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Abstract 
 

This paper proposes a model to better capture persistent regime changes in the interest rates of 
the US term structure.  While the previous literature on this matter proposes that regime changes 
in the term structure are due to persistent changes in the conditional mean and volatility of 
interest rates we find that changes in a single parameter of the model we use better models 
regime changes.  Furthermore, we investigate if the effects of macroeconomic phenomena such 
monetary policy, inflation expectations, and real business activity differ according to the 
particular regime realized for the term structure. Our results indicate that in periods of low 
interest rates, monetary policy and real business activity have a greater effect on the longer 
maturities of the yield curve than in high interest rate regimes.  In those periods of high interest 
rate regimes, inflation expectations have a greater effect in yield determination for longer 
maturities.  (JEL: C51, E43) 
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1. INTRODUCTION 

 The yield curve often contains useful information about the real economic activity and 

inflation. For example, the level factor (the long-term yield-to-maturity) is often argued to be 

closely related with the inflation expectation, while the steepness or the slope factor (the long-

term yield-to-maturity minus the short-term yield-to-maturity) has been shown to vary with the 

business cycles and also be heavily influenced by the monetary policy. The most recent 

monetary policies, such as the operation twist conducted by the Federal Reserve Bank in an 

attempt to lower the long-term interest rate and raise the short-term rate, directly work on the 

yields curve and serve as a great example of how the yield curve, instead of just one single 

policy rate–federal funds rate–is expected to have a significant impact on the economy. As such, 

it is important to correctly model the yield curve to understand better its interactions with the 

business cycles, and the monetary policy transmission mechanism through its impacts on the 

yield curve.  

One popular approach to modeling the yields curve in literature is to impose no-arbitrage 

conditions and derive the yields curve based on latent factors. The majority of research in this 

area works on the affine class of models for the purpose of tractability. Duffie and Kan (1996) 

and Dai and Singleton (2000) work out a general class of the affine term structure model which 

encompasses some of the early models such as Vasicek (1977) and Cox, Ingersoll, and Ross 

(1985). Despite being appealing theoretically, these models in general forecast poorly, likely due 

to their restrictive nature, as pointed out by Duffee (2002).  

 A second class of models rectified the short comings of the first class in a novel way.  

Employing the relationship from expectations theory, Nelson and Siegel (1987, NS) was able to 

model forward rates directly with a three latent factor model and derive the yield curve. The 

three latent factors represent the level, slope, and curvature of the yield curve. Unlike the no-

arbitrage affine models, the NS model greatly improved forecasting across bond maturities and 

has become very popular, in particular among the central banks.1 Moreover, recent work by 

                                                           
1 See, for example, the BIS (2005) report that points out the central banks in a number of countries including 
France, Germany, and Spain all use the NS model to model the yield curve. 
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Coroneo, Nyholm and Vidova-Koleva (2011) find that the NS model is close to being arbitrage-

free when applied to the US market, although it does not explicitly impose these restrictions.2 

Diebold and Li (2006) extended the NS model to the time dimension by allowing the 

three latent factors of the NS model to be time-varying.  This dynamic Nelson-Siegel (DNS) 

model’s forecast has been shown to outperform vector autoregressive models and dynamic error 

correction models. Diebold, Rudebusch, and Aruoba (2006) formulate the DNS model into a 

state-space framework, employing the Kalman filter and maximum likelihood estimation to 

estimate the three latent factors together with some observed macroeconomic factors. Diebold, 

Li, and Yue (2008) further model the yield curves in a set of countries and extract the global 

yield factors that appear to explain a large portion of the global yield curves movements. The re-

interpretation of the NS model by Diebold and Li (2006) emphasizes the factor structure of the 

NS model. Their extension of the original NS model to the dynamic NS model (DNS) clearly 

shows that the NS model is essentially a particular factor model that captures the whole yield 

curve movement through a few latent factors with a set of specified loading parameters. In this 

way the DNS model is closely related with the Dynamic Factor Model (DFM) that has often 

been applied to macroeconomic and finance data, such as the work by Stock and Watson (1991) 

that extracts an economic coincident index from a set of economic variables using the DFM.  

The interest rate dynamics of the term structure has been subject to a number of structural 

breaks historically.  Although some of these breaks or regime changes are results of obvious 

changes in monetary policy as in the Volcker era and obvious changes in business cycle 

conditions such as the oil supply shock of the 1970s, there are also other regime changes that can 

be traced to occurring business cycle fluctuations such as troughs and peaks and often indirectly 

observed changes in the financial markets.  As a result it is important to capture these regime 

changes in order to obtain a more accurate estimation of the term structure, which in turn can 

give not only a better understanding of the past and current economy but also a better prediction 

of the future economy.  Recently a growing literature has also started to examine the 

consequence of structural breaks on the estimation of the DFM. For example, Breitung and 

Eickmeier (2011) suggest using the LM test to search for the exogenous type of breaks of the 

                                                           
2 Svensson (1994) introduced a second curvature factor, and thus a second loading parameter 𝜆, to the NS 
framework to better estimate longer termed maturities, a noted weakness of the NS model. Christensen, Diebold, 
and Rudebusch (2009) included a second slope factor as well as a second curvature factor to derive an arbitrage-
free class of NS models. 
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loading parameters in the DFM. Stock and Watson (2008) investigates the forecasting 

performance of the DFM in the presence of the parameter instability.  

In context of the NS model, Koopman, Mallee, and Van der Wel (2010) include the 

loading parameter 𝜆 as a time-varying latent factor to be estimated along with the three time-

varying latent factors via the extended Kalman filter, as a way to allow the time variation in the 

parameters.  They also introduce time-varying volatility in the form of a GARCH process into 

the DNS framework as a way of relaxing a specification assumption made by Bianchi, Mumtaz, 

and Surico (2006) that the factor loadings are also appropriate weights for the term structure’s 

volatility.  Wong, Lucia, Price and Startz (2011) study the connection of the yield curves in US 

and Canada, and identify an exogenous structural break in the NS model that reveals a weaker 

correlation between the yield curves in these two countries after Canada changed its monetary 

policy and switched to the explicit inflation targets in 1991. While Startz and Tsang (2010) 

incorporate Markov regime switching into an unobserved components model of the yield curve 

to account for regime changes of the yield curve.  As an alternative modeling approach to the 

exogenous type of breaks, Markov regime switching proposed in Hamilton (1989) has the 

advantage that the underlying breaks can be reoccurring and stochastic in nature. Markov regime 

switching has been successfully introduced to the DFM by Chauvet (1998), and Kim and Nelson 

(1998) that generalize the work of Stock and Watson (1991) to allow Markov regime switching 

in extracting an economic coincident index from a set of macroeconomic variables.   

We contribute to the literature by introducing and thoroughly evaluating regime-

switching factor loadings and regime-switching volatility in the dynamic Nelson-Siegel model.  

In our models, regimes are characterized by a latent Markov switching component—the fourth 

latent factor in our models.  This factor dictates which state drives the system’s dynamics.  When 

we apply a Markov switching component to the loading parameter, the slope and curvature factor 

loadings will assume distinct values in each state for each maturity according to the value of the 

loading parameter in each state.  The Kalman filter (KF) can efficiently extract the level, slope, 

and curvature factors while the Kim (1994) algorithm allows us to extract the states.  Next, we 

introduce regime-switching volatility.  Following the assumption of Bianchi, Mumtaz and Surico 

(2006) that the factor loadings are appropriate weights for the term structure’s volatility, we 

apply a Markov switching component to the factor disturbances.  We again utilize the KF and the 

Kim filter to estimate our model’s latent factors.  Comparisons between the models are made by 
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presenting goodness-of-fit statistics and AIC/BIC values.  We finally implement likelihood ratio 

tests to investigate if our models are statistically different from the baseline dynamic Nelson-

Siegel model. The root mean square error analysis shows the model with the loading parameter 

switching estimates yields the best across the short, medium, and long maturity ranges and in 

terms of overall fit.  This model also gives the minimum AIC/BIC values of all models under 

consideration.  Both models are found to be statistically different from the baseline model.  

A number of papers investigate the role of the loading parameter and volatility on yield 

curve estimation.  We have already discussed Koopman et al. (2010) and Bianchi, Mumtaz, and 

Surico (2006).  Yu and Salyards (2009) and Yu and Zivot (2011) apply the DNS model to 

modeling corporate bond yields.  The findings from both papers suggest that the optimal 𝜆 

changes as one goes from modeling investment to speculative grade bonds. These results 

corroborate our general findings. The paper is organized as follows.  Section 2 describes the 

dynamic Nelson-Siegel model, Kalman filter and the Kim algorithm.  Section 3 describes the 

data.  Section 4 presents the results of the various models and section 5 concludes.  

 
2. MODELS and ESTIMATION 
 
 In this section we introduce our baseline model, the dynamic Nelson-Siegel (DNS) 

model.  The appeal of this model lies in its extension to the time dimension.  Also, the 

formulation lowers the coherence between the slope and curvature factor loadings.  This 

diminished correlation between factor loadings aids any statistical analysis involving the NS 

framework.  In addition to introducing the DNS model we introduce our regime-switching 

models and the estimation technique used. 

2.1 The Dynamic Nelson-Siegel Model 

 The Diebold and Li (2006) factorization of the NS model is given by  

 yt(m) = yt(m; 𝑭𝑡, 𝜆) = Lt + St
1−e−λm

λm
+ Ct(

1−e−λm

λm
− e−λm)  (1) 

where 𝑭𝑡 = (Lt, St, Ct)′, for given time 𝑡, maturity 𝑚, and constant 𝜆, the factor loading 

parameter.  This is the baseline DNS model in our analysis.   

 The shape of the yield curve comes from the factor loadings and their respective weights 

in 𝐹𝑡.  From Equation (1), the factor loading associated with Lt is assumed to be 1 independent of 

maturity and therefore influences short, medium, and long-term interest rates equally. The 
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loading factors for St and Ct depend on both maturity and the loading parameter.  For a given 𝑡, 

the slope factor loading converges to one as 𝜆 ↓ 0 (or 𝑚 ↓ 0) and converges to zero as 𝜆 → ∞ (or 

𝑚 → ∞).  The curvature factor loading converges to zero as 𝜆 ↓ 0 (or 𝑚 ↓ 0) and as 𝜆 → ∞ (or 

𝑚 → ∞) for a given 𝑡. 

 Since we are interested in the loading parameter’s effect on yields, we use the limit 

analysis above to understand the asymptotic behavior of the yield curve.  The yield curve 

converges to 𝐿 + 𝑆 as 𝜆 ↓ 0 and converges to 𝐿 as 𝜆 → ∞ for a given 𝑡.  These limiting values 

indicate that without the loading parameter the yield curve is flat and with extreme values for the 

loading parameter the yield curve would become flat.  So “reasonable” values for 𝜆 are 

responsible for the wide range of non-flat yield curve shapes within an NS framework.  

2.2 DNS Model Estimation 

 We adopt Diebold, Rudebusch, and Aruoba (2006) state-space framework to model each 

variant of the NS model in this paper.  Our measurement equation models the time-series  

process of the yields according to the latent factors and takes the form   

 �

yt(m1)
yt(m2)

⋮
yt(mN)

� =

⎝

⎜⎜
⎜
⎛

1 1−e−λm1

λm1

1−e−λm1

λm1
− e−λm1

1 1−e−λm2

λm2

1−e−λm2

λm2
− e−λm2

⋮ ⋮ ⋮
1 1−e−λmN

λmN

1−e−λmN

λmN
− e−λmN

⎠

⎟⎟
⎟
⎞
�

Lt
St
Ct
� + �

εt(m1)
εt(m2)

⋮
εt(mN)

� (2) 

or expressed in matrix notation as 

 𝒚𝑡 =  𝚲(𝜆)𝑭𝑡 + 𝜺𝑡, 𝜺𝑡 ∼ 𝑀𝑁(0,𝚺𝜀), 𝑡 = 1, … ,𝑇,    (3) 

with 𝒚𝑡 representing the  𝑁 × 1 vector of yields, 𝑁 × 3 factor loading matrix 𝚲(𝜆), 3 × 1  latent 

factor vector 𝑭𝑡, and 𝑁 × 1 yield disturbance vector 𝜺𝑡 (or so-called measurement errors of the 

yields). The diagonal structure of 𝚺𝜀 implies that measurement errors across maturities of 𝒚𝑡 are 

uncorrelated and is a fairly standard assumption in the literature.  The transition equation, which 

models the time series process of the latent factors, can be expressed by the vector autoregressive 

(VAR) process 

 �
Lt − 𝜇𝐿𝑡
St −  𝜇𝑆𝑡
Ct − 𝜇𝐶𝑡

� = �
a11 0 0
0 a22 0
0 0 a33

��
Lt−1 − 𝜇𝐿𝑡
St−1 −  𝜇𝑆𝑡
Ct−1 − 𝜇𝐶𝑡

� + �
𝜂𝐿𝑡
𝜂𝑆𝑡
𝜂𝐶𝑡

� 

which can be equivalently expressed in matrix notation as  

 𝑭𝑡 = (𝑰 − 𝑨)𝝁 + 𝑨𝑭𝑡−1 + 𝜼𝑡, 𝜼𝑡 ∼ 𝑀𝑁�0,𝚺𝜂�, 𝑡 = 1, … ,𝑇,  (4) 
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with 3 × 1  mean vector 𝝁, 3 × 3 coefficient matrix 𝑨, and 3 × 1 factor disturbance matrix 𝚺𝜂.  

Christensen et al. (2011) show that the off-diagonal elements of the 𝑨 matrix are not statistically 

relevant to modeling the term structure.  The assumption that the deviations to the NS factors are 

uncorrelated is not standard in the literature. But Diebold et al. (2006) conclude that the off-

diagonal elements are marginally significant and the point estimates and standard errors of the 𝑨 

matrix are little changed when estimating 𝚺𝜂.  

 Since the DNS state space model is linear in latent factors, we are able to use the Kalman 

filter to estimate the latent factors conditional on past and contemporaneous observations of the 

yields.  The Kalman filter procedure is carried out recursively for 𝑡 = 1, … ,𝑇 with initial values 

for the latent factors and their variances being the unconditional mean and unconditional 

variance, respectively.  If we define 𝒇𝑡|𝑡 as the minimum mean square linear estimator (MMSLE) 

of 𝑭𝑡 and 𝒗𝑡|𝑡 as the mean square error (MSE) matrix, then 𝒇1|0 = 𝝁 and 𝒗1|0 = (𝑰 − 𝑨)−1𝚺𝜂.  

With observation 𝒚𝑡 and initial values𝒇1|0 and  𝒗1|0 available, the KF updates the values for 𝒇𝑡|𝑡 

and 𝒗𝑡|𝑡 using the equations 

 𝒇𝑡|𝑡 = 𝒇𝑡|𝑡−1 + 𝑲𝑡𝒆𝑡|𝑡−1,       (5) 

 𝒗𝑡|𝑡 = 𝒗𝑡|𝑡−1 − 𝑲𝑡𝚲(𝜆)𝒗𝑡|𝑡−1,       (6) 

where  𝒆𝑡|𝑡−1 = 𝒚𝑡 − 𝚲(𝜆)𝒇𝑡|𝑡−1 is the predicted error vector, 𝒆𝒗𝑡|𝑡−1 = 𝚲(𝜆)𝒗𝑡|𝑡−1𝚲(𝜆)′ + 𝚺𝜀 

is the predicted error variance matrix and 𝑲𝑡 = 𝒗𝑡|𝑡−1𝚲(𝜆)′𝒆𝒗𝑡|𝑡−1
−1  is the Kalman gain matrix. 

The next period 𝑡 + 1 MMSLE of the latent factors and associated variance matrix conditional 

on yields 𝒚1, … ,𝒚𝑡 are governed by the prediction equations 

 

 𝒇𝑡|𝑡−1  = (𝑰 − 𝑨)𝝁 + 𝑨𝒇𝑡−1|𝑡−1       (7) 

 𝒗𝑡|𝑡−1 = 𝑨𝒗𝑡−1|𝑡−1𝑨′ + 𝚺𝜂.       (8) 

Denote 𝜽 as the system parameter vector.  The parameters to be estimated via numerical 

maximum likelihood estimation are 𝜽𝐷𝑁𝑆 = �𝑨𝑖𝑗 ,𝚺𝜀𝑖𝑗 ,𝚺𝜂𝑖𝑗 ,𝝁, 𝜆 �.  We represent the likelihood 

function as 

 ℓ(𝜽) = −𝑁𝑇
2
𝑙𝑜𝑔2𝜋 − 1

2
∑ log |𝑇
𝑡=1 𝒆𝒗𝑡| −

1
2
∑ 𝒆𝑡′(𝒆𝒗𝑡)−1𝑇
𝑡=1 𝒆𝑡.  (9) 
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The function ℓ(𝜽) is evaluated by the Kalman filter through a quasi-Newton optimization 

method for the purposes of maximization without inverting the Hessian matrix of this 28-

parameter system.   

 The values for 𝒇𝑡|𝑡 and 𝒗𝑡|𝑡 from the last iteration of the KF are used as initial values in 

the recursive algorithm to obtain smoothed values of the unobserved factors.  Iterating the 

following two equations backwards for 𝑡 = 𝑇 − 1,𝑇 − 2, … 1, gives the smoothed estimates: 

 𝒇𝑡|𝑇 = 𝒇𝑡|𝑡 + 𝒗𝑡|𝑡𝚲(𝜆)′𝒗𝑡+1|𝑡
−1 (𝒇𝑡+1|𝑇 − 𝚲(𝜆)𝒇𝑡|𝑡 − 𝝁), (10)  

 𝒗𝑡|𝑇 = 𝒗𝑡|𝑡 + 𝒗𝑡|𝑡𝚲(𝜆)′𝒗𝑡+1|𝑡
−1 �𝒗𝑡+1|𝑇 − 𝒇𝑡+1|𝑡�𝒗𝑡+1|𝑡

−1 ′𝚲(𝜆)𝒗𝑡|𝑡. (11) 

These smoothed estimates provide a more accurate inference on 𝒇𝑡 because it uses more 

information from the system than the filtered estimates.  

2.3 The DNS Model with Regime-Switching Loading Parameter 

 In sub-section 2.1 we established that 𝜆 determines the shape of the yield curve.  Thus 

changes in interest rate levels are determined by 𝜆, given other factors.  Realizing that keeping 𝜆 

fixed across the sample period may be a source of model mis-specification in the literature (see 

Diebold and Li (2006) Diebold et. al (2006), and Xiang and Zhu (2013) ), Koopman et al. (2010) 

treat 𝜆 as a time-varying latent factor of the model to be estimated in the same fashion as the  

latent NS factors of the model. 

 We model 𝜆 as a regime-switching parameter that influences interest rate levels 

according to the realized state.  We assume the term structure follows a two-state regime 

switching process for computational tractability of our model.  Investigating ex-post real interest 

rates, Garcia and Perron (1996) assume interest rates follow a three-state regime switching 

process.  And using a reversible jump Markov chain Monte Carlo (RJMCMC) procedure, Xiang 

and Zhu (2013) estimate two distinct regimes for the term structure. 

 We propose to treat the loading parameter 𝜆 as a regime switching parameter solely 

determined by the realized state of the yields, 𝑆𝑡. The latent Markov component 𝑆𝑡 is governed 

by a two-state Markov process and we denote the states simply as 0 or 1 corresponding to the 

term structure being in the low or high regime respectively.  The loading matrix 𝚲(𝜆) in 

Equation (3) is replaced by 𝚲�𝜆𝑆𝑡�  and the resulting measurement equation is 𝒚𝑡 =  𝚲�𝜆𝑆𝑡�𝑭𝑡 +

𝜺𝑡.  Take note that since we are not including 𝜆 in 𝑭𝑡, the observation vector of yields is still 

linear with respect to our latent factor vector.  This new measurement equation along with our 
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transition equation from Equation (4) constitutes the DNS-MSL model for estimation with 

regime-switching the loading parameter. 

2.4 The DNS Model with Regime-Switching Volatility for Factors 

 In most of the empirical literature on term structure modeling, a constant volatility is 

assumed in the time-series of interest rates.  Like modeling the DNS model with constant loading 

parameter, a constant volatility over time may be a source of model misspecification for 

estimating the term structure.  A few papers investigate time-varying volatility in the context of 

the DNS model. Bianchi et al. (2009) employ a VAR augmented with NS factors and macro-

factors featuring time-varying coefficients and stochastic volatility.  Koopman et al. (2010) 

estimate yield disturbances according to a GARCH specification to introduce a time-varying 

variance.  

 We modify the DNS model by introducing regime-switching factor disturbances by 

applying a hidden Markov switching component to the factor disturbances in the transition 

equation.  Equation (3) represents the measurement equation of this model and after replacing 𝜼𝑡 

with 𝜼𝑆𝑡  the new transition equation is 

  𝑭𝑡 = (𝑰 − 𝑨)𝝁 + 𝑨𝑭𝑡−1 + 𝜼𝑆𝑡 ,           𝜼𝑆𝑡 ∼ 𝑀𝑁�0,𝚺𝜂,𝑆𝑡  �, 𝑡 = 1, … ,𝑇, 𝑆𝑡 = 0,1.  

The state-space model comprising the measurement equation from equation (3) and volatility 

switching transition equation with 𝜼𝑆𝑡  substituted into equation (4) will be referred to as the 

DNS-MSV model. 

2.5 Estimation Based on the Kim Filter 

 In this sub-section we will show that the Kim filter allows for efficient estimation of 

parameters through the KF and accurate inference of the realized states through a methodology 

developed by Hamilton (1989, 1990).  But before we outline filter, the DNS-MSL state-space 

model can be represented in its entirety as 

 𝒚𝑡 =  𝚲�𝜆𝑆𝑡�𝑭𝑡 + 𝜺𝑡,   𝜺𝑡 ∼ 𝑀𝑁(0,𝚺𝜀), 𝑡 = 1, … ,𝑇, 

 𝑭𝑡 = (𝑰 − 𝑨)𝝁 + 𝑨𝑭𝑡−1 + 𝜼𝑡, 𝜼𝑡 ∼ 𝑀𝑁�0,𝚺𝜂�, 𝑡 = 1, … ,𝑇,  (12) 

 𝜆𝑆𝑡  =𝜆0(1 − 𝑆𝑡) + 𝜆1𝑆𝑡,   𝑆𝑡 = 0,1, 

and the DNS-MSV model in its entirety is 

 𝒚𝑡 =  𝚲(𝜆)𝑭𝑡 + 𝜺𝑡,   𝜺𝑡 ∼ 𝑀𝑁(0,𝚺𝜀), 𝑡 = 1, … ,𝑇, 

 𝑭𝑡 = (𝑰 − 𝑨)𝝁 + 𝑨𝑭𝑡−1 + 𝜼𝑆𝑡 , 𝜼𝑡 ∼ 𝑀𝑁 �0,𝚺𝜂𝑆𝑡� , 𝑡 = 1, … ,𝑇, (13) 
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 𝜼𝑆𝑡  =𝜂0(1 − 𝑆𝑡) + 𝜂1𝑆𝑡,   𝑆𝑡 = 0,1, 

where for both models the transition probabilities between states are governed by the entries of 

the matrix 

 � 𝑝00 = 𝑝 𝑝01 = 1 − 𝑝
𝑝10 = 1 − 𝑞 𝑝11 = 𝑞 � 

where 𝑝𝑖𝑗 = Pr [𝑆𝑡 = 𝑗|𝑆𝑡−1 = 𝑖] with ∑ 𝑝𝑖𝑗1
𝑗=0 = 1 for all 𝑖. 

 The estimation of the parameters of the model according to the Kim filter is very similar 

to the KF procedure explained for the non-switching case.  Recall the latent factors for the DNS-

MSL and DNS-MSV models are the NS factors and the unobserved state, 𝑆𝑡.  We initialize the 

NS factors and their variances as in the non-switching case.  To initialize the unobserved state,𝑆𝑡, 

we need Pr [𝑆0 = 𝑗|𝜓0] where 𝑗 = 0,1 and  𝜓𝑡 refers to information up to time 𝑡.  This 

expression is the steady state or unconditional probability of being in the low regime which is 

given by the formulas 

 𝜋0 = Pr[𝑆0 = 0|𝜓0] = 1−𝑝
2−𝑝−𝑞

,      (14) 

 𝜋1 = Pr[𝑆0 = 1|𝜓0] = 1−𝑞
2−𝑝−𝑞

,      (15) 

where 𝑝 and 𝑞 are defined in the above transition probability matrix.  Given realizations of the 

NS factors at 𝑡 and 𝑡 − 1 when 𝑆𝑡−1 = 𝑖 and 𝑆𝑡 = 𝑗, the KF can be expressed as 

 𝒇𝑡|𝑡
(𝑖,𝑗) = 𝒇𝑡|𝑡−1

(𝑖,𝑗) + 𝑲𝑡
(𝑖,𝑗)𝒆𝑡|𝑡−1

(𝑖,𝑗) ,       (16) 

 𝒗𝑡|𝑡
(𝑖,𝑗) = 𝒗𝑡|𝑡−1

(𝑖,𝑗) −𝑲𝑡
(𝑖,𝑗)𝚲(𝜆)𝒗𝑡|𝑡−1

(𝑖,𝑗) ,       (17) 

 𝒆𝑡|𝑡−1
(𝑖,𝑗) = 𝒚𝑡 − 𝚲(𝜆)𝒇𝑡|𝑡−1

(𝑖,𝑗)        (18) 

 𝒆𝒗𝑡|𝑡−1
(𝑖,𝑗) = 𝚲(𝜆)𝒆𝒗𝑡|𝑡−1

(𝑖,𝑗) 𝚲(𝜆)′ + 𝚺𝜀      (19) 

 𝒇𝑡|𝑡−1
(𝑖,𝑗)  = (𝑰 − 𝑨)𝝁𝑗 + 𝑨𝒇𝑡−1|𝑡−1

(𝑖,𝑗)        (20) 

 𝒗𝑡|𝑡−1
(𝑖,𝑗) = 𝑨𝒗𝑡−1|𝑡−1

(𝑖,𝑗) 𝑨′ + 𝚺𝜂.       (21) 

where 𝑲𝑡
(𝑖,𝑗) = 𝒗𝑡|𝑡−1

(𝑖,𝑗) 𝚲(𝜆)′ �𝒆𝒗𝑡|𝑡−1
(𝑖,𝑗) �

−1
 is the Kalman gain 

 The efficiency of the Kim filter arises from collapsing the (2 × 2) posteriors 𝒇𝑡|𝑡
(𝑖,𝑗) and  

𝒗𝑡|𝑡
(𝑖,𝑗)  into two single-state posteriors  

 𝒇𝑡|𝑡
𝑗 = 

∑ Pr [𝑆𝑡−1=𝑖,1
𝑖=0 𝑆𝑡=𝑗|𝜓𝑡]𝒇𝑡|𝑡

(𝑖,𝑗)

Pr [𝑆𝑡=𝑗|𝜓𝑡]
,      (22) 



11 
 

and  

 𝒗𝑡|𝑡
𝑗 =

∑ Pr [𝑆𝑡−1=𝑖,1
𝑖=0 𝑆𝑡=𝑗|𝜓𝑡]{𝒗𝑡|𝑡

(𝑖,𝑗)+(𝒇𝑡|𝑡
(𝑗)−𝒇𝑡|𝑡

(𝑖,𝑗))(𝒇𝑡|𝑡
(𝑗)−𝒇𝑡|𝑡

(𝑖,𝑗))′}

Pr [𝑆𝑡=𝑗|𝜓𝑡]
 ,   (23) 

by taking weighted averages over states at 𝑡 − 1.  Following Hamilton (1989, 1990), the Kim 

(1994) filter is a consequence of Bayes’ theorem which we can use to get the previous single-

state posteriors results.  Starting with the joint distribution of our states, we have 

 Pr[𝑆𝑡 = 𝑗, 𝑆𝑡−1 = 𝑖|𝜓𝑡] = Pr[𝒚𝑡,𝑆𝑡=𝑗,𝑆𝑡−1=𝑖|𝜓𝑡−1]
Pr [𝒚𝑡|𝜓𝑡−1]

 

 = 𝑓(𝒚𝑡|𝑠𝑡=𝑗,𝑠𝑡−1=𝑖,𝜓𝑡−1)×Pr[𝑆𝑡=𝑗,𝑆𝑡−1=𝑖|𝜓𝑡−1]
Pr [𝒚𝑡|𝜓𝑡−1]

  (24) 

The two terms in the numerator and the probability in the denominator can be put in terms of 

known quantities from our estimation model.  The conditional density 𝑓(𝒚𝑡|𝑠𝑡−1 = 𝑖, 𝑠𝑡 =

𝑗,𝜓𝑡−1) is obtained based on the prediction error decomposition: 

 𝑓(𝒚𝑡|𝑆𝑡−1 = 𝑖, 𝑆𝑡 = 𝑗,𝜓𝑡−1) = (2𝜋)−
𝑁
2 |𝒆𝒗𝑡|𝑡−1

(𝑖,𝑗) |𝑒𝑥𝑝 �− 1
2
𝒆𝑡|𝑡−1

(𝑖,𝑗) ′ �𝒆𝒗𝑡|𝑡−1
(𝑖,𝑗) �

−1
𝒆𝑡|𝑡−1

(𝑖,𝑗) � 

and  

 Pr[𝑆𝑡 = 𝑗, 𝑆𝑡−1 = 𝑖|𝜓𝑡−1] = Pr [𝑆𝑡 = 𝑗|𝑆𝑡−1 = 𝑖] × Pr[𝑆𝑡−1 = 𝑖|𝜓𝑡−1] 

where Pr [𝑆𝑡 = 𝑗|𝑆𝑡−1 = 𝑖]  is the transition probability.  The terms in the numerator are now in 

known terms.  The denominator, Pr [𝒚𝑡|𝜓𝑡−1], can be expressed as 

 Pr[𝒚𝑡|𝜓𝑡−1] = ∑ ∑ Pr[𝒚𝑡, 𝑆𝑡 = 𝑗, 𝑆𝑡−1 = 𝑖|𝜓𝑡−1]1
𝑖=0

1
𝑗=0 .   

Finally, summing over state 𝑖 we get our single state posterior 

 Pr[𝑆𝑡 = 𝑗|𝜓𝑡] = ∑ Pr[𝑆𝑡 = 𝑗, 𝑆𝑡−1 = 𝑖|𝜓𝑡]1
𝑖=0 .    (25) 

 From the filter we obtain the density of 𝒚𝑡 conditional on past information 𝜓𝑡−1, 

𝑡 = 1,2, … ,𝑇.  We can now calculate maximum likelihood estimates from the approximate log 

likelihood function 

 ℓ(𝜽) = 𝑙𝑛[𝑓(𝑦1,𝑦2, … ,𝑦𝑇)] = ∑ ln (Pr [𝒚𝑡|𝜓𝑡−1]𝑇
𝑡=1 ).   (26) 

Because these are switching models, the parameter vector set for both are going to be have more 

parameters estimated than the non-switching model: 𝜽𝐷𝑁𝑆−𝑀𝑆𝐿 = {𝑨𝑖𝑗 ,𝚺𝜀𝑖𝑗 ,𝚺𝜂𝑖𝑗 ,𝝁, 𝜆0, 𝜆1} and 

𝜽𝐷𝑁𝑆−𝑀𝑆𝑉 = {𝑨𝑖𝑗, 𝚺𝜀𝑖𝑗 ,𝚺𝜂𝑆𝑡𝑖𝑗 ,𝝁, 𝜆0}. 

 Once we have finished calculating the maximum of ℓ(𝜽), all parameters have been 

estimated and we can get inferences on 𝑆𝑡 and 𝒇𝑡 conditional on all the information in the 

sample: 𝑃𝑟[𝑆𝑡 = 𝑗|𝜓𝑡] and 𝒇𝑡|𝑇 for 𝑡 = 1,2, … ,𝑇.  Instead of incrementing to the end of the 
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sample as in the KF, to obtain smoothed probabilities and factors we increment from the end of 

the sample to the beginning, gathering all information along the way.  So for  

𝑡 = 𝑇 − 1,𝑇 − 2 … ,1 we can approximate the smoothed joint probability 

 Pr[𝑆𝑡 = 𝑗, 𝑆𝑡+1 = 𝑘|𝜓𝑇] ≈ Pr[𝑆𝑡+1 = 𝑘|𝜓𝑇] × Pr[𝑆𝑡 = 𝑗|𝜓𝑡] 

 = Pr[𝑆𝑡+1=𝑘|𝜓𝑇]×Pr[𝑆𝑡=𝑗|𝜓𝑡]×Pr[𝑆𝑡=𝑗,𝑆𝑡+1=𝑘|𝑆𝑡=𝑗]
Pr[𝑆𝑡+1=𝑘|𝜓𝑡]  (27) 

and probability 

 Pr[𝑆𝑡 = 𝑗|𝜓𝑇] = ∑ Pr[𝑆𝑡 = 𝑗, 𝑆𝑡+1 = 𝑘|𝜓𝑇]1
𝑘=0     (28) 

These probabilities are used as weights in weighted averages to collapse the  (𝑀 × 𝑀) elements 

of 𝒇𝑡|𝑇
(𝑗,𝑘) and  𝒗𝑡|𝑇

(𝑗,𝑘) into 𝑀 where 𝑀 = 2 for our model.  These weighted averages over 𝑆𝑡+1 are 

 𝒇𝑡|𝑇
𝑗 =

∑ Pr [𝑆𝑡=𝑗,1
𝑘=0 𝑆𝑡+1=𝑘|𝜓𝑇]𝒇𝑡|𝑇

(𝑗,𝑘)

Pr [𝑆𝑡=𝑗|𝜓𝑇]
      (29) 

and   

 𝒗𝑡|𝑇
𝑗 =

∑ Pr [𝑆𝑡=𝑗,1
𝑘=0 𝑆𝑡+1=𝑘|𝜓𝑇]{𝒗𝑡|𝑇

(𝑗,𝑘)+(𝒇𝑡|𝑇
𝑗 −𝒇𝑡|𝑇

(𝑗,𝑘))(𝒇𝑡|𝑇
𝑗 −𝒇𝑡|𝑇

(𝑗,𝑘))′}

Pr [𝑆𝑡=𝑘|𝜓𝑇]
   (30) 

Taking a weighted average over the states at time 𝑡 we get an expression for the smoothed 

factors 

 𝒇𝑡|𝑇 = ∑ Pr[𝑆𝑡 = 𝑗|𝜓𝑇]1
𝑗=0 𝒇𝑡|𝑇

𝑗 .      (31) 

This completes the Kim filter. Further details and justifications can be found in Kim and Nelson 

(1999). 

 
3. DATA 
 
 We use end-of-month, bid-ask averages for U.S. Treasury yields from January 1970 

through December 2000.  Diebold and Li (2006) convert the unsmoothed Fama-Bliss (1987) 

forward rates given by CRSP to unsmoothed Fama-Bliss zero rates for the following eighteen 

maturities: 1, 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 month.  The data 

is kindly supplied by Francis Diebold. Figure 1 gives a 3-dimensional mesh plot of the term 

structure for the sample period and the maturities. 

[Insert Figure 1 here] 

There are two primary advantages for us to limit our study to this particular sample period: first, 

this Diebold’s dataset is produced through consistent and careful cleaning procedures that 

remove microstructure noises and therefore provides us with a nice dataset to evaluate the 
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proposed models; second, the most recent periods have featured an environment of extremely 

low nominal interest rates with the so-called zero lower bound constraint, which implies that the 

Gaussian type of term structure models typically encountered in the literature including the one 

implemented here would provide a poor approximation and thus calls for separate treatment that 

we leave for future studies.  

 Table 1 reports the means, standard deviations, and autocorrelations across maturities for 

the yields with maturities of 1, 12, and 30 months.  The summary statistics show the average 

yield curve is upward sloping –a reflection of the risk premium inherent in longer maturities.  

The volatility is generally decreasing by maturity with the exceptions of the one-month being 

less volatile than the 3, 6, and 9-month bills and the 8-yr being less volatile than the 9-yr bond.  

[Insert Table 1 here] 

 We also report the statistics for the empirical counterparts for the level, slope, and 

curvature factors.  It is worth declaring which convention we adopt in calculating the empirical 

factors.3 The empirical level factor is calculated as an average of the 1, 24, and 120 month 

maturities.  The empirical slope factor is the difference between the 120 and 1 month maturities.  

Lastly, the empirical curvature factor is twice the 24 month maturity minus the sum of the 1 and 

120 month. 

 
4. EMPRICAL RESULTS 
 
 In this section we present the comparative test results for the DNS, DNS-MSL, and DNS-

MSV models.  Table 2 gives the correlations between the empirical factors and our estimated 

smoothed factors via the Kim filter for each model and Figures 3-5 show graphically the 

evolution of each factor and their empirical counterpart for each model.  We identify a drop in 

correlation between the empirical curvature factor and smoothed curvature factor for the DNS-

MSL model.  The formulation of each empirical counterpart assumes no switching so it is not 

surprising that the factor which has two terms subject to switching would produce the lowest 

correlation.     

 Table 4 reports our in-sample root mean squared error (RMSE) values for the various 

models.  Recall that the Kalman filter estimates measurement error parameters for each maturity. 

                                                           
3 Some authors define empirical level as simply the observed long term maturity, which in our case would be 
y(120).  
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These parameter estimates are recorded as the diagonal terms of the covariance matrix of the 

measurement equation error.  Taking these diagonal elements we are able to calculate the RMSE 

according to the formula  

 (∑ (𝑦𝑡 − 𝑦�𝑡)2/𝑇𝑇
1 )1/2 

where T = 371 for all models.  We find overall the DNS model yields the largest average RMSE 

and the DNS-MSL yields the smallest average RMSE.  In terms of percentage changes, the 

DNS-MSL and the DNS-MSV decrease the in-sample average RMSE by 2.86 percent and 0.37 

percent, respectively.   

 In addition to calculating the total average RMSE for all maturities, we calculate average 

RMSEs for the ranges of short, medium, and long-termed maturities.  We limit the three maturity 

ranges to 6 maturities, i.e. short maturity range contains the 1, 3, 6, 9, 12 and 15m maturities, etc.  

The DNS-MSL decreases the average RMSEs for the short, medium, and long maturity range 

groups by 4.89 percent 2.47 percent, and 0.75 percent, respectively, the largest decreases for the 

respective groups.  The improved modeling of the DNS-MSV model came with a decreased 

average RMSE for the short maturity range group by 1.30 percent but for the medium and long 

groups the average RMSE actually increased by 0.30 percent and 0.17 percent respectively over 

the DNS model.  The DNS-MSV model is capturing the volatility of the short maturity bills but 

the bonds have less volatility so the model is over-identified for longer maturities resulting in 

greater loss of estimation efficiencies.   These results support the case for applying a switching 

component to the DNS model.  Furthermore, these results suggest switching 𝜆 leads to a 

noticeable improvement for the in-sample fit over the DNS model by better estimating longer 

termed maturities, a known deficiency of the DNS model. 

 The maximum log-likelihood value and AIC/BIC measures are calculated for each model 

and are given in Table 2.  Our regime switching models show significant model improvement 

over the baseline DNS model.  The DNS-MSL model achieves the greatest log-likelihood value 

and the smallest AIC and BIC values, further strengthening the conclusion that this model 

performs the best in-sample fit of all the models. 

[Insert Table 2 here] 

4.1 DNS Model 

 The baseline DNS model is estimated with parameter estimate values close to those of 

other DNS parameter estimates in the literature.  The parameter estimates are listed in Table 2.  
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The estimate for the loading parameter 𝜆 is 0.080 with a standard error of 0.0035 while the 

estimated 𝜆 for Diebold, Rudebusch and Aruoba (2006) is 0.077.  Using the Diebold and Li’s 

interpretation of 𝜆 we are able to ascertain the maturity in which the loading on the curvature 

factor attains a maximum, henceforth referred to as implied maturities. Recall the loading on the 

curvature factor (CL) has functional form  

 𝐶𝐿 = 1−e−λm

λm
− e−λm. 

Taking the first order condition of CL with respect to the maturity, 𝑚, yields 

 𝐶𝐿𝑚 = 𝑒−𝜆𝑚

𝜆
+ 𝑚𝑒−𝜆𝑚 − 1−𝑒−𝜆𝑚

𝑚𝜆2
. 

Setting this nonlinear equation to zero and solving for 𝑚 gives the maturity that the curvature 

loading reaches a maximum.  The implied maturity of our CL is 22.4 months while the implied 

maturity in the DRA paper is 23.3 months. 

 Our estimated smooth factors have relatively high correlations to the empirical factors as 

shown in Table 3 and with the smoothed-empirical factor plots in Figure 3.   

[Insert Table 3 here] 

[Insert Figure 2 here] 

Table 4 gives the RMSE calculations.  The one and three-month rates are the most difficult to 

estimate and the medium-term maturities are fitted the best. 

[Insert Table 4 here] 

4.2 DNS-MSL Model  

  We introduce the first of our two regime switching models--the DNS-MSL model.  

Comparing the correlations of our estimated smoothed factors for this model and their respective 

empirical factors we find a drop in the correlations across the factors as compared with the 

baseline model.  Specifically, the curvature factor experiences the largest decrease.  This is 

further supported with a visual inspection of the third plot of the smoothed-empirical factor plots 

of Figure 3. 

[Insert Figure 3 here] 

There are two causes for this drastic decrease in the correlation of the smoothed curvature factor 

and its empirical counterpart in both switching models.  First, the empirical factors are calculated 

under the assumption of no switching in yields.  Therefore the factors responsible for capturing 

the switching we propose exists in the term structure –slope and curvature—should experience 
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the largest decreases in correlation with empirical slope and curvature.  Second, and more 

specifically for the curvature factor, the literature has shown that the curvature factor is highly 

volatile and thus may suffer from weak identification and therefore its estimation is the most 

tenuous of all the estimable factors.  It is indeed the case that for each model we estimate the 

curvature factor has the highest volatility. 

 Our estimation results from the Kalman filter indicate the loading parameter 𝜆 is subject 

to a hidden Markov switching component.  We estimate 𝜆 to be 0.055 and 0.153 for the low and 

high interest rate regimes, respectively.  The implied maturities are 32.6 months and 11.7 

months, respectively.  Figure 5 shows the effect these values have on the slope and curvature 

factor loadings across maturities. 

[Insert Figure 5 here] 

In the first two plots we see a much faster decay of the slope and curvature loading factors in the 

high interest rate regime than in the low interest rate regime, therefore the slope and curvature 

factor loadings influence medium and long-term maturities less than in the low regime.  This 

suggests that during periods when yields are relatively high, business cycle activity and monetary 

policy contribute less to yield determination in medium and long-term maturities than when 

yields are relatively low (see Figure 6 and the discussions of regimes below the figure).  To put it 

another way, yields for medium and long-term maturities are determined more by long-term 

inflation expectations when yields are relatively high.  Yu and Zivot (2011) find that differing 

patterns in the curvature factor of speculative-grade bonds suggest highly risky bonds are not 

sensitive to monetary policy.    

 From the third plot in Figure 5, we see that the slope loading factor is uniformly greater 

across maturities in the low regime than in the high regime.  This shows definitively that the 

slope factor contributes more to yield determination over all maturities when yields are relatively 

low and thus monetary policy and business cycle activity play a more pivotal role in the level of 

yields.  This was evident during Fed Chairman Greenspan’s tenure in the Federal Reserve.  In the 

last plot, the curvature loading factor is greater in the high regime than in the low regime for the 

one through 19-month maturities and therefore influences the yields of those maturities more so 

than in the low regime.  For longer maturities in the high regime, the curvature loading factor 

decays quickly and is less of a factor in yield determination than in the low regime.   
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 The DNS-MSL smoothed probability plot of Figure 6 shows the time-series of the 

unobserved state, 𝑆𝑡.    

[Insert Figure 6 here] 

The timing and duration of the regime changes in Figure 6 coincide very nicely with periods of 

high interest rates documented in the literature. In the early to mid-90s yields achieved their 

lowest levels in our sample period.  This period corresponds to the Great Moderation where the 

level and volatility in interest rates decreased substantially.  From the mid-90s to the late-90s we 

observe persistent regime changes.  While interest rate levels were not as high as in the 1970s or 

1980s, the yield levels of the mid-to-late 90s were high relative to the levels in the early-to-mid 

90s.  The loading parameter is capturing these relative changes in interest rate levels.    

4.3 DNS-MSV Model 

 The second of our regime-switching models is the DNS-MSV model.  As mentioned 

previously, authors investigating regime-switching in interest rates have consistently applied a 

hidden switching component to the conditional mean and volatility, simultaneously.  After 

running pre-tests for Markov switching in the variaous model parameters, we find no significant 

switching in the conditional mean but we do find significant switching in the volatility 

parameters of each of the latent factors.  From Table 2 we find the factor volatilities for the 

DNS-MSV model increase from 0.26, 0.33, and 0.66 in the low volatility regime to 0.50, 1.21, 

and 1.87, respectively, in the high volatility regime.  These are relative increases of 92 percent, 

267 percent, and 183 percent, respectively.  

 We estimate 𝜆 to be 0.081. Our 𝜆 estimate gives an implied maturity of 22.1 months. 

slightly smaller than the baseline’s implied maturity of 22.4 months. 

 The timing of the regime changes in the volatility corresponds quite closely to terms 

structure volatility changes other papers have documented over the period from 1970 through 

2000.  Figure 7 plots the smoothed probabilities according to 𝑆𝑡. 

[Insert Figure 7 here] 

Figure 7 shows many abrupt but short-lived regime changes in the 1970s.  But in the 1980s we 

see more persistent regime changes up until the latter half where we once again see distinct 

spikes.  The term structure of the 1990s can be described as being in the low volatility regime 

throughout the decade.  This dramatic change corresponds to the Great Moderation. 
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 In accordance with the literature, we estimate a general model where both the decay 

parameter and factor disturbances are subject to switching, simultaneously.  The model 

comparison tests show this model to be superior to the DNS-MSV results but inferior to the 

DNS-MSL results.  

4.4 Are the DNS-MSL and DNS-MSV Models Statistically Different From the DNS Model? 

 We have established the DNS-MSL and DNS-MSV models outperform the DNS model 

with in-sample estimation. We now show the two models are statistically different from the DNS 

model.  Since both the DNS-MSL and DNS-MSV models nest the DNS model, the likelihood 

ratio (LR) test is a good statistical testing candidate to address our issue.  But we are unable to 

make accurate statistical inference using the asymptotic LR distribution for two reasons.  First, 

the finite sample size may render the asymptotic theory less accurate in practice.  Second, and 

more importantly, we encounter a nuisance parameter problem which renders asymptotic 

distributions used for testing nonstandard. Because of reason two, the classical optimality results 

of not only the LR test are invalid but also the Lagrange Multiplier (LM), Wald, and LR tests are 

rendered invalid.  This issue has been addressed by Davies ((1977), (1987)), Andrews and 

Ploberger (1994), and Hansen ((1992), (1996)) among others.  Although Andrews and Ploberger 

show the LR test is not an optimal test when deriving their new test in the presence of nuisance 

parameters, we follow Hansen’s simulation methodology which does utilize the LR test.4 The 

transition probabilities are the nuisance parameters in our model. 

 We outline the steps used to bootstrap the LR distribution for the comparison of the DNS 

and DNS-MSL models:  

STEP 1: Obtain the max likelihood value (𝐿𝐿𝑉0) of the DNS model (null) and the 

max likelihood value (𝐿𝐿𝑉𝐴) of the DNS-MSL model (alternative), using the real 

dataset.  Calculate the 𝐿𝑅�  statistic. 

STEP 2: Generate yields (𝑦�0) using the DNS model.  Fit the DNS-MSL and DNS 

models to the yields (𝑦�0).  Obtain the max likelihood value (𝐿𝐿𝑉𝐴∗) for the DNS-

MSL model and (𝐿𝐿𝑉0∗) for the DNS model.  Calculate the new 𝐿𝑅�𝑗
∗ using 𝐿𝐿𝑉0∗ 

and 𝐿𝐿𝑉𝐴∗. 

                                                           
4 Our regime switching methodology is more closely related with Hansen (1992) when testing in the presence of 
nuisance parameters than Andrews and Ploberger (1992) which apply their test in the context of a single break in 
dynamics. 
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STEP 3: Using 𝐿𝑅�  and 𝐿𝑅�𝑗
∗ compute a bootstrap critical value (𝐶̂𝛼∗ ). For a test at 

level 𝛼, first sort the 𝐿𝑅�𝑗
∗ from smallest to largest.  Then calculate 

    𝐶̂𝛼∗ ≃ 𝐿𝑅�𝛼(𝐵+1)
∗   

where 𝛼 represents your confidence level and B is the number of bootstraps.  

Repeat steps 2 and 3 B times and obtain {𝐿𝑅�𝑗
∗}1𝐵. 

STEP 4: Reject the null hypothesis if  𝐿𝑅� > 𝐶̂𝛼∗ . 

The steps are the same for deriving the LR distribution for the DNS and DNS-MSV comparison. 

The LR test statistic under the null of no switching is 467 for the DNS-MSL model and 410 for 

the DNS-MSV model.  We perform 1000 bootstraps to derive a LR distribution.  Figure 5 is a 

plot of the probability density for both models using a normal kernel function to smooth.  Table 5 

lists the critical vales for each model at the 10%, 5% and 1% confidence levels. 

[Insert Table 5 here] 

 It is evident that the test statistic greatly exceeds all bootstrapped critical values so we are able 

to reject the null that the two models are statistically the same in both cases.  This greatly 

enhances our stance that term structure modeling should take into account regime switching and 

that a model without regime switching is subject to omitted variable bias.  

 
5. CONCLUSION 
 
 In this paper we investigate and model the parameter instability in the term structure 

using regime-switching dynamic Nelson-Siegel models.  After applying a hidden Markov 

switching component to all of the model’s parameters one at a time, we find that the factor 

loading parameter and latent factors’ conditional volatilities show significant switching when 

allowed—not the conditional mean as noted in the literature.  The model accounting for regime 

changes in volatility captured the timing of the volatility regimes associated with the oil price 

shock of the 1970s, monetary policy changes of the early 1980s and the period known as the 

Great Moderation.  The model accounting for level changes in interest rates, i.e. switching the 

loading parameter modeled the regimes’ correspondences to the oil price shock, the dis-

inflationary policies under Fed chairman Paul Volker, and the aggressive monetary tightening 

and loosening under Fed chairman Alan Greenspan. The timing of the regime switches and their 
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persistence according to smoothed probability plots strongly support our claim that the loading 

parameter is related to short-term monetary policy changes.   

 The model allowing a switching loading parameter yields smaller AIC/BIC values and 

produces smaller root mean squared error values for most of the individual maturities.  The 

model also produced smaller RMSEs across maturity groupings, and a smaller total RMSE.  

Overall this model gives a more accurate timing of regime duration in the term structure over the 

sample period.  Lastly, we test to see if both models are statistically different from the non-

switching model using a LR test.  Our testing results show that the both models are statistically 

different from the non-switching model at the one percent confidence level. 
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Table 1: Descriptive Statistics 
Maturity Mean Std. dev. Minimum Maximum 𝜌�(1) 𝜌�(12) 𝜌�(30) 
 1 6.44 2.58 2.69 16.16 0.966 0.692 0.296 
 3 6.75 2.66 2.73 16.02 0.973 0.714 0.313 
 6 6.98 2.66 2.89 16.48 0.974 0.730 0.350 
 9 7.10 2.64 2.98 16.39 0.974 0.738 0.375 
 12 7.20 2.57 3.11 15.82 0.973 0.742 0.359 
 15 7.31 2.52 3.29 16.04 0.974 0.750 0.423 
 18 7.38 2.50 3.48 16.23 0.975 0.757 0.442  
 21 7.44 2.49 3.64 16.18 0.976 0.761 0.456 
 24 7.46 2.44 3.78 15.65 0.976 0.758 0.465 
 30 7.55 2.37 4.04 15.40 0.976 0.768 0.488  
 36 7.63 2.34 4.20 15.77 0.978 0.774 0.500 
 48 7.77 2.28 4.31 15.82 0.978 0.780 0.524 
 60 7.84 2.25 4.35 15.00 0.981 0.794 0.543  
 72 7.96 2.22 4.38 14.98 0.981 0.803 0.556 
 84 7.99 2.18 4.35 14.98 0.981 0.786 0.560 
 96 8.05 2.17 4.43 14.94 0.983 0.812 0.574 
 108 8.08 2.18 4.43 15.02 0.983 0.813 0.580 
 120 8.05 2.14 4.44 14.93 0.983 0.789 0.570 
 Level 7.32 2.31 4.08 15.26 0.980 0.771 0.466 
 Slope -1.60 1.45 -5.00 3.33 0.910 0.342 -0.104 
 Curvature 0.43 0.84 -1.80 3.93 0.736 0.207 0.124 
Note: We define the Level as (y(1)+y(24)+ y(120))/3, the Slope as y(120) – y(1) and Curvature as 2*y(24) – (y(1) + 
y(120)) 
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Table 2: Parameter Estimates 
  DNS DNS-MSL DNS-MSV  
 Parameters 
 𝑎11 0.95 0.99 0.99  
  (0.0178) (0.0045) (0.0054)  
 𝑎22 0.91 0.98 0.99  
  (0.0256) (0.0150) (0.0094) 
 𝑎33 0.88 0.79 0.90  
  (0.0569) (0.0322) (0.0244) 
 𝜇11 9.22 7.57 6.85  
  (0.6655) (0.5789) (0.4108) 
 𝜇22 -1.50 -1.52 0.83   
  (0.1858) (0.5368) (0.3913) 
 𝜇33 -0.47 0.16 -0.66  
  (0.0543) (0.2409) (0.4098) 
 𝜎𝜂𝐿

0  0.36 0.33 0.50  
  (0.0225) (0.0146) (0.0197) 
 𝜎𝜂𝑆

0  0.62 0.61 1.22  
  (0.0169) (0.0248) (0.0212) 
 𝜎𝜂𝐶

0  0.92 1.03 1.87  
  (0.0283) (0.0521) (0.0438) 
 𝜎𝜂𝐿

1  ------ ------ 0.26  
    (0.0534) 
 𝜎𝜂𝑆

1  ------ ------ 0.33  
    (0.0686) 
 𝜎𝜂𝐶

1  ------ ------ 0.61  
    (0.1275) 
 𝜆0 0.080[22.4] 0.153[11.7] 0.081[22.1]  
  (0.0035) (0.0022) (0.0017)  
 𝜆1 ------ 0.055[32.6] ------  
 (0.0043) 
 𝑞 ------ 0.90 0.89  
 𝑝 ------ 0.93 0.97 
Max. Likelihood Value 9243.6 9481.7 9435.3  

------------------------------------------------------------------------------------------------------- 
Number of free parameters (𝑘) 28 31 33  
 AIC -18431.2 -18901.4 -18804.6 
 BIC -18240.6 -18690.4 -18578.0   
Standard errors are in parentheses 
Implied maturities are in brackets 
We calculate the information criteria according to the formulas 𝐴𝐼𝐶 = −2 ∗ ℓ(𝜽)𝑚𝑎𝑥 + 2 ∗ 𝑘 and  
𝐵𝐼𝐶 = −2 ∗ ℓ(𝜽)𝑚𝑎𝑥 + 𝑘 ∗ ln (𝑁𝑇), where 𝑁 = 18 maturities and 𝑇 = 371 months 
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Table 3: Correlations 
  DNS DNS-MSL DNS-MSV 
  
𝜌(Empirical Level, Estimated. Level) 0.8987 0.8598 0.8768 
  
𝜌(Empirical Slope, Estimated Slope) 0.9558 0.9064 0.9061 
  
𝜌(Empirical Curvature, Estimated Curvature) 0.8749 0.6374 0.7429  
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Table 4 
Treasury yields in-sample evaluation: Root Mean Squared Errors (RMSEs). 

 DNS DNS-MSL DNS-MSV  
Maturity RMSE RMSE RMSE  
 1 0.7296 0.6506 0.7274  
 3 0.4919 0.4274 0.4840  
 6 0.2524 0.2875 0.2302  
 9 0.3087 0.3255 0.3101  
 12 0.3253 0.3219 0.3272  
 15 0.3147 0.2901 0.3123  
 18 0.2928 0.2702 0.2870  
 21 0.2777 0.2727 0.2719  
 24 0.2669 0.2774 0.2704  
 30 0.2702 0.2723 0.2741  
 36 0.2831 0.2712 0.2890  
 48 0.3201 0.3047 0.3233  
 60 0.3024 0.2847 0.3059  
 72 0.3243 0.3271 0.3223  
 84 0.3282 0.3350 0.3278  
 96 0.3264 0.3294 0.3249  
 108 0.3879 0.3756 0.3898  
 120 0.4122 0.4140 0.4145  
 Average 0.3453 0.3354 0.3440  
 
 1-15mo 0.4038 0.3838 0.3985  
18-48mo 0.2851 0.2781 0.2860  
60-120mo 0.3469 0.3443 0.3475  
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Table 5 
LR Critical Values (1000 Bootstrap Iterations) 

 10% 5% 1%  LR-stat 

 DNS-MSL 22.89 37.58 55.18 467 

 DNS-MSV 24.64 37.06 55.90 410 
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Figure 3 
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Figure 4 
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 Figure 5 
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Figure 6 
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Figure 8 
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