(|Ô|, ε) (recall that ξio follows a uniform

distribution with support [0, 1]). Hence,

Pr{∃i with Xi ≤ ε′|Ô|} ≤
∑

i∈Î Pr{Xi ≤ ε′|Ô|}

= |Î|Pr{Xi ≤ ε′|Ô|}

≤ |Î|1
2

exp
(
−2 (|Ô|ε−ε′|Ô|)2

|Ô|

)
= |Î|

2 exp(2(ε−ε′)2|Ô|)
→ 0

where the first inequality is by the union bound while the second equality is by Hoeffding’s

inequality. �

Corollary 4. Fix any ε′ > 0 small enough and k ≥ 1. With probability going to 1 as

n → ∞, all individuals in I only rank objects in Ok within their ε′|Ok| favorite objects in

O≥k.

Proof. By Lemma 5 where ε := uk − uk+1, Î := I and Ô := Ok, we get that, for any

ε′ < uk − uk+1, with probability going to 1 as n → ∞, all individuals in I have at least

ε′|Ok| objects in o ∈ Ok for which ξio > ξ̄− ε. By the choice of ε, all such objects are better

than any other objects in O>k+1. �

Proof of Proposition 2. We focus on k = 1, as will become clear, the other cases

can be treated exactly in the same way.

First, let us consider the submarket composed of the |O1| first agents (according to the

ranking given in the definition of DACB) and of all objects in O1 objects. If we were to

run DA here because preferences are drawn iid, by Pittel [Theorem 6.1., (b) 1992], with

probability approaching 1 as n grows, at the end of (standard) DA, all agents have made

less than 3 log(n)2 offers.

Now, let us come back to the original market. By Corollary 4 (and 3 log(n)2/n → 0),

the event that all agents’ 3 log(n)2 favorite objects are in O1 has probability approaching

1 as n → 0. Let us condition on the event. Observe that the conditional distribution of

individuals’ preferences over objects in O1 is the same as the unconditional one (of course,

this is also true for the distribution of objects’ priorities over individuals). Since, given our

conditioning event, the |O1| first steps of DACB go exactly in the same way as DA in the

submarket composed of the |O1| first agents (according to the ranking used in DACB) and
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of all objects in O1 objects, applying the result by Pittel mentioned above, with probability

going to 1 as→∞, we achieve the end of step |O1| of DACB before stage 1 ends (i.e., before

an agent makes an application to his 3 log(n)2 favorite object). The outcome so far is the

one achieved in DA in the submarket composed of the |O1| first agents and of all objects

in O1 objects. Hence, with probability going to 1, all individuals in the |O1| first (again

according the ranking given in the definition of DACB) have a payoff close to U(u1, ξ̄) and

the proportion of objects in O1 which get a payoff close to η̄ converges in probability to 1.

Now, observe that to end step |O1| + 1, the only way is that an individual applies to an

object in O2 or an individual makes an application to his 3 log(n)2 favorite object. Given

our conditioning event, for all individuals, objects in O2 are ranked below the 3 log(n)2

favorite object. Thus, the only way step |O1| + 1 can end is that an individual makes an

application to his 3 log(n)2 favorite object which implies that stage 1 ends. Hence, at the

end of step |O1| + 1, objects in O1 receive even more offers than at the end of step |O1| .

Thus, we obtain that the proportion of objects in O1 which get a payoff close to η̄ still

converges in probability to 1. In addition, with probability going to 1, |O1| individuals and

objects are matched at the end of stage 1. By construction, all these individuals enjoy a

payoff arbitrarily close to U(u1, ξ̄). Of course, this proved under our conditioning event

but since this event has probability going to 1 as n → ∞, this result holds even without

conditioning. Thu,s we have proved Proposition 2 for the case k = 1.

Now, observe that at the moment a stage k is ended, the objects present in stage k+ 1

have received no offers. Thus, by the principle of deferred decisions, we can assume that the

individuals’ preferences over those objects are yet to be drawn. Similarly, we can assume

that priorities of those objects are also yet to be drawn. Put in another way, conditional

on stage k being over, we can assume without loss that the distribution of preferences

and priorities is the same as the unconditional one. Thus, we can proceed inductively to

complete the proof. �

Theorem 4 shows that DACB is superior to DA or TTC in large markets when the

designer cares about both (asymptotic) efficiency and (asymptotic) stability. One potential

drawback of DACB is that it is not strategy-proof. In particular, the agent who triggers a

stage to end may potentially gain from misreporting his preferences to include in his top κ

favorite objects “safe” items which are outside his top κ favorite objects but are unlikely

to be popular among other agents. But the chance of becoming in the position to trigger
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termination of a stage is one out of those assigned in the same stage, so it is very small

particularly in a large economy. Hence, the incentive problem with the DACB is not very

serious. We state two results that formalize the sense in which the DACB perform well

from the incentive perspective.

Theorem 5. Fix any ε > 0. Under DACB, there exists N > 0 such that for all n > N , it

is an ε-Bayes-Nash equilibrium for agents to report truthfully their preferences.

Proof. Let’s consider the event that all (and only) objects in Ok are assigned in

stage k and that each agent who is assigned object in Ok enjoys high enough idiosyncratic

payoff so that he prefers his assigned object to all objects in O≥k+1. Given Proposition

2, the probability of this event goes to one as n → ∞. Fix any agent i and let Pi be a

truthful report and P ′i be a misreport. Let us further assume that whether i reports Pi

or P ′i , he is assigned in stage k and is not one of the individuals who triggers the end of

stage k or any previous stage. For each of these reports, the agent has at least probability

1 − ( 1
|O1| + · · · + 1

|Ok|
) → 1 (as n → ∞) of being in that position. Fix any realization of

preferences on both sides of the market that gives rise to those events. We show that under

such realization i cannot have any (ex-post) gains from misreporting P ′i . Given that our

conditioning events have a (joint) probability which goes to 1, and given that the utility

gains from misreporting are bounded (uniformly across preferences’ realizations), for any

ε > 0, the expected utility gains from misreporting are bounded by ε for n sufficiently large.

If agent i reports truthfully, say Pi, then, the assignment for the agent is the same as DA

applied to a subeconomy consisting of Ok and the agents assigned to Ok plus the agent

who triggers stage k to end and all agents except for i submit the same preferences that

are truncated to contain only 3 log(n)2 favorite choices among Ok, and agent i reports Pi

(recall that i does not trigger the stage to end). Now, note that since i does trigger any

stage before k, he cannot be assigned to an object in O<k by deviating. In addition, by

assumption, we know that if i reports P ′i , he will still be assigned in stage k. If i gets an

object in Ok, his assignment is the same as DA on the same subeconomy with i’s preferences

replaced by P ′i . Strategyproofness of DA on the subeconomy implies that the agent does

not gain from misreporting his preferences. If i is assigned to an object in O≥k+1 (again

by our conditioning) this must be worse than the object he obtains in stage k (which is in

Ok) when he reports truthfully. Thus, i has no (ex-post) incentives to misreport. �

27



Theorem 6. When the mechanism is used, any symmetric Bayesian Nash equilibrium is

asymptotically efficient and stable.

Proof. Fix any agent i, and consider the event/type that the agent prefers any top

β-th object in each tier k to all objects in any tier j > k. We shall argue that for n

sufficiently high, it is a strict best response for i to report truthfully among top β objects

in each tier and above any objects in lower tier “in that event,” given that all other agents

follow the same strategies. By the Hoeffding’s inequality, the probability of the joint event

that “all” agents have the strict best response of adopting such a strategy goes to one as

n→ 1, establishing the desired result.

Assume the other individuals employ the hypothesized behavior. Given the symmetry

of objects within each tier, agent i will order the objects within each tier truthfully among

them, conditional on listing them. Hence, it suffices to show that she will never put any

object in tier j ≥ k ahead of some top β object of tier k. Suppose to the contrary that

there exists an object o′ from tier j that agent i ranks ahead of some top-β object in tier

k, and without loss that no other from tier below k is listed ahead of o′. We shall consider

the upper bound for the gains from the such a deviation, and show that the upper bound

must negative for n sufficiently large.

Consider an event E that all objects in Ok are assigned in stage k, for each k = 1, ..., K.

This event arises with probability no less than 1 − K exp(−c log2(n)) (we are taking the

union bound on Pittel applied to each stage/tier). Given event E , suppose agent i gets her

first turn to make an offer in stage k, and after being rejected by several of top β objects in

tier k, she considers applying to either the next-most preferred top β object say o in tier k

or an object o′ from tier j > k. In the former case, with probability at least of 1/ log(n), she

will be accepted and thus assigned o. With the remaining probability, she will be assigned

her top β object in tier k + 1 with probability 1− 1
xk+1n

. The payoff from this is at least

1

log(n)
u(uk, ξ − εn) +

(
1− 1

log(n)

)(
1− 1

xk+1n

)
u(uk+1, ξ − εn),

where ξ − εn is the realization of β-th highest order statistic. Suppose instead the agent

deviates to list o′ instead of o. In the same situation (i.e., having been rejected by all

objects ahead of o or o′), she can get at most

u(uj, ξ).
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Hence, for some ∆,∆′, δ, δ′ > 0, the gain from deviation can be bounded above by

(1−Ke−c log2(n))

[
u(uj, ξ̄)−

1

log(n)
u(uk, ξ̄ − εn)−

(
1− 1

log(n)

)(
1− 1

xk+1n

)
u(uk+1, ξ̄ − εn)

]
+Ke−c log2(n)∆

=

(
1− 1

log(n)

)(
u(uj, ξ)− u(uk+1, ξ̄ − εn)

)
+

1

log(n)

(
u(uj, ξ̄)− u(uk, ξ̄ − εn)

)
+Ke−c log2(n)∆′

+ higher order terms

=
(
u(uj, ξ)− u(uk+1, ξ̄ − εn)

)
− 1

log(n)

(
u(uk, ξ̄ − εn)− u(uk+1, ξ̄ − εn)

)
+Ke−c log2(n)∆′

+ higher order terms

≤ log2(n)

n
δ − 1

log(n)
δ′ +Ke−c log2(n)∆′ + higher order terms

=− 1

log(n)
δ′ + o(log(n))

<0.

The inequality follows since

u(uj, ξ)−u(uk+1, ξ̄−εn) ≤ u(uk+1, ξ)−u(uk+1, ξ̄−εn) ≤ sup
ξ
u2(uk+1, ξ)εn ≤ sup

ξ,ξ′
u2(uk+1, ξ)h(ξ′)

3 log2(n)

n
,

where u2 is the partial derivative of u with respect to the second argument, and h is

the derivative of the inverse of ΓI ; the first inequality holds since j ≥ k + 1, and the

last inequality follows since β = 3 log2(n), so β-th lowest order statistic εn cannot exceed

supξ′ h(ξ′)3 log2(n)
n

. �

Remark 2. One can construct another mechanism which achieves asymptotic efficiency

and asymptotic stability based on the famous Erdös-Renyi Theorem. The theorem states

that a random bipartite graph across I and O where an edge is formed between i ∈ I and

o ∈ O if and only only if ξ > ξ̄ − ε and η > η̄ − ε admits a perfect bipartite matching with

probability approaching one as n = |I| = |O| tends to ∞. There are famous algorithms –

like the augmenting path algorithm – which find maximal matchings and hence that would

find such perfect matchings whenever they exist.

One can thus imagine a mechanism in which agents and objects (more precisely their

suppliers) report their idiosyncratic shocks, and a maximum matching is returned. Such
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a mechanism is asymptotically efficient and asymptotically stable. But mechanisms would

not have good incentives properties. An agent will be reluctant to report the objects in

lower tiers even though they will bring high idiosyncratic preferences. Indeed, if he expects

that with significant probability, he will not to get any object in the highest tier, he will

have incentives to claim that he enjoys high idiosyncractic payoffs with a large number of

high tier objects and that all his idiosyncractic payoffs for the other tiers are low. It is very

likely that there is a perfect matching even under this misreport and this will ensure him

to get matched with high tier objects.

Remark 3. Knowledge of Objects’ Preferences The above analyses assume that the

agents do not know the preferences of the objects. If they know their priorities at the

objects, the incentives problem become more difficult. In particular, the agents will find it

optimal to sacrifice some surplus in order to increase their chance of getting a higher tier

object.

Remark 4. Many to one matching It is unclear how to extend the above mechanism

to many to one matching. The first issue is how to set β. Suppose first that the number

of copies of each object type is bounded. Then, one would expect that β has the same

order of magnitude. What if the number of copies increase in the same order of magnitude,

or even in the higher order of magnitude? To consider the latter, imagine the continuum

economy with a finite object types but with a continuum of seats for each object type (and

a continuum of agents). To fix an idea, suppose there are 4 colleges, two of which are in

tier 1 and two of which are in tier 2. Any tier 1 college is better than any tier 2 college

for all students. There is a unit mass of students and each college has a quarter seats. If

β = 2, then each student will adopt a cutoff strategy whereby she will rank the true top

college in tier 1 as top, but ranks the second college in tier 1 as second if and only if its

value is above a certain threshold.
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A Main Proofs of the Paper

Proof of Lemma 1. Let Za be the number of balanced independent sets V̂1 × V̂2 with

|V̂1| = |V̂2| = a. We show that the probability of having a balanced independent set V̂1× V̂2

with |V̂1| = |V̂2| = a ≥ γn is smaller than κ
(

1
n!

)2
where κ is some strictly positive constant.

Observe that if V̂1 × V̂2 is an independent set, then so is any subset of V̂1 × V̂2. Thus,

whenever there is a balanced independent set of size a, there must be an independent set

of smaller size. Otherwise stated, Pr{∃a ≥ γn s.t. Za ≥ 1} ≤ Pr{Zγn ≥ 1}. Thus, we can

assume without loss of generality that a = γn and just show that Pr{Za ≥ 1} ≤ κ
(

1
n!

)2
.

We have

Pr{Za ≥ 1} ≤ E(Za) =

(
n

a

)(
m

a

)
((1− p)a)a ≤

(
na

a!

)(
ma

a!

)
((1− p)a)a .

The computation of E(Za) follows from the following argument. A set of vertices A ∪ B
where A ⊆ V1,and B ⊆ V2 forms an independent set if there is no edge between every pair

of vertices v1 ∈ A and v2 ∈ B. Suppose that |A| = |B| = a. Since the probability of an

edge is p, the probability that a given A∪B forms an independent set is ((1− p)a)a. There

are
(
n
a

)
different ways of choosing a subset A ⊆ V1 of size a and

(
m
a

)
ways of choosing a

subset B ⊆ V2 of size a. Hence, the number of pairs of subsets (A,B) we are considering

is
(
n
a

)(
m
a

)
.

Now, since m = O(n), note that there is N such that for all n > N ,

a = γn ≥ log(n) + log(m)

log(1/(1− p))
= log(1−p)(n

−1) + log(1−p)(m
−1).

Hence, for n > N ,

(1− p)a ≤ (1− p)
log(n)+log(m)
log(1/(1−p)) = (1− p)log1−p(n−1)(1− p)log1−p(m−1) = n−1m−1.

Thus, for n > N , we get that
(
n
a

)(
m
a

)
((1− p)a)a ≤

(
1
a!

)2
. Therefore, there must exist a

strictly positive constant κ such that for all values of n, we have Pr{Za ≥ 1} ≤ κ
(

1
a!

)2 ≤
κ
(

1
n!

)2
. �

Proof of Lemma 2. Fix any ε > 0 and γ > 0. We first build a random graph on

I ∪O where an edge (i, o) is added if and only if ξi,o > ξ̄ − ε.

31



Now choose any δ ∈ (0, 1). For each µ ∈ M∗, define random sets Iδ≤k(µ) := {i ∈
I
∣∣f(i) ≤ QnXn

≤k(1− δ)} , Īδ≤k(µ) := {i ∈ Iδ≤k
∣∣Ui(SDf (i)) ≤ U(uk, ξ − ε)}, and

Ōδ
≤k(µ) := {o ∈ O≤k

∣∣∃i ∈ µ−1(o) s.t. f(i) > QnXn
≤k(1− δ)},

which consists of objects in O≤k assigned to the agents with serial order worse than

QnXn
≤k(1− δ).

Then, the set I
δ

≤k(µ) ∪ Ōδ
≤k(µ) must be an independent set. If not, there would exist

an edge (i, o) ∈ Iδ≤k × Ōδ
≤k. Then,

Ui(o) > U(uk, ξ − ε) ≥ Ui(SD
f (i))

where the strict inequality holds since ξi,o > ξ̄ − ε (i.e., (i, o) is an edge), o ∈ O≤k, and

since U(·, ·) is monotonic (in particular strictly increasing in idiosyncratic component). The

weak inequality holds because i ∈ Iδ≤k. In addition, we must have

f(i) ≤ QnXn
≤k(1− δ) < f(i′), for some i′ ∈ µ−1(o)

where the first inequality comes from the fact that i ∈ Iδ≤k(µ) while the second from the

fact that o ∈ Ōδ
≤k(µ). Thus, this means that when i becomes the dictator under SDf ,

object o is still available, and the agent does not choose it. But Ui(o) > Ui(SD
f (i)) means

that i chooses an object worse than o, which yields a contradiction.

In particular, for each µ ∈ M∗, I
δ

≤k(µ) ∪ Ōδ
≤k(µ) contains a balanced independent set

with size min
{
|Iδ≤k(µ)|, |Ōδ

≤k(µ)|
}

. Since |I| = n and |O| is in the order of n, applying

Lemma 1, we get that, for any γ̃ > 0:

Pr
[
∃µ ∈M∗ s.t. min

{
|Iδ≤k(µ)|, |Ōδ

≤k(µ)|
}
≥ γ̃n

]
≤ κ1

(
1

n!

)2

(1)

for some constant κ1 > 0.

Since
∣∣Ōδ
≤k(µ)

∣∣ q̄ ≥∑o∈Ōδ≤k(µ) qo ≥
⌊
δQnXn

≤k
⌋

=
⌊
δnXn

≤k
⌋

for each µ ∈ M∗ , and since

Xn
≤k → X≤k ≥ Y≤k > 0 as n→∞, one can find β > 0 and N1 ∈ N such that for all n > N1,
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∣∣Ōδ
≤k(µ)

∣∣ ≥ βn for each µ ∈M∗.13 Hence, for any γ′ > 0 and for any n > N1:

Pr
[
∃µ ∈M∗ s.t. |Iδ≤k(µ)| ≥ γ′n

]
≤ Pr

[
∃µ ∈M∗ s.t. |Iδ≤k(µ)| ≥ min{γ′, β}n

]
= Pr

[
∃µ ∈M∗ s.t. min

{
|Iδ≤k(µ)|, |Ōδ

≤k(µ)|
}
≥ min{γ′, β}n

]
≤ κ2

(
1

n!

)2

,

for some κ2, where the equality comes from the choice of β and N1 while the last inequality

holds by (1).

Since |I≤k(µ)|/n→ X≤k, and X≤k ≥ Y≤k > 0 as n→∞ , we get that for any c > 0,

Pr

[
∃µ ∈M∗ s.t.

∣∣Īδ≤k(µ)
∣∣

|I≤k(µ)|
≥ c

]
≤ κ

(
1

n!

)2

for some constant κ > 0.

Finally, by construction, |Īδ≤k(µ)| ≥ |Ī≤k(µ)| −
⌊
δQnXn

≤k
⌋
≥ |Ī≤k(µ)| − δQnXn

≤k. Since

QnXn
≤k = |I≤k(µ)|, we get that ∣∣Īδ≤k(µ)

∣∣
|I≤k(µ)|

≥
∣∣Ī≤k(µ)

∣∣
|I≤k(µ)|

− δ

for each µ ∈M∗. Hence, it follows that

Pr

[
∃µ ∈M∗ s.t.

∣∣Ī≤k(µ)
∣∣

|I≤k(µ)|
≥ c+ δ

]
≤ Pr

[
∃µ ∈M∗ s.t.

∣∣Īδ≤k(µ)
∣∣

|I≤k(µ)|
≥ c

]
≤ κ

(
1

(n)!

)2

.

Set δ and c such that δ + c = γ. Then, we have

Pr

[
|Ī≤k(µ)|
|I≤k(µ)|

≥ γ

]
≤ κ

(
1

n!

)2

as was to be shown. �

Proof of Theorem 1. To prove the statement, we will show that the payoff

distributions induced by Pareto efficient mechanisms converge to F̄ ∗ in the sense defined

earlier.

13 Here we use the assumption that q̄ does not increase in n. If it were to depend on n and we further

assume that it is O(n/log(n)), one can check that there is β > 0 and N1 ∈ N s.t. for all n > N1,∣∣Ōδ≤k(µ)
∣∣ ≥ βlog(n) for each µ ∈M∗. Using the alternative version of Lemma 1 by Dawande, Keskinocak,

Swaminathan, and Tayur (2001) mentioned in Remark 1, one can show that Theorem 1 below goes through.
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Fix any ε′ > 0 and υ′ > 0. We shall show that there exists N ∈ N such that for all

n > N ,

Pr

[
sup
µ∈M̂∗

sup
z∈Z

inf
ẑ∈[z−ε′,z+ε′]

{
|F̄ µ(ẑ)− F̄ ∗(z)|

}
≥ ε′

]
< υ′, (2)

where F̄ ∗ and F̄ µ are respectively the DDF of the payoff induced by the limit utilitarian

upper bound and the DDF induced by mechanism µ in M∗. We later show that this is

sufficient for the proof.

To this end, we partition the common value space [0, 1] into intervals ∪Kk=1(uk+1, uk],

where sup(supp(Y )) =: u1 > u2 > ... > uK = 0 are such that supk supu,u′∈(uk+1,uk] |X(u)−
Xn(u′)| < ε′

2
, for any n > N̂ for some N̂ ∈ N. Such a partition exists since Xn → X

uniformly and since one can select all points of discontinuity of X to be a subset of the

threshold values for the partition. Define as before O≤k = {o ∈ O|uo ≥ uk} and Y n
≤k :=

Y n(uk) , Xn
≤k := Xn(uk).

The partition induces a corresponding partition of the payoff space Z := [0, U(u1, ξ)]

into intervals Zk := (U(uk+1, ξ), U(uk, ξ)], k = 1, ..., K − 1. Next, let ε > 0 be such that

U(uk, ξ− ε) > max{U(uk, ξ)− ε′, U(uk+1, ξ)} for all k = 1, ..., K− 1. Then, for each Pareto

efficient mechanism µ ∈M∗ and for each z ∈ Zk, k ∈ {1, ..., K}, let z′ := min{z, U(uk, ξ −
ε)}. Clearly, given our choice of ε, we have that z′ ∈ Zk. In addition, given this choice of

ε, z′ ∈ [z − ε′, z + ε′]. Indeed, this is trivially true if z ≤ U(uk, ξ − ε) (in which case z′ = z)

and if z > U(uk, ξ − ε)(= z′), we have that z − ε′ < U(uk, ξ)− ε′ < U(uk, ξ − ε) = z′(< z)

where the first inequality comes from the fact that z ∈ Zk while the second is by the choice

of ε. Define

Jµ(z) = {i ∈ I|Ui(µ(i)) ≥ z} .

be the set of agents enjoying payoff of at least z under matching µ. Let uz be such that

U(uz, ξ) = z. Clearly, each agent in Jµ(z) must be obtaining an object with common value

no less than uz. This means that |Jµ(z)| ≤ QnXn(u) for all µ ∈M∗.

By definition, for each z, F̄ ∗(z) = X(uz). Now, because Qn = n = |I|, for each z,
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|Jµ(z′)|
|I| − F̄

∗(z) ≤ Xn(uz′)−X(uz). Then, for all n > N̂ ,

Pr

[
sup
µ∈M∗

sup
z∈Zk

(
|Jµ(z′)|
|I|

− F̄ ∗(z)

)
≥ ε′

]
≤Pr

[
sup
µ∈M∗

sup
z∈Zk

(Xn(uz′)−X(uz)) ≥ ε′
]

≤Pr

[
sup
µ∈M∗

sup
u,u′∈(uk+1,uk]

(Xn(u′)−X(u)) ≥ ε′

]
= 0, (3)

where the last inequality comes from the fact that by definition of z and z′, both uz and

u′z are in (uk+1, uk] while the equality to 0 is from the definition of N̂ .

For each k, let I≤k(µ) :=
{
i ∈ I|f(i) ≤ QnXn

≤k
}

and Ī≤k(µ) :=
{
i ∈ I≤k|Ui(SDf (i)) ≤ U(uk, ξ − ε)

}
,

where SDf is the SD rule implementing µ. Note that, for any z, any agent in I≤k(µ)\Ī≤k(µ)

must be enjoying payoff at least of U(uk, ξ − ε) ≥ z′, so such an agent must belong to

Jµ(z′). In other words, for any z, Jµ(z′) ⊃ I≤k(µ) \ Ī≤k(µ). Hence, there exists Nk ∈ N,
with Nk ≥ N̂ , such that for all n > Nk,

Pr

[(
sup
µ∈M∗

sup
z∈Zk
−|J

µ(z′)|
|I|

)
+ F̄ ∗(z) ≥ ε′

]
≤Pr

[{
sup
µ∈M∗

−
(
|I≤k(µ)| − |Ī≤k(µ)|

|I≤k(µ)|

)(
|I≤k(µ)|
|I|

)}
+X(u) ≥ ε′

]
= Pr

[{
sup
µ∈M∗

−
(

1− |Ī≤k(µ)|
|I≤k(µ)|

)
Xn(uk)

}
+X(u) ≥ ε′

]
≤Pr

[(
sup
µ∈M∗

|Ī≤k(µ)|
|I≤k(µ)|

)
+
∣∣X(u)−Xn(uk)

∣∣ ≥ ε′
]

<υ′/K, (4)

where the last inequality follows from Lemma 2 (with γ = ε′/2) and an appropriate choice

of Nk.

Combining (3) and (4), we get that for each k = 1, . . . , K, and n > Nk,

Pr

[
sup
µ∈M∗

sup
z∈Zk
| |J

µ(z′)|
|I|

− F̄ ∗(z)| ≥ ε′
]
< υ′/K,
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Since F̄ µ(z′) = |Jµ(z′)|
|I| , we obtain that for all n > maxkNk,

Pr

[
sup
µ∈M̂∗

L(F̄ µ, F̄ ∗) ≥ ε′

]

≤Pr

[
sup
µ∈M̂∗

{
sup
z∈Z

inf
ẑ∈[z−ε′,z+ε′]

|F̄ µ(ẑ)− F̄ ∗(z)|
}
≥ ε′

]

≤Pr

[
sup
µ∈M̂∗

{
sup
z∈Z
|F̄ µ(z′)− F̄ ∗(z)|

}
≥ ε′

]

≤
K∑
k=1

Pr

[
sup
µ∈M̂∗

{
sup
z∈Zk
|F̄ µ(z′)− F̄ ∗(z)|

}
≥ ε′

]
<Kυ′/K = υ′,

where the first inequality holds since if L(F̄ µ, F̄ ∗) ≥ ε′, then there exists z such that

inf ẑ∈[z−ε′,z+ε′] |F̄ µ(ẑ)− F̄ ∗(z)| ≥ ε′; the second inequality holds since z′ ∈ [z− ε′, z+ ε′]; and

the third follows from Boole’s inequality. This completes the proof. �

Proof of Lemma 4. Note first that since there are large common value differences,

if o ∈ Ô ⊂ O1 and j ∈ I2, it must be that o does not point to j in the cycle to which o

belongs under TTC (otherwise, if j is part of the cycle in which o is cleared, since o ∈ O1,

this means that j must be pointing to an object in O1 when she is cleared, which is a

contradiction with j ∈ I2). Note also that j is still in the market when o is cleared.

Define E1 := {ηjo ≥ ηTTC(o)o} ∧ {o ∈ Ô} ∧ {j ∈ I2} and E2 := {ηjo ≤ ηTTC(o)o} ∧ {o ∈
Ô} ∧ {j ∈ I2}. We first show that PrE1 = PrE2.

Assume that under the realizations ξ := (ξio)io and η := (ηio)io event E1 is true.

Define η̂ := (η̂io)io where η̂jo := ηTTC(o)o and η̂TTC(o)o := ηjo – while η̂ and η coincide

otherwise. It is easily checked that under the realizations ξ and η̂, event E2 is true.

Indeed, that {η̂jo ≤ η̂TTC(o)o} holds true is trivial. Now, since, as we already claimed,

under the realizations ξ and η, j and TTC(o) are never pointed by o, when j and TTC(o)

are switched in o’s priorities, by definition of TTC, o still belongs to the same cycle and,

hence, TTC runs exactly in the same way. This shows that {o ∈ Ô} ∧ {j ∈ I2} also holds

true under the realizations ξ and η̂,

Given that Pr(ξ,η) = Pr(ξ, η̂), we get that PrE1 = PrE2.
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Next, let Eε := {ηjo ≥ ηTTC(o)o + ε}. Note that

∪ε>0Eε = {ηjo > ηTTC(o)o} =: E.

Since the distribution Pr[·] of ηio has no atom, Pr
[
·
∣∣∣o ∈ Ô, j ∈ I2

]
has no atom as well

(Pr(ηjo = η) = 0⇒ Pr(ηjo = η
∣∣∣o ∈ Ô, j ∈ I2 ) = 0). Thus, we must have

Pr
[
E
∣∣∣o ∈ Ô, j ∈ I2

]
= Pr

[
{ηjo ≥ ηTTC(o)o}

∣∣∣o ∈ Ô, j ∈ I2

]
=

1

2
.

Since Eε is increasing when ε decreases, combining the above, we get14

lim
ε→0

Pr
[
Eε

∣∣∣o ∈ Ô, j ∈ I2

]
= Pr

[
∪ε>0Eε

∣∣∣o ∈ Ô, j ∈ I2

]
= Pr

[
E
∣∣∣o ∈ Ô, j ∈ I2

]
=

1

2
.

Thus, one can fix δ ∈ (0, 1/2) arbitrarily close to 0 and find ε > 0 so that for any ε ∈ (0, ε),

Pr
[
Eε

∣∣∣o ∈ Ô, j ∈ I2

]
≥ 1

2
− δ > 0. �

Proof of Corollary 3. Then, for any ε sufficiently small, we have ζ > 0 and

N > 0 such that

E
[
|Î2(o)|

∣∣∣o ∈ Ô] = E

[∑
i∈I2

1{ηio>ηTTC(o)o+ε}

∣∣∣o ∈ Ô]

= EI2

(
E

[∑
i∈I2

1{ηio>ηTTC(o)o+ε}

∣∣∣o ∈ Ô, I2

])

= EI2

(∑
i∈I2

E
[
1{ηio>ηTTC(o)o+ε}

∣∣∣o ∈ Ô, I2, i ∈ I2

])
= EI2

(
x2nE

[
1{ηio>ηTTC(o)o+ε}

∣∣∣o ∈ Ô, I2, i ∈ I2

])
= x2n

(
E
[
1{ηio>ηTTC(o)o+ε}

∣∣∣o ∈ Ô, i ∈ I2

])
= x2nPr(ηio > ηTTC(o)o + ε

∣∣∣o ∈ Ô, i ∈ I2 )

= x2nPr(ηio ≥ ηTTC(o)o + ε
∣∣∣o ∈ Ô, i ∈ I2 )

≥ x2ζn,

for all n > N . �
14Recall the following property. Let {En}n be an increasing sequence of events. Let E := ∪nEn be the

limit of {En}n. Then: Pr(E) = limn→∞ Pr(En).
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Proof of Theorem 3. Since U(u0
1, 0) > U(u0

2, ξ)), all objects in O1 are assigned

before any agent starts applying to objects in O2. Hence, the assignment achieved by

individuals matched to objects in O1 is the same as the one obtained when we run DA in

the submarket with individuals in I and objects in O1. This submarket has been studied

by Ashlagi, Kanoria, and Leshno (2013). Their Corollary 2.3. shows that there exists a

constant c > 0 such that, with probability converging to one as n grows, the average rank

of individuals matched to objects in O1 is at least n/c. Thus, this means that there exists

ε′ > 0, υ′ > 0, γ′ > 0 such that for all n > N ′ for some N ′ > 0,

Pr

{
|Ĩε|
|I|
≥ γ′

}
≥ υ′,

where Ĩε′ := {i ∈ I|DA(i) ∈ O1, Ui(DA(i)) ≤ U(u1, ξ̄ − ε′)} is the set of agents assigned to

objects in O1 but receive payoffs bounded above by U(u1, ξ̄ − ε′).

Now consider a matching mechanism that first runs DA and then runs a Shapley-

Scarf TTC afterwards, namely the TTC with the DA assignments serving as the initial

endowments for the agents. This mechanism µ clearly Pareto dominates DA. In particular,

if DA(i) ∈ O1, then µ(i) ∈ O1. For any ε′′, let

Ǐε′′ := {i ∈ I|µ(i) ∈ O1, Ui(DA(i)) ≥ U(u1, ξ̄ − ε′′)},

be those agents attain at least the payoff of U(u1, ξ̄ − ε′′). By Lemma 2, we have for any

ε′′, γ′′ and υ′′, such that

Pr

{
|Ǐε′′|
|I|

> γ′′
}
< υ′′,

for all n > N ′′ for some N ′′ > 0.

Now set ε′, ε′′ such that ε = ε′ − ε′′ > 0, γ′, γ′′ such that γ := γ′ − γ′′ > 0, and υ′, υ′′

such that υ := υ′ − υ′′ > 0. Observe that Iε(µ|DA) ⊃ Ĩε′ \ Ǐε′′ , so |Iε(µ|DA)| ≥ |Ĩε′ | − |Ǐε′′ |.
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It then follows that for all n > N := max{N ′, N ′′},

Pr

{
|Iε(µ|DA)|
|I|

≥ γ

}
≥ Pr

{
|Ĩε′ |
|I|
− |Ǐε

′′ |
|I|
≥ γ

}

≥ Pr

{
|Ĩε′ |
|I|
≥ γ′ and

|Ǐε′′ |
|I|
≤ γ′′

}

≥ Pr

{
|Ĩε′ |
|I|
≥ γ′

}
− Pr

{
|Ǐε′′|
|I|

> γ′′
}

≥ υ′ − υ = υ.

�

B Analysis of TTC

In this section, we provide an analysis of TTC in our random environment. Our final goal

is to prove Lemma 3. For our purpose, it is sufficient to consider the TTC assignment

arising from the market consisting of the agents in I and the objects in top tier O1 (recall

that, irrespective of the realizations of the idiosyncratic values, all agents consider objects

in O1 better than objects in O2. Hence, we shall simply consider an unbalanced market

consisting of a set I of agents and a set O of objects such that (1) the preferences of each

side with respect to the other side are drawn i.i.d. uniformly, and (2) both |O| and |I|− |O|
increase in the order of |O|, as the market size |O| grows to infinity. The analysis of this

market requires a preliminary result on bipartite random mapping.

B.1 Preliminaries

Here, we develop a couple of preliminary results that we shall later invoke. Through, we

shall consider two finite sets I and O, with cardinalities |I| = n, |O| = o.

Number of Spanning Rooted Forests. A rooted tree is a connected directed bipar-

tite digraph where all vertices have out-degree 1 except the root which has out-degree 0.15

15Sometimes, a tree is defined as an acyclic undirected connected graph. In such a case, a tree is rooted

when we name one of its vertex a “root”. Starting from such a rooted tree, if all edges now have a direction
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A rooted forest is a bipartite graph which consists of a collection of disjoint rooted trees.

A spanning rooted forest over I ∪ O is a forest with vertices I ∪ O under which all

vertices are part of at least one edge. From now on, a spanning forest will be understood

as being over I ∪O. We will be using the following result.

Lemma 6 (Jin and Liu (2004)). Let V1 ⊂ I and V2 ⊂ O where |V1| = ` and |V2| = k. There

are on−`−1no−k−1(kn + `o− k`) spanning rooted forests having in total ` + k roots, ` in V1

and k in V2.

Random Bipartite Mapping. We now consider arbitrary mappings, g : I → O and

h : O → I, defined over our finite sets I and O. Note that such mapping naturally induces

bipartite digraphs with vertices I∪O and directed edges with the number of outgoing edges

equal to one for each vertex. In this digraph, i ∈ I points to g(i) ∈ O while o ∈ O points to

h(o) ∈ I. A random bipartite mapping selects a composite map g ◦ h uniformly from a

set G × H = OI × IO. Note that a random bipartite mapping induces a random bipartite

digraph consisting of vertices I ∪O and directed edges with the number of outgoing edges

equal to one for each vertex. We say that a vertex in a digraph is cyclic if it is in a cycle.

The following lemma states the number of cyclic vertices in a random bipartite digraph

induced by a random bipartite mapping.

Lemma 7 (Jaworski (1985), Corollary 3). The number q of the cyclic vertices in a random

bipartite digraph induced by a random bipartite mapping g : I → O and h : O → I has an

expected value of

E[q] := 2
o∑
i=1

(o)i(n)i
oini

,

where (x)j := x(x− 1) · · · (x− j − 1).

For the next result, consider agents I ′ and objects O′ such that |I ′| = |O′| = m > 0.

We say a mapping f = g ◦ h is a bipartite bijection, if g : I ′ → O′ and h : O′ → I ′

are both bijections. Note that a bipartite bijection consists of disjoint cycles. A random

bipartite bijection is a (uniform) random selection of a bipartite bijection from the set

of all bipartite bijections. The following result will prove useful for a later analysis.

leading toward the root, then the out-degree of any vertex (except the root) is 1. So the two definitions

are actually equivalent.
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Lemma 8. Fix sets I ′ and O′ with |I ′| = |O′| = m > 0, and a subset K ⊂ I ′ ∪ O′, with

its a ≥ 0 vertices in I ′ and its b ≥ 0 vertices in O′. The probability that each cycle in a

random bipartite bijection contains at least one vertex from K is

a+ b

m
− ab

m2
.

Proof. We shall invoke Lovasz (1979) Exercise 3.6, which establishes that the prob-

ability that each cycle of a random permutation16 of a finite set |X| contains at least one

element of a set K ⊂ X is |K|/|X|.

To this end, observe first that a bipartite bijection f = g ◦ h induces a permutation of

set I ′. Thus, a random bipartite bijection induces a random permutation of set I ′. The

probability that each cycle of the randomly selected bipartite bijection contains at least

one vertex in K is identical to the probability that each cycle of the induced permutation

of I ′ contains at least one of a + X vertices, where X is the (random) number of vertices

in I ′ \K that point to K ∩O′. For any max{b− a, 0} ≤ x ≤ min{m− a, b},

Pr{X = x} =

(
a
b−x

)(
m−a
x

)(
m
b

) .

The above formula can be understood as follows.
(
a
b−x

)(
m−a
x

)
is the number of ways one

can choose b−x nodes in K ∩ I ′ and x nodes in I ′ \K. Thus, the total number of bipartite

bijection having exactly x vertices in I ′ \K that point to K ∩ O′ is
(
a
b−x

)(
m−a
x

)
w where w

is the total number of bipartite bijections where our given b − x nodes in K ∩ I ′ point to

nodes in K ∩ O′ and the given x nodes in I ′ \K point to nodes in K ∩ O′. Note that w

is equal to the number of bipartite bijections where our given b nodes point to nodes in

K ∩ O′. Hence, the total number of bipartite bijections having b nodes in I ′ pointing to

K ∩O′ is
(
m
b

)
w. Thus, we get the above formula.

16Formally, a permutation of X is a bijection f : X → X. A random permutation chooses randomly a

permutation f in the set of all possible permutations.

41



Applying the earlier result, the desired probability is

min{m−a,b}∑
x=max{b−a,0}

Pr{X = x}a+ x

m

=
a

m
+

min{m−a,b}∑
x=max{b−a,0}

Pr{X = x} x
m

=
a

m
+

min{m−a,b}∑
x=max{b−a,0}

(
a
b−x

)(
m−a
x

)(
m
b

) ( x
m

)

=
a

m
+

(
m− a
m
(
m
b

) ) min{m−a,b}∑
x=max{b−a,1}

(
a

b− x

)(
m− a− 1

x− 1

)

=
a

m
+

(
m− a
m
(
m
b

) )(m− 1

b− 1

)
=
a

m
+
b(m− a)

m2

=
a+ b

m
− ab

m2
,

where the fourth equality follows from the Vandermonde’s identity. �

B.2 Markov Chain Property of TTC

Again consider a TTC in an unbalanced market with agents I and objects O. As is well

known, TTC assigns agents to objects via cycles formed recursively in multiple rounds. We

shall call a cycle of length 2—an agent points to an object, which in turn points to the

original agent—a short-cycle. Any cycles of length greater than 2 shall be called long-

cycles. Our aim is to prove that the number of the agents assigned via long-cycles in TTC

grows in the same order n as the size of the market n grows. The difficulty with proving this

result stems from the fact that the preferences of the agents and objects remaining after

the first round of TTC need not be uniform, with their distributions affected nontrivially

by the realized event of the first round TTC, and the nature of the conditioning is difficult

to analyze in the large market.17 Our approach is to prove that, even though the exact

17To understand why there is a conditioning issue here, let us consider an example where we have three

individuals {1, 2, 3} and three objects {o1, o2, o3} and that both preferences and priorities are drawn iid
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composition of cycles are subject to the conditioning issue, the number of agents assigned

in each round follows a Markov chain, and is thus free from the conditioning issue. We

then combine this observation with the bound we shall establish on the number of agents

assigned via short-cycles, to produce a desired result.

We shall begin with the Markov Chain result. This result parallels the corresponding

result by Frieze and Pittel (1995) on the Shapley-Scarf version of TTC. The difference

between the two versions of TTC is not trivial, so their proofs do not carry over.

Theorem 7. Suppose any round of TTC begins with n agents and o objects remaining in

the market. Then, the probability that there are m ≤ min{o, n} agents assigned at the end

of that round is

pn,o;m =

(
m

(on)m+1

)(
n!

(n−m)!

)(
o!

(o−m)!

)
(o+ n−m).

Thus, denoting ni and oi the number of individuals and objects remaining in the market at

any round i, the random sequence (ni, oi) is a Markov chain.

B.2.1 Proof of Theorem 7

We begin by noting that TTC induces a random sequence of spanning rooted forests.

Indeed, one could see the begining of the first round of TTC as a stituation where we have

the trivial forest consisting of |I| + |O| trees with isolated vertices. Within this step each

vertex in I will randomly point to a vertex in O and each vertex in O will randomly point to

a vertex in I. Note that once we delete the realized cycles, we again get a spanning rooted

forest. So we can think again of the begining of the second round of TTC as a stituation

where we start with a spaning rooted forest where the agents and objects remaining from

uniformly. Condition on the event E that 3 and o3 are matched together in the first round of TTC. If

preferences and priorities were still drawn iid uniformly conditional on E, then for any realized priorities of

the remaining objects, the probability that 1 ranks o1 above o2 would be 1/2. To get an intuition of why

this is not true, let us consider the event F under which o1 ranks 1 above 2 while o2 does this opposite.

Thus, given E and F , it is not very likely that 1 had ranked o1 first in the first round of TTC (given F ,

with probability 1/2, o1 initially ranked 1 first in which case, given E, 1 cannot be ranking o1 first). Given

F and E, it is more likely that 1 had ranked o2 first in the first round of TTC. This is the reason why,

given E and F , the probability that 1 ranks o1 above o2 is smaller than the the probability that 1 ranks

o2 above o1 (and so smaller than 1/2).
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the first round form this spanning rooted forest, where the roots consist of those agents and

objects that had pointed to the entities that were cleared via cycles. Here again objects

that are roots randomly point to a remaining individual and individuals that are roots

randomly point to a remaining object. Once cycles are cleared we again obtain a forest and

the process goes on like this. Formally, the random sequence of forests, F1, F2, .... is defined

as follows. First, we let F1 be a trivial unique forest consisting of |I|+|O| trees with isolated

vertices, forming their own roots. For any i = 2, ..., we first create a random directed edge

from each root of Fi−1 to a vertex on the other side, and then delete the resulting cycles

(these are the agents and objects assigned in around i − 1) and Fi is defined to be the

resulting rooted forest. We let (Ni, ki) denote the vertex set and the number of trees in the

rooted forest Fi, and let FNi,ki denote the set of all rooted forests with Ni as the vertex set

and ki as the number of trees.

Lemma 9. Given (Nj, kj), j = 1, ..., i, every (rooted) forest of FNi,ki is equally likely.

Proof. We prove this result by induction on i. Since for i = 1, by construction, the

trivial forest is the unique forest which can occur, this is trivially true for i = 1. Fix i ≥ 2,

and assume our statement is true for i− 1. Fix Ni = Ii ∪Oi ⊂ Ni+1 = Ii+1 ∪Oi+1, κ = ki,

and λ = ki+1. We start by showing that each forest F ∈ FNi+1,ki+1
arises from the same

number of pairs (F ′, φ) where F ′ ∈ FNi,ki and φ maps the roots of F ′ in Ii to its vertices in

Oi as well as the roots of F ′ in Oi to its vertices in Ii. Given F , we can construct all such

pairs by choosing a quadruplet (a, b, c, d) of four non-negative integers with a+b+c+d = κ,

1. choosing c old roots from Ii+1, and similarly, d old roots from Oi+1,

2. choosing a old roots from Ii\Ii+1 and similarly, b old roots from Oi\Oi+1,

3. choosing a partition into cycles of Ni\Ni+1, each cycle of which contains at least one

old root from (2),

4. choosing a mapping of the λ new roots to Ni\Ni+1 satisfying the bipartite graph

constraint.

Note that α(n, o, k;m,λ) does not depend on F ∈ FNi+1,ki+1
. For future use, we compute

the exact value of α(n, o, k;m,λ). Letting n := |Ii|, o := |Oi|, and |Ii| − |Ii+1| = |Oi| −
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|Oi+1| = m, the number of choices is

α(n, o, k;m,λ)

:=
∑

a+b+c+d=κ

(
n−m
c

)(
o−m
d

)(
m

a

)(
m

b

)(
a+ b

m
− ab

m2

)
(m!)2mλ

=(m!)2mλ ×

( ∑
a+b+c+d=κ

(
n−m
c

)(
o−m
d

)(
m− 1

a− 1

)(
m

b

)

+
∑

a+b+c+d=κ

(
n−m
c

)(
o−m
d

)(
m

a

)(
m− 1

b− 1

)
−

∑
a+b+c+d=κ

(
n−m
c

)(
o−m
d

)(
m− 1

a− 1

)(
m− 1

b− 1

))

=(m!)2mλ

(
2

(
n+ o− 1

κ− 1

)
−
(
n+ o− 2

κ− 2

))
.

The first equality follows from Lemma 8, along with the fact that there are (m!)2 possible

bipartite bijections between |Ii| − |Ii+1| agents and |Oi| − |Oi+1| objects, and the fact that

there are mλ = mλ1mλ2 ways in which new roots (λ1 in Ii+1 and λ2 in Oi+1) could have

pointed to 2m cyclic vertices (m on the individuals’ side and m on the objects’ side), and

the last equality follows from Vandermonde’s identity.

The rest of the proof mimics Frieze and Pittel (1995). If F ∈ FNi+1,ki+1
then the

inductive assumption and the Markov property of {Fj} implies that

P (Fi+1 = F |(N1, k1), ..., (Ni, ki)) =
1

|FNi,ki |
∑

F ′∈FNi,ki

P (Fi+1 = F |Fi = F ′).

Now, let φi = (φIi , φ
O
i ) where φIi is the random mapping from the roots of Fi in Ii to Oi and

φOi is the random mapping from the roots of Fi in Oi to Ii. Let φ = (φI , φO) be a generic

mapping of that sort. Since, conditioned on Fi = F ′, the mappings φIi and φOi are uniform,

we get (where kIi and kOi denote the number of roots of Fi in Ii and Oi respectively)

P (Fi+1 = F |Fi = F ′) =
1

|Oi|k
I
i

1

|Ii|k
O
i

∑
φ

P (Fi+1 = F |Fi = F ′, φi = φ).

The conditional probability in the sum above is 1 or 0, dependent upon whether the forest

F arises from the pair (F
′
, φ) or not. Given F ∈ FNi+1,ki+1

, we can construct all such pairs

by choosing a quadruplet (a, b, c, d) of four non-negative integers satisfying (1)-(4) above

with the additional constraint that a+ c = kIi and b+ d = kOi . Clearly, the number of such

pairs depends only on |Ii|, |Oi|, ki = (kIi , k
O
i ), ki+1, and |Ni+1|− |Ni|. We note the number
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of such pairs by β(|Ii|, |Oi|,ki; |Ii+1| − |Ii|, ki+1). Given a pair of integers ki = (kIi , k
O
i ) and

a set Ni, we also note FNi,ki for the set of forests with Ni as the set of vertices, kIi roots in

I and kOi roots in O. Notice that FNi,ki = ∪ki:kIi+kOi =kiFNi,ki . Therefore, we obtain,

P (Fi+1 = F |(N1, k1), ..., (Ni, ki)) =
1

|FNi,ki |
∑

F ′∈FNi,ki

P (Fi+1 = F |Fi = F ′)

=
1

|FNi,ki |
∑

ki:kIi+kOi =ki

∑
F ′∈FNi,ki

P (Fi+1 = F |Fi = F ′)

=
1

|FNi,ki |
∑

ki:kIi+kOi =ki

∑
F ′∈FNi,ki

1

|Oi|k
I
i

1

|Ii|k
O
i

∑
φ

P (Fi+1 = F |Fi = F ′, φi = φ)

=
1

|FNi,ki |
∑

ki:kIi+kOi =ki

1

|Oi|k
I
i

1

|Ii|k
O
i

∑
F ′∈FNi,ki

∑
φ

P (Fi+1 = F |Fi = F ′, φi = φ)

=
1

|FNi,ki |
∑

ki:kIi+kOi =ki

1

|Oi|k
I
i

1

|Ii|k
O
i

β(|Ii|, |Oi|,ki; |Ii+1| − |Ii|, ki+1).

This probability is independent of F ∈ FNi+1,ki+1
. Then so is P (Fi+1 = F |(N1, k1), ..., (Ni, ki), (Ni+1, ki+1)),

since it equals the ratio of the above probability and P (F ∈ FNi+1,ki+1
|(N1, k1), ..., (Ni, ki)).

�

Lemma 9 implies that the random sequence (ni, oi, k
1
i , k

2
i ) is a Markov chain, where ni

is the number of agents, oi is the number of objects, and k1
i is the number of roots in Ii

and k2
i is the number of roots in Ii, in TTC round i. The arguments are precisely the same

as Corollaries 1 and 2 of Frieze and Pittel (1995) and are omitted. We now show that in

fact (ni, oi) forms a Markov chain.

Lemma 10. The random sequence (ni, oi) is a Markov chain, with transition probability

given by

pn,o;m := Pr{ni − ni+1 = oi − oi+1 = m|ni = n, oi = o}

=

(
m

(on)m+1

)(
n!

(n−m)!

)(
o!

(o−m)!

)
(o+ n−m).

Proof. We first compute the probability of transition from (ni, oi, k
1
i , k

2
i ) to (ni+1, oi+1, k

1
i+1, k

2
i+1):

P (n, o, κ;m,λ1, λ2) := Pr{ni−ni+1 = oi−oi+1 = m, k1
i+1 = λ1, k

2
i+1 = λ2|ni = n, oi = o, k1

i +k
2
i = κ}.

This will be computed as a fraction Θ
Υ
. The denominator Υ counts the number of rooted

forests in the bipartite digraph with k1
i roots in Ii and k2

i roots in Oi, multiplied by the
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ways in which k1
i roots of Ii could point to Oi and k2

i roots of Oi could point to Ii.
18 Hence,

letting f(n, o, k1, k2) denote the number of rooted forests in a bipartite graph (with n and

o vertices on both sides) containing k1 and k2 roots on both sides.

Υ =
∑

k1+k2=κ

ok1nk2f(n, o, k1, k2)

=
∑

k1+k2=κ

ok1nk2
(
n

k1

)(
o

k2

)
on−k1−1no−k2−1(nk2 + ok1 − k1k2)

=
∑

k1+k2=κ

(
n

k1

)(
o

k2

)
on−1no−1(nk2 + ok1 − k1k2)

=onno
(

2

(
n+ o− 1

κ− 1

)
−
(
n+ o− 2

κ− 2

))
.

The first equality follows from the fact that there are ok1nk2 ways in which k1 roots in Ii

point to Oi and k2 roots in Oi could point to Ii. The second equality follows from Lemma

6. The last uses Vandermonde’s identity.

The numerator Θ counts the number of ways in which m agents are chosen from Ii and

m objects are chosen from Oi to form a bipartite bijection each cycle of which contains

at least one of κ old roots, and for each such choice, the number of ways in which the

remaining vertices form a spanning rooted forest and the λ1 roots in Ii+1 point to objects

in Oi \Oi+1 and λ2 roots in Oi+1 point to agents in Oi \Oi+1.

Θ =

(
n

m

)(
o

m

)
f(n−m, o−m,λ1, λ2)α(n, o, κ;m,λ1 + λ2)

=

(
n

m

)(
o

m

)
f(n−m, o−m,λ1, λ2)(m!)2mλ1+λ2

(
2

(
n+ o− 1

κ− 1

)
−
(
n+ o− 2

κ− 2

))
.

=

(
n!

(n−m)!

)(
o!

(o−m)!

)
mλ1+λ2f(n−m, o−m,λ1, λ2)

(
2

(
n+ o− 1

κ− 1

)
−
(
n+ o− 2

κ− 2

))
.

Collecting terms, let us compute

P (n, o, κ;m,λ1, λ2) =
1

onno

(
n!

(n−m)!

)(
o!

(o−m)!

)
mλ1+λ2f(n−m, o−m,λ1, λ2).

18Given that we have ni = n individuals, oi = o objects and k1i + k2i = κ roots at the begining of step

i under TTC, one may think of this as the total number of possible directed bipartite digraph one may

obtain via TTC at the end of step i when we let k1i roots in I point to their remaining most favorite object

and k2i roots in O point to their remaining most favorite individual.
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A key observation is that this expression does not depend on κ, which implies that (ni, oi)

forms a Markov chain.

Its transition probability can be derived by summing the expression over all possible

(λ1, λ2)’s:

pn,o;m :=
∑

0≤λ1≤n−m,0≤λ2≤o−m

P (n, o, κ;m,λ1, λ2).

To this end, we obtain:∑
0≤λ1≤n−m

∑
0≤λ2≤o−m

mλ1mλ2f(n−m, o−m,λ1, λ2)

=
∑

0≤λ1≤n−m

∑
0≤λ2≤o−m

mλ1mλ2

(
n−m
λ1

)(
o−m
λ2

)
×

(o−m)n−m−λ1−1(n−m)o−m−λ2−1((n−m)λ2 + (o−m)λ1 − λ1λ2)

=m

( ∑
0≤λ1≤n−m

(
n−m
λ1

)
mλ1(o−m)n−m−λ1

)( ∑
1≤λ2≤o−m

(
o−m− 1

λ2 − 1

)
mλ2−1(n−m)o−m−λ2

)

+m

( ∑
1≤λ1≤n−m

(
n−m− 1

λ1 − 1

)
mλ1−1(o−m)n−m−λ1

)( ∑
0≤λ2≤o−m

(
o−m
λ2

)
mλ2(n−m)o−m−λ2

)

−m2

( ∑
1≤λ1≤n−m

(
n−m− 1

λ1 − 1

)
mλ1−1(o−m)n−m−λ1

)( ∑
1≤λ2≤o−m

(
o−m− 1

λ2 − 1

)
mλ2−1(n−m)o−m−λ2

)
=mon−mno−m−1 +mon−m−1no−m −m2on−m−1no−m−1

=mon−m−1no−m−1(n+ o−m),

where the first equality follows from Lemma 6, and the third follows from the Binomial

Theorem.

Multiplying the term 1
onno

(
n!

(n−m)!

)(
o!

(o−m)!

)
, we get the formula stated in the Lemma.

�

This concludes the proof of Theorem 7.

B.3 The Number of Objects Assigned via Short Cycles

We begin with the following question: What is the expected number of agents that are

assigned via short cycles, conditional on the event that m agents and m objects are cleared
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and that they contain a old roots on the agent side and b old roots on the object side? The

answer is

Φ(a, b) :=

(
m

1

)(
m

1

)
×(( a

m

)(m− b
m

)(
a+ b− 1

m− 1
− (a− 1)b

(m− 1)2

)
(m− 1)!(m− 1)!

+

(
m− a
m

)(
b

m

)(
a+ b− 1

m− 1
− (b− 1)a

(m− 1)2

)
(m− 1)!(m− 1)!

+
( a
m

)( b

m

)(
a+ b− 2

m− 1
− (a− 1)(b− 1)

(m− 1)2

)
(m− 1)!(m− 1)!

)
.

The formula is explained as follows. The first line counts the number of ways one can choose

an agent and an object to form a pair. For the chosen agent-object pair, the subsequent

lines count the number of bipartite bijections each cycle of which contains at least one of

the a+b roots and the chosen pair forms a short-cycle. For instance, the second line equals

the probability that the agent in the chosen pair is one of a roots but the object is not an

old root, times the expected number of bipartite bijections between the remaining agents

and the remaining objects, each cycle of which contains at least one old root among a− 1

roots on the agents side and b roots on the object side. This last part uses the formula

stated in Lemma 8. The subsequent lines are explained similarly. Note that we exclude

the possibility that the chosen pair does not contain any root.

Rearrangement of terms produces

Φ(a, b) =(m!)2

(
a(a− 1)

m(m− 1)
+

b(b− 1)

m(m− 1)
+

2ab

m2
− 2a(a− 1)b

m2(m− 1)
− 2ab(b− 1)

m2(m− 1)
+
a(a− 1)b(b− 1)

m2(m− 1)2

)
.

Using this formula, we next compute the total expected number of short cycles for all

instances consistent with (n, o, κ;m,λ1, λ2).

Λ(κ;λ1, λ2)

Υ
=

1

Υ

(
n

m

)(
o

m

)
f(n−m, o−m,λ1, λ2)

∑
a+b+c+d=κ

(
n−m
c

)(
o−m
d

)(
m

a

)(
m

b

)
Φ(a, b)mλ

=
1

Υ

(
n!

(n−m)!

)(
o!

(o−m)!

)
mλf(n−m, o−m,λ1, λ2)δ(κ),

where

δ(κ) := 4

(
n+ o− 2

κ− 2

)
− 4

(
n+ o− 3

κ− 3

)
+

(
n+ o− 4

κ− 4

)
.
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(Note: Here and elsewhere, the combinatoric terms involving κ− j are relevant for j ≥ κ.

The terms vanish when j > κ.)

Recall the term:

∆(κ) := 2

(
n+ o− 1

κ− 1

)
−
(
n+ o− 2

κ− 2

)
.

Then,

ρ(κ) :=
δ(κ)

∆(κ)
=

(
κ− 1

2(n+ o)− (κ− 1)

)(
4− 4

κ− 2

n+ o− 2
+

(κ− 2)(κ− 3)

(n+ o− 2)(n+ o− 3)

)
.

It can be shown that ρ(κ) ≤ 1 for κ, n, o.

Let σm be the expected number of agents/objects assigned via short cycles in any round

given that m agent/object pairs are assigned in that round. Let 1m be the indicator function

that takes one if m agent-object pairs are cleared and zero otherwise. Then, we let

Then,

E[σm · 1m|n, o]

≤ sup
κ

∑
0≤λ1≤n−m,0≤λ2≤o−m

Λ(κ, λ1, λ2)

Υ

= sup
κ

(
m

(on)m+1

)(
n!

(n−m)!

)(
o!

(o−m)!

)
(o+ n−m)ρ(κ)

=pn,o,m

(
sup
κ
ρ(κ)

)
≤pn,o,m.

This means that for each m ≤ min{o, n},

E[σm|n, o,m] :=
E[σm · 1m|n, o]
E[1m|n, o]

≤ 1.

We thus reach the following conclusion:

Theorem 8. The expected number of agents/objects assigned via short cycles cannot exceed

one at any round of TTC.

B.4 The Number of Objects Assigned via Long Cycles

Again consider the unbalanced market in which |I|− |O| is in the same order of magnitude

as |O|. Theorem 7 means that the number of objects assigned in any round coincide with
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the half of the cyclic vertices in a random bipartite graph consisting of the agents and the

objects remaining at the beginning of that round. According to Lemma 7, this means that

if n agents and o (< n) objects begin at any round the expected number of objects that

would be assigned by the end of that round would be

E[m] =
o∑
i=1

(o)i(n)i
oini

.

We can make two observations: First, the expected number is increasing in (n, o). This

can be seen easily by the fact that k−l
k

is increasing in k for any k > l. Second, there exists

n̂ such that for any n > n̂,

E[m] ≥ 2 if and only if o ≥ 4.

This observation follows from the fact that in case of o = 3,

3∑
i=1

(3)i(n)i
3ini

= 1 +
6n(n− 1)

9n2
+

6n(n− 1)(n− 2)

27n3
< 2

but in case of o = 4,

4∑
i=1

(4)i(n)i
4ini

≥ 1 +
12n(n− 1)

16n2
+

24n(n− 1)(n− 2)

64n3
> 2,

provided that n is sufficiently large.

We are now ready to present the main result. Recall that Ô is the (random) set of

objects that are assigned via long cycles in TTC.

Theorem 9. For |I| sufficiently large, E
[
|Ô|
|O|

]
≥ 1

2
− 5
|O| .

Proof. Consider the following sequence of random variables {E(Zk |ok )}|O|k=1 where ok

is the random variable which corresponds to the number of remaining objects at round k

while Zk is the random variable corresponding to the number of objects assigned at round

k via long cycles. Thus, o1 = |O|. By the above observation, since {ok} is a decreasing

sequence, this sequence is decreasing as well: E(Z1 |o1) ≥ ... ≥ E(Z|O|
∣∣o|O|) = 0. By

Theorem 7, we are defining here the process {E(Zk |ok )}|O|k=1 induced by this Markov chain.

Note also that E(Zk |ok ) ≥ 1 if and only if ok ≥ 4. Denote the random integer T for the
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first integer at which the decreasing sequence is smaller than 1, i.e., E(Zk |ok ) ≤ 1 if and

only if k ≥ T . Note that oT ≤ 4.

For each k = 1, ..., |O|, let ôk|t denote the number of agents remaining at round k,

conditional on T = t. This is a random variable. Note that ôk|t ≥ 4 for k ≤ t− 1.

Now we obtain:

E[|Ô|] = E(

|O|∑
k=1

Zk)

=
∑
t

Pr{T = t}E

 t−1∑
k=1

Zk +

|O|∑
k=t

Zk

∣∣∣∣T = t


=

∑
t

Pr{T = t}

(
t−1∑
k=1

E
[
Zk

∣∣∣∣T = t

]
+

n∑
k=t

E
[
Zk

∣∣∣∣T = t

])

=
∑
t

Pr{T = t}

 t−1∑
k=1

E
[
E
[
Zk
∣∣ôk|t] ∣∣∣∣T = t

]
+

|O|∑
k=t

E
[
E
[
Zk
∣∣ôk|t] ∣∣∣∣T = t

]
=

∑
t

Pr{T = t}

E

[
t−1∑
k=1

E
[
Zk
∣∣ôk|t] ∣∣∣∣T = t

]
+ E

 |O|∑
k=t

E
[
Zk
∣∣ôk|t] ∣∣∣∣T = t


≥

∑
t

Pr{T = t}E

[
t−1∑
k=1

E
[
Zk
∣∣ôk|t] ∣∣∣∣T = t

]
≥

∑
t

Pr{T = t}E
[
t− 1

∣∣T = t
]

= E[T ]− 1.

Since once we reach round T , at most four more short cycles can be formed, so the

expected number of short cycles should be smaller than E(T ) + 4. Indeed, the expected

number of short cycles is smaller than the expected number of rounds for TTC to converge

(the expected number of short cycle at each round is at most one) which itself is smaller

than E(T ) + 4. It follows that the

E[|Ô|] ≥ E[T ]− 1 ≤ E[|O| − |Ô|]− 5,

from which the result follows. �
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Corollary 5. There exists γ > 0, δ > 0, N > 0

Pr

{
|Ô|
|O|

> δ

}
> γ,

for all |O| > N .
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