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Abstract

We study semiparametric two-step estimators which have the same structure as

parametric doubly robust estimators in their second step, but retain a fully nonpara-

metric specification in the first step. Such estimators exist in many economic applica-

tions, including a wide range of missing data and treatment effect models. We show

that these estimators are
√
n-consistent and asymptotically normal under weaker than

usual conditions on the accuracy of the first stage estimates, have smaller first order

bias and second order variance, and that their finite-sample distribution can be approx-

imated more accurately by classical first order asymptotics. We argue that because of

these refinements our estimators are useful in many settings where semiparametric esti-

mation and inference are traditionally believed to be unreliable. We also illustrate the

practical relevance of our approach through simulations and an empirical application.

JEL Classification: C14, C21, C31, C51

Keywords: Semiparametric model, missing data, treatment effects, doubly robust esti-

mation, higher order asymptotics

∗First version: December 20, 2012. This version: November 10, 2013. Christoph Rothe, Columbia Univer-

sity, Department of Economics, 420 W 118th St, New York, NY 10027, USA. Email: cr2690@columbia.edu.

Sergio Firpo, Escola de Economia de Sao Paulo FGV-SP, R. Itapeva, 474/1215, Sao Paulo-SP, 01332-000,

Brasil. E-Mail: sergio.firpo@fgv.br. We would like to thank Matias Cattaneo, Michael Jansson, Marcelo

Moreira, Ulrich Müller, Cristine Pinto, and seminar audiences at Brown, Columbia, EPGE-FGV, University

of Pennsylvania, Princeton, PUC-Rio, the 2012 Greater NY Metropolitan Colloquium and the 2013 North

American Summer Meetings for their helpful comments; and Matias Cattaneo for making available the data

used in the empirical application. Sergio Firpo gratefully acknowledges financial support from CNPq-Brazil.

1



1. Introduction

Semiparametric two-step estimators are by now available for a wide range of economet-

ric applications. These estimators typically arise from a flexible model in which a finite-

dimensional parameter of interest can be characterized through a moment condition that

contains an unknown nuisance function. In a first step, the nuisance function is estimated

nonparametrically. In a second step, the parameter of interest is then estimated from an

empirical version of the moment condition, with the unknown nuisance function replaced by

its first step estimate. Semiparametric two-step estimators are important for empirical re-

search because they allow practitioners to remove many parametric restrictions, which could

potentially mask important features of the data, from their specifications.

The first order asymptotic properties of semiparametric two-step estimators have been

studied extensively (e.g. Newey, 1994; Newey and McFadden, 1994; Andrews, 1994; Chen,

Linton, and Van Keilegom, 2003; Ichimura and Lee, 2010), and are widely used to justify large

sample inference procedures. However, there is considerable evidence that first order asymp-

totic distributions provide poor approximations to the sampling behavior of semiparametric

two-step estimators, at least for sample sizes typically encountered in empirical practice (e.g.

Linton, 1995; Robins and Ritov, 1997; Cattaneo, Crump, and Jansson, 2013a). For instance,

the standard first order approximation is invariant to the nonparametric estimation tech-

nique used in the first step, yet point estimates can be very sensitive to implementation

details, such as the choice of smoothing parameters.

This discrepancy can be attributed to the fact that first order approximations are usually

derived under strong smoothness conditions on the unknown nuisance function. Such an

approach allows treating certain terms in an expansion of the estimator as negligible in an

asymptotic sense (e.g. Robins and Ritov, 1997). However, in finite samples these higher order

terms could still be of substantial magnitude, and thus considerably affect the properties of

the final estimator. One way to address this issue would be to subtract estimates of these

terms from the final estimator, but this generally adds an undesirable layer of complexity

as higher order terms often depend on nonlinear transformations of nonparametric objects

(e.g. Linton, 1995).

In this paper, we consider a different approach, which involves constructing simple alter-

native estimators for which higher order terms are small to begin with. We propose a new

class of semiparametric two-step estimators that are based on a moment condition with a
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particular structure: it depends on two unknown nuisance functions, but still identifies the

parameter of interest if either one of the two functions is replaced by some arbitrary value.

Following the terminology in Robins, Rotnitzky, and van der Laan (2000), we refer to such

moment conditions as doubly robust (DR), and thus call the corresponding estimators semi-

parametric doubly robust estimators (SDREs). DR moment conditions exist for many inter-

esting parameters, including regression coefficients in models with missing outcomes and/or

covariates, average treatment effects in potential outcome models with unconfounded assign-

ment, and local average treatment effects in instrumental variable models, amongst many

others. Our estimators can thus be applied in a wide range of empirical applications.

Our main contribution is to show that SDREs have attractive theoretical and practical

properties relative to generic semiparametric two-step estimators based on a moment condi-

tion without the DR property. We show that the special structure of DR moment conditions,

together with a certain orthogonality condition that is not restrictive in all examples that

we consider, removes the two largest second order terms in a traditional expansion of the

estimator. This effect occurs automatically, and does not require choosing additional tuning

parameters or involved numerical computations. As a consequence, SDREs have smaller first

order bias and second order variance, and are
√
n-consistent and asymptotically normal un-

der weaker conditions on the accuracy of the first step nonparametric estimates. Moreover,

their finite sample distribution can be better approximated by classical first order asymp-

totics. Therefore any method for inference that is justified by large sample theory, such as

the usual confidence intervals or hypothesis tests, should be more accurate in our case. In all

examples that we consider in this paper, SDREs are also semiparametrically efficient. They

have thus clear advantages even relative to other efficient estimators that are commonly used

in such settings, such as Inverse Probability Weighting (IPW) estimators in missing data and

treatment effect models (e.g. Hirano, Imbens, and Ridder, 2003; Firpo, 2007; Chen, Hong,

and Tarozzi, 2008).

From a practitioner’s perspective, our results imply that SDREs are generally more pre-

cise in finite samples than generic semiparametric estimators with the same asymptotic

variance, and that their properties are less sensitive to the implementation of the nonpara-

metric first stage. Moreover, in settings with moderate dimensionality, they can allow for

rate-optimal choices of smoothing parameters (which are relatively easy to estimate from the

data), and do not require the use of bias reducing nonparametric estimators (such as those
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based on higher order kernels, for instance). These are important advantages that make

SDREs attractive in applications. SDREs are also adaptive, in the sense that by construc-

tion their asymptotic variance does not contain adjustment terms for the nonparametric first

step. This is a useful property, as it simplifies the calculation of standard errors.

Our SDREs differ from the usual doubly robust procedures used widely in statistics. See

for example Robins, Rotnitzky, and Zhao (1994), Robins and Rotnitzky (1995), Scharfstein,

Rotnitzky, and Robins (1999), Robins and Rotnitzky (2001), Van der Laan and Robins (2003)

or Tan (2006), and Wooldridge (2007) or Graham, Pinto, and Egel (2012) for applications in

econometrics. These estimators employ fully parametric specifications of the two nuisance

functions, and the role of the DR property is to ensure consistency of the final estimator if

at most one of these specifications is incorrect. In this paper we impose no such parametric

restrictions on nuisance functions when computing our SDREs. Instead, we retain a fully

nonparametric first stage.

Our paper is not the first to be concerned with improving the properties of semiparametric

two-stage estimators. In very different contexts, Newey, Hsieh, and Robins (2004) and Klein

and Shen (2010) propose methods that do not exploit higher order differentiability conditions

to reduce the impact of the first stage smoothing bias on the properties of certain two-step

estimators. Cattaneo et al. (2013a) study a jackknife approach to remove bias terms related

to the variance of the first stage nonparametric problem in the specific context of weighted

average derivative estimation. Our paper complements these findings in a general sense by

showing that the use of doubly robust moment conditions achieves both goals simultaneously.

An alternative approach to improve inference, which we do not consider in this paper, would

be to derive “non-
√
n” asymptotic approximations. Examples of such a strategy include

Robins, Li, Tchetgen, and Van Der Vaart (2008), who consider semiparametric inference in

models with very high-dimensional functional nuisance parameters, and Cattaneo, Crump,

and Jansson (2013b), who study so-called small bandwidth asymptotics for semiparametric

estimators of density-weighted average derivatives.

The remainder of this paper is structured as follows. In the next section, we present

the modeling framework and our estimation procedure, and give some concrete examples

of doubly robust moment conditions. In Section 3, the estimators’ asymptotics properties

are studied. Section 4 applies our method to the estimation of treatment effects under

unconfoundedness. Section 5 shows evidence that SDREs have superior properties compared
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to other methods in a simulation study. In Section 6, we apply our method to study the

effect of smoking on birth weight. Finally, Section 7 concludes. All proofs are collected in

the Appendix.

2. Modeling Framework and Estimation Procedure

2.1. Doubly Robust Moment Conditions. We consider the problem of estimating a

parameter θo, contained in the interior of some compact parameter space Θ ⊂ R
dθ , in a

semiparametric model. The data consists of an i.i.d. sample {Zi}ni=1 from the distribution of

the random vector Z ∈ R
dz . We assume that one way to identify θo within the semiparametric

model is through a moment condition with two nuisance functions. That is, there exists a

known moment function ψ(·) taking values in R
dθ such that

Ψ(θ, po, qo) := E(ψ(Z, θ, po(U), qo(V ))) = 0 if and only if θ = θo, (2.1)

where po ∈ P and qo ∈ Q are unknown (but identified) functions, and U ∈ R
dp and V ∈ R

dq

are random subvectors of Z that might have common elements. We consider settings where

the moment condition (2.1) exhibits a particular structure. First, we assume that

Ψ(θ, po, q) = 0 and Ψ(θ, p, qo) = 0 if and only if θ = θo (2.2)

for all functions q ∈ Q and p ∈ P . Following the terminology in Robins et al. (2000), we

refer to any moment condition that is of the form in (2.1) and satisfies the restriction (2.2)

as a doubly robust (DR) moment condition. Second, we assume that po(x) = E(Yp|Xp = x)

and qo(x) = E(Yq|Xq = x), where (Yp, Yq, Xp, Xq) ∈ R×R×R
dp ×R

dq is a random subvector

of Z that might have common elements, and that

E((Yp − po(Xp))× (Yq − qo(Xq))|Xp, Xq) = 0. (2.3)

Equation (2.3) is an orthogonality condition, which ensures that one can construct nonpara-

metric estimates of po and qo that are asymptotically uncorrelated. In all applications that

we consider in this paper, this condition is implied by the assumptions made to identify the

parameter of interest, and is thus not restrictive. We explain this point, and how we exploit

the property, in more detail below.
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2.2. Examples. The conditions (2.2) and (2.3) are of course restrictive, but are jointly

satisfied in a wide range of models that are widely used in empirical practice. Before dis-

cussing the specific form and implementation of the estimator, we now give a number of

examples of models where there exists a DR moment condition with nuisance parameters

satisfying the orthogonality condition, all of which are known well in the literature. These

examples cover various parameters of interest in missing data and causal inference models,

which should illustrate the broad applicability of the methodology. Note that the moment

function ψ, on which the DR moment condition is based, is the semiparametrically efficient

influence function for the respective parameter of interest in all these examples. This implies

that the asymptotic variance of SDREs is equal to the respective semiparametric efficiency

bound in these settings (under suitable regularity conditions; see Section 3).

Example 1 (Population Mean with Missing Data). Let X be a vector of covariates that is

always observed, and Y a scalar outcome variable that is observed if D = 1, and unobserved

if D = 0. The data consists of a sample from the distribution of Z = (DY,X,D), and the

parameter of interest is θo = E(Y ). Assume that the data are missing at random (MAR), i.e.

E(D|Y,X) = E(D|X) > 0 with probability 1, and define the functions πo(x) = E(D|X = x)

and µo(x) = E(Y |D = 1, X = x). Then Ψ(θ, π, µ) = E(ψ(Z, θ, π(X), µ(X))) with

ψ(z, θ, π(x), µ(x)) =
d(y − µ(x))

π(x)
+ µ(x)− θ

is a DR moment condition for estimating θo. Moreover, because the MAR assumption implies

that µo(x) = E(Y |X = x), it follows from the law of iterated expectations that

E((D − πo(X))× (Y − µo(X))|X) = 0,

and thus the orthogonality condition holds.

Example 2 (Linear Regression with Missing Covariates). Let X = (X⊤
1 , X

⊤
2 )

⊤ be a vector

of covariates and Y a scalar outcome variable. Suppose that the covariates in X1 are only

observed if D = 1 and unobserved if D = 0, whereas (Y,X2) are always observed. The data

thus consists of a sample from the distribution of Z = (Y,X1D,X2, D). Here we consider

the vector of coefficients θo from a linear regression of Y on X as the parameter of interest.

Define the functions πo(y, x2) = E(D|Y = y,X2 = x2) and µo(y, x2, θ) = E(ϕ(Y,X, θ)|D =

1, Y = y,X2 = x2) with ϕ(Y,X, θ) = (1, X⊤)⊤(Y −(1, X⊤)θ), and assume that πo(Y,X2) > 0
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with probability 1. Then Ψ(θ, π, µ) = E(ψ(Z, θ, π(Y,X2), µ(Y,X2, θ))) with

ψ(z, θ, π(y, x2), µ(y, x2, θ)) =
d(ϕ(y, x, θ)− µ(y, x2, θ))

π(y, x2)
+ µ(y, x2, θ)

is a DR moment condition for estimating θo, and it is easy to verify that the orthogonality

condition holds.

Example 3 (Average Treatment Effects). Let Y (1) and Y (0) denote the potential outcomes

with and without taking some treatment, respectively, with D = 1 indicating participation

in the treatment, and D = 0 indicating non-participation in the treatment. Then the

realized outcome is Y = Y (D). The data consist of a sample from the distribution of

Z = (Y,D,X), where X is some vector of covariates that are unaffected by the treatment,

and the parameter of interest is the Average Treatment Effect (ATE) θo = E(Y (1))−E(Y (0)).

Define the functions πo(x) = E(D|X = x) and µY
o (d, x) = E(Y |D = d,X = x), put µo(x) =

(µY
o (1, x), µ

Y
o (0, x)), and assume that 1 > E(D|Y (1), Y (0), X) = πo(X) > 0 with probability

1. Then Ψ(θ, π, µ) = E(ψ(Z, θ, π(X), µ(X))) with

ψ(z, θ, π(x), µ(x)) =
d(y − µY (1, x))

π(x)
− (1− d)(y − µY (0, x))

1− π(x)
+ (µY (1, x)− µY (0, x))− θ

is a DR moment condition for estimating θo, and it is easy to verify that the orthogonality

condition holds.

Example 4 (Average Treatment Effect on the Treated). Consider the potential outcomes

setting introduced in the previous example, but now suppose that the parameter of interest

is θo = E(Y (1)|D = 1) − E(Y (0)|D = 1), the Average Treatment Effect on the Treated

(ATT). Define the functions πo(x) = E(D|X = x) and µo(x) = E(Y |D = 0, X = x), put

Πo = E(D), Πo > 0, and assume that E(D|Y (1), Y (0), X) = πo(X) < 1 with probability 1.

Then Ψ(θ, π, µ) = E(ψ(Z, θ, π(X), µ(X))) with

ψ(z, θ, π(x), µ(x)) =
d(y − µ(x))

Πo

− π(x)

Πo

· (1− d)(y − µ(x))

1− π(x)
− θ

is a DR moment condition for estimating θo, and it is easy to verify that the orthogonality

condition holds.

Example 5 (Local Average Treatment Effects). Let Y (1) and Y (0) denote the potential out-

comes with and without taking some treatment, respectively, with D = 1 indicating partici-

pation in the treatment, and D = 0 indicating non-participation in the treatment. Further-

more, let D(1) and D(0) denote the potential participation decision given some realization
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of a binary instrumental variable W ∈ {0, 1}. That is, the realized participation decision is

D = D(W ) and the realized outcome is Y = Y (D) = Y (D(W )). The data consist of a sample

from the distribution of Z = (Y,D,W,X), where X is some vector of covariates that are un-

affected by the treatment and the instrument. Define the function πo(x) = E(W |X = x), and

suppose that 1 > E(W |Y (1), Y (0), D(1), D(0), X) = E(W |X) > 0 and P (D(1) ≥ D(0)|X) =

1 with probability 1. Under these conditions, it is possible to identify the Local Average

Treatment Effect (LATE) θo = E(Y (1)−Y (0)|D(1) > D(0)), which serves as the parameter

of interest in this example. Also define the functions µD
o (w, x) = E(D|W = w,X = x) and

µY
o (w, x) = E(Y |W = w,X = x), and put µo(x) = (µD

o (1, x), µ
D
o (0, x), µ

Y
o (1, x), µ

Y
o (0, x)).

Then Ψ(θ, π, µ) = E(ψ(Z, θ, π(X), µ(X))) with

ψ(z, θ, π(x), µ(x)) = ψA(z, π(x), µ(x))− θ · ψB(z, π(x), µ(x)),

where

ψA(z, π(x), µ(x)) =
w(y − µY (1, x))

π(x)
− (1− w)(y − µY (0, x))

1− π(x)
+ µY (1, x)− µY (0, x),

ψB(z, π(x), µ(x)) =
w(d− µD(1, x))

π(x)
− (1− w)(d− µD(0, x))

1− π(x)
+ µD(1, x)− µD(0, x),

is a DR moment condition for estimating θo, and it is easy to verify that the orthogonality

condition holds.

2.3. Semiparametric Estimation. Equation (2.2) implies that knowledge of either po

or qo suffices for identifying θo. In principle, one could therefore construct semiparametric

estimators of θo that only require an estimate of either po or qo, but not both. For example, θo

could be estimated by the value that sets a sample analogue of either Ψ(θ, po, q̄) or Ψ(θ, p̄, qo)

equal to zero, where p̄ ∈ P and q̄ ∈ Q are arbitrary known and fixed functions. In this

paper, we argue in favor of an estimator of θo that solves a direct sample analogue of the

doubly robust moment condition (2.1). That is, we consider the estimator θ̂ which solves

the equation

0 =
1

n

n∑

i=1

ψ(Zi, θ, p̂(Ui), q̂(Vi)), (2.4)

where p̂ and q̂ are suitable nonparametric estimates of po and qo, respectively. We refer to

such an estimator as a semiparametric doubly robust estimator (SDRE). We also define the
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following quantities, which will be important for estimating the asymptotic variance of the

estimator θ̂:

Γ̂ =
1

n

n∑

i=1

∂ψ(Zi, θ̂, p̂(Ui), q̂(Vi))/∂θ

Ω̂ =
1

n

n∑

i=1

ψ(Zi, θ̂, p̂(Ui), q̂(Vi))ψ(Zi, θ̂, p̂(Ui), q̂(Vi))
⊤.

It remains to define suitable nonparametric estimates of po and qo. Recall that we consider

the case that po(x) = E(Yp|Xp = x) and qo(x) = E(Yq|Xq = x), where (Yp, Yq, Xp, Xq) ∈
R × R × R

dp × R
dq is a random subvector of Z that might have common elements. For

simplicity, both Xp and Xq are assumed to be continuously distributed in the following.1

We propose to estimate both functions by local polynomial regression of order lp and lq,

respectively. This class of kernel-based smoothers has been studied extensively by e.g. Fan

(1993), Ruppert and Wand (1994) or Fan and Gijbels (1996). It is well-known to have

attractive bias properties relative to the standard Nadaraya-Watson estimator with higher-

order kernels. In applications where the dimension of Xp and Xq is not too large (in a

sense made precise below), we will work with lp = lq = 1. using the notation that for

d-dimensional vectors a, b we have |a| = ∑d
i=1 ai and a

b =
∏d

i=1 a
bi
i , the “leave-i-out” local

polynomial estimators of po(Ui) and qo(Vi) are given by

p̂(Ui) = âp(Ui) and q̂(Vi) = âq(Vi),

respectively, where

(âp(Ui), b̂p(Ui)) = argmin
a,b

∑

j 6=i


Yp,j − a−

∑

1≤|s|≤lp

bs(Xp,j − Ui)
s




2

Khp
(Xp,j − Ui),

(âq(Vi), b̂q(Vi)) = argmin
a,b

∑

j 6=i


Yq,j − a−

∑

1≤|s|≤lq

bs(Xq,j − Vi)
s




2

Khq
(Xq,j − Vi),

Here
∑

1≤|s|≤lp
denotes the summation over all dp vectors of positive integers with 1 ≤ |s| ≤ lp,

Khp
(u) =

∏dp
j=1 K(uj/hp)/hp is a dp-dimensional product kernel built from the univariate

1It would be straightforward to extend our results to other types of functions, including derivatives of

conditional expectation functions, density functions, and conditional expectation functions with multivariate

outcome variables and/or discrete covariates.
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kernel function K, and hp is a one-dimensional bandwidth that tends to zero as the sample

size n tends to infinity; and
∑

1≤|s|≤lq
, Khq

(v) and hq are defined similarly. Note that under

suitable regularity conditions (see e.g. Masry, 1996, or Appendix B) these estimators are

uniformly consistent, and satisfy

max
i=1,...,n

|p̂(Ui)− po(Ui)| = O(hlp+1
p ) +OP ((nh

dp
p / log n)

−1/2), (2.5)

max
i=1,...,n

|q̂(Vi)− qo(Vi)| = O(hlq+1
q ) +OP ((nh

dq
q / log n)

−1/2), (2.6)

where the terms on the right-hand side of each of the two previous equations correspond to the

order of the respective bias and stochastic part. Also note that it would be straightforward to

employ more general estimators using a matrix of smoothing parameters that is of dimension

dp × dp or dq × dq, respectively, at the cost of a much more involved notation (Ruppert and

Wand, 1994). Moreover, using “leave-i-out” versions of the nonparametric estimators is only

necessary for the results we derive below in applications where either U and Xp or V and

Xq share some common elements.

3. Asymptotic Theory

In this section, we study the theoretical properties of SDREs, and compare them to those of

generic semiparametric two-step estimators. To illustrate the nature of our results, we begin

by writing our estimator as

θ̂ − θo =
1

n

n∑

i=1

Γ−1
o ψ(Zi, θo, po(Ui), qo(Vi)) +Rn, (3.1)

where Γo = ∂E(ψ(Z, θ, po(U), qo(V )))/∂θ|θ=θo is assumed to have full rank. Without saying

anything about Rn, this representation is certainly without loss of generality. Note that the

first term on the right-hand side of (3.1) is a sample average of n i.i.d. mean zero random

vectors, and is thus asymptotically normal under standard conditions. Now our contribution

is two-fold. First, we show that (3.1) holds with Rn = oP (n
−1/2), which implies that θ̂ is

√
n-consistent and asymptotically normal, under conditions that are substantially weaker

than those commonly employed in the literature on semiparametric two-step estimation. In

particular, the familiar requirement that the first stage nonparametric estimation error and

bias are op(n
−1/4) and o(n−1/2), respectively, in some suitable norm is relaxed. Second, we

derive an explicit expression for the rate at which Rn tends to zero, and show that this rate
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is substantially faster than the one that can be achieved by generic semiparametric two-

step estimators. As a consequence, we can expect standard Gaussian approximations based

on (3.1) to be more accurate in finite samples for our SDREs.

3.1. The Structure of the Argument. Before formally stating our results, we give

a simplified explanation for how the particular structure of our model and corresponding

estimation procedure help us achieving them. We first provide some intuition for why (3.1)

holds with Rn = oP (n
−1/2) under weak conditions on the accuracy of the first stage. Define

Tn,1 =
1

n

n∑

i=1

ψp(Zi)(p̂(Ui)− po(Ui)) +
1

n

n∑

i=1

ψq(Zi)(q̂(Vi)− qo(Vi)),

Tn,2,A =
1

n

n∑

i=1

ψpp(Zi)(p̂(Ui)− po(Ui))
2 +

1

n

n∑

i=1

ψqq(Zi)(q̂(Vi)− qo(Vi))
2 and

Tn,2,B =
1

n

n∑

i=1

ψpq(Zi)(p̂(Ui)− po(Ui))(q̂(Vi)− qo(Vi)),

where ψp(Zi) and ψ
pp(Zi) are the first and second derivative of ψ(Zi, θo, po(Ui), qo(Vi)) with

respect to po(Ui), respectively, ψ
q(Zi) and ψqq(Zi) are defined analogously, and ψpq(Zi) is

the partial cross derivative of ψ(Zi, θo, po(Ui), qo(Vi)) with respect to po(Ui) and qo(Vi). The

terms Tn,1 and Tn,2 = Tn,2,A + Tn,2,B are the linear and quadratic part, respectively, of a

standard expansion of the functional (p̂, q̂) 7→ n−1
∑n

i=1 ψ(Zi, p̂(Ui), q̂(Vi)) around (po, qo).

Under a weak smoothness condition on the function ψ, it then holds that

Rn = O(Tn,1) +O(Tn,2,A) +O(Tn,2,B) +OP (‖p̂− po‖3∞) +OP (‖q̂ − qo‖3∞).

Clearly, the two “cubic” remainder terms in this equation are both oP (n
−1/2) even if the

two first-stage nonparametric estimation errors are uniformly only oP (n
−1/6). For a generic

semiparametric two-step estimator, however, the remaining “linear” and “quadratic” terms

would not be oP (n
−1/2) if the nonparametric component converges that slowly.

The advantage of working with a DR moment condition is that its particular structure

substantially improves the rate at with the linear and quadratic terms converge to zero. To

see this, first note that the DR property (2.2) implies that

∂k

∂t
Ψ(θo, po + tp̄, qo)|t=0 =

∂k

∂t
Ψ(θo, po, qo + tq̄)|t=0 = 0 (3.2)
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for k = 1, 2 and all functions p̄ and q̄ such that po+ tp̄ ∈ P and qo+ tq̄ ∈ Q for all t ∈ R with

|t| sufficiently small. Now write the the first summand in the definition of Tn,1 as Ψ
p
n[p̂− po],

where the operator Ψp
n is defined as Ψp

n[p̄] = n−1
∑n

i=1 ψ
p(Zi)p̄(Ui) for any fixed function p̄.

Clearly, we have that Ψp
n[p̄]

p→ ∂Ψ(θo, po + tp̄, qo)/∂t|t=0 = 0 for all p̄. This explains why the

term Ψp
n[p̂− po] converges to zero at rate faster-than-usual rate: not only does the argument

of the operator tend to zero, but by (3.2) also the operator itself. An analogous reasoning

applies to all components of Tn,1 and Tn,2,A. This property is specific to SDREs, and does

not hold for generic semiparametric estimators.

The term Tn,2,B involves a different argument. After some calculations, one finds that

the leading terms in a stochastic expansion of this quantity are equal to a constant times

the product of the smoothing bias terms of the estimators of po and qo, and to a term that

is proportional to the asymptotic covariance between the estimation errors of p̂ and q̂. Due

to the orthogonality condition (2.3), however, this asymptotic covariance is exactly equal to

zero. In order to obtain the desired rate for Tn,2,B, it thus suffices that the product of the

bias terms is uniformly o(n−1/2).

3.2. Assumptions. We now state the assumptions that allow us to formalize the above

arguments.

Assumption 1. (i) the random vectors U and V are continuously distributed with compact

support IU and IV , respectively (ii) supu E(|Yp|c|Xp = u) <∞ and supv E(|Yq|c|Xq = v) <∞
for some constant c > 2, (iii) the random vectors Xp and Xq are continuously distributed

with support Ip ⊇ IU and Iq ⊇ IV , respectively (iv) the corresponding density functions fp

and fq are bounded with bounded first order derivatives, and satisfy infu∈IU fp(u) ≥ δ and

infv∈IV fq(v) ≥ δ for some constant δ > 0, (v) the functions po and qo are (lp+1) and (lq+1)

times continuously differentiable, respectively.

Assumption 2. The kernel function K is twice continuously differentiable, and satisfies the

following conditions:
∫
K(u)du = 1,

∫
uK(u)du = 0 and

∫
|u2K(u)|du < ∞, and K(u) = 0

for u not contained in some compact set, say [−1, 1].

Assumption 3. The function ψ(z, θ, p(u), q(v)) is (i) continuously differentiable with respect

to θ, (ii) three times continuously differentiable with respect to (p(u), q(v)), with derivatives

that are uniformly bounded, (iii) such that the matrix Ωo := E(ψo(Z)ψo(Z)
⊤) is finite, where

ψo(Z) = ψ(Z, θo, po(U), qo(V )), (iv) such that sup ‖∂θψ(Z, θ, p(U), q(V ))−∂θψ(Z, θ, po(U), qo(V ))‖ =

12



oP (1), where the supremum is taken over the (θ, p, q) in some open neighborhood of (θo, po, qo),

and (v) such that Γ = E(∂θψ(Z, θo, po(U), qo(V ))) has full rank.

Assumption 4. The bandwidth sequences hp and hq satisfy the following conditions as n→
∞: (i) nh

2(lp+1)
p h

2(lq+1)
q → 0, (ii) nh

6(lp+1)
p → 0, (iii) nh

6(lq+1)
q → 0, (iv) n2h

3dp
p / log(n)3 →

∞, and (v) n2h
3dq
q / log(n)3 → ∞.

Assumption 1 collects smoothness conditions that are standard in the context of non-

parametric regression. The restrictions on the kernel function K in Assumption 2 could

be weakened to allow for kernels with unbounded support. Parts (i)-(ii) of Assumption 3

impose some weak smoothness restrictions on the function ψ, which are needed to justify a

quadratic expansion. At the cost of a more involved theoretical argument, these assumptions

could be relaxed by imposing smoothness conditions on the population functional Ψ instead

(cf. Chen et al., 2003). Assumption 3(iii) ensures that the leading term in (3.1) satisfies a

central limit theorem, and Assumption 3(iv)–(v) are standard smoothness and invertability

conditions. Finally, Assumption 4 imposes restrictions on the rate at which the bandwidths

hp and hq tend to zero that depend on the number of derivatives of the unknown regression

functions and the dimension of the covariates.

3.3. Asymptotic Normality. Our first main result is concerned with the asymptotic

normality of SDREs under the conditions that we just imposed.

Theorem 1. Under Assumption 1–4, equation (3.1) holds with Rn = oP (n
−1/2). Moreover,

we have that
√
n(θ̂ − θo)

d→ N(0,Γ−1
o ΩoΓ

−1
o ), and that Γ̂−1Ω̂Γ̂−1 p→ Γ−1

o ΩoΓ
−1
o .

Theorem 1 shows that our SDRE is asymptotically linear, which immediately implies its
√
n-consistency and asymptotic normality. The asymptotic variance is of the usual sand-

wich form, and the theorem establishes consistency of a simple sample analogue variance

estimator. Taken together, these results can be used to justify various large sample inference

procedures, such as e.g. the construction of confidence regions for θo. The theorem also shows

that SDREs are adaptive, in the sense that their asymptotic variance does not contain an

adjustment term for the use of first-step nonparametric estimates. This is a property SDREs

share with all semiparametric estimators that take the form of a sample analogue of an influ-

ence function in the corresponding model (e.g. Newey, 1994). It also implies that SDREs are
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semiparametrically efficient if the DR moment condition is based on the respective efficient

influence function. This is the case for all examples that we listed in Section 2.2.

Theorem 1 differs from other asymptotic normality results for semiparametric two-step

estimators (e.g. Newey, 1994; Newey and McFadden, 1994; Chen et al., 2003; Ichimura and

Lee, 2010), because it only imposes relatively weak conditions on the accuracy of the non-

parametric first stage estimates. In particular, the bandwidth restrictions in Assumption 4

allow the smoothing bias from estimating either po or qo to be go to zero as slow as o(n−1/6)

as long as the product of the two bias terms is o(n−1/2), and only require the respective

stochastic parts to be oP (n
−1/6); see also (2.5)–(2.6). In contrast, for a generic estimator to

be asymptotically normal, the first stage nonparametric estimation error and bias typically

have to be op(n
−1/4) and o(n−1/2), respectively, in some suitable norm. Another way to

interpret this difference is that SDREs require less stringent smoothness conditions on the

nuisance functions, which is very important in higher dimensional settings. For example,

it is easily verified that if dp ≤ 5 and dq ≤ 5, there exist bandwidths hp and hq such that

Assumption 4 is satisfied even if lp = lq = 1. For a generic estimator that uses an estimate

of, say, po to be asymptotically normal one typically cannot allow for lp = 1 if dp > 1.

SDREs can thus achieve the same first order asymptotic properties as generic semiparamet-

ric estimators with lower order local polynomials in the first stage. This is very important

in empirical practice: while higher order local polynomial regression leads to estimates with

small asymptotic bias, it is also well-known to have poor finite sample properties.

We also remark that in lower dimensional settings the range of bandwidths that is permit-

ted by Assumption 4 includes the values that minimize the Integrated Mean Squared Error

(IMSE) for estimating po and qo, respectively. In contrast, a generic semiparametric estima-

tor would not be asymptotically normal with such a choice. While these bandwidths do not

have any optimality properties for estimating θo, they have the practical advantage that they

can be estimated from the data via least-squares cross validation. For many SDREs, there

thus exist an objective and feasible data-driven bandwidth selection method that does not

rely on preliminary estimates of the nonparametric component. This might be important,

since the lack of such a method is one of the major obstacles for applying semiparametric

estimators in practice.
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3.4. Higher Order Properties. We can strengthen the first part of Theorem 1 by

deriving an explicit expression for the rate at which the remainder Rn in the linear repre-

sentation (3.1) tends to zero. To simplify the exposition, we only state such a result for the

case that the arguments of po and qo have the same dimension, that is dp = dq ≡ d, and

that the same bandwidth and order of the local polynomial are used to estimate these two

functions, that is lp = lq ≡ l and hp = hq ≡ h. Similar results could be established in more

general settings.

Corollary 1. Under Assumption 1– 4 and the above restrictions, we have that Tn,1+Tn,2 =

OP (h
2(l+1))+OP (n

−1h−d/2); and the bandwidth that minimizes the order of the sum of these

two terms satisfies h ∝ n−2/(4(l+1)+d). Moreover, with this choice of bandwidth equation (3.1)

holds with Rn = OP (n
−4(l+1)/(4(l+1)+d)).

Again, Corollary 1 documents a substantial advantage of SDREs relative to generic

semiparametric two-step estimators. For the latter, arguments analogous to those in Lin-

ton (1995), Ichimura and Linton (2005) or Cattaneo et al. (2013a) show that the sum of

the “linear” and the “quadratic” term in an analogous expansion would generally only be

OP (h
l+1)+OP (n

−1h−d), where the two summands corresponds to the orders of the first-stage

smoothing bias and variance, respectively.2 A linear representation analogous to (3.1) could

thus at best be obtained with Rn = OP (n
−(l+1)/(l+1+d)), which is slower than the rate we

get for SDREs. For the simple case with d = l = 1, for example, a generic semiparamet-

ric estimator differs from its asymptotically linear representation by a term that is at least

OP (n
−2/3), whereas for our SDREs the difference can be as small as OP (n

−8/9). As a con-

sequence, we can expect standard Gaussian approximations based on linear representations

like (3.1) to be more accurate in finite samples for our SDREs.

It is common practice to approximate the first-order bias and second-order variance

of semiparametric two-step estimators by the mean and variance of the leading terms in

a quadratic expansion (Linton, 1995). Corollary 1 therefore implies a reduction of both

quantities for SDREs relative to generic semiparametric estimators. Moreover, a careful

inspection of the proof of Corollary 1 shows that the term of order n−1h−d/2 is actually mean

zero, whereas for a generic estimator the term of order n−1h−d is not (Linton, 1995; Cattaneo

et al., 2013a). This means that the amount of bias reduction that is achieved by using an

2For a generic semiparametric estimator that is linear in the nonparametric component better rates could

be obtained, because in this case the “quadratic” term is exactly equal to zero.
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SDRE is even bigger than what is immediately apparent from the corollary.

4. Application to Estimation of Treatment Effects

In this section, we apply our theory to the problem of estimating the causal effect of a

binary treatment on some outcome variable of interest. See Imbens (2004) and Imbens and

Wooldridge (2009) for excellent surveys of the extensive literature on this topic.

4.1. Model and Parameters of Interest. We now provide a more detailed description

of the model used in Examples 3 and 4. Following Rubin (1974), we define treatment effects

in terms of potential outcomes. Let Y (1) and Y (0) denote the potential outcomes with

and without taking some treatment, respectively, with D = 1 indicating participation in the

treatment, and D = 0 indicating non-participation in the treatment. We observe the realized

outcome Y = Y (D), but never the pair (Y (1), Y (0)). The data consist of a sample from the

distribution of Z = (Y,D,X), where X is some vector of covariates that are unaffected by

the treatment. We write Πo = E(D), denote the propensity score by πo(x) = E(D|X = x),

and define the conditional expectation function µY
o (d, x) = E(Y |D = d,X = x). We focus

on the Population Average Treatment Effect (ATE)

τo = E(Y (1)− Y (0))

and the Average Treatment Effect on the Treated (ATT)

γo = E(Y (1)− Y (0)|D = 1)

as our parameters of interest. Since we observe either Y (1) or Y (0), but never both, we

have to impose further restrictions on the mechanism that selects individuals into treat-

ment to achieve identification. Here we maintain the assumptions that the selection mecha-

nism is “unconfounded” and satisfies a “strict overlap” condition. Unconfoundedness means

that conditional on the observed covariates, the treatment indicator is independent of the

potential outcomes, i.e. (Y (1), Y (0))⊥D|X (Rosenbaum and Rubin, 1983). This condi-

tion is sometimes also referred to as selection on observables (Heckman and Robb, 1985).

Strict overlap means that the propensity score is bounded away from zero and one, i.e.

P (π < πo(X) < π) = 1 for π > 0 and π < 1. This condition is important to ensure that the

semiparametric efficiency bounds for estimating our parameters of interest are finite (Khan
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and Tamer, 2010). Hahn (1998) derived the semiparametric efficiency bounds for estimating

the ATE and the ATT in this setting (under some additional smoothness conditions on the

model). That is, he showed that the asymptotic variance of any regular estimator of the

ATE and ATT is bounded from below by

V ∗
ate = E

(
σ2(1, X)

πo(X)
+

σ2(0, X)

1− πo(X)
+ (µY

o (1, X)− µY
o (0, X)− τo)

2

)
and

V ∗
att = E

(
πo(X)

Π2
o

(
σ2(1, X) +

πo(X)σ2(0, X)

1− πo(X)
+ (µY

o (1, X)− µY
o (0, X)− γo)

2

))
,

respectively, where σ2(d, x) = Var(Y |D = d,X = x). Semiparametric two-step estimators

that achieve these bounds have been studied by Heckman, Ichimura, and Todd (1997),

Heckman, Ichimura, Smith, and Todd (1998), Hahn (1998), Hirano et al. (2003) or Imbens,

Newey, and Ridder (2005), among others.

Doubly robust estimators of treatment effect parameters that impose additional paramet-

ric restrictions on nuisance functions have been studied by Robins et al. (1994), Robins and

Rotnitzky (1995), Rotnitzky, Robins, and Scharfstein (1998) and Scharfstein et al. (1999),

among others, and are widely used in applied work. Cattaneo (2010) proposed an estima-

tor of the ATE that has the same structure as our SDRE, but did not formally show the

favorable properties of this approach relative to other estimators.

4.2. Estimating the Average Treatment Effect for the Population. We now use

the methodology developed in Section 2–3 to study a SDRE of the ATE τo = E(Y (1) −
Y (0)). Straightforward calculations show that under unconfoundedness we can characterize

τo through the moment condition

E(ψate(Z, τo, πo(X), µo(X))) = 0,

where µo(x) = (µY
o (1, x), µ

Y
o (0, x)) and

ψate(z, τ, π(x), µ(x)) =
d(y − µY (1, x))

π(x)
− (1− d)(y − µY (0, x))

1− π(x)
+ (µY (1, x)− µY (0, x))− τ

is the efficient influence function for estimating τo (Hahn, 1998). It is also easily verified that

the above moment condition is doubly robust, and that the orthogonality condition holds

because of unconfoundedness. Given nonparametric estimates of the propensity score πo and
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the regression function µY
o , we estimate the ATE by the value that sets a sample version of

this moment condition equal to zero. This leads to the estimator

τ̂DR =
1

n

n∑

i=1

(
Di(Yi − µ̂Y (1, Xi))

π̂(Xi)
− (1−Di)(Yi − µ̂Y (0, Xi))

1− π̂(Xi)
+ (µ̂Y (1, Xi)− µ̂Y (0, Xi))

)
.

Since we can anticipate the asymptotic variance of τ̂DR to be E(ψate(Z, τo, πo(X), µo(X))2)

from Theorem 1, we can also already define the corresponding estimator as follows:

V̂ ∗
ate =

1

n

n∑

i=1

ψate(Zi, τ̂DR, π̂o(Xi), µ̂o(Xi))
2.

We define π̂ as the lπ-th order “leave-i-out” local polynomial Probit estimator of πo(x)

using the bandwidth hπ, and µ̂
Y (d, x) as the usual lµth order “leave-i-out” local polynomial

estimator of µY
o (d, x) using a bandwidth hµ. That is, using notation analogous to that

introduced in Section 2, we define

π̂(Xi) = Φ(âπ(Xi)) and µ̂(d,Xi) = âµ(d,Xi),

respectively, where

(âπ(Xi), b̂π(Xi)) = argmin
a,b

∑

j 6=i


Dj − Φ


a−

∑

1≤|s|≤lπ

bs(Xj −Xi)
s






2

Khπ
(Xj −Xi),

(âµ(d,Xi), b̂µ(d,Xi)) = argmin
a,b

∑

j 6=i

I{Dj = d}


Yj − a−

∑

1≤|s|≤lπ

bs(Xj −Xi)
s




2

Khµ
(Xj −Xi),

and Φ(·) is the CDF of the standard normal distribution. Note that we slightly deviate from

the general theory presented in Section 2 by using a local polynomial Probit estimator for

the propensity score instead of a standard local polynomial smoother. This ensures that the

estimator of πo is bounded between 0 and 1, and should improve the finite-sample properties

of the procedure. This choice has no impact on our asymptotic analysis, as it is well known

from the work of e.g. Fan, Heckman, and Wand (1995), Hall, Wolff, and Yao (1999) or Gozalo

and Linton (2000) that the asymptotic bias of the local polynomial Probit estimator is of

the same order of magnitude as that of the usual local polynomial estimator uniformly over

the covariates’ support, and that the two estimators have the same stochastic behavior.

To study the asymptotic properties of the SDRE τ̂DR, we impose the following assump-

tions, which essentially restate the content of Assumption 1 using the notation of the present

treatment effects setting.
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Assumption 5. (i) The random vector X is continuously distributed with compact support

IX , (ii) the corresponding density function fX is bounded with bounded first-order derivatives,

and satisfies infx∈IX fX(x) ≥ δ for some constant δ > 0, and (iii) the function πo(x) is (lπ+1)

times continuously differentiable.

Assumption 6. (i) For any d ∈ {0, 1}, the random vector X is continuously distributed

conditional on D = d with compact support IX , (ii) the corresponding density functions fX|d

are bounded with bounded first-order derivatives, and satisfy infx∈IX fX|d(x) ≥ δ for some

constant δ > 0 and any d ∈ {0, 1}, (iii) supx∈Ix,d∈{0,1} E(|Y |c|X = x,D = d) < ∞ for some

constant c > 2 and any d ∈ {0, 1} (iv) the function µo(d, x) is (lµ + 1) times continuously

differentiable with respect to its second argument for any d ∈ {0, 1}.

The following Theorem establishes the asymptotic properties of the SDRE τ̂DR.

Theorem 2. Suppose Assumption 5–6 hold, and that Assumption 2–4 hold with (lp, dp, hp) =

(lπ, dX , hπ) and (lq, dq, hq) = (lµ, dX , hµ). Then the following holds:

i) τ̂DR
p→ τo, and

√
n(τ̂DR − τo)

d→ N(0, V ∗
ate), and thus τ̂DR achieves the semiparametric

efficiency bound for estimating τo.

ii) If the conditions of the theorem are satisfied with lπ = lµ ≡ l and hπ ∝ hµ ∝ n−2/(8l+dX),

then τ̂DR − τo = n−1
∑n

i=1 ψate(Zi, τo, πo(Xi), µo(Xi)) +OP (n
−8l/(8l+dX)).

iii) V̂ ∗
ate

p→ V ∗
ate.

Theorem 3 shows that the semiparametric DR estimator τ̂DR enjoys the same efficiency

property as e.g. the Inverse Probability Weighting estimator of Hirano et al. (2003), which

is based on the moment condition τo = E(DY/πo(X) + (1 − D)Y/(1 − πo(X))), or the

Regression estimator of Imbens et al. (2005), which is based on the moment condition τo =

E(µY
o (1, X)− µY

o (0, X)). However, following the discussion after Theorem 1, the SDRE has

a number of theoretical and practical advantages relative to kernel-based versions of these

estimators,3 that make it preferable to be used in practice.

3Both Hirano et al. (2003) and Imbens et al. (2005) consider series estimation in the first stage, and thus

their results are not directly comparable to ours. See Ichimura and Linton (2005) for an analysis of the

Inverse Probability Weighting estimator when the propensity score is estimated via local linear regression.
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Remark 1 (Selection of Tuning Parameters). Implementing the estimator τ̂DR requires

choosing two types of tuning parameters for the nonparametric estimation step: the band-

widths and the order of the local polynomials. We recommend using lπ = lµ = 1 as long as

dX ≤ 5, as such a choice is compatible with the asymptotic theory and local linear regression

estimators are well-known to have superior small-sample properties relative to higher order

local polynomial smoothers. If dX ≤ 3, our theory also allows choosing the bandwidths that

minimize a least-squares cross validation criterion, i.e. using

hπ = argmin
h

n∑

i=1

(Di − π̂(Xi))
2 and hµ = argmin

h

n∑

i=1

(Yi − µ̂Y (Di, Xi))
2.

As pointed out above, such a choice has no particular optimality properties for estimating

τo, but it has the advantage of being objective, data-driven, and easily implementable.

4.3. Estimating the Average Treatment Effect for the Treated. In this section,

we consider semiparametric DR estimation of the Average Treatment Effect for the Treated

γ0 = E(Y (1) − Y (0)|D = 1). Again, straightforward calculations show that under uncon-

foundedness we can characterize γo through the moment condition

E(ψatt(Z, τate, πo(x), µ
Y
o (0, x),Πo) = 0,

where

ψatt(z, γ, π(x), µ
Y (0, x),Π) =

d(y − µY (0, x))

Π
− π(x)

Π
· (1− d)(y − µY (0, x))

1− π(x)
− γ.

It is also easily verified that this moment condition is doubly robust with respect to the two

nuisance functions, and that the orthogonality condition holds because of unconfoundedness.

Given the same nonparametric estimators of the propensity score πo and the regression

function µY
o we defined above, and setting Π̂ =

∑n
i=1Di/N , the SDRE of the ATT is given

by the value that sets a sample version of this moment condition equal to zero, namely

γ̂DR =
1

n

n∑

i=1

(
Di(Yi − µ̂Y (0, Xi))

Π̂
− π̂(Xi)

Π̂
· (1−Di)(Yi − µ̂Y (0, Xi))

1− π̂(Xi)

)
.

Since from Theorem 1 we can anticipate the form of the asymptotic variance of γ̂DR, we can

also already define its estimator as follows:

V̂ ∗
att =

1

n

n∑

i=1

ψatt(Zi, γ̂DR, π̂o(Xi), µ̂
Y
o (0, Xi), Π̂)

2.

The following Theorem establishes the estimator’s asymptotic properties.
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Theorem 3. Suppose Assumption 5–6 hold, and that Assumption 2–4 hold with (lp, dp, hp) =

(lπ, dX , hπ) and (lq, dq, hq) = (lµ, dX , hµ). Then

i) γ̂DR
p→ γo, and

√
n(γ̂DR − γo)

d→ N(0, V ∗
att), and thus γ̂DR achieves the semiparametric

efficiency bound γo in the absence of knowledge of the propensity score.

ii) If the conditions of the theorem are satisfied with lπ = lµ ≡ l and hπ ∝ hµ ∝ n−2/(8l+dX),

then γ̂DR − γo = n−1
∑n

i=1 ψatt(Zi, γo, πo(Xi), µ
Y
o (0, Xi),Πo) + oP (n

−8l/(8l+dX)).

iii) V̂ ∗
att

p→ V ∗
att.

The discussion after Theorem 3 applies analogously to the result in Theorem 4. The

SDRE of the ATT is not only semiparametrically efficient, but its properties also compare

favorably to those of other efficient estimators that use only a nonparametric estimate of

either the propensity score πo(·) (e.g. Hirano et al., 2003) or the regression function µY
o (0, ·)

(e.g. Imbens et al., 2005).

5. Monte Carlo

In this section, we illustrate the finite sample properties of SDREs through a small scale

Monte Carlo experiment, and compare them to those of other semiparametric two-step es-

timators. We consider the simple missing data model presented in Example 1 above: the

covariate X is uniformly distributed on the interval [0, 1], the outcome variable Y is normally

distributed with mean µo(X) = (3X − 1)2 and variance 1, and the missingness indicator D

is generated as a Bernoulli random variable with mean πo(X) = 1 − .2 × µo(X). Our pa-

rameter of interest is θo = E(Y ) = 1, and the semiparametric variance bound for estimating

this parameter is V ∗ ≈ 2.632. We study the sample size n = 200, and set the number of

replications to 5,000. We consider three estimators of θo = E(Y ), namely the semiparamet-

ric doubly robust one based on a sample analogue of the efficient influence function (DR),
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inverse probability weighting (IPW), and a regression-based estimator (REG):

θ̂DR =
1

n

n∑

i=1

(
Di(Yi − µ̂(Xi))

π̂(Xi)
+ µ̂(Xi)

)

θ̂IPW =
1

n

n∑

i=1

DiYi
π̂(Xi)

θ̂REG =
1

n

n∑

i=1

µ̂(Xi).

We define π̂ as the “leave-i-out” local linear Probit estimator of πo(x) using the bandwidth

h ∈ {.1, .15, . . . , .6}, and µ̂(x) as the “leave-i-out” local linear estimator of µo(x) using a

bandwidth g ∈ {.035, .05, . . . , .185}. The construction of these nonparametric estimators

is analogous to that described in Section 4. We also consider nominal (1 − α) confidence

intervals of the usual form

CI1−α
j =

[
θ̂j ± Φ−1(1− α/2)(V̂j/n)

1/2
]

with Φ−1(α) the α quantile of the standard normal distribution and

V̂j =
1

n

n∑

i=1

(
Di(Yi − µ̂(Xi))

π̂(Xi)
+ µ̂(Xi)− θ̂j

)2

an estimate of the asymptotic variance, for j ∈ {DR, IPW,REG}.
Our simulation results generally confirm the predictions of our asymptotic theory. In

Figure 1, we plot the Mean Squared Error (MSE), the (absolute) bias, and the variance of

the IPW estimator as a function of the bandwidth h, and compare the results to those of

DR estimators using various values of the bandwidth g. In Figure 2, we plot the same three

quantities for the REG estimator as a function of the bandwidth g, and compare the results

to those of DR estimators using various values of the bandwidth h. Clearly, the bias of

both IPW and REG varies substantially with the respective bandwidth. To a lesser extend,

this applies also to the variances of the two estimators, especially in the case of IPW. As

a consequence, the MSE shows strong dependence on the bandwidth in both cases. It is

minimized for h = .4 and g = .05, respectively, but these values would be very difficult to

determine by some rule of thumb in an empirical application.4 Moreover, in both cases the

4To give some point of reference, in this setting the average bandwidth values selected by least squares

cross validation are equal to about .1 for both the propensity score and the regression function. Our graphs

show that both IPW and REG do not perform well with such a choice of bandwidth.
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Figure 1: Simulation results: MSE, absolute bias and variance of the IPW estimator for various

values of h (bold solid line), compared to results for the DR estimator with bandwidth g equal

to .035 (short-dashed line), .065 (dotted line), .095 (dot-dashed line), .125 (long dashed line), .155

(long dashed dotted line), and .185 (thin solid line).

0.05 0.10 0.15

3.0

3.5

4.0

4.5

n × MSE

Bandwidth g

0.05 0.10 0.15

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
n × BIAS

Bandwidth g

0.05 0.10 0.15

3.0

3.5

4.0

n × VARIANCE

Bandwidth g

Figure 2: Simulation results: MSE, absolute bias and variance of the REG estimator for various

values of g (bold solid line), compared to results for the DR estimator with bandwidth h equal to

.1 (short-dashed line), .2 (dotted line), .3 (dot-dashed line), .4 (long dashed line), .5 (long dashed

dotted line), and .6 (thin solid line).
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minimum is much larger than the asymptotic variance V ∗ ≈ 2.632 that it is supposed to

achieve.

For the DR estimators, we observe that those using one of the two smallest bandwidths,

i.e. either h = .1 or g = .035, exhibit somewhat different behavior from the remaining ones.

For DR estimators using h > .1 and g > .035, the MSE, bias and variance are all very

similar, and exhibit only little variation with respect to the bandwidth. The variance of

these DR estimators is substantially lower than that of IPW, and broadly similar to that of

REG (with some minor gains for larger values of g). The variance is also very close to the

semiparametric efficiency bound V ∗ ≈ 2.632. These DR estimators also have very little bias

for all bandwidth choices. DR estimators that use either h = .1 or g = .035, the two smallest

bandwidth values, have somewhat higher variance than those using larger bandwidths, but

are also essentially unbiased. As a consequence, they still compare favorably to both IPW

and REG in terms of MSE.

We also compute the empirical coverage probabilities of the confidence intervals CI0.95j

for j ∈ {DR, IPW,REG}, using again various bandwidths for estimating the nonparametric

components. Results are reported in Table 1. Note that computing a confidence interval

for θo based on the IPW estimator requires an estimate of µo, and similarly a confidence

interval based on the REG estimator requires and estimate of πo. Therefore all confidence

intervals vary with respect to both bandwidth parameters. Our results show that the cov-

erage probability of DR-based confidence intervals is extremely close to its nominal value

for all combinations of bandwidths we consider. IPW-based confidence intervals exhibit

slight under-coverage all values of the two bandwidth. REG-based confidence intervals have

good coverage properties for g = .035 and increasing under-coverage for larger values of g,

irrespective of the choice of h.

6. Empirical Application

In order to investigate the relative performance of SDREs using actual data, we conduct a

small-scale study on the effect of maternal smoking during pregnancy on birth weight. We

use the same dataset as in Almond, Chay, and Lee (2005) who study the economic costs

of low birth weight using several non-experimental techniques. That same dataset was also

used in a recent paper by Cattaneo (2010), who exploits the fact that mothers report their

daily smoking intensity to apply his semiparametric method of estimation of multi-valued
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Table 1: Simulation Results: Empirical coverage probability of nominal 95% confidence intervals

based on either the DR, IPW or REG estimator, for various bandwidth values.

DR g / h .1 .2 .3 .4 .5 .6

.035 0.948 0.947 0.946 0.945 0.942 0.941

.065 0.951 0.949 0.949 0.949 0.948 0.948

.095 0.954 0.953 0.952 0.951 0.950 0.949

.125 0.952 0.953 0.950 0.949 0.948 0.947

.155 0.952 0.950 0.950 0.948 0.947 0.946

.185 0.952 0.950 0.949 0.950 0.946 0.943

IPW g / h .1 .2 .3 .4 .5 .6

.035 0.920 0.936 0.933 0.930 0.922 0.913

.065 0.912 0.933 0.926 0.930 0.920 0.907

.095 0.909 0.930 0.926 0.928 0.917 0.905

.125 0.908 0.928 0.926 0.927 0.915 0.902

.155 0.909 0.927 0.927 0.926 0.917 0.902

.185 0.910 0.928 0.928 0.927 0.916 0.901

REG g / h .1 .2 .3 .4 .5 .6

.035 0.949 0.946 0.945 0.943 0.941 0.941

.065 0.942 0.939 0.941 0.940 0.937 0.937

.095 0.935 0.932 0.933 0.930 0.928 0.926

.125 0.909 0.909 0.907 0.904 0.903 0.900

.155 0.883 0.881 0.878 0.877 0.870 0.868

.185 0.875 0.869 0.869 0.865 0.861 0.855

treatment effects.

The original data is a very rich database of 497,139 singleton births that took place in

Pennsylvania between 1989 and 1991. As we are using the data for illustration purposes only,

we randomly selected 5,000 observations from the original data and kept a few covariates in

order to decrease the complexity. Also, to have a relatively homogeneous sample, we only

kept non-hispanic mothers who consumed no alcohol during pregnancy, and who were in the

14–38 age range. In our sample, both parents also have at least 8 years of schooling. After

applying these filters, we ended up with 4,317 observations.
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Table 2: Summary Statistics: Means and Standard Deviations (in paranthesis)

Overall Smoker Non-Smoker Diff. T-Stat

Smoker 0.17 - - - -

(0.38) - - - -

Birth weight 3377.82 3164.65 3421.50 -256.85 -11.16

(576.29) (562.46) (569.39)

Mother Married 0.25 0.45 0,21 0.25 14.30

(0.43) (0.50) (0.41)

Mother’s Age 26.76 25.34 27.05 -1.71 -8.05

(5.27) (5.1) (5.26)

Num. Obs. 4317 734 3583 - -

Our treatment variable is a dummy variable that equals one if the mother smoked during

pregnancy and zero otherwise, whereas our response variable is birth weight measured in

grams. The covariates are mother’s age and a dummy for being married, as those are in

our sample the most important ‘determinants’ of both smoking during pregnancy and birth

weight.5 In Table 2, we report some summary statistics for the variables we use in this

section.

Our parameter of interest is the Average Treatment Effect on the Treated (ATT). Almond

et al. (2005) found a strong negative effect of about 200 to 250 grams of maternal smoking

on birth weight using both subclassification on the propensity score and regression adjusted

5The reasoning for using that particular sample and maintaining these few covariates is the following. A

quick inspection of data revealed bunching on father’s and mother’s education at 0, and that was mostly likely

caused by misreporting, especially for father’s information. We then dropped all births in which parents have

less than 8 years of schooling. A multiple regression of treatment dummy on all other covariates revealed

that maternal alcohol consumption, mother being hispanic and being married were important determinants

of smoking habits, along with a few others variables. However, given that there were only few expecting

mothers that were hispanic or had alcohol consumption habits, we dropped them from our data and re-ran

the same regression but separately for the subsamples of married and unmarried mothers. We dropped all

regressors with t-statistics below 2 in at least one subsample regression. We ended up with four covariates.

We then ran a regression of birth weight on the treatment dummy and the remaining five regressors. Beyond

the treatment dummy, only the dummy for being married and mother’s age were significant at the 10% level,

and those were the variables we kept in our analysis.
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methods to estimate the ATT. For both (i) the conditional expectation of birth weight given

covariates for the non-smoking mothers, µY
o (0, x), and (ii) the probability of smoking given

covariates (the propensity-score), πo(x), they used parametric specifications. We estimate

both functions nonparametrically, using local linear regression for (i) and local linear probit

regression for (ii). In both cases we apply the leave-i-out version of the estimator, as dis-

cussed previously in subsections 4.2 and 4.3, and used Gaussian kernels. Given that we have

a continuous variable, mother’s age, and a binary one, the dummy for being married, we

therefore divided the sample between married and single mothers and estimated (i) and (ii)

for each subsample. We then used those estimates to calculate the semiparametric doubly

robust (DR), regression-based (REG) and inverse probability weighting (IPW) estimators.

Following previous notation, these estimators are defined as

γ̂DR =
1

n

n∑

i=1

(
Di(Yi − µ̂Y (0, Xi))

Π̂
− π̂(Xi)

Π̂
· (1−Di)(Yi − µ̂Y (0, Xi))

1− π̂(Xi)

)
,

γ̂IPW =
1

n

n∑

i=1

(
DiYi

Π̂
− π̂(Xi)

Π̂
· (1−Di)Yi
1− π̂(Xi)

)
,

and

γ̂REG =
1

n

n∑

i=1

(
Di(Yi − µ̂Y (0, Xi))

Π̂

)
.

We used the cross-validation criterion presented in subsection 4.2 to select a baseline

bandwidth for our kernel estimators. For object (i), the conditional expectation, the baseline

bandwidth, g∗, was 2.1 standard deviations of mother’s age, whereas for object (ii), the

propensity-score, the baseline bandwidth, h∗, was 0.81 standard deviation of mother’s age.

Results are presented for seven choices of bandwidths: 1/10, 1/2, 3/4, 1, 4/3, 2, and 10

times the respective baseline bandwidth.

In Table 3 we report ATT point estimates. For different choices of bandwidths, the results

range from 198.8 to 207.4 for the REG estimator, from 153.8 to 457.5 for the IPW estimator

and from 172.4 to 208.2 for the DR estimator. However, if we fix g, the bandwidth for (i),

at g∗ and let h assume different values, DR estimates range from 173.1 to 206, whereas IPW

estimates vary from 153.8 to 457.5. And if we fix h, the bandwidth for (ii), at h∗ and let

g assume different values, DR estimates range from 204.0 to 207.8, whereas REG estimates

vary from 198.8 to 207.4. In both cases, we can see that the DR estimator is much less

sensitive to the choice of the bandwidth relative to the other two estimators. Finally, note
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Table 3: Point estimates of ATT of maternal smoking on birth weight (in grams) using DR, IPW

or REG estimators, for various bandwidth values (multiples of baseline bandwidth)

DR g / h 0.1 0.5 0.75 1 1.33 2 10

0.1 -178.7 -208.2 -207.8 -207.8 -207.7 -207.6 -207.5

0.5 -173.8 -206.3 -205.1 -204.7 -204.4 -204.1 -203.9

0.75 -173.5 -206.1 -204.9 -204.4 -203.9 -203.3 -202.7

1 -173.1 -206.0 -204.8 -204.2 -203.7 -202.9 -202.0

1.33 -172.8 -206.0 -204.7 -204.1 -203.5 -202.7 -201.5

2 -172.6 -206.0 -204.6 -204.1 -203.4 -202.5 -201.1

10 -172.4 -205.9 -204.6 -204.0 -203.4 -202.3 -200.8

IPW h 0.1 0.5 0.75 1 1.33 2 10

-457.5 -201.8 -182.0 -163.4 -153.8 -162.6 -206.0

REG g 0.1 0.5 0.75 1 1.33 2 10

-207.4 -198.8 -199.1 -199.8 -200.4 -200.4 -201.3

that when fixing one bandwidth at any value, not only at the baseline, DR estimates always

have the smallest range of variation as a function of the other bandwidth.

Even though REG and IPW point estimates do not vary with h and g, respectively, their

standard errors do. To see this, note that for each of the three estimators one has to compute

the respective estimate of asymptotic variance

V̂ ∗
att,j =

1

n

n∑

i=1

ψatt(Zi, γ̂j, π̂(Xi), µ̂
Y (0, Xi), Π̂)

2,

where j = DR, IPW, REG. One can see that the estimator of the asymptotic variance does

depend on estimates of both µY
o (0, x) and πo(x) and because standard errors are simply

se(γ̂j) = (V̂ ∗
att,j/n)

1/2 they will thus depend on the choice of first-stage smoothing parameters.

In Table 4 we report 90% confidence intervals for γo based on the usual first order asymptotic

approximation for each one of these three estimators. Specifically, they are calculated using

the formula

CI0.9j =
[
γ̂j ± Φ−1(0.95)se (γ̂j)

]
.

Results from Table 4 point out that there is very little variation in terms of CI’s width. In

fact, if we fix g, the bandwidth for (i), at g∗ and let h assume different values, width of

DR confidence intervals ranges from 82.1 to 153.9, width of IPW confidence intervals varies

28



from 82.1 to 154.5 and width of REG confidence intervals varies from 82.1 to 153.9. In all

three cases, the longest confidence intervals result from using the extremely small bandwidth

h = h∗/10. On the other hand, if we fix h, the bandwidth for (ii), at h∗ and let g assume

different values, the width of confidence intervals based on DR, IPW and REG presents the

same range values from 82.2 to 82.5. A similar pattern occurs for fixing g and h separately

at any fixed value.

These results show that even though point estimates do depend on the choice of estimator

and smoothing parameters, standard errors seem to be much more stable as they do not vary

much with the type of estimator. The only occasion we obtain very high values for standard

errors is when substantially undersmoothing the propensity-score. In that case, if we use

h = h∗/10, then standard errors will be almost as twice the value obtained using all other

bandwidth values considered. It seems that when using such a small bandwidth the estimated

propensity score becomes close to one in some regions of the covariate space, which in turn

gives very large weight to some observations when calculating IPW and DR.

7. Conclusions

Semiparametric two-step estimation based on a doubly robust moment condition is a highly

promising methodological approach in a wide range of empirically relevant models, includ-

ing many applications that involve missing data or the evaluation of treatment effects. Our

results suggest that SDREs have favorable properties relative to other semiparametric es-

timators that are currently widely used in such settings, such as e.g. Inverse Probability

Weighting, and should thus be of particular interest to practitioners in these areas. From a

more theoretical point of view, we have shown that SDREs are generally
√
n-consistent and

asymptotically normal under weaker conditions on the smoothness of the nuisance functions,

or, equivalently, on the accuracy of the first step nonparametric estimates, than those com-

monly used in the literature on semiparametric estimation. As a consequence, the stochastic

behavior of SDREs can be better approximated by classical first-order asymptotics. We view

these results as an important contribution to a recent literature that aims at improving the

accuracy of inference in semiparametric models (e.g. Robins et al., 2008; Cattaneo et al.,

2013a,b).
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Table 4: 90% confidence intervals for ATT using DR, IPW or REG estimators, for various bandwidth values (multiples of baseline

bandwidth)

DR LB UB LB UB LB UB LB UB LB UB LB UB LB UB

g / h 0.1 0.5 0.75 1 1.33 2 10

0.1 -246.9 -110.5 -249.7 -166.6 -249.2 -166.5 -249.0 -166.5 -248.9 -166.6 -248.9 -166.4 -249.1 -165.9

0.5 -250.3 -97.4 -247.7 -164.8 -246.4 -163.9 -245.8 -163.6 -245.4 -163.3 -245.2 -163.0 -245.4 -162.4

0.75 -250.1 -96.8 -247.6 -164.7 -246.1 -163.7 -245.5 -163.3 -244.9 -162.9 -244.4 -162.2 -244.2 -161.3

1 -250.0 -96.2 -247.5 -164.6 -246.0 -163.5 -245.3 -163.1 -244.7 -162.6 -244.0 -161.8 -243.4 -160.5

1.33 -250.0 -95.7 -247.4 -164.6 -245.9 -163.5 -245.2 -163.0 -244.6 -162.5 -243.8 -161.6 -242.9 -160.0

2 -249.9 -95.2 -247.4 -164.5 -245.9 -163.4 -245.2 -163.0 -244.5 -162.4 -243.6 -161.4 -242.5 -159.6

10 -249.8 -94.9 -247.3 -164.5 -245.8 -163.4 -245.1 -162.9 -244.4 -162.3 -243.4 -161.2 -242.2 -159.3

IPW LB UB LB UB LB UB LB UB LB UB LB UB LB UB

g / h 0.1 0.5 0.75 1 1.33 2 10

0.1 -526.1 -389.0 -243.3 -160.2 -223.4 -140.6 -204.6 -122.2 -195.0 -112.6 -203.8 -121.3 -247.6 -164.4

0.5 -534.3 -380.7 -243.2 -160.3 -223.2 -140.7 -204.5 -122.3 -194.9 -112.8 -203.7 -121.5 -247.5 -164.6

0.75 -534.5 -380.5 -243.2 -160.3 -223.2 -140.8 -204.5 -122.3 -194.9 -112.8 -203.7 -121.5 -247.5 -164.6

1 -534.8 -380.3 -243.2 -160.3 -223.2 -140.8 -204.5 -122.3 -194.9 -112.8 -203.7 -121.5 -247.5 -164.6

1.33 -535.0 -380.1 -243.2 -160.3 -223.2 -140.8 -204.5 -122.3 -194.9 -112.8 -203.7 -121.5 -247.5 -164.6

2 -535.2 -379.9 -243.2 -160.3 -223.2 -140.8 -204.5 -122.3 -194.9 -112.8 -203.7 -121.5 -247.5 -164.6

10 -535.3 -379.7 -243.2 -160.3 -223.2 -140.8 -204.5 -122.3 -194.9 -112.8 -203.7 -121.5 -247.5 -164.6

REG LB UB LB UB LB UB LB UB LB UB LB UB LB UB

g / h 0.1 0.5 0.75 1 1.33 2 10

0.1 -275.6 -139.1 -248.9 -165.8 -248.7 -166.0 -248.6 -166.1 -248.5 -166.2 -248.6 -166.1 -249.0 -165.7

0.5 -275.2 -122.3 -240.2 -157.3 -240.0 -157.5 -239.9 -157.6 -239.8 -157.7 -239.9 -157.6 -240.2 -157.3

0.75 -275.8 -122.4 -240.5 -157.7 -240.3 -157.9 -240.2 -158.0 -240.1 -158.1 -240.2 -158.0 -240.6 -157.6

1 -276.7 -122.9 -241.2 -158.4 -241.0 -158.6 -240.9 -158.7 -240.8 -158.8 -240.9 -158.7 -241.3 -158.3

1.33 -277.5 -123.2 -241.8 -158.9 -241.6 -159.1 -241.5 -159.3 -241.4 -159.3 -241.5 -159.3 -241.8 -158.9

2 -278.2 -123.6 -242.3 -159.4 -242.1 -159.6 -242.0 -159.8 -241.9 -159.8 -242.0 -159.8 -242.3 -159.4

10 -278.8 -123.8 -242.7 -159.9 -242.5 -160.1 -242.4 -160.2 -242.3 -160.3 -242.4 -160.2 -242.8 -159.8
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A. Proofs of Main Results

A.1. Proof of Theorem 1. To prove the first statement, note that it follows from the differen-

tiability of ψ with respect to θ and the definition of θ̂ that

θ̂ − θo = Γn(θ
∗, p̂, q̂)−1 1

n

n∑

i=1

ψ(Ziθo, p̂(Ui), q̂(Vi))

for some intermediate value θ∗ between θo and θ̂, and Γn(θ, p, q) =
∑n

i=1 ∂ψ(Ziθ, p̂(Ui), q̂(Vi))/∂θ.

It also follows from standard arguments that Γn(θ
∗, p̂, q̂) = Γo + oP (1). Next, we consider an

expansion of the term n−1
∑n

i=1 ψ(Ziθo, p̂(Ui), q̂(Vi)). Using the notation that

ψp(Zi) = ∂ψ(Zi, t, qo(Vi))/∂t|t=po(Ui),

ψpp(Zi) = ∂2ψ(Zi, t, qo(Vi))/∂t|t=po(Ui),

ψq(Zi) = ∂ψ(Zi, po(Ui), t)/∂t|t=qo(Vi),

ψqq(Zi) = ∂2ψ(Zi, po(Ui), t)/∂t|t=qo(Vi),

ψpq(Zi) = ∂2ψ(Zi, t1, t2)/∂t1∂t2|t1=po(Ui),t2=qo(Vi),

we find that by Assumption 3 we have that

1

n

n∑

i=1

ψ(Ziθo, p̂(Ui), q̂(Vi))−
1

n

n∑

i=1

ψ(Ziθo, po(Ui), qo(Vi))

=
1

n

n∑

i=1

ψp(Zi)(p̂(Ui)− po(Ui)) +
1

n

n∑

i=1

ψq(Zi)(q̂(Vi)− qo(Vi))

+
1

n

n∑

i=1

ψpp
i (p̂(Ui)− po(Ui))

2 +
1

n

n∑

i=1

ψqq
i (q̂(Vi)− qo(Vi))

2

+
1

n

n∑

i=1

ψpq(Zi)(p̂(Ui)− po(Ui))(q̂(Vi)− qo(Vi))

+OP (‖p̂− po‖3∞) +OP (‖q̂ − qo‖3∞).

By Lemma 2(i) and Assumption 4, the two “cubic” remainder terms are both of the order oP (n
−1/2).

In Lemma 4–6 below, we show that the remaining five terms on the right hand side of the previous

equation are also all of the order oP (n
−1/2) under the conditions of the theorem. This completes

the proof of the first statement of the theorem. The asymptotic normality result then follows

from a simple application of the Central Limit Theorem. The proof of consistency of the variance

estimator is standard, and thus omitted.
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A.2. Proof of Corollary 1. Following the proofs of Lemma 4–6 below, we find that Tn,1+Tn,2 =

O(h2(l+1)) +OP (n
−1h−d/2) under the conditions of the corollary. The remainder of the result then

follows from the convergence rate of the “cubic” remainder terms; see e.g. Lemma 2(i).

A.3. Proof of Theorem 2 and 3. These two results can be shown using the same arguments

as for the proof of Theorem 1. .

B. Auxiliary Results

In this section, we collect a number of auxiliary results that are used to prove our main theorems.

The results in Sections B.1 and B.2 are minor variations of existing ones and are mainly stated for

completeness. The result in Section B.3 is simple to obtain and stated separately again mainly for

convenience. Section B.4 contains a number of important and original lemma that form the basis

for our proof of Theorem 1.

B.1. Rates of Convergence of U-Statistics. For a real-valued function ϕn(x1, . . . , xk) and

an i.i.d. sample {Xi}ni=1 of size n > k, the term

Un =
(n− k)!

n!

∑

s∈S(n,k)

ϕn(Xs1 , . . . , Xsk)

is called a kth order U-statistic with kernel function ϕn, where the summation is over the set S(n, k)
of all n!/(n−k)! permutations (s1, . . . , sk) of size k of the elements of the set {1, 2, . . . , n}. Without

loss of generality, the kernel function ϕn can be assumed to be symmetric in its k arguments. In

this case, the U-statistic has the equivalent representation

Un =

(
n

k

)−1 ∑

s∈C(n,k)

ϕn(Xs1 , . . . , Xsk),

where the summation is over the set C(n, k) of all
(
n
k

)
combinations (s1, . . . , sk) of k of the elements

of the set {1, 2, . . . , n} such that s1 < . . . < sk. For a symmetric kernel function ϕn and 1 ≤ c ≤ k,

we also define the quantities

ϕn,c(x1, . . . , xc) = E(ϕn(x1, . . . , xc, Xc+1, . . . , Xk) and

ρn,c = Var(ϕn,c(X1, . . . , Xc))
1/2.

If ρn,c = 0 for all c ≤ c∗, we say that the kernel function ϕn is c∗th order degenerate. With this

notation, we give the following result about the rate of convergence of a kth order U-statistic with

a kernel function that potentially depends on the sample size n.
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Lemma 1. Suppose that Un is a kth order U-statistic with symmetric, possibly sample size depen-

dent kernel function ϕn, and that ρn,k <∞. Then

Un − E(Un) = OP

(
k∑

c=1

ρn,c

nc/2

)
.

In particular, if the kernel ϕn is c∗th order degenerate, then

Un = OP

(
k∑

c=c∗+1

ρn,c

nc/2

)
.

Proof. The result follows from explicitly calculating the variance of Un (see e.g. Van der Vaart,

1998), and an application of Chebyscheff’s inequality.

B.2. Stochastic Expansion of the Local Polynomial Estimator. In this section, we state

a particular stochastic expansion of the local polynomial regression estimators p̂ and q̂. This is

a minor variation of results given in e.g. Masry (1996) or Kong, Linton, and Xia (2010). For

simplicity, we state the result only for the former of the two estimators, but it applies analogously

to the latter by replacing p with q in the following at every occurrence. We require the following

notation. For any s ∈ {0, 1, . . . , lp} let ns =
(s+dp−1

dp−1

)
be the number of distinct dp-tuples u with

|u| = s. Arrange these dp-tuples as a sequence in a lexicographical order with the highest priority

given to the last position, so that (0, . . . , 0, s) is the first element in the sequence and (s, 0, . . . , 0) the

last element. Let τs denote this 1-to-1 mapping, i.e. τs(1) = (0, . . . , 0, s), . . . , τs(ns) = (s, 0, . . . , 0).

For each s ∈ {0, 1, . . . , lp} we also define a ns × 1 vector wj,s(u) with its kth element given by

(((Xp,j − u)/hp)
τs(k). Finally, we put

wj(u) = (1, wj,1(u)
⊤, . . . , wj,lp(u)

⊤)⊤

Mp,n(u) =
1

n

n∑

j 6=i

wj(u)wj(u)
⊤Khp

(Xp,j − u),

Np,n(u) = E(wj(u)wj(u)
⊤Khp

(Xp,j − u)),

ηp,n,j(u) = wj(u)wj(u)
⊤Khp

(Xp,j − u)− E(wj(u)wj(u)
⊤Khp

(Xp,j − u)).

To better understand this notation, note that for the simple case that lp = 0, i.e. when p̂ is the

Nadaraya-Watson estimator, we have that wj(u) = 1, that the termMp,n(u) = n−1
∑n

i=1Khp
(Xp,i−

u) is the usual Rosenblatt-Parzen density estimator, that Np,n(u) = E(Khp
(Xp,i − u)) is its expec-

tation, and that ηp,n,i(u) = Khp
(Xp,i − u)− E(Khp

(Xp,i − u)) is a mean zero stochastic term with

variance of the order O(h
−dp
p ). Also note that with this notation we can write the estimator p̂(Ui)
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as

p̂(Ui) =
1

n− 1

∑

j 6=i

e⊤1 Mp,n(Ui)
−1wj(Ui)Khp

(Xp,j − Ui)Yp,j ,

where e1 denotes the (1 + lpdp)-vector whose first component is equal to one and whose remaining

components are equal to zero. We also introduce the following quantities:

Bp,n(Ui) = e⊤1 Np,n(Ui)
−1

E(wj(Ui)Khp
(Xp,j − Ui)(po(Xp,j)− po(Ui))|Ui)

Sp,n(Ui) =
1

n

∑

j 6=i

e⊤1 Np,n(Ui)
−1wj(Ui)Khp

(Xp,j − Ui)εp,j

Rp,n(Ui) =
1

n

∑

j 6=i

e⊤1


 1

n

∑

l 6=i

ηp,n,l(Ui)


Np,n(Ui)

−2wj(Ui)Khp
(Xp,j − Ui)εp,j

We refer to these three terms as the bias, and the first- and second-order stochastic terms, re-

spectively. Here εp,j = Yp,j − po(Xp,j) is the nonparametric regression residual, which satisfies

E(εp,j |Xp,j) = 0 by construction. To get an intuition for the behavior of the two stochastic terms,

it is again instructive to consider simple case that lp = 0, for which

Sp,n(Ui) =
1

nf̄p,n(Ui)

∑

j 6=i

Khp
(Xp,j − Ui)εp,j and

Rp,n(Ui) =
1

nf̄p,n(Ui)2


 1

n

∑

l 6=i

(Khp
(Xp,l − Ui)− f̄p,n(Ui))


∑

j 6=i

Khp
(Xp,j − Ui)εp,j

with E(Khp
(Xp,j − u)) = f̄p,n(u). With this notation, we obtain the following result.

Lemma 2. Under Assumptions 1–2, the following statements hold:

(i) For uneven lp ≥ 1 the bias Bp,n satisfies

max
i∈{1,...,n}

|Bp,n(Ui)| = OP (h
lp+1
p ),

and the first- and second-order stochastic terms satisfy

max
i∈{1,...,n}

|Sp,n(Ui)| = OP ((nh
dp
p / log n)

−1/2) and max
i∈{1,...,n}

|Rp,n(Ui)| = OP ((nh
dp
p / log n)

−1).

(ii) For any lp ≥ 0, we have that

max
i∈{1,...,n}

|p̂(Ui)− po(Ui)−Bp,n(Ui)− Sp,n(Ui)−Rp,n(Ui)| = OP ((nh
dp
p / log n)

−3/2).

(iii) For ‖ · ‖ a matrix norm, we have that

max
i∈{1,...,n}

‖n−1
∑

j 6=i

ηp,n,j(Ui)‖ = OP ((nh
dp
p / log n)

−1/2).

Proof. The proof follows from well-known arguments in e.g. Masry (1996) or Kong et al. (2010).
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B.3. Functional Derivatives of DR moment conditions. In this section, we formally prove

a result about the functional derivatives of DR moment conditions. Using the notation introduced

in the proof of Theorem 1, we obtain the following result.

Lemma 3. If the function ψ satisfies the Double Robustness Property in (2.2), and Assumption 3

holds, then E(ψp(Z)p̄(U)) = E(ψpp(Z)p̄(U)) = E(ψq(Z)q̄(U)) = E(ψqq(Z)q̄(U)) = 0 for all func-

tions p̄ and q̄ such that po + tp̄ ∈ P and qo + tq̄ ∈ Q for any t ∈ R with |t| sufficiently small.

Proof. The proof is similar for all four cases, and thus we only consider the first one. By dominated

convergence, we have that

E(ψp(Z)p̄(U)) = lim
t→0

Ψ(θo, po + tp̄, qo)−Ψ(θo, po, qo)

t
= 0

where the last equality follows since the numerator is equal to zero by the DR property.

B.4. Further Helpful Results. In this subsection, we derive a number of intermediate results

used in proof of Theorem 1.

Lemma 4. Under Assumption 1–4, the following statements hold:

(i)
1

n

n∑

i=1

ψp(Zi)(p̂(Ui)− po(Ui)) = oP (n
−1/2),

(ii)
1

n

n∑

i=1

ψq(Zi)(q̂(Vi)− qo(Vi)) = oP (n
−1/2).

Proof. We only show the first statement, as the proof for the second one is fully analogous. From

Lemma 2 and Assumption 4, it follows that

1

n

n∑

i=1

ψp(Zi)(p̂(Ui)− po(Ui)) =
1

n

n∑

i=1

ψp(Zi)(Bp,n(Ui) + Sp,n(Ui) +Rp,n(Ui))

+OP (log(n)
3/2n−3/2h

−3dp/2
p ),

and since the second term on the right-hand side of the previous equation is of the order oP (n
−1/2)

by Assumption 4, it suffices to study the first term. As a first step, we find that

1

n

n∑

i=1

ψp(Zi)Bp,n(Ui) = E(ψp(Zi)Bp,n(Ui)) +OP (h
lp+1
p n−1/2)

= OP (h
lp+1
p n−1/2),
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where the first equality follows from Chebyscheff’s inequality, and the second equality follows from

Lemma 2 and the fact that by Lemma 3 we have that E(ψp(Zi)Bp,n(Ui)) = 0. Next, consider the

term

1

n

n∑

i=1

ψp(Zi)Sp,n(Ui) =
1

n2

∑

i

∑

j 6=i

ψp(Zi)e
⊤
1 Np,n(Ui)

−1wj(Ui)Khp
(Xp,j − Ui)εp,i.

This is a second order U-Statistic (up to a bounded, multiplicative term), and since by Lemma 3 we

have that E(ψp(Zi)e
⊤
1 Np,n(Ui)

−1wj(Ui)Khp
(Xp,j−Ui)|Xp,j) = 0, its kernel is first-order degenerate.

It then follows from Lemma 1 and some simple variance calculations that

1

n

n∑

i=1

ψp(Zi)Sp,n(Ui) = OP (n
−1h

−dp/2
p ).

Finally, we consider the term

1

n

n∑

i=1

ψp(Zi)Rp,n(Ui) = Tn,1 + Tn,2,

where

Tn,1 =
1

n3

∑

i

∑

j 6=i

ψp(Zi)e
⊤
1 ηp,n,j(Ui)Nn(u)

−2wj(Ui)Khp
(Xp,j − Ui)εp,j and

Tn,2 =
1

n3

∑

i

∑

j 6=i

∑

l 6=i,j

ψp(Zi)e
⊤
1 ηp,n,j(Ui)Nn(Ui)

−2wl(Ui)Khp
(Xp,l − Ui)εp,l.

Using Lemma 3, one can see that Tn,2 is equal to a third-order U-Statistic (up to a bounded,

multiplicative term) with second-order degenerate kernel, and thus

Tn,2 = OP (n
−3/2h

−dp
p )

by Lemma 1 and some simple variance calculations. On the other hand, the term Tn,1 is equal

to n−1 times a second order U-statistic (up to a bounded, multiplicative term), with first-order

degenerate kernel, and thus

Tn,1 = n−1 ·OP (n
−1h

−3dp/2
p )) = n−1/2h

−dp/2
p OP (Tn,2).

The statement of the lemma thus follows if hp → 0 and n2h
3dp
p → ∞ as n → ∞, which holds by

Assumption 4. This completes our proof.

Remark 2. Without the DR property, the term n−1
∑n

i=1 ψ
p(Zi)Bp,n(Ui) in the above proof

would be of the larger order O(h
lp+1
p ), which is the usual order of the bias due to smoothing the

nonparametric component. This illustrates how the DR property of the moment conditions acts

like a bias correction device (see also Remark 3 below).
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Lemma 5. Under Assumption 1–4, the following statements hold:

(i)
1

n

n∑

i=1

ψpp(Zi)(p̂(Ui)− po(Ui))
2 = oP (n

−1/2),

(ii)
1

n

n∑

i=1

ψqq(Zi)(q̂(Vi)− qo(Vi))
2 = oP (n

−1/2).

Proof. We only show the first statement, as the second statement is conceptually similar to estab-

lish. Note that by Lemma 2 we have that

(p̂(u)− po(u))
2 =

6∑

k=1

Tn,k(u) +OP



(
log(n)

nh
dp
p

)3/2


(
OP (h

lp+1
p ) +OP

(
log(n)

nhp

))
,

where Tn,1(u) = Bp,n(u)
2, Tn,2(u) = Sp,n(u)

2, Tn,3(u) = Rp,n(u)
2, Tn,4(u) = 2Bp,n(u)Sp,n(u),

Tn,5(u) = 2Bp,n(u)Rp,n(u), and Tn,6(u) = 2Sp,n(u)Rp,n(u). Since the second term on the right-

hand side of the previous equation is of the order oP (n
−1/2) by Assumption 4, it suffices to show

that we have that n−1
∑n

i=1 ψ
pp(Zi)Tn,k(Ui) = oP (n

−1/2) for k ∈ {1, . . . , 6}. Our proof proceeds

by obtaining sharp bounds on n−1
∑n

i=1 ψ
pp(Zi)Tn,k(Ui) for k ∈ {1, 2, 4, 5} using Lemmas 3 and 1,

and crude bounds for k ∈ {3, 6} simply using the uniform rates derived in Lemma 2. First, for

k = 1 we find that

1

n

n∑

i=1

ψpp(Zi)Tn,1(Ui) = E(ψpp(Zi)Bp,n(Ui)
2) +OP (n

−1/2h
2lp+2
p ) = OP (n

−1/2h
2lp+2
p )

because E(ψpp(Zi)Bp,n(Ui)
2) = 0 by Lemma 3. Second, for k = 2 we can write

1

n

n∑

i=1

ψpp(Zi)Tn,2(Ui) = Tn,2,A + Tn,2,B

where

Tn,2,A =
1

n3

∑

i

∑

j 6=i

ψpp(Zi)(e
⊤
1 Np,n(Ui)

−1wj(Ui))
2Khp

(Xp,j − Ui)
2ε2p,j

Tn,2,B =
1

n3

∑

i

∑

j 6=i

∑

l 6=i,j

ψpp(Zi)e
⊤
1 Np,n(Ui)

−1wj(Ui)Khp
(Xp,j − Ui)εp,j

· e⊤1 Np,n(Ui)
−1wl(Ui)Khp

(Xp,l − Ui)εp,l

Using Lemma 3, one can see that Tn,2,B is equal to a third-order U-Statistic with a second-order

degenerate kernel function (up to a bounded, multiplicative term), and thus

Tn,2,B = OP (n
−3/2h

−dp
p ).
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On the other hand, the term Tn,2,A is (again, up to a bounded, multiplicative term) equal to n−1

times a second order U-statistic with first-order degenerate kernel function, and thus

Tn,2,A = n−1OP (n
−1h

−3dp/2
p ) = OP (n

−2h
−3dp/2
p ).

Third, for k = 4 we use again Lemma 3 and Lemma 1 to show that

1

n

n∑

i=1

ψp(Zi)Tn,4(Ui) =
1

n2

n∑

i=1

∑

j 6=i

ψpp(Zi)Bp,n(Ui)e
⊤
1 Np,n(Ui)

−1wj(Ui)Khp
(Xp,j − Ui)εp,j

= OP (n
−1h

−dp/2
p ) ·O(h

lp+1
p ),

where the last equality follows from the fact that n−1
∑n

i=1 ψ
p(Zi)Tn,4(Ui) is (again, up to a

bounded, multiplicative term) equal to a second order U-statistic with first-order degenerate kernel

function. Fourth, for k = 5, we can argue as in the final step of the proof of Lemma 4 to show that

1

n

n∑

i=1

ψpp(Zi)Tn,5(Ui) = OP (n
−3/2h

−dp
p h

lp+1
p )

Finally, we obtain a number of crude bounds based on uniform rates in Lemma 2:

1

n

n∑

i=1

ψpp(Zi)Tn,3(Ui) = OP (‖Rp,n‖2∞) = OP (log(n)
2n−2h

−2dp
p )

1

n

n∑

i=1

ψpp(Zi)Tn,6(Ui) = OP (‖Rp,n‖∞) ·OP (‖Sp,n‖∞) = OP (log(n)
3/2n−3/2h

−3dp/2
p )

The statement of the lemma thus follows if hp → 0 and n2h
3dp
p / log(n)3 → ∞ as n → ∞, which

holds by Assumption 4. This completes our proof.

Remark 3. Without the DR property, the term Tn,2,B in the above proof would be (up to a

bounded, multiplicative term) equal to a third-order U-Statistic with a first-order degenerate kernel

function (instead of a second order one). In this case, we would find that

Tn,2,B = OP (n
−1h

−dp/2
p ) +OP (n

−3/2h
−dp
p ) = OP (n

−1h
−dp/2
p ).

On the other hand, in the absence of the DR property, the term Tn,2,A would be (up to a bounded,

multiplicative term) equal to a n−1 times a second-order U-Statistic with a non-degenerate kernel

function, and thus we would have

Tn,2,A = O(n−1h
−dp
p ) +OP (n

−3/2h−dp) +OP (n
−2h−2dp) = O(n−1h−dp) + oP (n

−1h−dp).

The leading term of an expansion of the sum Tn,2,A + Tn,2,B is thus a pure bias term of order

n−1h
−dp
p . This term is analogous to the “degrees of freedom bias” in Ichimura and Linton (2005),
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and the “nonlinearity bias” or “curse of dimensionality bias” in Cattaneo et al. (2013a). In our

context, the DR property of the moment conditions removes this term, which illustrates how our

structure acts like a bias correction method.

Lemma 6. Under Assumption 1–4, the following statement holds:

1

n

n∑

i=1

ψpq(Zi)(p̂(Ui)− po(Ui))(q̂(Vi)− qo(Vi)) = oP (n
−1/2).

Proof. By Lemma 2, one can see that uniformly over (u, v) we have that

(p̂(u)− po(u))(q̂(v)− qo(v)) =
9∑

k=1

Tn,k(u, v) +OP



(
log(n)

nh
dp
p

)3/2


(
OP (h

lq+1
q ) +OP

(
log(n)

nh
dq
q

))

+OP



(
log(n)

nh
dq
q

)3/2


(
OP (h

lp+1
p ) +OP

(
log(n)

nh
dp
p

))

where Tn,1(u, v) = Bp,n(u)Bq,n(v), Tn,2(u, v) = Bp,n(u)Sq,n(v), Tn,3(u, v) = Bp,n(u)Rq,n(v), Tn,4(u, v) =

Sp,n(u)Bq,n(v), Tn,5(u, v) = Sp,n(u)Sq,n(v), Tn,6(u, v) = Sp,n(u)Rq,n(v), Tn,7(u, v) = Rp,n(u)Bq,n(v),

Tn,8(u, v) = Rp,n(u)Sq,n(v), and Tn,9(u, v) = Rp,n(u)Rq,n(v). Since the last two terms on the right-

hand side of the previous equation are easily of the order oP (n
−1/2) by Assumption 4, it suffices

to show that for any for k ∈ {1, . . . , 9} we have that n−1
∑n

i=1 ψ
pp(Zi)Tn,k(Ui, Vi) = oP (n

−1/2). As

in the proof of Lemma 5, we proceed by obtaining sharp bounds on n−1
∑n

i=1 ψ
pp(Zi)Tn,k(Ui) for

k ∈ {1, . . . , 5, 7} using Lemma 1– 3, and crude bounds for k ∈ {6, 8, 9} simply using the uniform

rates derived in Lemma 2. First, arguing as in the proof of Lemma 4 and 5 above, we find that

1

n

n∑

i=1

ψpp(Zi)Tn,1(Ui, Vi) = E(ψpq(Zi)Bp,n(Ui)Bq,n(Vi)) +OP (n
−1/2h

lp+1
p h

lq+1
q ) = OP (h

lp+1
p h

lq+1
q ),

where the last equation follows from the fact that E(ψpq(Zi)Bp,n(Ui)Bq,n(Vi)) = O(h
lp+1
p h

lq+1
q ).

Second, for k = 2 we consider the term

1

n

∑

i

ψpq(Zi)Tn,2(Ui, Vi) =
1

n2

∑

i

∑

j 6=i

ψpq(Zi)Bp,n(Ui)e
⊤
1 Np,n(Vi)

−1wj(Vi)Khq
(Xq,j − Vi)εq,j .

This term is (up to a bounded, multiplicative term) equal to a second-order U-Statistic with non-

degenerate kernel function. It thus follows from Lemma 1 and some variance calculations that

1

n

∑

i

ψpq(Zi)Tn,2(Ui, Vi) = OP (n
−1/2h

lp+1
p ) +OP (n

−1h
−dq/2
q h

lp+1
p )

Using the same argument, we also find that

1

n

∑

i

ψpq(Zi)Tn,4(Ui, Vi) = OP (n
−1/2h

lq+1
q ) +OP (n

−1h
−dp/2
p h

lq+1
q ).
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For k = 3, we can argue as in the final step of the proof of Lemma 4 to show that

1

n

n∑

i=1

ψpp(Zi)Tn,3(Ui, Vi) = OP (n
−1h

−dq/2
q h

lp+1
p ) +OP (n

−3/2h
−dq
q h

lp+1
p ),

and for the same reason we find that

1

n

n∑

i=1

ψpp(Zi)Tn,7(Ui, Vi) = OP (n
−1h

−dp/2
p h

lq+1
q ) +OP (n

−3/2h
−dp
p h

lq+1
q ).

Next, we consider the case k = 5. Here we can write

1

n

∑

i

ψpq(Zi)Tn,5(Ui, Vi) = Tn,5,A + Tn,5,B,

where

Tn,5,A =
1

n3

∑

i

∑

j 6=i

ψpq(Zi)(e
⊤
1 Np,n(Ui)

−1wp,j(Ui)Khp
(Xp,j − Ui)εp,j)

· (e⊤1 Nq,hq
(Vi)

−1wq,j(Vi)Khq
(Xq,j − Vi)εq,j),

Tn,5,B =
1

n3

∑

i

∑

j 6=i

∑

l 6=i,j

ψpq(Zi)e
⊤
1 Np,n(Ui)

−1wj(Ui)Khp
(Xp,j − Ui)εp,j

· e⊤1 Nq,hq
(Vi)

−1wl(Vi)Khq
(Xq,l − Vi)εq,l.

One can easily see that Tn,5,B is equal to a third-order U-Statistic (up to a bounded, multiplicative

term) with first-order degenerate kernel, and thus

Tn,5,B = OP (n
−1) +OP (n

−3/2h
−dp/2
p h

−dq/2
q )

by Lemma 1 and some straightforward variance calculations. To derive the order of the term Tn,5,A,

we exploit the orthogonality condition (2.3), which implies that E(εpεq|Xp, Xq) = 0. Clearly, Tn,5,A

is equal to n−1 times a second order U-statistic (up to a bounded, multiplicative term), and because

of (2.3) the kernel of this U-Statistic is first-order degenerate. We thus find that

Tn,5,A = n−1 ·OP (n
−1h

−dp/2
p h

−dq/2
q ) = n−1/2OP (Tn,5,B).

by Lemma 1 and a simple variance calculation. Finally, we obtain a number of crude bounds based

on uniform rates in Lemma 2 for the following terms:

1

n

n∑

i=1

ψpp(Zi)Tn,6(Ui) = OP (‖Sp,n‖∞) ·OP (‖Rq,n‖∞) = OP (log(n)
5/2n−5/2h

−dp
p h

−3dq/2
q )

1

n

n∑

i=1

ψpp(Zi)Tn,8(Ui) = OP (‖Rp,n‖∞) ·OP (‖Sq,n‖∞) = OP (log(n)
5/2n−5/2h

−dq
q h

−3dp/2
p )

1

n

n∑

i=1

ψpp(Zi)Tn,9(Ui) = OP (‖Rp,n‖∞) ·OP (‖Rq,n‖∞) = OP (log(n)
3n−3h

−3dp/2
p h

−3dq/2
q )

The statement of the Lemma then follows from Assumption 4. This completes our proof.
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Remark 4. The derivation of the order of the term Tn,5,A is the only step in our proof that requires

the orthogonality condition (2.3). Without this condition, the kernel of the respective U-Statistic

would be non-degenerate, and in general we would only find that Tn,5,A = OP (n
−1max{h−dp

p , h
−dq
q }).
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