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Abstract 

 
Locally weighted quantile regressions allow the coefficients of hedonic house price 

functions to vary over space.  Using data on all house sales in Cook County, Illinois, for 2000-

2011, I show how the full distribution of appreciation rates changed over time in small geographic 

areas.  The estimates reveal significant spatial variation in appreciation rates both geographically 

and across the distribution of house prices.  During the boom, house prices rose most rapidly 

among lower-priced homes, particularly on the South and West sides of Chicago.  Prices then 

declined most rapidly afterward in these same areas.  In contrast, high-priced homes in the Near 

North Side of the city and in the far North suburbs had only moderate declines in prices after 2006.  

The results clearly indicate that standard approaches to estimating house price indices over-

simplify what is actually a rich set of spatial and temporal variation in appreciation rates. 
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1. Introduction 

House prices do not necessarily change at a uniform rate throughout an urban area.   Prices 

may decline more slowly in highly desirable, high-priced areas during a recession, and they may 

appreciate more rapidly in low-priced areas in boom periods.  Or the opposite patterns may 

describe the change in the house price distribution.  In either case, a single price index does not 

adequately describe the changes in prices across the full urban area.  Nonetheless, the most 

commonly used price indices – those based on median prices, repeat sales, and hedonic price 

functions – all typically are based on an assumption that appreciation rates do not vary across 

neighborhoods or house prices.  

 Several authors estimate separate price indices for locations within an urban area.  

Examples include Archer, Gatzlaff, and Ling (1996); Case and Mayer (1996); McMillen (2003); 

Meese and Wallace (1991); Monkkonen, Wong, and Begley (2012); Ries and Somerville (2010); 

Rouwendal and Longhi (2008); Schmitz, Shultz, and Sindt (2008); and Weber, Bhatta, and 

Merriman (2007).  A related literature explicitly attempts to identify housing submarkets within 

cities (e.g., Bourassa, et al., 1999; Bourassa, Hoesli, and Peng, 2003; and Goodman and 

Thibodeau, 1998, 2007).  All of these papers use regression procedures to estimate a single 

expected appreciation rate for each submarket under consideration.   

Recently, several authors have used quantile estimation procedures to analyze variation in 

appreciation rates within each sample area.  Examples of studies that focus on the distribution of 

price changes include Cobb-Clark and Sinning (2011); Coulson and McMillen (2007), Deng, 

McMillen, and Sing (2012, forthcoming); McMillen (2008, 2012a); and Nicodemo and Raya 

(2012).  Other authors have used quantile approaches to estimate hedonic price functions using 

cross sectional data (Kostov, 2009; Liao and Wang, 2012; Zahirovic-Herbert and Chatterjee, 2012; 
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and Zeitz, Zeitz, and Sirmans, 2008).  Related procedures have also been used to analyze the 

distribution of times on the market (Carrillo and Pope, 2012). 

My objective in this paper is to merge these two traditions to show how the full distribution 

of prices changed over time in small geographic areas.  Following McMillen (2012a), I first use a 

matching estimator to assure that the overall distribution of housing characteristics does not vary 

significantly over time.  Next, I estimate hedonic price functions using data for all house sales in 

Cook County, Illinois for 2000-2011.  I allow appreciation rates to vary across Chicago and its 

suburbs by using a locally weighted estimation procedure that places more weights on sales that 

are closer to a set of target points.  This nonparametric estimation procedure allows appreciation 

rates to vary smoothly over space.  I estimate locally weighted quantile regressions for a variety 

of quantiles.  Although the estimation procedure is computer intensive, the results are easy to 

summarize using kernel density estimates.   

The results provide fascinating insights into the rise and fall of house prices over the boom 

and bust periods of the past decade.  While any price index would show that prices rose 

dramatically prior to the end of 2007 and then fell significantly afterward, the locally weighted 

quantile estimates reveal significant spatial variation in the estimates, as well as variation across 

the distribution of house prices.  During the boom, house prices rose most rapidly among lower-

priced homes, particularly on the South and West sides of Chicago.  Prices then declined most 

rapidly afterward in these same areas.  In contrast, high-priced homes along the Lakefront had only 

moderate declines in prices after 2007.  The results clearly indicate that standard approaches to 

estimating house price indices over-simplify what is actually a rich set of spatial and temporal 

variations in appreciation rates. 
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2. Mean-Based Price Indices 

A typical specification of a hedonic price function expresses the natural log of sale price 

as a function of characteristics of the structure, location, and the sale date.  Let P represent sale 

price, and let X represent the combination of variables representing characteristics of the structure 

and the location.  Also, let 𝐷𝑡 represent a dummy variable indicating a sale at time t.    The hedonic 

price function is: 

 

𝑙𝑛𝑃𝑖𝑡 = 𝑋𝑖𝑡𝛽𝑡 + ∑ 𝐷𝑖𝑡𝛿𝑡

𝑇

𝑡=1

+ 𝑢𝑖𝑡 (1) 

 

An alternative specification imposes the assumption that the coefficients on X do not change over 

time: 

 

𝑙𝑛𝑃𝑖𝑡 = 𝑋𝑖𝑡𝛽 + ∑ 𝐷𝑖𝑡𝛿𝑡

𝑇

𝑡=1

+ 𝑢𝑖𝑡 (2) 

 

The more general specification, Equation (1), is equivalent to estimating a separate equation for 

each date.  In this case, a price index can be constructed by assuming a set of values for X.  In 

Equation (2), the price index is simply the set of coefficients on D, where D is the matrix 

comprising the full set of T dummy variables. 

 Invoking an additional assumption that 𝑋𝑖𝑡 is constant over time for each property leads to 

the repeat sale estimator of Bailey, Muth, and Nourse (1963) and Case and Shiller (1989): 

 𝑙𝑛𝑃𝑖𝑡 − 𝑙𝑛𝑃𝑖𝑠 = 𝛿𝑡 − 𝛿𝑠 + 𝑢𝑖𝑡 − 𝑢𝑖𝑠 (3) 
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where s < t.  The repeat sales estimator is often presented as a potential solution to the bias that 

occurs in hedonic estimation when omitted characteristics of the structure or location are correlated 

with the error term:  if the omitted variables and their coefficients are constant over time, they 

disappear in the transformation from Equation (2) to Equation (3).  However, as argued in 

McMillen (2012a), the real power of the repeat sales estimator lies its restriction of the sample to 

the set of properties that sold at least twice during the sample period.  In an important but 

overlooked paper, Wang and Zorn (1997) show that repeat sales estimates are identical to period-

by-period sample averages for 𝑙𝑛𝑃𝑡 when the number of observations is the same for each period 

within the repeat sales sample.  This result holds whether the variables in 𝑋𝑖𝑡 are constant over 

time or not, and also when some variables are omitted from 𝑋𝑖𝑡.  Once the sample has been 

restricted to repeat sales, the only thing that is accomplished by estimating Equation (3) is to 

reweight the period-by-period sample averages according to the number of sales in each period. 

 McMillen (2012a) notes that Wang and Zorn’s (1997) result implies that the repeat sales 

model is an extreme form of a matching estimator in which a treatment observation – those 

properties selling at time t rather than at time s – is matched only with the sale of the same property 

at another date.  Restricting the sample to repeat sales discards what typically is a much larger 

number of properties that sold only once during the sample period.  In addition to a potential loss 

in efficiency, the result of this restriction is that the repeat sales approach cannot be applied to 

relatively small geographic areas where the number of repeat sales pairs is likely to be small.  

McMillen (2012a) suggests using standard matching estimator approaches to pair sales in a base 

period with similar properties selling at other times.  This approach produces significantly larger 

sample sizes, while still discarding “unusual” sales – those that are not similar to other properties.  

Averaging over large numbers of similar sales produces accurate measures of the central tendency 
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of sales prices at each time, and the approach is directly comparable to the repeat sales estimator 

when the number of sales in the matched sample is the same in each period.  Alternatively, a 

hedonic approach can be used to estimate the predicted sale price in each period for a representative 

home (Equation 2) or to estimate a “quality-controlled” price index (Equation 3). 

3. Quantile Price Indices 

 Standard hedonic and repeat sales price indices focus on the mean sale price.  McMillen 

(2012a) suggests that a quantile approach can be used to estimate an index for any point in the 

sales price distribution, such as the median, the 10th percentile, or the 90th percentile.  The quantile 

approach can be implemented in several ways.  First, just as the averages over time of the predicted 

values from OLS estimates of Equation (1) return the period-by-period sample averages of 𝑙𝑛𝑃𝑖𝑡, 

the average of the predicted values for quantile regression estimates of Equation (1) for quantile q 

returns the qth percentile of 𝑙𝑛𝑃𝑖𝑡 for each time period.  Quantile regression estimates of Equation 

(1) can also be used to form an index for any quantile q of the sale price distribution using the 

predicted values for a representative property.  Either of these two approaches can also be applied 

to a matched sample, whether the matches are constructed using repeat sales or through a more 

general matching approach.  Alternatively, Equation (2) can be estimated using a quantile 

regression if one is willing to impose the assumption that the coefficients on 𝑋𝑖𝑡 are constant for 

any quantile q (but not necessarily across quantiles).   

The quantile and OLS approaches to hedonic estimation of house price indices differ only 

in that they focus on different points in the house price distribution.  Counterparts to the repeat 

sales price index can be constructed by calculating period-by-period percentiles of the price 

distribution for repeat sales or other matched samples.  Both quantile and OLS approaches can 

also be applied directly to the repeat sales or matched samples.  Just as a standard index shows 
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how the average quality-controlled sale price changes over time, a quantile index shows how the 

qth percentile price evolves over time.   

Quantile regressions can also be used to analyze the effects of a change in any explanatory 

variable, including date of sale, on the overall distribution of sales prices.  The approach is 

discussed in detail in McMillen (2012b).   Following the approach that will be used in the empirical 

section of the paper, suppose we estimate a quantile version of Equation (2) in which the first time 

indicator variable is dropped and a constant term is included in X: 

 

𝑄𝑙𝑛𝑃(𝑞|𝑋𝑖𝑡, 𝐷𝑖𝑡) = 𝑋𝑖𝑡𝛽(𝑞) + ∑ 𝐷𝑖𝑡𝛿𝑡(𝑞)

𝑇

𝑡=2

 (4) 

 

This notation, which is a slightly modified version of the notation in Koenker (2005), implies that 

the conditional quantile function for the natural log of sale price at quantile q is a linear function 

of X and the set of time of sale indicator variables.  The estimated coefficients vary by quantile.  A 

common approach is to estimate Equation (4) at a set of target quantiles, such as q = 0.10, 0.25, 

0.50, 0.75, and 0.90.   

 The full distribution of the dependent variable can be traced out by estimating Equation (4) 

at all possible quantiles.  One approach, which is used in a slightly different context by Machado 

and Mata (2005), is to draw randomly from values of q ranging from 0 to 1, and then re-estimating 

the model each time.  If there are n observations in the data set and B quantiles are drawn, then the 

dimension of the resulting matrix of predictions is 𝑛 × 𝐵.  If the quantile estimates are reasonably 

smooth across quantiles, then similar results will be obtained by restricting the number of quantiles 

to a relatively small number, such as q = 0.03, 0.05, …, 0.95, 0.97, which implies B = 48.  If we 

then collect the predictions into a single vector with nB entries, an estimated kernel density 
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function for the predictions will look nearly identical to the density function for the original values 

of 𝑙𝑛𝑃. 

This approach can be used to show how the distribution of the dependent variable changes 

when a single explanatory variable is set at an arbitrary set of values.  In the empirical section of 

the paper, sales dates ranging from 2000 to 2011 are represented by a series of 12 dummy variables 

ranging from 𝐷0 to 𝐷11, and 𝐷0 is omitted from the estimated model.  The estimated value of 𝑙𝑛𝑃 

at quantile q in 2000 is simply 𝑋𝑖𝑡𝛽̂(𝑞), and the estimate value at the same quantile in year t is 

𝑋𝑖𝑡𝛽̂(𝑞) + 𝛿𝑡.  The other explanatory variables are set to their observed values, 𝑋𝑖𝑡.  The same set 

of calculations can be then be conducted for other quantiles.  Thus, the results imply nB predicted 

values for 𝑄𝑙𝑛𝑃(𝑞|𝐷0 = 1) and for 𝑄𝑙𝑛𝑃(𝑞|𝐷𝑡 = 1).  Kernel density estimates for these sets of nB 

predicted values show how the distribution of 𝑙𝑛𝑃 changes when the year of sale changes from 

2000 to a later year and the values for 𝑋𝑖𝑡 are set at their actual values.  A suitable bootstrap 

procedure can be used to construct confidence intervals for the counterfactual densities 

(Chernozhukov, Fernandez-Val, and Melly, forthcoming).  A series of density function estimates 

shows how the full distribution of log sale price changes over time. 

 

4. Locally Weighted Indices 

So far, my discussion of alternative approaches for estimating price indices has not been 

explicitly spatial.  In keeping with Equation (1), one approach to allowing for spatial variation in 

appreciation rates is to estimate a separate hedonic price functions for submarkets within an urban 

area.  Examples of this approach include Archer, Gatzlaff, and Ling (1996); Case and Mayer 

(1996); Meese and Wallace (1991); Monkkonen, Wong, and Begley (2012); Ries and Somerville 
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(2010); Rouwendal and Longhi (2008); Schmitz, Shultz, and Sindt (2008); and Weber, Bhatta, and 

Merriman (2007).  An alternative that is in keeping with Equation (2) is to interact a set of 

neighborhood dummy variables with the set of time dummy variables.  The same approaches can 

also be used for quantile estimation, although estimation times may be high for models with a large 

number of time and neighborhood interaction variables.   

In many cases, it is reasonable to assume that variables such as house prices and appreciation 

rates vary smoothly over space.  Neighborhood dummy variables may produce accurate results if 

the neighborhoods are defined accurately and regression coefficients change discretely at 

neighborhood boundaries.  An alternative is to use a variant of Cleveland and Devlin’s (1988) 

locally weighted regression (LWR) procedure in which the coefficients of the estimating equation 

are assumed to vary smoothly over space.  This variant, which is often referred to as 

“geographically weighted regression” or GWR, was used in McMillen (2003) to estimate repeat 

sales indices that allow appreciation rates to vary smoothly over location within a city.  Letting 𝑧1𝑖 

and 𝑧2𝑖 represent the geographic coordinates (e.g., longitude and latitude or distance north and east 

of a base location) of the property associated with observation i, the GWR version of the models 

analyzed here is obtained by writing the coefficients in Equations (1) – (4) as functions of the 

coordinates.  For example, 𝛽𝑡(𝑧1𝑖, 𝑧2𝑖) and 𝛿𝑡(𝑧1𝑖, 𝑧2𝑖) replace 𝛽𝑡 and 𝛿𝑡 in Equation (1).  

Cleveland and Devlin’s estimation procedure was introduced to the urban and real estate literature 

by Meese and Wallace (1991), and the simplified GWR version of the model was first used by 

McMillen (1996). 

 Separate locally weighted models are estimated for a set of target locations, with more 

weight applied to observations that are closer to the target locations.  Letting 𝑑𝑖 represent the 

distance from the target site to the location associated with observation i, the weight applied to 
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observation j when estimating the model for the target location is 𝐾(𝑑𝑖), where K is any standard 

kernel weight function.  For linear regression models, the estimation procedure is simply a set of 

weighted least squares regressions, one for each target point.  In many studies, each observation 

serves in turn as a separate target point.  However, estimation time can be reduced significantly by 

taking advantage of the smoothness implied by the LWR approach by interpolating from a smaller 

set of target points to each location represented in the data set.  A detailed discussion is presented 

in McMillen (2012b). 

 A similar approach can be used for quantile estimation using results from Chaudhuri 

(1991), Koenker (2005, chapter 7), and Yu and Jones (1998).  Following the notation in Koenker 

(2005), define the piecewise linear function 𝜌𝑞(𝑢) = 𝑢(𝑞 − 𝐼(𝑢 < 0)).  The standard quantile 

approach for a simple regression model involves finding the values for 𝛽̂(𝑞) that minimize 

∑ 𝜌𝑞(𝑦𝑖 − 𝑥𝑖
′𝛽)𝑖 .  Obvious counterparts to this equation can be defined using the notation of 

Equations (1) and (2).  The counterpart to GWR is obtained by finding the values of 𝛽̂(𝑞, 𝑑) that 

minimize the locally weighted objective function ∑ 𝐾(𝑑𝑖)𝑖 𝜌𝑞(𝑦𝑖 − 𝑥𝑖
′𝛽).  As is the case for 

standard GWR models, the idea is simply to place more weight on nearby observations when 

estimating the model at a target point.  Again, estimation time is reduced significantly by 

interpolating to the full set of data points from a set of target points.   

 After interpolation, the locally weighted estimation procedure produces a set of 𝐵 × 𝑘 

coefficients for each observation, where k is the number of explanatory variables and B again 

indicates the number of quantiles for which the locally weighted quantile regressions are estimated.  

Despite this complexity, the estimates can be summarized easily using counterfactual kernel 

density functions.  As before, consider the case where we want to compare predicted values for 
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2000 to those for another year t.  All that differs from before is that the estimated coefficients have 

a subscript for the individual observation:  𝑄𝑙𝑛𝑃(𝑞|𝐷0𝑖 = 1) = 𝑋𝑖𝑡𝛽̂𝑖(𝑞) and 𝑄𝑙𝑛𝑃(𝑞|𝐷𝑡𝑖 = 1) =

𝑋𝑖𝑡𝛽̂𝑖(𝑞) + 𝛿𝑡𝑖.  As before, each set of predictions has 𝑛 × 𝐵 values, and the results can be 

summarized easily using kernel density estimates. 

 The locally weighted approach has two important advantages for spatial quantile models 

when compared with including a potentially large number of neighborhood fixed effects.  First, it 

is based on what often is a more reasonable assumption that spatial effects vary smoothly rather 

than changing discretely at neighborhood boundaries.  Second, it is often the case that some 

locations have few observations, which leads to imprecise estimates and can lead to problems of 

convergence for the quantile estimator.  Although imprecision is also a problem for ordinary 

regression models with a large number of fixed effects, the problem is greater for quantile models 

because more coefficients are estimated since the coefficients vary by quantile.  

5. Data 

The data set includes all sales of single-family houses in Cook County, Illinois for 2000-

2011.  With approximately 5.2 million people, Cook County is the second most populous county 

in the U.S., and it has more residents than all but 21 states.  Chicago accounts for 2.7 million of 

these residents.  The Illinois Department of Revenue provided data on sales dates and prices.  I 

then merged this data set with data from the Cook County Assessor’s Office showing addresses 

and a standard set of structural characteristics.  The structural characteristics include building area, 

lot size, the number of rooms, the number of bathrooms, and the year when the home was built.  

The data set also includes variables indicating whether the home is built of brick and whether it 
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has a basement, central air conditioning, a fireplace, an attic, and a garage.  After dropping 

observations with missing data, the full data set includes 409,994 sales. 

Cook County is divided into three assessment districts – the City of Chicago, the North 

Suburbs, and the South Suburbs.  These districts are a natural starting point for defining geographic 

sub-regions, and empirically it does turn out that changes in the distribution of house prices differ 

across the three areas.  The top panel of Table 1 shows the number of sales annually in each region 

and in the full data set, while the top panel of Table 2 presents descriptive statistics across time for 

each district. 

As discussed in Section 2, the repeat sales estimator is an extreme version of a matching 

estimator in which each sale is matched with the sale of the same property at another time.  With 

a full set of standard explanatory variables, a “selection on observables” assumption is reasonable, 

i.e., 𝑢𝑡 ⊥ (𝐷𝑡, 𝑋𝑡).  If this condition holds and Equation (2) is the correct model specification, then 

linear regressions provide unbiased estimates of the 𝛿𝑡.  Nonetheless, it may still be preferable to 

drop sales of relatively unusual properties, such as extremely small or very old homes.  A goal of 

a matching estimator is to pair treatment observations with similar observations from a control 

group.  In the case of a house price index, the control group is the base period, while each 

subsequent time is the treatment:  what would be the expected price of a property if it were to sell 

in time t rather than in the base period?  As Ho et al (2007) emphasize, using a matching procedure 

to pre-process the data is likely to make the estimates less model dependent.  McMillen (2012a) 

finds support for this point:  whereas estimated repeat sales, hedonic, and simple median price 

indices are significantly different before matching, they are nearly the same for matched samples. 

As in McMillen (2012a), I use a simple propensity score approach to construct the matched 

samples.  Using 2000 as the base each time, I estimate a series of logit models for each subsequent 
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year with the indicator variable 𝑦𝑡 ≡ 𝐼(𝑦𝑒𝑎𝑟 = 𝑡) as the dependent variable and the structural 

characteristics shown in Table 2 as the explanatory variables.  I then use the predicted probability 

of sale in year t to match each year t observation to its closest counterpart from 2000.  When year 

t has more sales than in 2000, the matched sample for year t will have no more than the number of 

observations in 2000, 𝑛0.  Additional observations are dropped if they fall outside the support of 

the estimated probabilities, i.e., if 𝑝̂(𝑦𝑡 = 1) ∉ [𝑚𝑖𝑛(𝑝̂(𝑦𝑡 = 0)), 𝑚𝑎𝑥(𝑝̂(𝑦𝑡 = 0))], where 𝑝̂ is 

the estimated probability that the property sold in year t rather than in 2000.  In years where the 

number of observations in year t is less than 𝑛0, all observations will remain in the matched sample 

unless this support condition is violated.  Observations are dropped from the 2000 sample only 

when they fail to find a match with a sale in any of the subsequent years.  I estimate separate logit 

models for Chicago, the North suburbs, and the South suburbs, and I also construct the matches 

separately by region.   

The lower panel of Table 1 shows the resulting number of observations in the matched 

samples for the three regions.  The lower panel of Table 2 presents descriptive statistics for each 

region across all years.  Table 3 shows the variation in the means over time for each of the regions.  

The means of the explanatory variables are quite similar even in the full sample.  The relatively 

low variation in the means over time suggests that the annual data sets are all reasonably balanced. 
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6. Estimated Hedonic Price Indices 

The results of a standard hedonic regression analysis are presented in Table 2.  The set of 

matched samples serves as the data set for the hedonic estimates, as well as for the quantile 

estimates to be presented later.  Equation (2) serves as the basis for the estimated hedonic price 

functions.  The equation has constant coefficients for the structural coefficients over time, with 

fixed effects for census tracts and the year of sale.  The equations fit the data reasonably well, and 

the results are as expected.  Sales prices increase with building area, lot size, the number of 

bathrooms.  Brick construction, a basement, central air conditioning, a fireplace, and a garage all 

are associated with higher sales prices.  Sales prices are also higher for newer homes. 

 The coefficients on the year of sale represent the price indices.  The indices are displayed 

in Figure 1.  Prices peaked in 2006 in each region after a period of rapid appreciation.  The implied 

annual appreciation rate for 2000-2006 was approximately 7% in both the North and South 

suburban regions, and it was nearly 9% in Chicago.  Prices dropped moderately between 2006 and 

2007, after which they fell dramatically, particularly in Chicago.  The implied annual rate of 

change in prices was approximately -21% in Chicago and -16% in the South Suburbs, compared 

with a somewhat more modest rate of -9.4% in the North Suburbs. 

7. Percentiles for Matched Samples 

A direct comparison of quantile estimation to the price indices shown in Figure 1 is 

infeasible due to the large number of census tract fixed effects included in the hedonic price 

function estimates.  In this section, I simply show how the 10%, 50%, and 90% percentiles of the 

sales price distribution vary over time.  The raw percentiles are equivalent to the average 

predictions at these quantiles for quantile regressions that do not include controls for location.  In 
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the next section, I control for location by estimating locally weighted versions of quantile 

regressions. 

Figure 2 shows how the percentiles of the sale price distribution change over time.  The 

drop in prices after 2006 is evident at each percentile.  However, it is much more pronounced at 

the lower end of price distribution, particularly in Chicago and the South Suburbs.  To facilitate a 

comparison of the price changes across regions, the percentiles are transformed into indices in 

Figure 3 by subtracting the value for 2000 from each year’s value.  The median index in the second 

panel of Figure 3 is roughly comparable to the hedonic estimates of Figure 1:  prices rose fastest 

in Chicago up to 2006, but then declined more rapidly than in the other regions.  The first panel of 

Figure 3 shows that this decline was even more marked for the 10% percentile.  The 10% percentile 

of the sale price distribution declined much less in the North Suburbs than in the other two regions.  

It is also noteworthy that the 90th percentile of the price distribution stopped increasing earlier in 

the South Suburbs than in the other two regions. 

A median price index is comparable to a standard repeat sales index when the medians are 

constructed using repeat sales or matched samples.  The differences between the approaches can 

be illustrated with a simple two-period model based on Equation (2) with a single explanatory 

variable, x.  In this case, the means of log sale price in periods 1 and 2 are 𝑦̅1 = 𝑥̅1𝛽 + 𝛿1 + 𝑢̅1 

and 𝑦̅2 = 𝑥̅2𝛽 + 𝛿2 + 𝑢̅2, where 𝑦𝑡 ≡ 𝑙𝑛𝑃𝑡.  As noted before, the repeat sales estimator is 

equivalent to a simple difference in means when the number of sales is the same in both periods.  

Thus, 𝑦̅2 − 𝑦̅1 = 𝛿2 − 𝛿1 + (𝑥̅2 − 𝑥̅1)𝛽 + (𝑢̅2 − 𝑢̅1).  The repeat sales approach produces 

unbiased estimates if 𝑥̅1 = 𝑥̅2 and 𝑢̅1 = 𝑢̅2.  Trivially, the mean values of x are the same over time 

if the sample is restricted to repeat sales.  The means will also be the same over time for a matched 

sample if the matching procedure succeeds in balancing the period 1 and period 2 samples.  The 
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properties do not have to be the same over time as long as the average value of x does not change 

and 𝑢̅1 = 𝑢̅2.   

The repeat sales approach’s main weaknesses are that individual properties can change 

over time, and the coefficients in the underlying hedonic price function can change.  Homes may 

be remodeled, and some neighborhoods may experience higher appreciation rates than others.   The 

matching estimator suffers from similar problems.  Although it may succeed in producing similar 

means over time for observable variables, there is no guarantee that it will produce identical means 

for omitted variables.   An advantage of the repeat sales approach is that it guarantees that 𝑥̅1 = 𝑥̅2 

for any variable that does change over time, whether the variable is observed or not.  However, 

some of the apparent weaknesses of the matching approach may be overcome by using the 

observable explanatory variables to estimate the underlying hedonic price functions using the 

matched samples.  Controlling for the observed X is directly comparable to standard hedonic 

estimation, which produces unbiased estimates if 𝑐𝑜𝑣(𝑋, 𝑢) = 0.  As a result, it is generally 

preferable to use hedonic approaches to estimate price indices for matched samples.   

8. Locally Weighted Quantile House Price Distribution Estimates 

In this section, I present the results of locally weighted quantile regression estimates for 

the set of matched samples.  It is important to recognize that the initial matching procedure did not 

include controls for location.  The procedure produces annual samples that have approximately the 

same mean values for the observable structural variables.  The approach does not necessarily 

produce the same number of sales from each neighborhood over time, however.  Simple averages 

or medians may produce estimates of appreciation rates that are biased upward if the number of 

observations in later years happen to be drawn from high-priced neighborhoods.  The repeat sales 

estimator may be subject to a similar bias if appreciation rates vary by neighborhood, but not if 



16 
 

prices levels vary across neighborhoods while appreciation rates are the same everywhere.  Thus, 

it is important to control for location when estimating price indices using a matching approach.   

Controlling for location in the initial matching procedure is problematic.  Including 

neighborhood indicator variables in the logit models could potentially produce samples with the 

same number of observations within each neighborhood over time.  However, the number of 

observations is likely to be small unless all neighborhoods are large.  Locally weighted versions 

of the logit models implicitly introduce each property’s geographic coordinates as explanatory 

variables.  When space is treated as continuous as is the case with locally weighted models, the 

only way to truly balance the samples is to limit them to repeat sales.  Thus, controls for location 

need to be introduced at the second stage of the analysis – in the hedonic price functions. 

I use the approach discussed in Section 4 to estimate quantile hedonic price regressions for 

the match samples.  Equation (2) serves as the base equation.  I estimate the models separately for 

Chicago, the North Suburbs, and the South Suburbs.  The quantiles range from q = 0.03 to 0.97 at 

increments of 0.02, which implies B = 48 for each region.  Taking advantages of the continuous 

structure of locally weighted procedures, I estimate the quantile regressions at a set of target 

locations and then interpolate to all other locations in the data set for each region.   I use a tri-cube 

kernel with a 25% window based on straight-line distance between each observation and the target 

point.   

The result of the estimation procedure is a set of 𝑛 × 𝐵 estimated sales prices for each 

region (n varies by region).  The explanatory variables include the housing structural 

characteristics and the year of sale.  Using the approach discussed in Section (4), I construct 

counterfactual density estimates by setting X to its actual values while setting 𝐷𝑡 = 1 for the year 

under consideration and the values of the dummy variables to 0 for all other years.  To simplify 
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the presentation, I limit the results to three years – 2001, 2006, and 2011.  This series of 5-year 

intervals is particularly interesting because it includes the time just before the start of the housing 

boom, the time near the peak, and a time well after the boom.  To reduce the estimation time for 

such a large number of models, I omit data from other years when estimating the models.   

The estimated sale price densities are shown in Figure 4 – 6.  The sale price densities for 

2001 are tightly clustered in all three regions, with relatively thin tails.  The left tail of the 

distribution is larger in Chicago than in the suburbs in 2001.  The distribution then shifts sharply 

to the right in all three regions in 2006.  The rightward shift is larger for low sales prices in Chicago 

and the South Suburbs.  The shift to the right for 2001 – 2006 is roughly the same at all price levels 

for the North Suburbs.   

The collapse of the housing market after 2006 is clearly demonstrated by the pronounced 

leftward shifts in the sale price distributions between 2006 and 2011.  The number of sales taking 

place at very low prices is even higher in 2011 than it was in 2001.  The fat left tails are particularly 

evident in Chicago and the South Suburbs.  The shift in the distribution for high-priced homes is 

much smaller.  In all three regions, the rightward portions of the estimated densities for 2011 have 

returned to approximately their positions in 2006.  Thus, the housing market collapse had a much 

greater effect on the low-priced portion of the market, particularly in Chicago and the South 

Suburbs. 

To put the size of these shifts in perspective, it is useful to consider the implied shifts in 

the sale price densities when there are discrete changes in the values of other explanatory variables.  

Just as we can analyze the effect of a change in the year of sale by changing the values of the 

annual dummy variables while holding the structural characteristics at their actual values, we can 

simulate the effect of a change in a structural characteristic by comparing the estimated densities 
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at two or more values of the variable while all other variables (including the year of sale) are set 

at their actual values.  For any discrete variable j, I simply calculate kernel density estimates for 

the 𝑛 × 𝐵 estimated values of 𝛽𝑗 + ∑ 𝑥𝑘𝛽𝑘(𝑞)𝑘≠𝑗  + ∑ 𝐷𝑡𝛿𝑡(𝑞)𝑇
𝑡=2  to the same expression with 

𝛽𝑗 = 0.  The calculations for the continuous variables are similar, but the values for variable j are 

set to a set of representative values:  building area is set to 1000, 2000, and 3000 square feet; lot 

size is set to 3000, 6000, and 9000 square feet; the number of rooms is 4, 6, or 8; the number of 

bathrooms is 1, 2, or 3; and the age is set to 25, 50, and 75.  I pool the estimates across all three 

regions when estimating these density functions. 

The estimated counterfactual densities are shown in Figure 7.  Although Table 4 shows 

that all of these variables have significant effects in on sales prices, it is clear from Figure 7 that a 

change in any one of them has much less overall effect on the distribution of sales prices than the 

year of sale.  The largest effects are for building area and lot size.  As expected, increases in 

building and land areas shift the sale price distribution to the right.  The effects of the two variables 

differ somewhat in their implications for the variance of the sale price distribution:  whereas 

estimated sales prices are more variable for larger building areas, the variance declines as lot areas 

increase.  There is a roughly parallel rightward shift in the sale price distribution as the number of 

bathrooms increases.  The variance of the sale price distribution increases with housing age:  

whereas an increase in age has little effect on the density for high-priced homes, it shifts the 

distribution well to the left for low-priced homes.   

The locally weighted quantile regressions allow all coefficients to vary smoothly over 

space.  Although so far I have treated Chicago, the North Suburbs, and the South Suburbs as three 

separate regions, the estimates actually reveal a great deal of variation in appreciation rates within 

each of these areas.  Figure 8 shows the estimated coefficients 𝛿2006(𝑞) for q = 10%, 50%, and 
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90%.  These results are directly comparable to the points shown for 2006 in Figure 2 for the three 

quantiles, but rather than having just one value for each regions, the estimated appreciation rates 

are allowed to vary smoothly over the region. 

Figure 8 shows that the appreciation rate for 2000 – 2006 was exceptionally high in the 

South Side of the City of Chicago.  The appreciation rate for the median was also relatively high 

in this area, but the region with high appreciation extends to the near West Side also.  For q = 90%, 

the estimated appreciation rates are again high on the South and West Sides of the city, but there 

is also an area of high appreciation in the North Suburbs.  The last panel of Figure 8 shows the 

difference between the appreciation rates at the 90% and the 10% quantile.  The negative values 

for this difference on the city’s South Side indicate that appreciation rates were much higher for 

the 10% quantile than for the 90% quantile.  In contrast, in much of suburban Chicago – 

particularly the far North – appreciation rates were higher for the 90% quantile than for 10%.  

Overall, these results suggest that an assumption of a single housing market for the entire metro 

area is inappropriate.  

Figure 9 shows that, just as prices rose most rapidly on the South and West Sides of 

Chicago during the boom, this is the same area where prices declined most markedly between 2006 

and 2011.  Rates of decline were much lower in the Near North area of Chicago and in much of 

the Northern and Western Suburbs.  In all areas, prices declined much more at low prices than for 

high-priced homes.   
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9. Conclusion 

The repeat sales estimator and hedonic price functions are the approaches most commonly 

used by economists to estimate house price indices.  Both approaches focus on sample means.  In 

fact, the repeat sales estimator is identical to period-by-period averages when the number of sales 

is the same in each period within the sample of repeat sales.  Neither approach takes into account 

the possibility that rates of appreciation may be higher for low-priced homes during boom periods, 

with correspondingly great declines when the prices are falling.  

In this paper, I show how quantile approaches can be used to analyze how the full 

distribution of quality-adjusted prices changes over time.  I use local estimation procedures to 

allow appreciation rates to vary smoothly over space.  The results show that rates of appreciation 

were indeed very high for low-priced homes in the South and West Sides of Chicago during the 

boom years of 2000 – 2006.  Rates of decline were then also quite large in these areas.  In contrast, 

prices for relatively high-priced homes in the relatively high-priced areas in Chicago Near North 

area and in the far Northern suburbs fell at much lower rates between 2006 and 2011 after having 

experienced substantial yet more moderate rates of appreciation between 2000 and 2006.   

Another purpose of this paper has been to demonstrate how apparently complex locally 

weighted estimation of quantile models is feasible, while the large set of results remains easy to 

summarize graphically.  Locally weighted quantile regressions produce separate predications for 

each observations and for each quantile.  With 48 quantiles and more than 100,000 observations 

in each region, the models estimated here produce close to 500,000 sets of predicted values.  Yet 

the results can be summarized easily using kernel density estimates to illustrate the counterfactual 

sale price distributions.   
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Table 1 

Number of Sales 

Year Cook County Chicago North Suburbs South Suburbs 

Full Sample 

2000 33,779 10,666 11,022 12,091 

2001 39,315 12,809 12,626 13,880 

2002 43,146 14,748 13,279 15,119 

2003 45,605 15,354 14,384 15,867 

2004 52,189 18,334 15,444 18,411 

2005 52,487 18,852 14,667 18,968 

2006 43,991 16,071 11,474 16,446 

2007 31,050 11,140 8,464 11,446 

2008 17,886 6,170 5,408 6,308 

2009 16,609 5,856 5,135 5,618 

2010 17,803 6,389 5,498 5,916 

2011 16,084 5,695 5,133 5,256 

Matched Sample 

2000 33,601 10,624 10,905 12,072 

2001 33,598 10,623 10,903 12,072 

2002 33,601 10,624 10,905 12,072 

2003 33,593 10,623 10,898 12,072 

2004 33,594 10,624 10,900 12,070 

2005 33,601 10,624 10,905 12,072 

2006 33,599 10,624 10,903 12,072 

2007 30,506 10,624 8,458 11,424 

2008 17,854 6,148 5,406 6,300 

2009 16,572 5,830 5,129 5,613 

2010 17,766 6,366 5,493 5,907 

2011 16,043 5,676 5,121 5,246 
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Table 2 

Descriptive Statistics 

 Chicago North Suburbs South Suburbs 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Full Sample 

Log of Sale Price 12.0674 0.8098 12.6415 0.5743 12.0325 0.6557 

Log of Building Area 7.0740 0.3214 7.3223 0.3857 7.1681 0.3458 

Log of Lot Size 8.2238 0.3690 8.9035 0.6491 8.8160 0.5403 

Rooms 5.5016 1.3968 6.3834 1.4464 5.9042 1.2607 

Bathrooms 1.3521 0.5604 1.8090 0.7167 1.5195 0.6018 

Brick 0.6100 0.4877 0.5777 0.4939 0.6674 0.4711 

Basement 0.7668 0.4228 0.7848 0.4110 0.7777 0.4158 

Central Air 0.2175 0.4126 0.5791 0.4937 0.4269 0.4946 

Fireplace 0.1089 0.3115 0.4167 0.4930 0.2564 0.4366 

Attic 0.4355 0.4958 0.2827 0.4503 0.3334 0.4714 

Garage1 0.2224 0.4158 0.2140 0.4101 0.1452 0.3523 

Garage2 0.5306 0.4991 0.6620 0.4730 0.7398 0.4387 

Age 68.7264 28.5163 42.9575 20.5993 46.9617 23.5743 

Number of Observations 142,084 122,534 145,326 

Matched Sample 

Log of Sale Price 12.0466 0.8258 12.6409 0.5816 12.0302 0.6698 

Log of Building Area 7.0731 0.3157 7.3270 0.3851 7.1762 0.3480 

Log of Lot Size 8.2358 0.3598 8.9001 0.6494 8.8165 0.5355 

Rooms 5.4868 1.3709 6.4045 1.4472 5.9251 1.2700 

Bathrooms 1.3342 0.5403 1.8134 0.7132 1.5269 0.6060 

Brick 0.6192 0.4856 0.5746 0.4944 0.6805 0.4663 

Basement 0.7717 0.4197 0.7833 0.4120 0.7876 0.4090 

Central Air 0.2203 0.4144 0.5840 0.4929 0.4320 0.4954 

Fireplace 0.1070 0.3092 0.4259 0.4945 0.2624 0.4399 

Attic 0.4457 0.4970 0.2859 0.4518 0.3385 0.4732 

Garage1 0.2261 0.4183 0.2140 0.4101 0.1491 0.3562 

Garage2 0.5339 0.4989 0.6582 0.4743 0.7353 0.4412 

Age 68.5244 27.9338 43.2743 20.7360 47.5568 23.7459 

Number of Observations 109,010 105,926 118,992 
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Table 3a 

Means for Full and Matched Samples, Chicago 

 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Full Sample 

Log Price 11.81 11.87 11.96 12.04 12.12 12.26 12.32 12.33 12.17 11.85 11.80 11.71 

Log Area 7.07 7.07 7.07 7.07 7.06 7.07 7.06 7.09 7.10 7.09 7.10 7.11 

Lot Size 8.24 8.24 8.23 8.22 8.22 8.21 8.22 8.21 8.21 8.23 8.23 8.23 

Rooms 5.46 5.46 5.47 5.49 5.48 5.48 5.48 5.57 5.60 5.57 5.57 5.63 

Bathrooms 1.32 1.33 1.34 1.35 1.34 1.35 1.35 1.38 1.40 1.37 1.38 1.40 

Brick 0.62 0.62 0.62 0.62 0.60 0.59 0.59 0.61 0.62 0.63 0.63 0.63 

Basement 0.77 0.77 0.77 0.77 0.76 0.76 0.76 0.76 0.78 0.78 0.77 0.79 

Central Air 0.22 0.22 0.23 0.23 0.20 0.21 0.20 0.22 0.23 0.23 0.24 0.24 

Fireplace 0.10 0.10 0.11 0.11 0.10 0.10 0.10 0.12 0.13 0.12 0.13 0.13 

Attic 0.45 0.45 0.44 0.43 0.44 0.43 0.43 0.42 0.43 0.44 0.43 0.43 

Garage1 0.23 0.22 0.22 0.22 0.23 0.22 0.22 0.22 0.21 0.23 0.23 0.22 

Garage2 0.53 0.53 0.53 0.53 0.52 0.53 0.52 0.53 0.54 0.54 0.53 0.55 

Age 63.64 64.80 65.20 65.97 69.16 69.88 71.63 71.15 71.75 72.21 72.85 74.00 

Matched Sample 

Log Price 11.81 11.87 11.95 12.04 12.15 12.28 12.34 12.30 12.16 11.85 11.79 11.71 

Log Area 7.07 7.07 7.06 7.06 7.07 7.07 7.07 7.07 7.10 7.09 7.09 7.11 

Log Lot size 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.23 8.21 8.23 8.23 8.23 

Rooms 5.46 5.46 5.44 5.44 5.46 5.45 5.46 5.49 5.60 5.57 5.57 5.62 

Bathrooms 1.32 1.32 1.31 1.31 1.32 1.32 1.32 1.34 1.40 1.37 1.38 1.40 

Brick 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.61 0.62 0.62 0.63 0.63 

Basement 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.76 0.78 0.78 0.77 0.79 

Central Air 0.22 0.22 0.21 0.21 0.22 0.22 0.22 0.21 0.23 0.23 0.23 0.24 

Fireplace 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.13 0.12 0.13 0.13 

Attic 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.43 0.44 0.44 0.43 0.43 

Garage1 0.23 0.23 0.23 0.22 0.23 0.23 0.23 0.22 0.21 0.23 0.23 0.22 

Garage2 0.53 0.53 0.54 0.53 0.53 0.53 0.53 0.53 0.54 0.54 0.53 0.55 

Age 63.70 64.73 66.08 66.78 67.68 68.43 69.65 71.58 71.80 72.29 72.94 74.02 
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Table 3b 

Means for Full and Matched Samples, North Suburbs 

 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Full Sample 

Log Price 12.35 12.43 12.54 12.61 12.70 12.80 12.86 12.88 12.80 12.63 12.61 12.50 

Log Area 7.32 7.31 7.32 7.32 7.31 7.31 7.31 7.34 7.36 7.34 7.37 7.36 

Lot Size 8.87 8.87 8.89 8.88 8.91 8.89 8.89 8.92 8.94 8.94 8.99 8.98 

Rooms 6.37 6.33 6.38 6.36 6.34 6.35 6.33 6.44 6.51 6.45 6.53 6.51 

Bathrooms 1.80 1.79 1.81 1.81 1.80 1.79 1.78 1.83 1.87 1.83 1.87 1.86 

Brick 0.56 0.57 0.57 0.57 0.57 0.58 0.57 0.57 0.60 0.61 0.62 0.62 

Basement 0.77 0.77 0.78 0.78 0.78 0.78 0.78 0.79 0.80 0.80 0.83 0.82 

Central Air 0.58 0.59 0.58 0.59 0.58 0.57 0.57 0.57 0.60 0.57 0.58 0.58 

Fireplace 0.42 0.40 0.41 0.41 0.41 0.40 0.40 0.43 0.46 0.43 0.46 0.46 

Attic 0.28 0.27 0.27 0.27 0.28 0.28 0.29 0.29 0.30 0.29 0.30 0.31 

Garage1 0.22 0.22 0.22 0.21 0.22 0.22 0.21 0.21 0.21 0.21 0.20 0.20 

Garage2 0.65 0.66 0.66 0.66 0.66 0.65 0.65 0.67 0.68 0.68 0.69 0.70 

Age 38.77 38.50 39.50 40.76 42.36 43.22 45.04 45.99 47.00 48.38 50.46 51.70 

Matched Sample 

Log Price 7.32 7.32 7.32 7.32 7.32 7.32 7.32 7.34 7.36 7.34 7.37 7.36 

Log Area 8.88 8.88 8.88 8.88 8.88 8.88 8.89 8.92 8.94 8.94 8.99 8.98 

Log Lot size 6.38 6.37 6.37 6.36 6.38 6.38 6.38 6.44 6.51 6.45 6.53 6.51 

Rooms 1.80 1.80 1.79 1.80 1.80 1.80 1.80 1.83 1.87 1.83 1.86 1.86 

Bathrooms 0.56 0.56 0.56 0.56 0.56 0.56 0.57 0.57 0.60 0.61 0.61 0.62 

Brick 0.77 0.78 0.77 0.78 0.77 0.77 0.78 0.79 0.80 0.80 0.83 0.83 

Basement 0.59 0.59 0.58 0.58 0.59 0.58 0.59 0.58 0.60 0.57 0.58 0.58 

Central Air 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.46 0.43 0.46 0.46 

Fireplace 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.29 0.30 0.29 0.30 0.31 

Attic 0.22 0.22 0.22 0.22 0.21 0.22 0.22 0.21 0.21 0.21 0.20 0.20 

Garage1 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.67 0.68 0.68 0.69 0.70 

Garage2 38.36 39.15 40.31 41.44 42.14 43.24 44.39 45.97 47.00 48.36 50.44 51.68 

Age 7.32 7.32 7.32 7.32 7.32 7.32 7.32 7.34 7.36 7.34 7.37 7.36 
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Table 3c 

Means for Full and Matched Samples, South Suburbs 

 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Full Sample 

Log Price 11.84 11.88 11.94 12.03 12.09 12.18 12.22 12.22 12.11 11.88 11.83 11.68 

Log Area 7.17 7.17 7.17 7.17 7.16 7.15 7.15 7.17 7.19 7.19 7.20 7.21 

Lot Size 8.81 8.81 8.81 8.81 8.82 8.81 8.81 8.82 8.84 8.83 8.84 8.85 

Rooms 5.91 5.89 5.91 5.92 5.89 5.86 5.85 5.88 5.98 5.96 6.01 6.02 

Bathrooms 1.52 1.52 1.52 1.52 1.51 1.51 1.50 1.51 1.55 1.53 1.56 1.57 

Brick 0.69 0.68 0.67 0.67 0.66 0.66 0.65 0.65 0.68 0.68 0.68 0.68 

Basement 0.79 0.78 0.78 0.78 0.77 0.77 0.77 0.77 0.78 0.80 0.80 0.80 

Central Air 0.43 0.44 0.43 0.43 0.42 0.41 0.41 0.42 0.44 0.43 0.45 0.43 

Fireplace 0.26 0.25 0.26 0.26 0.25 0.24 0.24 0.25 0.28 0.27 0.29 0.28 

Attic 0.34 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.34 

Garage1 0.15 0.14 0.14 0.15 0.15 0.14 0.14 0.15 0.14 0.14 0.14 0.14 

Garage2 0.73 0.75 0.74 0.74 0.74 0.74 0.74 0.73 0.74 0.75 0.75 0.76 

Age 43.15 43.72 44.35 45.22 46.53 47.32 48.28 49.30 49.51 51.30 52.67 53.99 

Matched Sample 

Log Price 11.84 11.89 11.95 12.04 12.11 12.21 12.26 12.22 12.11 11.88 11.83 11.68 

Log Area 7.17 7.17 7.17 7.17 7.17 7.17 7.17 7.17 7.19 7.19 7.20 7.21 

Log Lot size 8.81 8.81 8.81 8.81 8.81 8.81 8.81 8.82 8.84 8.83 8.84 8.85 

Rooms 5.91 5.92 5.92 5.92 5.90 5.91 5.91 5.88 5.98 5.96 6.01 6.02 

Bathrooms 1.52 1.52 1.52 1.53 1.52 1.52 1.52 1.51 1.55 1.54 1.56 1.57 

Brick 0.69 0.68 0.68 0.68 0.68 0.69 0.68 0.65 0.68 0.68 0.68 0.68 

Basement 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.77 0.78 0.80 0.80 0.80 

Central Air 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.42 0.44 0.43 0.45 0.43 

Fireplace 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.25 0.28 0.27 0.29 0.28 

Attic 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.33 0.33 0.33 0.33 0.34 

Garage1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14 

Garage2 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.74 0.75 0.75 0.76 

Age 43.14 44.24 45.23 46.18 47.39 47.98 49.07 49.27 49.50 51.30 52.67 53.99 
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Table 4 

Regression Results for Log of Sale Price 

Variable 
Chicago North Suburbs South Suburbs 

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 

Log of Building Area 0.2943 0.0075 0.3554 0.0056 0.3325 0.0060 

Log of Lot Size 0.3135 0.0059 0.2081 0.0020 0.1796 0.0027 

Rooms -0.0036 0.0017 0.0067 0.0012 0.0147 0.0014 

Bathrooms 0.0398 0.0039 0.0510 0.0022 0.0511 0.0027 

Brick 0.0518 0.0040 -0.0106 0.0024 0.0343 0.0028 

Basement 0.0042 0.0046 0.0962 0.0026 0.1692 0.0030 

Central Air 0.0066 0.0041 0.0089 0.0022 0.0200 0.0025 

Fireplace 0.0379 0.0056 0.0404 0.0024 0.0500 0.0031 

Attic -0.0092 0.0034 0.0117 0.0022 0.0070 0.0025 

Garage1 0.0404 0.0043 0.0230 0.0035 0.0468 0.0042 

Garage2 0.0560 0.0038 0.0632 0.0033 0.0768 0.0035 

Age -0.0024 0.0001 -0.0014 0.0001 -0.0030 0.0001 

2001 Sale 0.0762 0.0064 0.0855 0.0041 0.0557 0.0047 

2002 Sale 0.1765 0.0064 0.1631 0.0041 0.1356 0.0047 

2003 Sale 0.2962 0.0064 0.2410 0.0041 0.2273 0.0047 

2004 Sale 0.4247 0.0064 0.3324 0.0041 0.3174 0.0047 

2005 Sale 0.5799 0.0064 0.4420 0.0041 0.4345 0.0047 

2006 Sale 0.6654 0.0064 0.4968 0.0041 0.5074 0.0047 

2007 Sale 0.6286 0.0064 0.4812 0.0044 0.4880 0.0048 

2008 Sale 0.3866 0.0075 0.3614 0.0050 0.3052 0.0057 

2009 Sale 0.0493 0.0076 0.2084 0.0051 0.0539 0.0059 

2010 Sale -0.0113 0.0074 0.1346 0.0050 -0.0076 0.0058 

2011 Sale -0.1284 0.0077 0.0343 0.0052 -0.1675 0.0060 

Constant 7.1414 0.0618 7.7125 0.0372 7.5678 0.0414 

Number of Census Tract  

Fixed Effects 
807 225 268 

Number of Observations 109,010 105,926 118,992 

R2 0.6863 0.7338 0.7098 
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Figure 1 

Estimated Hedonic Price Indices 
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Figure 2 

Sale Price Percentiles (10%, 50%, 90%) by Year 

 

 

 



Figure 3 

Sale Price Percentile Indices 

 

 

 



Figure 4 

Estimated Sale Price Densities for Chicago 
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Figure 5 

Estimated Sale Price Densities for North Suburbs 
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Figure 6 

Estimated Sale Price Densities for South Suburbs 
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Figure 7 

Partial Effects of Changes in Housing Characteristics 
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Figure 7 (cont’d) 
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Figure 7 (cont’d) 
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Figure 8 

Estimated Appreciation Rates, 2000 - 2006 
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Figure 9 

Estimated Appreciation Rates, 2006 - 2011 

 


