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Abstract

We introduce a cost of location into Hotelling’s (1929) spatial duopoly.
We derive the general conditions on the cost-of-location function under
which a pure strategy price-location Nash equilibrium exists. With linear
transportation cost and a suitably specified cost of location that rises
toward the center of the Hotelling line, symmetric equilibrium locations
are in the outer quartiles of the line, ensuring the existence of pure strategy
equilibrium prices. With quadratic transportation cost and a suitably
specified cost of location that falls toward the center of the line, symmetric
equilibrium locations range from the center to the end of the line.
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1 Introduction

To paraphrase Stigler (1964), no one has the right to invite attention to another
extension of Hotelling (1929) without advance indication of the justification for
doing so. Our justification is the observation that in a literature where what
matters is “location, location, location,”1 location itself has been treated as a
free good. Since economics is sometimes referred to as “the science of scarcity,”
this seems an odd specification for economists to make, and we introduce a
rental cost of location that varies with location on the Hotelling line.2

One interpretation of the received approach is that Hotelling implicitly as-
sumed the cost of location to be independent of location, normalized it to 0 for
simplicity, and that the literature has followed this approach. But rental costs
typically differ by location. In Europe, center-city locations are typically more
expensive than those on the periphery. The same was true of the United States
through the mid-1950s, and the opposite may be the case for some U.S. cities
today.3

Hotelling (1929) rebelled against the assumption of homogeneous products
because of its implication, in the Bertrand duopoly model, that all demand
would switch from one supplier to another in response to an infinitesimal differ-
ence in price. Introducing product differentiation and making, as he thought,
demands continuous functions of prices, he reached the Principle of Minimum
Differentiation, that “Buyers are confronted everywhere with an excessive same-
ness.”In a celebrated comment, d’Aspremont et al. (1979) showed that if firms
locate “too close”to the center of the Hotelling line, there is no pure-strategy
equilibrium in prices, because of precisely the kinds of discontinuities in demand
that Hotelling had thought to avoid.4 Numerical analysis (Osborne and Pitchik,
1987) indicates that equilibrium locations in the two-stage Hotelling game are
within the region where there are no pure-strategy equilibria in prices.
d’Aspremont et al. (1979) further show that if, keeping all other aspects

of Hotelling’s specification, transportation cost is made quadratic rather than
linear in distance, duopolists will choose maximum rather than minimum dif-
ferentiation.
We consider a two-stage model, with costly location choice in the first stage,

followed by a price-setting stage. Throughout the paper, we emphasize the
interpretation of location cost c(y) as a rental cost that varies with distance
y from the end of the line. This interpretation naturally suggests the polar
opposite cases that cost of location rises moving from the ends to the center
and alternatively that cost of location rises moving from the center to the end of
the line. One might instead interpret c(y) as an R&D or product-development
cost that must be incurred to bring a product of attribute y to market, in
which case the Hotelling line represents product characteristic space rather than
geographic space. Product development cost may vary with horizontal product
characteristics, in a way that is context-specific; the truly black tulip, despite
much effort, does not exist. We emphasize the geographic interpretation of the
Hotelling line because it suggests natural specifications for c(y).
For the first stage, we derive the general conditions on the cost of location
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function that must be met for an equilibrium to exist. That is, we find conditions
under which location costs ensure the existence of a pure-strategy location-price
equilibrium. With linear transportation cost, these conditions require that cost
of location rise moving toward the center of the line at an increasing rate. With
quadratic transportation cost, the conditions for existence of an equilibrium
require that transportation cost do not fall moving toward the ends of the line.
We illustrate our general results for specific cost-of-location functions.
In Section 2 we give references to the spatial oligopoly literature. In Section

3 we present a Hotelling Main Street duopoly model with linear transportation
cost and location cost rising toward the center of the line. In Section 4 we
present the model with quadratic transportation cost and location cost rising
toward the ends of the line. Section 5 concludes.

2 Literature

The literature that flows from Hotelling (1929) is vast.5 Extensions include6

a finite reservation price (Lerner and Singer (1937), Salop (1979), Economi-
des (1984), Hinloopen and Van Marrewijk (1999)), a circular road (Chamber-
lin (1953), Vickrey (1964/1999), Samuelson (1967), Salop (1979), Economides
(1989)), graphs (Soetevent (2010)), nonlinear transportation costs (d’Aspremont
et al. (1979), Capozza and Van Order (1982), Economides (1986)), more than
two firms (Chamberlin (1933), Lerner and Singer (1937), Shaked (1982)), quan-
tity competition (Hamilton et al., (1994), Gupta et al. (1997)), sequential en-
try with no relocation (Prescott and Visscher (1977), Eaton and Ware (1987)),
price-taking firms (Anderson and Engers (1994), Hinloopen (2002)), competition
in n > 1 dimensions (Irmen and Thisse (1998)), and non-uniform distributions
of consumers along the Hotelling line (Anderson, Goeree and Ramer (1997)).
If nothing else, this literature establishes that the equilibrium predictions of a
spatial oligopoly model are highly sensitive to the details of the specification.
Introducing a cost of location is not an exception to this characteristic of the
literature.

3 Linear transportation cost

We first consider the case of linear transportation cost. Assuming that the
location cost function c (y) is twice continuously differentiable, we show that
existence of a subgame perfect price-location Nash equilibrium requires that
the first and second derivative of c (y) be positive. We illustrate this general
result for a specific functional form of the cost-of-location function.

3.1 Stage 2: price setting

The market consists of a line of length l = 1, along which consumers are uni-
formly distributed. There are two firms, A and B, located at distances a and b
respectively from the left and right ends of the line with a + b ≤ l. The firms
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supply a homogeneous product that yields gross surplus v. Consumers have
unit demand, and a consumer located at x (measured from the left side of the
market) has net surplus

U(x; a) = v − t |x− a| − pA, (1)

if buying from firm A, where t > 0 is the transportation rate, and pi is the price
charged by firm i, i = A,B, and net surplus

U(x; b) = v − t |1− b− x| − pB . (2)

if the product is bought from firm B. v is large enough that all consumers
always buy.7

The boundary consumer has identical net surplus from either firm, U(x; a) =
U(x; b), and is at distance

x∗ =
1

2t
[pB − pA + t(1 + a− b)] (3)

from the left end of the line.
Fixed and marginal cost of production are constant, and (without loss of

generality) normalized to be zero. Let c(y) > 0 be the location cost function,
where y is the distance from the firm’s location to the nearest end of the line
(y = a for firm A, y = b for firm B). We assume that c is twice continuously
differentiable. In a familiar way (see e.g. Martin (2002)), now allowing for the
cost of location, the objective functions of firm A and B (conditional on prices
and locations) are

πA(pA, pB , a, b) =
pA − c (a) pA < pB − t(1− a− b)

1
2tpA [t(1 + a− b) + pB − pA]− c (a) |pA − pB | ≤ t(1− a− b)

−c (a) pA > pB − t(1− a− b)

(4)

and
πB(pA, pB , a, b) =

pB − c (b) pB < pA − t(1− a− b)

1
2tpB [t(1− a+ b) + pA − pB ]− c (b) |pA − pB | ≤ t(1− a− b)

−c (b) pB > pA − t(1− a− b)

(5)

respectively.
The existence of location cost rules out back-to-back, zero-price equilibria

(which would imply negative payoffs). Conditions for the existence of pure-
strategy price equilibria with firms at different locations are due to d’Aspremont
et al. (1979); we state them in the form given by Martin (2002).
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Proposition 1 (d’Aspremont et al. (1979)) For a+b < 1, a pure-strategy price
equilibrium exists if, and only if

a ≤ 3 + b− 6
√
b (6)

b ≤ 3 + a− 6
√
a. (7)

If (6) and (7) are satisfied, equilibrium prices and payoffs, given locations, are

p∗A(a, b) = t

(
1 +

a− b
3

)
, (8)

p∗B(a, b) = t

(
1− a− b

3

)
, (9)

π∗A =
1

2t
(p∗A)

2 − c (a) , (10)

π∗B =
1

2t
(p∗B)

2 − c (b) , (11)

where asterisks denote second-stage equilibrium values, taking locations as given.

Proof. d’Aspremont et al. (1979).
As d’Aspremont et al. remark, for symmetric locations, (6) and (7) simplify

to
a = b ≤ 1

4
. (12)

3.2 Stage 1: choice of location

Let π̂A (a, b) denote firm A’s stage 1 payoff function in the Hotelling model
without location cost, so that πA (a, b) = π̂A (a, b)− c (a).

Proposition 2 Necessary and suffi cient conditions for the existence of a sub-
game perfect pure-strategy location-price equilibrium are
(a) that (6) and (7) be satisfied for locations satisfying the location first-order
conditions

t

3

(
1 +

a∗ − b∗
3

)
− c′ (a∗) ≡ 0 (13)

and
t

3

(
1 +

b∗ − a∗
3

)
− c′ (b∗) ≡ 0, (14)

(provided the implied a ≥ 0, b ≤ 1),
(b) the location second-order conditions

t

9
− c′′ (a∗) < 0 (15)

and
t

9
− c′′ (b∗) < 0; (16)
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(c) the participation constraints

πA (a
∗, b∗) =

1

2
t− c (a∗) ≥ 0 (17)

πB (a
∗, b∗) =

1

2
t− c (b∗) ≥ 0; (18)

and
(d) c (a) rises more rapidly than π̂A (a, b∗) over the range 1

4 ≤ a ≤ ã (b
∗), where

ã (b∗) is A’s best-response location to b∗ in the game without location cost.

Proof. The presence of cost of location that is sunk in the pricing stage does
not alter the region where there is a pure-strategy price equilibrium or the
region where there is a mixed-strategy price equilibrium, save that it rules out
back-to-back, zero-price equilibria. Substitute (8) and (9) into (10) and (11),
respectively, to obtain expressions for the first-stage objective functions. The
first- and second-order conditions are immediate. The first-order conditions
imply that equilibrium is symmetric. Then

p∗A(a
∗, b∗) = t. (19)

With (10) and the requirement that equilibrium payoffs be nonnegative, one
obtains the participation constraints (17) and (18). This establishes that (a∗, a∗)
is a local maximum pair of locations on 0 ≤ a ≤ 1

4 . Turning to condition (d),
the location first-order conditions (13), (14) imply that if c′ (a) is suffi ciently
small on 1

4 ≤ a ≤ ã (b
∗), there is a local maximum pair of locations in the range

1
4 < a < 0.27 (Osborne and Pitchik (1986)), and this is the global maximum;
if c′ (a) is suffi ciently large, there is no local maximum pair of locations in the
central quartiles. For intermediate values of c′ (a), payoff functions have two
local maxima, and the global maximum is in the outer quartile; condition (d)
is suffi cient for the latter case to hold.8

The first-order conditions imply c′ > 0; the second-order conditions imply
c′′ > 0. That is, with linear transportation costs for a pure-strategy price-
location equilibrium to exist it is necessary that the cost of location rises toward
the center of the Hotelling line at an increasing rate.

Corollary 3 (a) Location best-response lines have negative slope,

da

db

∣∣∣∣
brf

=
∂2πA(a,b)
∂a∂b

−∂2πA(a,b)∂a2

=
− 19 t

−∂2πA(a,b)∂a2

< 0 (20)

(the denominator on the right is positive by the second-order condition), and
(b) Increases in t move the symmetric equilibrium location toward the center of
the line,

da∗

dt
=

1

3c′′ (a∗)
> 0. (21)
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3.3 Example I

Let the location cost function take the form9

c (y) = yβ , (22)

for y = a, b (now omitting asterisks where possible without confusion, for nota-
tional compactness). We show below that β > 1 is one of the conditions for the
existence of a pure-strategy price-location equilibrium. For β > 1, the location
cost function (22) is a proper fraction raised to a power greater than 1. Larger
values of β then imply smaller location cost (see Figure 1).
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Figure 1: Rental cost function, example I, β = 1.2, 1.8, 2.3.

3.3.1 Equilibrium locations

For firm A, (13) gives the first-order condition (similarly for firm B)

∂πA (a, b)

∂a
=
1

3
t

(
1 +

a− b
3

)
− βaβ−1 ≡ 0, (23)

from which the symmetric equilibrium locations are

a∗ =

(
t

3β

) 1
β−1

. (24)

For (24) to be valid, the equilibrium it identifies must satisfy four conditions
(i) the second-order condition of the location stage, (ii) the d’Aspremont et al.
symmetric-equilibrium outer-quartile condition (12), (iii) the firm participation
(nonnegative profit) condition, and (iv) the stability condition in location space.
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3.3.2 Second-order conditions

Evaluating the second derivative for the equilibrium location (24), the second-
order condition is

∂2π∗A
∂a2

=
1

9
t− β(β − 1)

(
t

3β

) β−2
β−1

< 0. (25)

(25) defines the region in (t, β)-space where the second-order condition is satis-
fied. β > 1 is necessary for the second-order condition to be satisfied. For t = 1,
the second-order condition is satisfied for all β > 1.

3.3.3 Outer-quartile condition

The outer-quartile condition, which we assume is met, is

a∗ =

(
t

3β

) 1
β−1

≤ 1
4
. (26)

(26) defines the region in (t, β)-space where the outer-quartile condition is
satisfied. If in (26) we normalize t = 1, then, numerically,10 the outer-quartile
condition is satisfied for

1 < β ≤ 2.4342. (27)

3.3.4 Firm participation constraint

From (8) and (9), symmetric equilibrium prices are

p∗A = p∗B = t. (28)

In equilibrium, each firm supplies half the market, that is,11

q∗A = q∗B =
1

2
. (29)

Then the participation constraint is

π∗A =
1

2
t−
(
t

3β

) β
β−1

≥ 0, (30)

which defines the region in (t, β)-space where the firm participation condition
is satisfied. For t ≤ 3, the firm participation constraint is met for all β > 1.

3.3.5 Stage 1 stability

Necessary conditions for stability are that the trace of the matrix of second-order
partial derivatives of payoffs functions be negative, and the determinant positive,
when evaluated at equilibrium values. The assumption that the second-order
conditions are met means that the trace condition is met.
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The stability matrix is 1
9 t− β(β − 1)

(
t
3β

) β−2
β−1 − 19 t

− 19 t
1
9 t− β(β − 1)

(
t
3β

) β−2
β−1

 , (31)

with determinant

−β(β − 1)
(
t

3β

) β−2
β−1

[
2

9
t− β(β − 1)

(
t

3β

) β−2
β−1
]
. (32)

The determinant of the stability matrix is positive if

2

9
t− β(β − 1)

(
t

3β

) β−2
β−1

< 0, (33)

a stronger condition than (25). If we normalize t = 1, condition (33) is met for
all β > 1.

3.3.6 Location best-responses
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Figure 2: Location best response curves with linear transportation cost and cost
of location c(y) = yβ .

Firm A’s first-order condition (23) can be solved for b,
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b = a+ 3− 9β
t
aβ−1, (34)

to obtain an equation for firm A’s location best-response equation, written in
inverse form.
Figure 2 shows bests response curves and equilibrium locations for two values

of β, β = 1.6416 and β = 2.12 Best-response lines slope downward: location
choices are strategic substitutes. A larger value of β means smaller location
cost, all else equal, and (as one expects), the equilibrium location shifts toward
the center of the line as β increases.
In sum, for transportation cost t = 1 and for β satisfying condition (d) of

proposition 2, the price-location pair (p∗, a∗) =
(
1, (3β)

1
1−β
)
is a pure strategy

subgame perfect Nash equilibrium for the Hotelling model with linear trans-
portation cost and cost of location (24) for β ∈ (1, 2.4342]. Figure 3 shows the
equilibrium locations over the admissible range of β.
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Figure 3: Equilibrium locations in the Hotelling model as a function of β, cost
of location c(x) = xβ (t = 1).

4 Quadratic transportation cost

4.1 Stage 2: price setting

Following d’Aspremont et al. (1979), assume now that a consumer located at x
has net utility

U(x; a) = v − t |x− a|2 − pA (35)

if buying from firm A,

U(x; b) = v − t |1− b− x|2 − pB (36)
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if buying from firm B.
The location of the marginal consumer is

x∗ = a+
pB − pA

2t(1− a− b) +
1− a− b

2
, (37)

from which the profits of both firms conditional on price and location follow13

πA(pA, pB , a, b) =

pA − c(a) a+ pB−pA
2t(1−a−b) +

1−a−b
2 > 1;

pA

[
a+ pB−pA

2t(1−a−b) +
1−a−b
2

]
− c(a) 0 ≤ a+ pB−pA

2t(1−a−b) +
1−a−b
2 ≤ 1;

−c(a) a+ pB−pA
2t(1−a−b) +

1−a−b
2 < 0,

(38)
and

πB(pA, pB , a, b) =

pB − c(b) b+ pA−pB
2t(1−a−b) +

1−a−b
2 > 1;

pB

[
b+ pA−pB

2t(1−a−b) +
1−a−b
2

]
− c(b) 0 ≤ b+ pA−pB

2t(1−a−b) +
1−a−b
2 ≤ 1;

−c(b) b+ pA−pB
2t(1−a−b) +

1−a−b
2 < 0.

(39)
Absent cost of location, d’Aspremont et al. (1979) show that for this situation,
a unique price equilibrium exists for any locations a and b, and that it is given
by

p∗A(a, b) = t(1− a− b)
(
1 +

a− b
3

)
, (40)

p∗B(a, b) = t(1− a− b)
(
1− a− b

3

)
. (41)

4.2 Stage 1: choice of location

Equilibrium prices (40), (41) fall as a firm approaches the rival’s location.
d’Aspremont et al. (1979) show that in the two-stage game with quadratic
transportation cost and without cost of location, firms locate at the ends of
the line, each supplying half the market at the maximum noncooperative equi-
librium price. Results with location cost are given below, and for a simple
parameterization, equilibrium locations can be arbitrarily close to the center of
the line.

Proposition 4 Necessary and suffi cient conditions for the existence of a sub-
game pure-strategy location-price equilibrium are the location first-order condi-
tions

− t

18
(3 + a∗ − b∗)(1 + 3a∗ + b∗)− c′(a∗) ≡ 0, (42)
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and
− t

18
(3 + b∗ − a∗)(1 + 3b∗ + a∗)− c′(b∗) ≡ 0, (43)

(provided the implied a ≥ 0, b ≤ 1), the location second-order conditions

− t
9
(5 + 3a∗ − b∗)− c′′(a∗) < 0, (44)

and
− t
9
(5 + 3b∗ − a∗)− c′′(b∗) < 0, (45)

and the firm participation constraints

πA (a
∗, b∗) =

t

2
(1− a∗ − b∗)− c (a∗) ≥ 0, (46)

and
πB (a

∗, b∗) =
t

2
(1− a∗ − b∗)− c (b∗) ≥ 0. (47)

Proof. Substitute (40) and (41) into (38) and (39), respectively, to obtain
expressions for the first-stage objective functions. The first- and second-order
conditions are immediate. The first-order conditions imply that equilibrium is
symmetric. Then boundary consumers are located at the center of the line,
x∗ = 1/2, and equilibrium prices are

p∗A(a
∗, b∗) = p∗B(a

∗, b∗) = t(1− a∗ − b∗), (48)

from which the participation constraints (46) and (47) follow.
The first-order conditions imply that c′ < 0. The second-order condition

may be satisfied for c′′ positive or negative, provided it is not below a lower
bound. That is, with quadratic transportation costs for a pure-strategy price-
location equilibrium to exist it is necessary that the cost of location does not
rise toward the center of the Hotelling line.
Proposition 4 implies

Corollary 5 (a) Location best-response lines have negative slope,

da

db

∣∣∣∣
brf

=
∂2πA(a,b)
∂a∂b

−∂2πA(a,b)∂a2

=
− 19 t (1− a− b)
−∂2πA(a,b)∂a2

< 0 (49)

(the denominator on the right is positive by the second-order condition), and
(b) Increases in t move the symmetric equilibrium location toward the end of
the line,

∂a∗

∂t
= −1

6

1 + 4a

t+ c′′ (a)
< 0. (50)

(c′′ (a) ≥ −t/9(5 + 3a∗ − b∗ by the second-order condition, so the denominator
on the right is positive).
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4.3 Example II

Let the location cost function take the form14

c (a) = ρ

(
1

2
− a
)2

, (51)

where ρ > 0 is a location cost scale parameter. For this specification, location
cost takes its maximum value at the ends of the line, and falls to 0 at the center
of line (Figure 4).
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Figure 4: Rental cost function, example II, ρ = 1.

It is immediate that the location second-order conditions (44) and (45) are
satisfied for (51).

4.3.1 Equilibrium locations

For the location cost function (51), firm A’s stage 1 objective function is

πA(a, b) =
1

2
t(1− a− b)

(
1 +

a− b
3

)2
− ρ

(
1

2
− a
)2

. (52)

Firm A’s location first-order condition is

∂πA(a, b)

∂a
= − t

6

(
1 +

a− b
3

)
(1 + 3a+ b) + 2ρ

(
1

2
− a
)
≡ 0. (53)

In symmetric equilibrium,

a∗ =
1

2

ρ− t
6

ρ+ 1
3 t
=
1

2

ρ
t −

1
6

ρ
t +

1
3

. (54)
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a∗ ≥ 0 requires
ρ ≥ ρmin ≡

t

6
, (55)

and we assume this condition is met.
From (54), a∗ increases as ρ

t increases. That is, a
∗ increases as ρ increases

and falls as t increases, ceteris paribus.
(54) implies that a∗ is never at the center of the line, although it approaches

the center of the line asymptotically as ρ → ∞, or t → 0 for a given ρ (Figure
5).
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Figure 5: Equilibrium location as a function of ρ/t.

4.3.2 Firm participation constraint

The symmetric equilibrium payoff is

π∗A =
3

16
(9ρ+ 4t)

(
t

3ρ+ t

)2
> 0. (56)

The firm participation constraint is always met.

4.3.3 Stage 1 stability

The matrix of equilibrium second derivatives of payoff functions is(
− 12

(6ρ+t)(2ρ+t)
3ρ+t − 16

t2

3ρ+t

− 16
t2

3ρ+t − 12
(6ρ+t)(2ρ+t)

3ρ+t

)
. (57)
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The trace is negative. The determinant of the stability matrix is

2

9

(
18ρ2 + 12tρ+ t2

)
> 0; (58)

the stability condition is satisfied.

4.3.4 Location best-responses

The first-order condition (53) implicitly defines firm A’s location best-response
function. Best response curves slope downward and, as ρ/t rises, equilibrium
locations move toward the center of the line (Figure 6).
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Figure 6: Location best-response curves with quadratic transportation cost and
cost of location c(y) = ρ(1/2− y)2, ρt =

1
3 and

ρ
t =

2
3 .

In sum, adding a cost of location that declines moving toward the center of
the line to the Hotelling model with quadratic transportation costs can reverse
the conclusion of d’Aspremont et al (1979). In particular, it can yield a situation
approaching endogenous minimum spatial differentiation that does not suffer
from the problems in Hotelling (1929).

5 Conclusion

We have motivated our specification with the observation that rent varies with
location. In the Hotelling Main Street model with linear transportation cost,

15



if locations toward the center of the line command suffi ciently higher rent, rent
acts as a centrifugal force that induces firms to locate outside the region where
equilibrium prices are in mixed strategies. In the Hotelling Main Street model
with quadratic transportation cost, if locations toward the ends of the line com-
mand suffi ciently higher rent, rent acts as a centripetal force that induces firms
to locate toward the center of the line.
We envisage extending the present work to derive the equilibrium rent-

location relationship from the distribution of the population. This will permit
us to examine conditions leading to the hollowing-out of center cities that is
observed in the United States from the latter part of the twentieth century.

Notes

1Safire (2009) attributes the phrase to the late Lord Harold Samuel, a British
real estate tycoon.

2“Cost of location” is something other than “relocation costs.” The latter
starts from a particular situation, and then tells a dynamic story (although
often within a static framework). Our design corresponds to the case of a firm
that must incur a location-dependent rental cost to set-up before it can set price.

3See Karmon (2012) for a comparison of center-city and suburban rental
costs for selected U.S. cities, and Bernard (2010) for a city-suburbs comparison
of the overall cost-of-living.

4See their footnote 1. See also Vickrey (1964, 1999).

5For surveys, see Archibald et al. (1986), Morris (1997).

6These references do not include the closely-related literature that models
basing-point and other spatial pricing policies.

7That is, the market is covered. The analysis produces conditions on v for
the market to be covered.

8If the payoff function is differentiable, the condition is c′ (a) ≥ ∂π̂A(a,ã)
∂a for

0.25 ≤ a - 0.27. The condition can be expressed in terms of discrete changes.
9Qualitatively similar results are obtained for the quadratic location cost

function c (y) = ry2, where r > 0.

10The upper limit solves (3β)−
1

β−1 = 1/4.

11Since firms locate in the outer quartiles, a firm’s most distant customers
are located at the center of the line. The net utility of such a consumer is
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v− t
[
3/2− (t/3β)

1
β−1
]
, and the market coverage condition is that this be non-

negative. The market coverage condition on v, which we assume is met, can be
written v ≥ t

(
3/2− (t/3β)1/(β−1)

)
.

12The corresponding equilinrium locations are 1/12 and 1/6, respectively.

13The market coverage condition on v is v ≥ 5t/4.
14Qualitatively similar results are obtained for the linear location cost function

c(a) = γ (γ − a), with γ > 0.

References

[1] Anderson, Simon P. and Engers, Maxime (1994). “Spatial competition with
price-taking firms.”Economica 61: 125—136.

[2] Anderson, Simon P., Goeree, Jacob K. and Ramer, Roald (1997). “Loca-
tion, Location, Location.”Journal of Economic Theory 77: 102—127.

[3] Anderson, Simon P. and Neven, Damien J. (1991). “Cournot competition
yields spatial agglomeration.”International Economic Review 32: 793—808.

[4] Archibald, G. C., B. Curtis Eaton and Richard G. Lipsey (1986). “Ad-
dress models of value theory,” in New Developments in the Analysis of
Market Structure, Joseph E. Stiglitz and G. Frank Mathewson (editors).
Cambridge, Massachusetts: MIT Press, pp. 3—47.

[5] d’Aspremont, Claude, Gabszewicz, Jean Jaskold and Thisse, Jacques—
François (1979). “On Hotelling’s ‘Stability in competition’.”Econometrica
47: 1145—1150.

[6] Bernard, Tara Siegel (2 July 2010). “High-rise, or house with
yard?” New York Times. Downloaded 2 July 2013 from URL
http://www.nytimes.com/2010/07/03/your-money/03compare.html?.

[7] Capozza, Dennis R. and Van Order, Robert (1982). “Product differentia-
tion and the consistency of monopolistic competition: a spatial perspec-
tive.”Journal of Industrial Economics 31: 27—39.

[8] Chamberlin, Edward H. (1933). The Theory of Monopolistic Competition.
Cambridge, Massachusetts: Harvard University Press.

[9] – (1953). “The product as an economic variable.”Quarterly Journal of
Economics 67: 1—29.

[10] Eaton, B. Curtis and Ware, Roger (1987). “A theory of market structure
with sequential entry.”Rand Journal of Economics 18: 1—16.

[11] Economides, Nicholas (1984). “The Principle of Minimum Differentiation
revisited.”European Economic Review 24: 345-368.

17



[12] – (1986). “Minimal and maximal product differentiation in Hotelling’s
duopoly.”Economics Letters 21: 67—71.

[13] – (1989). “Symmetric equilibrium existence and optimality in differenti-
ated product markets.”Journal of Economic Theory 47: 178—194.

[14] Gupta, B., Pal, Debashis, and Sarkar, J. (1997). “Cournot competition and
agglomeration in a model of location choice.”Regional Science and Urban
Economics 27: 261—282.

[15] Hamilton, Jonathan H., Klein, James F., Sheshinski, Eytan, and Slutsky,
Steven M. (1994). “Quantity competition in a spatial model.”Canadian
Journal of Economics 27: 903-917.

[16] Hinloopen, Jeroen (2002). “Price regulation in a spatial duopoly with pos-
sible non-buyers.”Annals of Regional Science 36:19—39.

[17] Hinloopen, Jeroen and van Marrewijk, Charles (1999). “On the limits
and possibilities of the principle of minimum differentiation.”International
Journal of Industrial Organization 17: 735—750.

[18] Hotelling, Harold H. (1929). “Stability in competition.”Economic Journal
39:41—57.

[19] Irmen, Andreas and Thisse, Jacques—François (1998). “Competition in mul-
ticharacteristics spaces: Hotelling was almost right.”Journal of Economic
Theory 78:76—102.

[20] Karmon, Jennifer “(15 November 2012). “Rental costs, city vs.
suburbs: a handy infographic.” Downloaded 2 July 2013 from
URL http://homes.yahoo.com/blogs/spaces/rental-costs-city-vs-suburbs-
handy-infographic-225331978.html.

[21] Lerner, Abba P. and Singer, H. W. (1937). “Some notes on duopoly and
spatial competition.”Journal of Political Economy 45: 145—186.

[22] Martin, Stephen (2002). Advanced Industrial Economics. Blackwell Pub-
lishers.

[23] Morris, Claire (1997). “‘Address’models of product differentiation: a sur-
vey,”Studies in Economics 9713, Department of Economics, University of
Kent, December.

[24] Osborne, Martin J. and Pitchik, Carolyn (1987). “Equilibrium in
Hotelling’s model of spatial competition.”Econometrica 55: pp. 911—922.

[25] Prescott, Edward C. and Michael Visscher (1977). “Sequential location
among firms with foresight.”Bell Journal of Economics 8: 378-393.

18



[26] Safire, William “On language: location, location, location.” (June 26,
2009). New York Times
(http://www.nytimes.com/2009/06/28/magazine/28FOB-onlanguage-
t.html).

[27] Salop, Steven C. (1979). “Monopolistic competition with outside goods.”
Bell Journal of Economics 10: 141—156.

[28] Samuelson, Paul A. (1967). “The monopolistic competition revolution.”Pp.
105—138 in Kuenne, Robert E., editor. Monopolistic Competition Theory:
Studies in Impact. New York: John Wiley & Sons.

[29] Shaked, A. (1982). “Existence and computation of mixed strategy Nash
equilibrium for 3—firms location problem.”Journal of Industrial Economics
31: 93—97.

[30] Soetevent, Adriaan R. (2010). “Price competition on graphs.”Tinbergen
Institute Discussion Paper 2010-126/1.

[31] Stigler, George J. (1964) “A theory of oligopoly.”Journal of Political Econ-
omy 72: 44—61; reprinted in Stigler, George J. (1968) The Organization of
Industry. Homewood, Illinois: Richard D. Irwin, Inc. 39—63.

[32] Vickrey, William S. (1964). Microstatics. Harcourt, Brace and World, New
York.

[33] – (1999). “Spatial competition, monopolistic competition, and optimum
product diversity.” International Journal of Industrial Organization 17:
953-963.

19


