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Abstract

In this paper we propose an instrumental variables (IV) estimator for a semi-
parametric outcome model with endogeous discrete treatment variables. The
main contribution of our paper is that the identi�cation, consistency and as-
ymptotic normality of our estimator all hold even under misspeci�cation of
the treatment model. As expected from Newey and McFadden (1994), the co-
variance matrix for the parameters and functions of interest does not depend
on estimation uncertainty of the instruments for the endogenous treatments.
Further, we extend our method to the nonparametrtic case with both contin-
uous and discrete exogenous variables. We prove identi�cation, consistency
and asymptotic normality and provide uniform convergence results for esti-
mated functions of interest.



1 Introduction

The purpose of this paper is to develop a robust IV estimator for a class of
semiparametric treatment models where the treatments are discrete endoge-
nous variables that �exibly interact with other explanatory variables. We
use the term robust to indicate that the method formulated here is robust
to imposing incorrect restrictions on the treatment model.
Endogeneity is a very important issue in econometric analysis, and there

is a large literature on this issue (see e.g. Heckman (1978) and Hausman
(1983)). To deal with endogeneity, the IV estimator is widely employed in
the empirical literature (e.g. Card (2001)). In part, the appeal of this esti-
mator in linear systems is its very favorable property of robustness against
misspeci�cation in modelling the instruments. In nonlinear parametric mod-
els, Amemiya (1974,1977) developed an optimal instrument which depends
on an unknown conditional expectation of the derivative of a residual func-
tion. Employing nonparametric expectations while retaining the parametric
outcome model structure, Newey (1990) provided a way to implement the
optimal instrument and showed that the estimator is consistent, asymptoti-
cally normal and e¢ cient. The literature continued to progress to fully non-
parametric models based on either generalizations of two-stage-least-squares
or control approaches. For example, Newey and Powell (2003) developed a
two-stage series estimator with a detailed discussion on identi�cation. Das
(2005) and Cai et. al. (2005) developed a two-stage estimator for a model
that is linear in endogenous variables with an associated multiplicative non-
parametric impact or marginal e¤ect response functions. Newey, Powell, and
Vella (1999) and Imbens and Newey (2009) developed control estimators for
a nonparametric triangular system where both the treatment and outcome
variables of interest are continuous. It is important to note that in the case of
nonparametric models, the issue of imposing incorrect parametric restrictions
does not arise.
There is also a growing literature on estimating semiparametric models

with endogeneity (see Blundell and Powell (2001) for a survey). For exam-
ple, Ai and Chen (2003, 2007) proposed a sieve minimum distance estimator
for a wide class of semiparametric models that accommodates endogeneity.
Meanwhile, there is a vast literature on semiparametric models for speci�c
model structures. To our knowledge, these methods are based on either a
control method, an extremum estimator approach, or a generalized two-stage-
least-squares procedure. For example, Blundell and Powell (2004) developed
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a control estimator for estimating a binary response model when one or
more of the explanatory variables are endogenous; Rothe (2009) formulated
a maximum-likelihood type estimator for this model using a double index
formulation to deal with endogeneity; while Lewbel (2000) developed a two-
stage type estimator. However, there is an important class of semiparametric
endogenous treatment models where misspeci�cation of the treatment model
is an important problem that needs to be addressed. This class of semipara-
metric endogenous treatment model has a discrete endogenous treatment
and a continuous outcome. The purpose of this paper is to �ll this gap and
provide a robust IV estimator for this model.

2 The Model and the Estimator

The model we consider is one with discrete endogenous treatments and a
continuous outcome. There are many empirical applications with such a
model structure. For example, in health economics, the health outcome
(e.g. survival) can be continuous and the treatment could be no treatment,
chemotherapy only, radiation therapy only, or both chemotherapy and radi-
ation therapy. The treatment could also be smoking choices: no smoking,
smoking 1-5 cigarettes per week, smoking 6-10 cigarettes, etc. There are also
many examples in labor economics such as job training program choice with
wages being the outcome.
Denote Yi as the continuous outcome and Wi as a function of the i.i.d.

exogenous variables Xi � [X1i:::Xdi XDi] where X1i:::Xdi are continuous
variables, while XDi is a vector of discrete variables. In the semiparametric
case, Wi may be the single index Vi(�0) = X1i + XIIi�0, where XIIi �
[X2i:::Xdi XDi] or a vector of indices. In the nonparametric case, Wi is
simply Xi. With L+1 possible treatment options, the endogenous treatment
variable Ti could take on values 0; :::; L. Writing the treatment indicator as
Til = 1fTi = lg; l = 1; :::; L, and letting Ti = 0 be the reference (e.g. no
treatment) option, the model we consider is:

Yi = g(Wi;Ti) + "i;

where "i is the error component with conditional expectation zero given the
exogenous variables.
Because of the discreteness of the treatment, we can rewrite the model in
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the following form:

Yi =
LX
l=1

g(Wi; l)Til + g(Wi; 0)

"
1�

LX
l=1

Til

#
+ "i (1)

=

LX
l=1

[g(Wi; l)� g(Wi; 0)]Til + g(Wi; 0) + "i

�
LX
l=1

Ml(Wi)Til +B(Wi) + "i:

This model structure is the same as in Das (2005) and Cai et. al. (2005) in
the nonparametric case. For this case, they propose a two-stage estimator
where the endogenous treatment variables are replaced by estimates of their
conditional expectations. In contrast, here we develop an IV estimator that
retains consistency in the semiparametric case when the treatment model
is misspeci�ed. While these approaches can coincide in linear models, they
di¤er in the present nonlinear context. While we cover the nonparametric
case, our main contribution is in the semiparametric case where we establish
that identi�cation, consistency and asymptotic normality of our estimator all
hold even under misspeci�cation of the treatment model. This result mirrors
that in linear models where this robustness property is well-known. Such
misspeci�cation is ruled out in the nonparametric framework where there
are no incorrect parametric restrictions. For the nonparametric estimator
presented here, we cover the case where the explanatory exogenous variables
are continuous, discrete, or combinations of both.

2.1 Semiparametric Model and Estimator

For the semiparametric model, we letWi � Vj(�0) be an index and begin with
a localized instrumental variables estimation of Ml(Vj(�)) and B (Vj(�)) :1

We use P̂l, a semiparametric estimator for the lth treatment probability, as the
corresponding treatment instrument and note that P̂l may be misspeci�ed.
For example, suppose that we incorrectly impose a single index restriction
on the treatment probability model when there is a second index driving
heteroskedasticity. Then we would be estimating the incorrect probability ~P ,

1It is relatively straightforward to let the outcome equation depend on a vector of
indices. Here, we present the single index case.
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in that P̂ would not converge to the true P . Using localized linear projections,
we provide identi�cation results under this type of misspeci�cation.
With P̂il; l = 1; :::; L, as the ith observation on the instrument for the lth

treatment, let:

Q̂i = ti
�
P̂i1 P̂i2 ::: P̂iL 1

	
1x(L+1)

; (2)

where ti is a trimming function to control gV (the density for V ) and the
density denominators in P̂il: Then, the estimators M̂l(Vj(�)) and B̂ (Vj(�))
satisfy

NX
i=1

Q̂0i

h
Yi � M̂1 (Vj (�))Ti1 � :::M̂l (Vj (�))TiL � B̂ (Vj (�))

i
K(Vj; Vi) = 0

where l = 1; :::; L and K(v; Vi) = 1
h
k(Vi�v

h
) is a kernel weight, with k(�) a

symmetric density and
Z
t2k(t)dt is bounded.2. Notice that this IV estimator

estimates the M and B functions at each index value Vj by essentially using
observations in a small neighborhood of Vj: The kernel weights ensure this
localization. By repeating the above estimation strategy for given �, we
obtain M̂l (Vj (�)) and B̂ (Vj (�)) for j = 1; :::; N and l = 1; :::; L. The key
to this localized argument is that in estimating the unknown functions at
a point, they are treated as if they were parameters (see Fan and Gijbels
(1996) for related discussions).
To provide the estimator satisfying the above moment conditions, under

index assumptions, write the model as

Y = R�0(v) + "+�(v);

2In semiparametric models with a linear index, for identi�cation one of the index vari-
ables must be continuous. In this case, the index will be continuous even if some of the
index variables are discrete. Therefore continuous kernels of the form assumed here are
appropriate. To deal with discrete regressors in the nonparametric case, we formulate a
di¤erent kernel that is in part based on indicators to handle discrete explanatory variables.
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where:

R = fT 1gNx(L+1) , Ri =
�
Ti1 Ti2 ::: TiL 1

	
1x(L+1)

�0(v) �
�
M(v)Lx1
B(v)

�
(L+1)x1

�(v) �

8<:
�1(v)
:::
�N(v)

9=;
Nx1

;�i(v) � Ri [�0(Vi)� �0(v)]

WithX1i being continuous, let Vi = X1i+XIIi�0,XIIi � [X2i:::Xdi XDi] ;and
DN(v; �) be anNxN diagonal matrix having ith diagonal elementK(v; Vi (�)).
Throughout, v is in a compact subset of the support for Vi where gV (v) 6= 0:
De�ne Q̂ as the matrix with ith component Q̂i as in (2). Then, in the semi-
parametric case, our estimator for the � function is given as:

�̂(v; �) � 
̂(v; �)�1 Q̂
0DN(v; �)Y

N

where 
̂(v; �)(L+1)x(L+1) � Q̂0DN (v;�)R
N

:
Before proceeding to discuss estimation of the index parameters, it is

useful to further discuss �̂(v; �) as it and its derivative play a key role in the
large sample theory. It can be shown that:

�̂(v; �)
p! [E (Q0iRijVi (�) = v)]

�1
E (Q0iYijVi (�) = v) � � (v; �) (3)

Here, � (v; �) depends not only on v the point at which it is evaluated, but
also on � because the conditioning random variable Vi (�) depends on it. At
� = �0; �0 (v) � � (v; �0) is a vector of the true functions evaluated at the
point v.
Next we estimate the semiparametric parameter � by another IV step

with

�̂ = argmin
�

"
NX
i=1

Ẑ 0i [Yi �Ri�̂(Vi (�) ; �)]
#2

(4)

where
Ẑi = P̂1iW1iti + :::+ P̂LiWLiti +WL+1iti: (5)

The W 0
is are weights that can depend on Vi and Xi. We will discuss the

optimal weights in the Large Sample Results Section. The structure of this
instrument is suggested by Newey�s (1990) optimal instrument in parametric
models.
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2.2 Nonparametric Model and Estimator

Return to the general model in (1), letWi = Xi so that all functions depend
on the vector of exogenous variables for observation i. In this case, employing
notation similar to that above, our objective is to estimate �(x) at many
values of x in a compact set As above, write the model in localized form as:

Y = R�(x) + "+�(x);

where �(x) �
�
M(x)Lx1
B(x)

�
(L+1)x1

�(x) �

8<:
�1(x)
:::
�N(x)

9=;
Nx1

;�i(x) � Ri [�(Xi)� �(x)]

Let Xi � [X1i:::Xdi XDi] be i.i.d., where XCi � [X1i:::Xdi] is a vector
of continuous variables, while XDi is a vector of discrete variables. Denote
x = [x1:::xd xD] and de�ne:

K(x;Xi) = 1 fXDi = xDg
dY
j=1

1

h
k(
Xji � xj

h
);

where h = O
�
N� 1

4+d

�
, k(�) is a symmetric bounded density, and

Z
t2k(t)dt

is bounded. Let gX be the density for Xi and x a point in a compact subset
of the support for Xi with gX(x) 6= 0:
De�ne Q̂i as in (2) with the nonparametric treatment probability, P̂l as

the treatment instrument for treatment T: Then,the IV estimator at the point
x satis�es:

NX
i=1

Q̂0i

h
Yi � M̂1 (x)Ti1 � :::M̂l (x)TiL � B̂ (x)

i
K(x;Xi) = 0

Then, the estimator satisfying the above moment conditions is given as:

�̂(x) �
�
M̂(x)Lx1
B̂(x)

�
(L+1)x1

� 
̂(x)�1 Q̂
0DN(x)Y

N

where 
̂(x)(L+1)x(L+1) � Q̂0DN(x)R

N
:
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3 Assumptions and De�nitions

In Progress

4 Large Sample Results

With all results being proved in the Appendix, the �rst theorm below provide
identi�cation and consistency results for the nonparametric case.
Theorem 1. Nonparametric Identi�cation and Consistency. As-

sume that the covariance matrix of Pi�jXi = x is positive de�nite, which
requires that Pil depend on one or more variables excluded from X. De�ne
constants c�p and c

�
u such that 0 < c�p <

2
4+d

and 0 < c�u <
1
2+d
; where d is

the dimension of the continuous component of X. With x in a compact set.
Then with 
(x) � E[Q0

iRijXi = x]g(x),

a) : sup
x





̂(x)� 
(x)


 = op(1)
b) : 
(x) is non-singular

c) : j�̂(x)� �(x)j = op
�
N�c�p

�
d) : sup

x
j�̂(x)� �(x)j = op

�
N�c�u

�
where k�k means absolute value for each element.

With our focus being on the semiparametric model, the theorems below
provide identi�cation, consistency, normality and e¢ ciency results.
Theorem 2 Semiparametric Identi�cation and Consistency. As-

sume that the covariance matrix of Pi�jVi (�) = v is positive de�nite. De�ning

(v; �) � E[Q

0
iRijVi (�) = v]g(v) and �(v; �) � 
(v; �)�1E [Q0iYijVi(�) = v],

it follows that:

a) : sup
v;�





̂(v; �)� 
(v; �)


 p! 0

b) : 
(v; �) is non-singular

c) : sup
v;�
j�̂ (v; �)� � (v; �)j p! 0

d) : �̂
p! �0,
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where k�k means absolute value for each element and where (b) holds for
correctly speci�ed models.3

Theorem 3. Normality for �̂. De�ne

H0 � �E
�
Z 0jRjr�� (Vj (�) ; �)�=�0

�
:4

R0z(Vj (�0)) �
�
Z 0j � [E (ZjRjjVj)]

h
E[Q

0

jRjjVj]
i�1

Q0j

�
:

Then
p
N
h
�̂ � �0

i
d!W~N

�
0; �2"H

�1
0 E [Rz(Vj)

0Rz(Vj)]H
�1
0

�
;

Recalling the de�nition of the �� function in (3), the theorem below
requires r�(Vj(�); �)�=�0 , the derivative of the � � function with respect
to � and evaluated at �0: We note that �0(Vj(�)) � �(Vj(�); �0) is the true
�� function evaluated at the point Vj(�): In the Appendix, we show that:

r��(Vj(�); �)�=�0 = r��0(Vj(�))�=�0�E
�
Q0jQjjVj

��1
E
�
Q0jQjr��0(Vj(�))�=�0jVj

�
;

a result that is useful for e¢ ciency in the next theorem.
Theorem 4. E¢ ciency. De�ning 'j = Qjr��0(Vj(�))�=�0 ; the j

th

observation on the optimal instrument is given by

R'(Vj) = Qjr��(Vj(�); �)�=�0 = '�QjE
�
Q0jQjjVj

��1
E
�
Q0j'jVj

�
;

where r��(Vj (�) ; �)�=�0denotes the the derivative of � (Vj (�) ; �) taken with
respect to � and then evaluated at �0:

Therefore, the optimal instrument is (5) with weightWi = r��(Vj(�); �)�=�0.
The form of this weight is suggested by the optimal instrument for the para-
metric case with known � functions as derived in Newey (1990).
To give some sense as to how the estimator performs, in the next section

we report several Monte-Carlo simulations. A fuller set of Monte-Carlo
experiments will be included in the completed paper.

3We do have conditions that ensure identi�cation in the case that the treatment model
is not correctly speci�ed, but are trying to develop more primitive conditions for this case.
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5 Monte-Carlo Results

In the Monte-Carlo study, we investigated two di¤erent designs. With all
exogenous variables X1;X2 and Z generated to be standard normal, and the
error terms u and " being correlated, the treatment and outcome models are
given as:

Y2 = 1 fV2 � ug where V2 = X2 +X3;

Y1 = V1 + V1 � Y2 + Y2 + " where V1 = X1 +X2:

In the �rst design the error terms u and " are homoskedastic and fol-
low normal distributions. In the second design, the treatment error is het-
eroscedastic with u = cX2

2u
�, where c is a constant and u� is distributed as

standard normal, independent of X. The sample size in the Monte-Carlo is
2000, and we ran 100 replications. The instrument that we use for estimating
the marginal e¤ects function is given by the probability of treatment condi-
tioned on a single index. This instrument is "correct" for the homoscedastic
model, but "incorrect" in the case of heteroskedasticity.
We also require instruments for estimating the index parameters. The

parameter estimator �̂ solves:

1

N

X
Ẑ
0

j [Yj � [Tj 1] �̂ (Vj (�) ; �)] = 0;

If the �-functions were known, then with �0 as the vector of true functions
and Xj � [X1j; X2j; X3j] ; from Newey (1990) the optimal instrument would
be:

Z
0

j = E ([Tj 1] [rv�0]X2j j Xj) = [Pj 1] [rv�0]X2j:

In reporting results below, we simply use Ẑ
0
j =

h
P̂j 1

i
tjX2j as the instru-

ment.
The results from an illustrative Monte-Carlo experiment are as follows:
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Table I: Simulation Results

homoskedastic model heteroskedastic model
estimated truth estimated truth
mean std mean std 1:00

parameter 1:05 :10 1:00 1:05 :09 1:00
marginal e¤ect overall 1:02 :24 1:00 1:00 :16 1:00
marginal e¤ect in 1st quartile �:15 :37 �:20 �:16 :29 �:20
marginal e¤ect in 2nd quartile 0:67 :30 0:65 0:66 :21 0:65
marginal e¤ect in 3rd quartile 1:35 :29 1:35 1:34 :19 1:35
marginal e¤ect in 4th quartile 2:18 :37 2:19 2:17 :27 2:19

The Monte-Carlo results shows that our estimator performs very well in
�nite samples. For the parameter estimates, the bias and standard deviations
are small for both models. If we had employed the optimal instrument, then
one would expect better performance under the homoskedastic design. The
completed paper will investigate this issue in a variety of designs.
When we look at the marginal e¤ect estimates, it is well estimated overall.

Since our model is not linear, we report the marginal e¤ects at di¤erent
points of the index distribution as well. Basically we report the marginal
e¤ect averaged over observations with V1 in the each of the four quartiles.
Our results show that the marginal e¤ects were well estimated overall.

6 Conclusions

In conclusion, we have proposed estimators for both semiparametric and
nonparametric models where the discrete treatment is endogenous. Both the
outcome model and the treatment model accommodate a large variety of dif-
ferent model structures. The outcome model allows �exible interactions be-
tween the endogenous treatment and other exogenous variables. Further, our
estimator has the desirable large sample properties and performs well even
when the treatment model is misspeci�ed. Such robustness against misspec-
i�cation is achieved by using IV in estimating both marginal e¤ect functions
and index parameters. For the case when the model is correctly speci�ed,
we proved the e¢ ciency of the estimator. Monte Carlo results show that the
estimator performs well in �nite samples.
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