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Abstract

We provide a framework with multiple worker types (e.g. gender, age, education), to

decompose changes in aggregated and disaggregated between-group inequality into

changes in (i) the supply of each worker type, (ii) the importance of different tasks,

(iii) the extent of computerization, and (iv) other labor-specific productivities (a resid-

ual to match observed relative wages). The model features three forms of comparative

advantage: between worker types and computers, worker types and tasks, and com-

puters and tasks. We parameterize the model to match observed changes in worker

type allocation and wages in the United States between 1984 and 2003. The combina-

tion of changes in the importance of tasks and computerization explain the majority

of the rise in the skill premium as well as rising inequality across more disaggregated

education types, whereas labor-specific productivity changes drive between-worker

wage polarization.
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1 Introduction

The last few decades have witnessed pronounced changes in between-group wage in-
equality in the United States, both at the aggregate level—e.g. the rise in the college pre-
mium or the fall in the gender premium—and at the disaggregate level—e.g. the rise in
wages for those groups of workers at the top and bottom of the wage distribution relative
to those in the middle (i.e. between-group wage polarization). The same time period has
been marked by dramatic changes in the economic environment, which a vast literature
has argued have impacted inequality. These include rising relative supplies of educated
workers and women in the workplace, phenomena such as structural transformation and
international trade that changed the relative demand for workers across tasks, comput-
erization, and other forms of labor-type-specific technical change; see e.g. Feenstra and
Hanson (1999), Krusell et al. (2000), and Autor et al. (2003). In this paper, we provide a
quantitative framework incorporating these forces and use it to decompose the sources of
changes in aggregated and disaggregated between-group inequality between 1984-2003
in the United States.

Our framework features many types of workers (e.g. young men who dropped out
of high school) and many types of capital equipment (e.g. computers) that are employed
producing many tasks (e.g. health services), allowing us to study, respectively, disag-
gregated between-group inequality, the growth of computers relative to other forms of
capital equipment, and the reallocation of workers across tasks. The productivity of a
worker of a given type employed in a specific task and using a specific type of equipment
has two components: a systematic component that is common to all workers of that type
given that choice of task and equipment and an idiosyncratic component that is specific
to that worker. The idiosyncratic component of productivity allows us to model workers’
decisions as a tractable discrete choice problem, as in McFadden (1974), Eaton and Ko-
rtum (2002), and Hsieh et al. (2013). The systematic component of productivity—which
varies with worker type, equipment type, and task—allows for three types of compara-
tive advantage: between worker types and equipment types, between worker types and
tasks, and between equipment types and tasks. Even though our framework imposes
strong restrictions on micro-level production functions, at the aggregate level we obtain
rich interactions between worker types, capital equipment types, and tasks, and we nest
standard frameworks for studying between-group inequality.1

Comparative advantage (CA) shapes the allocation of labor to tasks and capital both

1In our discrete choice approach, factor allocation at a point in time provides information about aggre-
gate elasticities between factors. An alternative approach, which is harder to implement in practice, is to
specify a general aggregate production function with multiple cross elasticities between factors.
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directly and indirectly. For instance, the fact that educated workers use computers rel-
atively more than less educated workers can be generated by two distinct patterns of
comparative advantage. First, if more educated workers have a CA with computers, they
will use computers relatively more within tasks. Second, if more educated workers have
a CA in the tasks in which computers have a CA, then they will disproportionately allo-
cate to tasks in which all workers use computers more. In general, any aggregate pattern
of factor allocation—workers to equipment, workers to tasks, or equipment to tasks—can
be generated either directly (as in the first case) or indirectly (as in the second case) by
comparative advantage. Given data on the allocation of workers to equipment types and
tasks, we can identify the systematic component of productivity using the previous logic.

To quantify the sources of changes in between-group inequality, we allow for four
types of aggregate changes over time in the economic environment: (i) the composition
of the workforce across labor types (“labor supply”), which can be directly measured,2

(ii) task preference parameters and productivity (which we refer to as “task shifters”
because they generate shifts in employment across tasks), (iii) the productivity of using
and producing different types of capital equipment (“equipment productivity”), and (iv)
the productivity of each labor type (“labor productivity”).

Through factor allocation, CA shapes the impact of these changes on relative wages.
For example, a decline in the cost of producing computers, (iii), increases the relative
wage of more educated workers if they have a CA using computers. On the other hand,
by reducing the price of tasks in which comptuers have a CA, a decline in the cost of pro-
ducing computers may reduce the relative wage of workers with CAs in tasks in which
computers have a CA. Thus, our model is flexible enough so that computerization may
increase the relative wage of workers who are relatively productive using computers and
may reduce the relative wage of workers employed in tasks in which computers are par-
ticularly productive, as described by, e.g., Autor et al. (1998) and Autor et al. (2003).

We can infer task shifters and equipment productivity, (ii) and (iii), given data on
changes over time in the allocation of workers to equipment types and tasks (e.g. the
share of young men who dropped out of high school who use computers in health service
tasks) without directly using data on wage changes; this avoids the critique of Acemoglu
(2002) regarding previous work evaulating the role of capital-skill complementarity in the
evolution of the skill premium using aggregate time series data. We infer labor produc-
tivity, (iv), as a residual—given (i) , (ii) , (iii)—to match data on relative average wages
across worker types. Hence, given data and the structure of our model, we can decom-

2We treat education decisions as exogenous. See e.g. Restuccia and Vandenbroucke (2008) and Hsieh et
al. (2013) for treatements of endogenous education.
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pose changes in between-group inequality into our four components.
Implementing this methodology requires data over time on the allocation of worker

types to equipment types and tasks. We obtain such data from the October Current Pop-
ulation Survey (CPS) Computer Use Supplement, which—in addition to a worker’s char-
acteristics (with which we group workers into 30 types based on age, gender, and edu-
cation) and occupation (which we map to 20 tasks in the model)—provides information
for certain years (1984, 1989, 1993, 1999, and 2003) on whether or not a worker has di-
rect or hands on use of a computer—be it a personal computer, laptop, mini computer,
or mainframe—at work. While this data allows us to estimate our model and conduct
our decomposition, it is not without limitations, as we discuss in depth below. First, it
imposes a narrow view of computerization. Second, it only provides information on the
allocation of workers to one type of equipment, computers; we, therefore, must infer us-
age of the second type of equipment in the model, non-computer equipment.3 Finally, we
do not observe the share of each worker’s time at work spent using computers.4

Our procedure uncovers some interesting patterns of comparative advantage. For ex-
ample, because more educated workers use computers more intensively within occupa-
tions, we infer that more educated workers have a comparative advantage using comput-
ers. Whereas women use computers more intensively than men, this aggregate pattern is
mostly driven by indirect comparative advantage: women are allocated to occupations in
which all workers use computers more intensively. Hence, we infer that they have at most
a weak comparative advantage using computers. Because all workers use computers in-
tensively in occupations where thinking creatively and repetition are relatively important,
we infer that computers have a comparative advantage in such occupations; similarly,
computers have a comparative disadvantage in occupations where manual dexterity is
relatively important. Finally, because educated workers are disproportionately employed
in occupations where analyzing data is particularly important (given the type of capital
used), we infer that they have a comparative advantage in such occupations; similarly,
we infer that they have a comparative disadvantage in occupations in which repetition is
particularly important. Our procedure also implies that computer productivity (the pro-
ductivity of using and producing computers relative to non-computer equipment) rises
rapidly over time because of the observed rise in computer usage, conditional on worker
type and occupation. This finding is consistent with ample evidence showing a rapid de-

3To alleviate this concern, we show that the parameterized model is consistent with the allocation of
equipment types across sectors in Appendix B, where we match tasks in the model with sectors in the data.

4To alleviate this concern, we show that our estimates are consistent with those obtained using an
alternative data source which contains the share of hours worked using computers: The 2006 German
Qualification and Working Conditions survey.
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cline in the price of computers relative to all other equipment types and structures, which
we do not directly use in our estimation procedure.5

At the aggregate level, we decompose changes in the skill premium and the gender
wage gap. Over the full sample we find that the combination of changes in capital pro-
ductivity (the rise in the productivity of computers) and task shifters (the expansion of
occupations in which more educated workers have a comparative advantage) account
for roughly 71% of the sum of the forces pushing the skill premium upward (the sum
of task shifters, capital productivity, and labor productivity). For a value of the elastic-
ity of substitution between tasks that is no larger than one, we find that the change in
task shifters is the dominant force increasing the skill premium. Whereas the change in
labor productivity is the only component of our decomposition that is estimated using
changes in observed wages, it accounts for only roughly 29% of the sum of the forces
pushing the skill premium upward. In other words, observable changes in the allocation
of workers to tasks and computers explains the majority of the rise in the skill premium.
On the other hand, the reduction in the gender gap is driven equally by changes in task
shifters and labor productivity. Even though women are substantially more likely than
men to use computers, changes in equipment productivity play almost no role in closing
the gender gap because, as discussed above, we find that women have only a weak com-
parative advantage using computers. At the disaggregate level, we decompose changes
in relative average wages across five education groups. Our results are consistent with
those at the aggregate level: changes in labor productivity are not particularly important
for explaining the rise in between education-group inequality. However, changes in labor
productivity are important for other moments of the between-group earnings distribu-
tion: they have a U-shaped effect on relative wages (between-group wage polarization),
decreasing wages of intermediate wage groups relative to the lowest and highest wage
groups for our 15 gropus of men between 1989 and 2003.

We show that restricting the sources of comparative advantage—either by assuming
away comparative advantage with tasks (for both workers and equipment) or compar-
ative advantage with equipment (for both workers and tasks)—substantially alters the

5While the decline over time in the U.S. in the price of equipment relative to structures has been well-
documented (see e.g. Greenwood et al. (1997)), we highlight that this is mostly driven by a decline in
computer prices. For example, between 1984 and 2003: (i) the price of industrial equipment and trans-
portation equipment relative to computers and peripheral equipment has risen by a factor of 32 and 34,
respectively, (calculated using the BEA’s Price Indexes for Private Fixed Investment in Equipment and Soft-
ware by Type) and (ii) the quantity of computers and peripheral equipment relative to industrial equip-
ment and transportation equipment rose by a factor of 35 and 33, respectively (calculated using the BEA’s
Chain-Type Quantity Indexes for Net Stock of Private Fixed Assets, Equipment and Software, and Struc-
tures by Type). We do not use equipment price or quantity data directly in our procedure in part because
of quality-adjustment issues raised by, e.g. Gordon (1990).
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results of our decomposition. This suggests that modeling all three sources of compara-
tive advantage is important for decomposing changes in between-group inequality.

Finally, we extend our baseline closed economy model to incorporate international
trade in capital equipment. We abstract from task trade because we do not have data on
trade in occupational output; see e.g. Grossman and Rossi-Hansberg (2008) for a theoreti-
cal analysis of task trade and inequality and Feenstra and Hanson (1999) for an empirical
treatment of offshoring and relative wages. We show analytically that, in the context of a
gravity model of trade in final goods (consumption goods and each type of capital equip-
ment) it is straightforward to solve for the impact of international trade on relative wages
between any two years in our sample given domestic absorption shares and gravity elas-
ticities, in addition to the parameter values recovered in our baseline exercise. Between
1984 and 2003, trade in capital equipment accounts for roughly 18% of the total impact
of changes in capital productivity on the skill premium in the United States. Given our
parameter estimates, the impact of equipment trade on relative wages would be substan-
tially larger in countries that import a larger share of their computer equipment; see e.g.
Burstein et al. (2013) and Parro (2013).6

We view our contributions as threefold. First, we nest four of the central mechanisms
shaping relative wages proposed in the literature—labor supply, task shifters, capital-skill
complementarity, and other labor specific productivity—and quantify their importance
in the United States. Second, we identify the implications of changes in task shifters and
capital productivity for relative wages using changes over time in the allocation of work-
ers to equipment types and tasks rather than using data on changes in wages. Third, we
analyze relative wages at high and low levels of worker aggregation. In doing so, our
framewok extends Costinot and Vogel (2010) and Acemoglu and Autor (2011) to incorpo-
rate complementarity between worker types and other inputs, following Grossman et al.
(2013). In using a model of this form to conduct quantitative exercises, our paper is closely
related to Hsieh et al. (2013). Whereas they introduce wedges and focus on changes in the
extent of misallocation over time, we study changes in relative wages.

Whereas we analyze the changing share of labor income allocated across labor types
and of equipment income allocated across equipment types, Karabarbounis and Neiman
(2013) analyze the changing aggregate share of capital and labor. We focus on between-
group inequality in this paper. See e.g. Kambourov and Manovskii (2009), Huggett et al.
(2011), Hornstein et al. (2011), and Helpman et al. (2012) for an analysis of within-group

6Our framework, which includes multiple types of capital equipment and comparative advantage be-
tween labor types and equipment types rationalizes the findings in Caselli and Wilson (2004), that countries
with different distributions of education import different mixes of capital equipment.
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inequality.

2 Environment

We consider an economy with nΛ types of workers, indexed by λ ∈ {λ1, ..., λnΛ}, and nK

types of capital equipment, indexed by κ ∈ {κ1, ..., κnK}.7 At time t, the endogenous stock
of capital equipment κ is given by Kt (κ) and the exogenous supply of labor λ is given
by Lt (λ). Individual workers are indexed by ω ∈ Ω, and the set of workers of type λ is
given by Ω (λ) ⊆ Ω. Workers and capital equipment are employed by firms to produce
tasks, indexed by σ ∈ {σ1, ..., σnΣ}.8

Tasks are combined to create a single final good according to a constant elasticity of
substitution (CES) production function,

Yt =

(
∑
σ

µt (σ) yt (σ)
(ρ−1)/ρ

)ρ/(ρ−1)

, (1)

where ρ > 0 is the elasticity of substitution across tasks, yt (σ) ≥ 0 is task σ output,
and µt (σ) ≥ 0 is demand shifter for task σ. The final good is used for consumption,
Ct = Yt (C), and capital equipment investment, It (κ) = Yt (κ). The resource constraint
for the final good can be expressed as

Yt = qt (C)Yt (C) + ∑
κ

qt (κ)Yt (κ) ,

where qt (C) and qt (κ) denote the cost (in terms of the final good) of a unit of consumption
and investment in equipment κ, respectively. The law of motion for capital κ is

Kt+1 (κ) = (1− dep (κ))Kt (κ) + It (κ) ,

where 0 < dep (κ) < 1 is the depreciation rate for equipment κ. Utility of the representa-
tive household is given by ∑∞

t=0 ut (Ct).
The output of a worker ω ∈ Ω (λ) employed in task σ and teamed with k units of

capital κ is given by [Tt(λ, κ, σ)εt (ω, κ, σ)]1−α(σ) kα(σ).9 The output elasticity of equipment
in task σ is α (σ) ∈ (0, 1). The systematic component of productivity affecting all workers

7In the quantitative implementation, we set nK = 2 because of data restrictions.
8One could interpret task output in many different ways. In our empirical applications we take two

approaches, matching tasks in the model with sectors or occupations in the data.
9One could interpret a type of capital equipment as any input other than labor. In the case of inputs

that cannot be accumulated, the depreciation rate would be one.
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of type λ when using equipment κ in task σ (henceforth “using κ in σ”) at time t is

Tt(λ, κ, σ) ≡ Tλt (λ) Tκt (κ) Tσt (σ) T(λ, κ, σ) (2)

where Txt (x) ≥ 0 may vary over time for each x = λ, κ, σ—so that some worker types,
capital types, and tasks may become more productive than others over time—whereas
T (λ, κ, σ) ≥ 0 is assumed constant across time and allows relative productivities to vary
with factor allocation—so that, for example, some worker types may be relatively pro-
ductive using some equipment types.10 The idiosyncratic component of productivity that
is specific to worker ω when using κ in σ is εt (ω, κ, σ). Each worker ω ∈ Ω (λ) indepen-
dently draws εt (ω, κ, σ) for each (κ, σ) pair from a Frechet distribution,

G (ε; λ) = exp
(
−ε−θ(λ)

)
,

where θ (λ) > 1 is the shape parameter. A higher value of θ (λ) is associated with less
dispersion.

All markets are perfectly competitive and all factors are freely mobile. The price of
task σ and the rental rate of capital κ are given by pt (σ) and rt (κ), respectively.11

2.1 Alternative assumptions

Our framework imposes two strong restrictions on standard neoclassical task-level pro-
duction functions. First, the marginal physical product of worker ω producing task σ is
independent of the set of other workers employed in task σ. Second, a worker uses only
one type of capital equipment. Here we show that the restriction that a worker uses only
one type of equipment is not central to our theoretical analysis.

In the simplest possible extension, each worker is endowed with a number of units of
time in each period t and a distinct vector of εs for each unit of time and chooses a (κ, σ)

10In our baseline model we assume that the time-varying components of productivity are separable
between labor, tasks, and equipment types, to perform a clean decomposition between these forces. In
ongoing work we allow for changes over time in the interaction between labor and task specific produc-
tivity (i.e. Tλσt (λ, σ)), or labor and equipment specific productivity (i.e. Tλκt (λ, κ)). In these cases we can
only decompose changes in relative wages into three components. Our next draft will report the results
under these extensions, which do not vary substantially from those in this draft. Moreover, the results are
unchanged if we assume that the changing labor-specific component combines productivity, Tλt (λ), and a
labor-specific distortion that creates a wedge between the wage received by the worker and the wage paid
by the producer.

11Our analysis is unchanged if we introduce other homogeneous inputs that enter the production func-
tion multiplicatively, in which case our production function for worker output in task σ would correspond
to value added after the optimal choice of other inputs.
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for each unit of his time. In this case, all of our aggregate conditions would hold exactly;
moreover, each worker would allocate his time across (potentially) many (κ, σ) pairs. Al-
ternatively, consider an environment in which the output of worker ω ∈ Ω (λ) in σ using
k (ω, κ, σ) units of capital for each type of capital κ is [Tt (λ, σ) εt (ω, σ)]1−α(σ) Kt (ω, σ)α(σ),

where Kt (ω, σ) =

[
∑κ Tt (λ, κ, σ) kt (ω, κ, σ)

θ(λ)−1
θ(λ)

] θ(λ)
θ(λ)−1

, Tt (λ, σ) ≥ 0 is the systematic

productivity of any ω ∈ Ω (λ) working in task σ, and εt (ω, σ) is distributed Frechet with
shape parameter θ (λ). Under this alternative set of assumptions, we obtain a character-
ization of aggregate equilibrium outcomes as a function of the (endogenous) allocation
of labor across (κ, σ) that is identical to the present model. However, each worker uses
(potentially) many types of equipment.

2.2 Relation to alternative frameworks

Whereas our framework imposes strong restrictions on production functions at the level
of (λ, κ, σ), at the aggregate level we obtain rich interactions between worker types, cap-
ital equipment types, and tasks, in the sense that our model nests two standard frame-
works for studying between-group inequality.

The first of these, which is refered to as the canonical model, is the “central organizing
framework of the voluminous recent literature studying changes in the returns to skills
and the evolution of earnings inequality” (Acemoglu and Autor, 2011). In this frame-
work, the aggregate production function is given by

Yt =

[
A1tLt (λ1)

ρ−1
ρ + A2tLt (λ2)

ρ−1
ρ

] ρ
ρ−1

where A1t and A2t are parameters. We obtain the above aggregate production function—
and, therefore, the same relative wage—under a number of restrictions on our framework:
(i) there are exactly two labor types, (ii) the capital equipment share of production is zero
in each task, and (iii) labor type λi is only productive in task i.

The second of these is an extension of the canonical model that incorporates capital-
skill complementarity—see e.g. Krusell et al. (2000)—where the aggregate production
function, under the restriction that the elasticity of the CES nest of λ1 and κ1 is one, is
given by

Yt =

[
A1t

(
Lt (λ1)

1−α(σ2) Kt (κ1)
α(σ2)

) ρ−1
ρ
+ A2tLt (λ2)

ρ−1
ρ

] ρ
ρ−1

where A1t and A2t are parameters. We obtain the above aggregate production function
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under a number of restrictions on our framework: (i) there are exactly two labor types,
(ii) there is one type of capital equipment, (iii) the capital equipment share of production
is zero in task two, and (iii) and labor type λi is only productive in task i. Hence, while
the restrictions we impose facilitate our analysis in high-dimensional environments, they
do not limit our framework in the low-dimensional analyses considered previously.

3 Equilibrium and mechanisms

In this section we characterize the equilibrium of the model, first in partial equilibrium—
given pt (σ) and rt (κ)—in Section 3.1 and then in general equilibrium in Section 3.2. We
then provide the system of equations with which to calculate changes in wages along
a balanced growth path in Section 3.3. Finally, we discuss how comparative advantage
shapes factor allocation and wage changes in Section 3.4.

3.1 Partial equilibrium

The producer’s zero profit condition implies that a worker ω ∈ Ω (λ) teamed with k units
of capital κ and producing task σ earns a wage given by pt (σ) kα(σ) [Tt(λ, κ, σ)εt (ω, κ, σ)]1−α(σ)−
krt (κ). If a worker chooses to work with κ in σ, he chooses the amount of κ to maximize
his wage. Given the optimal capital decision, the worker’s wage is simply τt (λ, κ, σ)1/θ(λ) εt (ω, κ, σ),
where

τt (λ, κ, σ) ≡

Tt(λ, κ, σ) (1− α (σ))

(
α (σ)

rt (κ)

) α(σ)
1−α(σ)

pt (σ)
1

1−α(σ)

θ(λ)

. (3)

With perfectly competitive labor markets, worker ω is employed in the task and teamed
with the type of capital that maximizes his wage. Given the distributional assumption on
idiosyncratic productivity, the probability that a randomly sampled worker, ω ∈ Ω (λ),
uses κ in σ is simply

πt (λ, κ, σ) =
τt (λ, κ, σ)

∑κ′,σ′ τt (λ, κ′, σ′)
. (4)

The distributional assumption also implies that the average wage of workers ω ∈ Ω (λ)

teamed with κ in σ does not vary across κ, σ and is given by

wt (λ) = γ (λ)

(
∑
σ,κ

τt (λ, κ, σ)

)1/θ(λ)

, (5)
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where γ (λ) ≡ Γ
(

1− 1
θ(λ)

)
and Γ (·) is the Gamma function.

3.2 General equilibrium

In any period, task markets must clear,

µt (σ)

(
pt (σ)

Pt

)1−ρ

Et =
1

1− α (σ)
ζt (σ) , (6)

where ζt (σ) denotes total labor income in task σ in period t, ζ (σ) = ∑λ,κ wt (λ) Lt (λ)πt (λ, κ, σ),
so that the right-hand side condition (6) is total income in task σ. The left-hand side is ex-

penditure on task σ, where Et is total income and Pt =
(

∑σ µt (σ) pt (σ)
1−ρ
)1/(1−ρ)

is the
price of the final good.

The prices of consumption and each type of capital equipment are simply

Pt (C) /qt (C) = Pt (κ) /qt (κ) = Pt. (7)

The dynamic Euler equation for the accumulation of capital κ and equation (7) give

u′C,t
qt (C)
qt (κ)

= u′C,t+1
qt+1 (C)
qt+1 (κ)

(
rt+1 (κ)

Pt+1 (κ)
+ (1− dep (κ))

)
, (8)

where u′C,t is the marginal utility of consumption at time t.

3.3 Wage changes

In this section we provide the system of equations with which to calculate wage changes
along a balanced growth path (BGP). Between any two time periods, t0 and t1, we use
equation (5) to express changes in wages as

ŵ(λ) = T̂λ(λ)

{
∑
κ,σ

[(
r̂(κ)−α(σ) p̂(σ)

) 1
1−α(σ) T̂κ(κ)T̂σ(σ)

]θ(λ)

πt(λ, κ, σ)

}1/θ(λ)

(9)

where x̂ ≡ xt1/xt0 . Changes in task prices between t0 and t1 are determined by the task
market clearing conditions, equation (6),

µ̂ (σ)

µ̂ (σ1)

(
p̂ (σ)
p̂ (σ1)

)1−ρ

=
ζ̂ (σ)

ζ̂ (σ1)
(10)

10



where

ζ̂ (σ) =
∑λ,κ wt0 (λ) Lt0 (λ)πt0 (λ, κ, σ) ŵt (λ) L̂t (λ) π̂t (λ, κ, σ)

∑λ,κ wt0 (λ) Lt0 (λ)πt0 (λ, κ, σ)
(11)

and where, using equation (4), changes in allocations are given by

π̂ (λ, κ, σ) =

(
T̂λ(λ)T̂κ(κ)T̂σ(σ)

(
r̂ (κ)−α(σ) p̂ (σ)

) 1
1−α(σ)

)θ(λ)

∑σ′,κ′

(
T̂λ(λ)T̂κ(κ′)T̂σ(σ′)

(
r̂ (κ′)−α(σ) p̂ (σ′)

) 1
1−α(σ)

)θ(λ)

πt (λ, κ′, σ′)

. (12)

Finally, we must determine changes in rental rates. We assume that in periods t0 and

t1 the economy is in a BGP in which the real interest rate,
u′C,t+1

u′C,t
, and the growth rate

of relative productivity, qt+1(C)
qt(C)

/
qt+1(κ)

qt(κ)
, are constant over time. Conditions (7) and (8)

provide the following relationship between changes in rental rates and prices across two
BGPs,

r̂ (κ) = P̂ (κ) = q̂ (κ) P̂ (C) /q̂ (C) ,

so that changes in relative rental rates are determined solely by changes in production
costs,

r̂(κ′)
r̂(κ)

=
q̂ (κ′)
q̂ (κ)

. (13)

This leads to the following proposition.

Proposition 1. Given values of wt (λ) Lt (λ), πt (λ, κ, σ), ρ, α (σ), and θ (λ) for all λ, κ, σ,
equations (9)-(13) determine changes in wages for any changes in technology, q̂(κ), µ̂ (σ), and
T̂x (x) for all x = λ, κ, σ, or factor supply, L̂ (λ), between two BGPs.

3.4 Mechanisms

Comparative advantage. There are three types of comparative advantage in our model:
(i) between labor and equipment, (ii) between equipment and tasks, and (iii) between
labor and tasks. We define comparative advantage between labor and equipment as fol-
lows: λ′ has a comparative advantage (relative to λ) using equipment κ′ (relative to κ) in
σ if T(λ′,κ′,σ)

T(λ′,κ,σ) ≥
T(λ,κ′,σ)
T(λ,κ,σ) . We define comparative advantage between labor and task and

between equipment and task similarly. Comparative advantage has strong implications
for factor allocation. For instance, note that if λ′ has a comparative advantage (relative to
λ) using κ′ (relative to κ) in σ, then condition (4) implies π(λ′,κ′,σ)

π(λ′,κ,σ) ≥
π(λ,κ′,σ)
π(λ,κ,σ) .

To better understand the role of comparative advantage on factor allocation, consider
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the following feature of the data we describe in Section 5.1: the share of workers using
computers (κ′) relative to other non-computer equipment (κ) is higher for college ed-
ucated workers (λ′) than for high school educated workers (λ). Two distinct patterns
of comparative advantage could generate this feature of the data. First, college edu-
cated workers could have a comparative advantage using computers within tasks, i.e.
T(λ′,κ′,σ)
T(λ′,κ,σ) ≥

T(λ,κ′,σ)
T(λ,κ,σ) for all σ. Alternatively, they could have a comparative advantage in

the tasks (σ’) in which computers have a comparative advantage, e.g. T(λ′,κ0,σ′)
T(λ′,κ0,σ) ≥

T(λ,κ0,σ′)
T(λ,κ0,σ)

for all κ0 and T(λ0,κ′,σ′)
T(λ0,κ,σ′) ≥

T(λ0,κ′,σ)
T(λ0,κ,σ) for all λ0. These explanations can be separated in the

data as follows. In the first case, college educated workers would use computers relatively
more than high school educated workers within tasks. In the second case, employment
composition across tasks would be key: college educated workers would be employed
relatively more in tasks in which computers are used more frequently by all workers.
In general, any aggregate pattern of factor allocation—workers to equipment, workers
to tasks, or equipment to tasks—can be generated either directly (as in the first case) or
indirectly (as in the second case) by comparative advantage, and disaggregated data on
allocations would allow us to separate these two distinct explanations.

Comparative advantage and wage changes. According to the wage equation (9), changes
in wages depend linearly—for given prices—on changes in worker-specific productivi-
ties, Tλt (λ), and are a CES combination of changes in prices, r (κ) and p (σ), the pro-
ductivity of using equipment types, Tκt (κ), and the productivity of employment in tasks,
Tσt (σ), where the weight given to changes in each of these components depends, through
factor allocation πt (λ, κ, σ), on comparative advantage. Hence, each of the three types of
comparative advantage present in our model plays a central role in shaping the impact of
changes in the economic environment on relative wages.

Consider, for example, the impact on relative wages of a reduction in the cost of pro-
ducing computers, q(κ). There are two forces that shape the response of relative wages.
The first is driven by direct comparative advantage between workers and computers. If
λ workers have a comparative advantage using computers, a reduction in q (κ)—which
reduces r (κ)—increases their relative wages. Intuitively, a fall in computer prices helps
workers who tend to use computers relatively more within tasks.

The second force shaping the response of relative wages is driven by the indirect com-
parative advantage between workers and computers (i.e. worker-task, and equipment-
task comparative advantage). If λ workers have a comparative advantage in tasks in
which computers have a comparative advantage, then the impact of a reduction in q (κ)—

12



which also reduces p (σ) in the tasks in which computers have a comparative advantage—
on relative wages depends on the value of ρ. If ρ < 1, then the decline in task prices is
greater than the rise in r (κ)−α(σ), and the relative wage of λ workers falls (see expression
9); whereas if ρ > 1, then the decline in task prices is less than the rise in r (κ)−α(σ), and
the relative wage of λ workers rises. Intuitively, if ρ < 1, then a fall in the price of com-
puters decreases employment (and hence hurts workers) in the tasks in which computers
have a comparative advantage. If ρ > 1 then a fall in the price of computers increases
employment (and hence benefits workers) in the tasks in which computers have a com-
parative advantage. Similar intuition applies to the impact on relative wages of changes
in other primitives, which we consider in our decomposition.

These forces capture some of the standard mechanisms shaping relative wages de-
scribed in the literature. Summarizing this literature, Autor et al. (1998) discuss two
channels through which computers may influence relative labor demand: (i) computers
may directly substitute for human judgment and labor and (ii) computers may increase
the returns to the creative use of greater available information. Specifically, Autor et al.
(2003) find that “(i) computer capital substitutes for workers in performing cognitive and
manual tasks that can be accomplished by following explicit rules” and “(ii) complements
workers in performing nonroutine problem solving and complex communications tasks.”
By incorporating all three types of comparative advantage, our model is theoretically con-
sistent with these findings and, therefore, has the potential to account for the fact that the
fall in the price of computers can help some worker types who are employed in tasks
in which computers are prevalent while hurting others.12 Moreover, when ρ < 1 our
empirical results are consistent with the findings in Autor et al. (2003).13

4 Decomposing changes in between group inequality

We aim to perform a decomposition quantifying the direct contribution for changes in
relative wages between time periods t0 and t1 of

i. changes in labor supply, L̂ (λ),

12In the model presented in Acemoglu and Autor (2011), capital equipment only influences relative
demand through the indirect comparative advantage channel because their model abstracts from worker-
capital comparative advantage. Hence, an increase in the computer stock must hurt worker types that are
disproportionately employed in tasks in which computers are prevalent.

13Specifically, we find that computers have a comparative advantage in tasks in which repetition is par-
ticularly important. Hence, when ρ < 1 a fall in computer prices hurts (relatively) workers with a compar-
ative advantage in such tasks. Moreover, we find that more educated workers (who tend to peform tasks in
which thinking creatively is important) have a comparative advantage using computers. Hence, educated
workers benefit (relatively) from a fall in computer prices.
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ii. changes in labor productivity, T̂λ (λ),

iii. changes in capital productivity, T̂κ (κ) and q̂ (κ), and

iv. changes in task shifters, T̂σ (σ) and µ̂ (σ).

Specifically, the direct contribution of changes in labor supply (for example) could be
measured by solving for movements in the log of relative wages that result from changing
labor supplies from Lt0 (λ) to Lt1 (λ), holding all other parameters fixed at their t0 levels.
We could similarly determine the direct contributions of changes in labor productivity,
capital productivity, and task shifters. Of course, these direct contributions need not sum
up to the change in log relative wages that results from changing all parameters from
their t0 to their t1 levels because of interaction effects; see e.g. Rothe (2012a,b). In practice,
however, these interaction effects are very small in Section 6.

According to Proposition 1, we can conduct this decomposition exercise if we have
values of parameters ρ, α(σ), and θ (σ), values of labor payments and allocations in period
t, and measures of L̂ (λ), T̂λ (λ), T̂σ (σ), µ̂ (σ), T̂κ (κ), and q̂ (κ). In the remainder of this
paper, we impose a common equipment intensity in each task, α (σ) = α for all σ,14 and a
common dispersion of idiosyncratic productivities across worker types, θ (λ) = θ for all
λ.

Given the data that we use, described in section 5.1, we are unable to obtain estimates
of T̂σ (σ), µ̂ (σ), T̂κ (κ), and q̂ (κ). Nevertheless, we now show that we can perform our
decomposition using transformed variables that we are able to estimate as described in
Section 5. These transformed variables are defined as follows. Combining equations (2)
and (3), we have

τt (λ, κ, σ) = τλt (λ) τκt (κ) τσt (σ) τ (λ, κ, σ) (14)

where

τλt (λ) ≡
[

Tλt (λ)

∏T
t′=1 Tλt′ (λ)

]θ

τκt (κ) ≡
[

Tκt (κ) rt (κ)
−α

1−α

∏T
t′=1 Tκt′ (κ) rt′ (κ)

−α
1−α

]θ

τσt (σ) ≡
[

Tσt (σ) pt (σ)
1

1−α

∏T
t′=1 Tσt′ (σ) pt′ (σ)

1
1−α

]θ

14We aim relax this assumption in future drafts.
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and

τ (λ, κ, σ) ≡
[

α
α

1−α (1− α) T(λ, κ, σ)
T

∏
t′=1

(
Tλt′ (λ) Tκt′ (κ) rt′ (κ)

−α
1−α Tσt′ (σ) pt′ (σ)

1
1−α

)]θ

.

We now describe how to conduct the decomposition described above for given values
of (i) ρ, θ, and α; (ii) Lt (λ)

/
Lt (λ1) ; (iii) ψτ (λ, κ, σ) for an arbitrary constant ψ; and (iv)

τλt (λ)
/

τλt (λ1) , τσt (σ)
/

τσt (σ1) , and τκt (κ)
/

τκt (κ1) for all λ, κ, σ and t = t0, t1. Given
(i)− (iv), we construct πt0 (λ, κ, σ) and wt0 (λ) Lt0 (λ)

/
wt0 (λ1) Lt0 (λ1) using equations

(4), (5), and (14). Given (ii) we construct L̂ (λ)
/

L̂ (λ1) and given (iv) we construct
τ̂λ (λ)

/
τ̂λ (λ1) , τ̂κ (κ)

/
τ̂κ (κ1) , and τ̂σ (σ)

/
τ̂σ (σ1) . Using these, we conduct each exer-

cise as follows. Details are provided in the Appendix.
Labor supply. To quantify the direct impact of changes in labor supply, we set T̂λ (λ),
T̂κ (κ), T̂σ (σ), µ̂ (σ), and q̂ (κ) all equal to one for each (λ, κ, σ), impose L̂(λ)

L̂(λ1)
=

Lt1 (λ)/Lt0 (λ)

Lt1 (λ1)/Lt0 (λ1)
,

and use equations (9)-(13) to solve for changes in relative wages, as summarized by
Lemma 1 in the Appendix.
Labor productivity. To quantify the direct impact of changes in labor productivity, we set
L̂ (λ), T̂κ (κ), T̂σ (σ), µ̂ (σ), and q̂ (κ) all equal to one for each (λ, κ, σ), impose T̂λ (λ)

/
T̂λ (λ1) =(

τ̂λ (λ)
/

τ̂λ (λ1)
)1/θ, and use equations (9)-(13) to solve for changes in relative wages, as

summarized by Lemma 2 in the Appendix.
Capital productivity. While both T̂κ (κ) and q̂ (κ) shape capital productivity, we cannot
separately recover T̂κ (κ) and q̂ (κ) from τ̂κ (κ) without additional data. However, changes

in relative wages depend on T̂κ (κ) and q̂ (κ) only through τ̂κ(κ′)
τ̂κ(κ)

=

(
T̂κ(κ′)
T̂κ(κ)

(
q̂(κ′)
q̂(κ)

) −α
1−α

)θ

.

Hence, to quantify the direct impact of changes in labor productivity, we set L̂ (λ), T̂λ (λ),

T̂σ (σ), and µ̂ (σ) all equal to one for each (λ, κ, σ), impose T̂κ(κ′)
T̂κ(κ)

(
q̂(κ′)
q̂(κ)

)−α/(1−α)
=
(

τ̂κ(κ′)
τ̂κ(κ)

)1/θ
,

and use equations (9)-(13) to solve for changes in relative wages, as summarized by
Lemma 2 in the Appendix. As long as we are not interested in separating the effects
of changes in the costs of producing equipment, q̂ (κ), from changes in the productivity
using equipment, T̂κ (κ), our estimates of τ̂κ (κ) are sufficient to conduct this exercise.
Task shifters. As in the capital productivity component, we cannot separate T̂σ (σ) and
µ̂ (σ) from τ̂σ (σ) without additional data. Nevertheless, we can quantify the direct im-
pact of changes in task shifters by setting L̂ (λ), T̂λ (λ), T̂κ (κ), and q̂ (κ) all equal to one
for each (λ, κ, σ), and using equations (9)-(13) to solve for changes in relative wages for
given τ̂σ (σ) and for given changes in incomes accruing in each task, ζ̂ (σ), as summarized
by Lemma 4 in the Appendix. Whereas changes in the relative importance of tasks in
the production of the unique final good, µ̂ (σ), and changes in the productivity of tasks,
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T̂σ (σ), have different implications for changes in task prices, their combined effects on
relative wages is summarized in τ̂σ (σ) and ζ̂ (σ). Hence, estimates of τ̂σ (σ) and ζ̂ (σ) are
sufficient to quantify the direct impact of changes in task shifters.

We summarize our previous discussion in the following proposition.

Proposition 2. Given ρ, θ, α, and—for all λ, κ, σ and t = t0, t1—Lt (λ)
/

Lt (λ1) , ψτ (λ, κ, σ)

for an arbitrary constant ψ 6= 0, and τxt (x)
/

τxt (x1) for all x = λ, κ, σ, equations (9)-(13)
provide an algorithm to solve for the direct contributions, between t0 and t1, of (i) L̂ (λ), (ii)
T̂λ (λ), (iii) T̂σ (σ) and µ̂ (σ), and (iv) T̂κ (κ) and q̂ (κ).

5 Connecting model and data

In what follows, we describe how we map our model to data in order to perform the
decomposition described in Section 4. We first outline our main data sources. Next, we
describe our model parameterization. Some parameters are assigned and some are esti-
mated. We then summarize two features of our parameterization that are a key input for
our decomposition: comparative advantage and changes in task shifters and labor and
capital productivities.

5.1 Data

Our primary data sources are the October CPS Supplement (October Supplement) and the
March Current Population Survey (March CPS). We restrict our sample to those workers
at least 16 years old reporting positive (paid) hours worked. Here we briefy describe our
use of these sources; we provide further details in Appendix A.2.

March CPS. The March CPS provides measures of the prior year’s annual earnings, weeks
worked, and hours worked per week over our timeframe. We use the March CPS to
form a sample—for each worker type—of hours worked and income. Our measure of
labor supply, Lt (λ), is hours worked within labor type λ, and our measure of the av-
erage (hourly) wage, wt (λ), is total income (including the sum of labor, business, and
farm income in the previous year) divided by total hours worked within λ; see Ap-
pendix A.2 for our treatment of top-coded income. In addition to the two genders, we
group workers into three age categories—16-30, 31-43, and 44 and older—and five educa-
tion categories—high school dropouts (HSD), high school graduates (HSG), some college
(SMC), completed college (CLG), and graduate training (GTC)—yielding a total of thirty
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1984 1989 1993 1997 2003

All 25.1 36.6 46.3 50.5 57.0
Gender Men 21.6 31.3 40.6 44.5 51.6

Women 30.6 44.2 54.4 59.0 64.3
Age 16-30 25.4 35.0 42.2 45.8 48.8

31-43 29.1 41.7 50.9 54.2 59.8
44 + 20.3 32.1 44.6 50.2 59.5

Education HSD 5.2 7.3 10.4 12.2 15.9
HSG 19.5 28.2 33.9 36.2 40.6
SMC 32.5 45.8 53.3 56.6 59.5
CLG 42.6 58.3 70.3 75.8 83.5
GTC 42.6 58.4 71.3 79.1 87.8

Table 1: The probability of using a computer, weighted by hours worked
HSD: high school dropout; HSG: high school graduate; SMC: some college; CLG: college; GTC: graduate training

labor types.15 Because we use questions in the March CPS that refer to the previous year,
year t’s March CPS refers to year t− 1. To create labor supply and average wages for year
t, we average the March CPS for years t, t + 1, and t + 2 to reduce measurement error.

October Supplement. In our baseline exercises, we map tasks in the model to occupations
in the data. In the Appendix we conduct our decomposition mapping tasks in the model
to sectors in the data. We aggregate up to twenty occupations.16 See Table 10 in Appendix
A.2 for a list of these occupations. In 1984, 1989, 1993, 1997, and 2003, the October Sup-
plement asked respondents whether they “have direct or hands on use of computers at
work,” “directly use a computer at work,” or “use a computer at/for his/her/your main
job.” Using a computer at work refers only to “direct” or “hands on” use of a computer
with typewriter like keyboards, whether a personal computer, laptop, mini computer, or
mainframe.

Table 1 summarizes the fraction of workers using a computer at work for several cat-
egories of workers (weighted by hours) for each year of the October Supplement. There
are a few things to note. First, the share of workers using computers rises over time.
Second, the share of women using computers is higher than the share of men in each
year. Finally, across every education category and in every year, more educated workers

15Our quantitative results on the sources of changes in aggregate measures of between-group inequality
are largely robust to further aggregating labor types. For instance, we obtain similar results for the skill
premium (or the gender premium) with only two labor types: college educated and non-college educated
workers (or men and women). Of course, at this level of aggregation we cannot speak to changes in more
disaggregated measures of between-group inequality.

16While we could map tasks in the model to (occupation, sector) pairs, in practice the data would become
sparse (unless we reduced the number of occupations or sectors), in the sense that there would be many
(λ, κ, σ) and t for which πt (λ, κ, σ) = 0.
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are more likely to use computers than less educated workers, and the gap is substantial
across all comparisons except between those with college degrees and graduate training.
All of these results are robust to conditioning on occupation of employment with one
exception. The gap between genders becomes significantly smaller when we control for
occupation; in practice, women are employed disproportionately in occupations in which
computers are used more intensively by all workers.

Given that the October Supplement only provides information on the use of one form
of capital equipment (computers), we focus on the case in which there are two types of
equipment: κ1 = computers and κ2 = other equipment. In our baseline model in which
a worker uses exactly one type of equipment, we construct πt (λ, κ, σ) for κ = computers
as hours worked in occupation σ by those in labor type λ who respond that they use a
computer at work relative to total hours worked by labor type λ in period t. Similarly,
we construct πt (λ, κ2, σ) as the hours worked in occupation σ by type λ workers who
respond that they do not use a computer at work relative to total hours worked by labor
type λ.

Constructing πt (λ, κ, σ) without using any information on non-computer equipment
allocation introduces two related problems. In practice, workers who do not use com-
puters may also not use other non-computer equipment, and workers who do use com-
puters may also be more likely to use other non-computer equipment. Hence, we may
incorrectly infer that computers have a comparative advantage in some occupations and
that some worker types have a comparative advantage with computers. The German
Qualification and Working Conditions survey circumvents some of these problems by ask-
ing whether or not a worker uses many different types of equipment and/or asks about
the share of time that a worker uses computers. Specifically, one can use the 2006 survey
question “How much of your total work time do you spend on computers?” to construct
πt (λ, κ1, σ) as the hours worked in occupation σ using computers by those in labor type
λ relative to total hours worked by labor type λ and πt (λ, κ2, σ) as the hours worked in
occupation σ not using computers by those in labor type λ relative to total hours worked
by labor type λ.17 Constructing π2006 (λ, κ, σ) in this way using the German data, we find
similar patterns of comparative advantage as in the U.S. data.18

17DiNardo and Pischke (1997) is perhaps the best known paper using this survey. We discuss their
critique of Krueger (1993) below.

18In the version of our model in which tasks are mapped to sectors in the data (see Appendix B) we can
further compare our model’s implications to U.S. data we do not use in the estimation. Specifically, the BEA
reports data on the allocation of capital (aggregated across all workers) to sectors. We show in Appendix B
that the model’s implied allocation of computer and non-computer equipment across sectors matches the
allocation that is observed in the data quite well.

18



5.2 Parameterization

Proposition 2 lists the parameters that we require to conduct our decomposition. As de-
scribed above, we take Lt (λ)

/
Lt (λ1) for t = t0, t1 directly from the data. In this section

we discuss how we assign values to the parameters ρ, θ, and α and how we estimate the
values of the remaining parameters. Finally, combining the parameterization and theory,
we show which components of our decomposition depend on observed changes in wages
and which do not.

5.2.1 Assigned parameters

We assign the values of ρ, θ, and α as follows. In our baseline decomposition we set the
elasticity of substitution between tasks, ρ, to 1. In our robustness section we show that
whereas lowering ρ to 0.5 or raising it to 2 only modestly affects the importance of the
combination of changes in labor supply, task shifters, and capital productivity relative
to the importance of labor productivity, it does affect the importance of changes in task
shifters relative to capital productivity. The parameter α determines the share of pay-
ments to equipment. When ρ = 1, one can show analytically that the value of α ∈ (0, 1)
does not impact any of our decomposition. In our robustness section, where we consider
alternative values of ρ, we set α = 0.24, consistent with the estimates in Burstein et al.
(2013). The parameter θ determines the dispersion of idiosyncratic productivity draws.
As discussed in Lagakos and Waugh (2013) and Hsieh et al. (2013) in models without cap-
ital, the dispersion of wages across workers within a labor group λ using capital κ in task
σ obeys a Frechet distribution with shape parameter θ. In our baseline we set θ = 3.1,
which is in the mid-range of the estimates in Hsieh et al. (2013). In the robustness section,
we consider a range of alternative values for θ.

5.2.2 Estimated parameters

In what follows we provide an overview of how we identify ψτ (λ, κ, σ) for an arbi-
trary constant ψ, τλt (λ)

/
τλt (λ1) , τσt (σ)

/
τσt (σ1) , and τκt (κ)

/
τκt (κ1) for all λ, κ, σ and

t (where t =1984, 1989, 1993, 1999, and 2003) . We provide details in Appendix A.3.
Our estimation procedure accounts for possible error in our observed measurement

of {wt (λ)} and {πt (λ, κ, σ)}: {w∗t (λ)} and {π∗t (λ, κ, σ)}. The error terms {ι1t (λ, κ, σ)}
and {ι2t (λ)} are due to sampling error:

π∗t (λ, κ, σ) = πt (λ, κ, σ) ι1t (λ, κ, σ) for all (λ, κ, σ) and t (15)

w∗t (λ) = wt (λ) ι2t (λ) for all λ and t.
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This sampling error may be due to the individual-specific structural error ε—which in-
duces workers to choose different tasks and equipment and to earn different wages—and
to possible misreporting of equipment type, task, and wages by each worker. Because the
error terms ι1t (λ, κ, σ) and ι2t (λ) are averages of errors affecting individual observations,
they become arbitrarily close to one as the number of individuals sampled within each
λ goes to infinity. This implies that our estimates described below are consistent for the
true parameter values as the sample size per-λ goes to infinity.19

Our estimation involves three steps. In the first step we estimate the parameters that
determine comparative advantage, τ (λ, κ, σ). In the second step we estimate equipment
productivity and task shifters for each year, τκt (κ) and τσt (σ).20 In the final step we
estimate labor productivity for each year, τλt (λ), using the estimates from steps one and
two.

Step 1: Comparative advantage. Equation (14) gives us

log τ (λ, κ, σ) =
1
T

T

∑
t=1

log τt (λ, κ, σ) (16)

for all λ, κ, σ. That is, given the definition of τ (λ, κ, σ) and τtx (x) for each x = λ, κ, σ,
the log of τ (λ, κ, σ) is simply equal to the average across time of the log of τt (λ, κ, σ); see
Appendix A.3. Equations (4) and (5) give the following relationship between τt (λ, κ, σ),
wages, and allocations,

τt (λ, κ, σ) = γ−θwt (λ)
θ πt (λ, κ, σ) . (17)

In Appendix A.3 we show that combining equations (15), (16), and (17) we obtain a con-
sistent estimator of ψτ (λ, κ, σ), where ψ = γθ.

Step 2: Equipment productivity and task shifters. All else equal, a high value of τκt (κ) /τκt (κ1)—
which corresponds either to a low relative rental rate for κ or a high relative productivity
of using κ—induces a large share of workers to use κ. Hence, we might expect to identify
a high value of τκt (κ) /τκt (κ1) if the share of workers using κ is large. However, this intu-
ition is incomplete. There are two other reasons this share may be large. First, there might
be a large share of employment in tasks in which κ has a comparative advantage. Second,
there might be a large supply of workers who have a comparative advantage using κ.

Our theory implies a clear strategy to identify τκt (κ) /τκt (κ1) that overcomes both of
19After dropping observations, in each year—1984, 1989, 1993, 1997, and 2003—we have between 52,000

and 62,000 workers in the October Supplement. With 30 labor types, this implies an average of about 1,900
observations per-λ in each year.

20Although step two does not require output from step one, it is pedagogically useful to separate them.
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these concerns. Specifically, equation (14) gives us

log
τκt (κ)

τκt (κ1)
=

1
nΛnΣ

∑
λ,σ

log
τt (λ, κ, σ)

τ (λ, κ, σ)

τ (λ, κ1, σ)

τt (λ, κ1, σ)
. (18)

Hence, we identify a high value of τκt (κ) /τκt (κ1) in a given period if the share of workers
using κ within worker type and task pairs (λ, σ) is relatively large. We estimate task fixed
effects in a similar manner. Specifically, we use

log
τσt (σ)

τσt (σ1)
=

1
nΛnK

∑
λ,κ

log
τt (λ, κ, σ)

τ (λ, κ, σ)

τ (λ, κ, σ1)

τt (λ, κ, σ1)
, (19)

and identify a large value of τσt (σ) /τσt (σ1) in a given period if the share of workers
employed in σ within worker type and equipment pairs (λ, κ) is relatively large. In Appendix
A.3 we use the previous expressions, together with equations (15), (16), and (17) to obtain
consistent estimators of τκt (κ)

/
τκt (κ1) and τσt (σ) /τσt (σ1).

Step 3: Labor productivity. All else equal, a higher value of τλt (λ)
/

τλt (λ1) raises the
relative wage of λ. However, as in step 2, observing a higher relative wage for λ does
not necessarily imply a higher relative value of τλt (λ) for two reasons. First, λ workers
would earn relatively more if the tasks in which they have a comparative advantage had
a larger task shifter, τσt (σ). Second, they would earn relatively more if the equipment
with which they have a comparative advantage were relatively more productive, τκt (κ).
Again, our theory implies a clear strategy to identify τλt (λ)

/
τλt (λ1) . Equations (5) and

(14) give us

log
τλt (λ)

τλt (λ1)
= θ log

wt (λ)

wt (λ1)
− log

∑κ,σ τκt (κ) τσt (σ) τ (λ, κ, σ)

∑κ′,σ′ τκt (κ′) τσt (σ′) τ (λ1, κ′, σ′)
. (20)

Equation (20) identifies relative worker productivities to exactly match relative wages,
controling for worker comparative advantage, equipment productivities, and task shifters.
In Appendix A.3 we show that the previous expression, together with equations (15), (16),
and (17) and the consistent estimates of τσt (σ) /τσt (σ1) and τκt (κ) /τκt (κ1) yield a con-
sistent estimator of τλt (λ)

/
τλt (λ1) .21

Equation (16), ((18)), and (19) assume that πt(λ, κ, σ) is larger than 0 for every time
period t and every triplet (λ, κ, σ). In the data, some of the observed values of πt(λ, κ, σ)

are actually 0.22 For the main results presented in the paper, the sample averages in

21Appendix A.3 also describes an alternative strategy that yields similar conclusions.
22In particular, the fraction of observations that are equal to 0 in the data are: 17%, for 1984, 13% in 1989,
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equations (16), (18), and (19) are computed using data on only the positive πt(λ, κ, σ).23

5.2.3 The role of data on wage changes in the decomposition

How do observed relative wage changes between t0 and t1 shape the results of our decom-
position? Here we show that, given the estimation strategy introduced in the previous
section, observed wages in period t1 do not affect the labor supply or capital productivity
components; moreover, conditional on total labor income earned in each task, they do
not affect our task shifters component either. This is in contrast to the labor productivity
component, which as can be seen in equation (20) depends directly on observed changes
in wages.

The labor supply component of our decomposition is clearly independent of wages
in period t1, since the only data from period t1 that enters the algorithm in Lemma 1
is Lt1 (λ), which we assume is exogenous. Our capital productivity component is also
independent of wages in period t1, since the only data from period t1 that enters the
algorithm in Lemma 3 is τ̂κ (κ) /τ̂κ (κ1), and our estimate of τκt (κ) /τκt (κ′) is independent
of wages, as shown in Appendix A.3. Finally, according to the algorithm presented in
Lemma 4, our task shifters component requires τσt1 (σ)

/
τσt1 (σ1) , which is independent

of wages in period t1 as shown in Appendix A.3, as well as the share of total labor income
in each task in period t1, which does depend on wages in period t1 if ρ 6= 1. Hence, in
general when ρ 6= 1, the task shifters component is independent of wages in period t1

only conditional on total labor income in each task in period t1. In the special case in
which ρ = 1, the task shifters component is independent of wages in period t1.

Since changes in wages are not an input in the algorithm to determine the direct con-
tribution of these components, there is no a priori reason to believe that the labor supply,
task shifter, or capital productivity exercises should play an important role in explaining
either the qualitative or quantitative pattern of relative wages over time. The opposite,
however, is true of the labor productivity component, since relative labor productivities
are estimated to match relative wages.

1993, and 1997, and 8% in 2003.
23For robustness, we have redone our estimation and decomposition using a higher degree of worker-

level aggregation. For instance, with only five worker types—the five education levels—there are 1.5%
missing values for 1984, 1989, and 1993 and 0.5% missing values for 1997 and 2003. The results we obtain
under this aggregated definition of worker types are similar to those obtained in our baseline, suggesting
that missing values are not important for generating our results.
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5.3 Estimation results

In this section we present summary statistics describing our estimated parameters.

5.3.1 Patterns of comparative advantage

Our estimation procedure recovers estimates of the comparative advantage parameters,
τ (λ, κ, σ), without imposing any functional form restriction on how these vary across
(λ, κ, σ). Solely for the purpose of summaring the data, we project our estimated val-
ues of τ (λ, κ, σ) onto some observable characteristics of workers and tasks as well as
their corresponding interaction terms. We restrict τ (λ, κ, σ) = τ (λ, σ) τ (λ, κ) τ (κ, σ)—
in which case comparative advantage between (i) workers and equipment is common
across tasks, (ii) workers and tasks is common across equipment, and (iii) equipment
and tasks is common across workers. Specifically, we impose

τ (λ, κ, σ) = exp

(
nλ

∑
i=1

nσ

∑
j=1

βijXi (λ) Xj (σ)

)
exp

(
nλ

∑
i=1

βλi (κ) Xi (λ)

)
exp

(
nσ

∑
j=1

βσj (κ) Xj (σ)

)
(21)

where X(λ) ≥ 0 and X(σ) ≥ 0 are vectors of nλ and nσ worker and task characteristics
described below (which are distinct from the number of worker types, nΛ, and tasks, nΣ);
β is a vector with nλnσ elements; and βλ (κ) and βσ (κ) are vectors with nλ and nσ ele-
ments, respectively, where there is one βλ (κ) and one βσ (κ) for each type of equipment
κ.

The vectors β, βλ (κ), and βσ (κ) summarize comparative advantage. According to
equation (21), βij > 0 implies that a high value of worker characteristic i (e.g., education)
is relatively more productive when employed in a task characterized by a high value
of characteristic j (e.g., the importance of analyzing data and information). Relatedly,
βλi (κ)− βλi (κ

′) > 0 implies that a high value of worker characteristic i (e.g., education)
is relatively more productive when using equipment κ (e.g. computers) than κ′ (e.g. non-
computers). Finally, βσj (κ)− βσj (κ

′) > 0 implies that equipment κ (e.g. computers) is
relatively more productive in tasks characterized by a high value of characteristic j (e.g.,
the importance of repeating the same task) relative to κ′ (e.g. non-computers).

We include three worker characteristics, constructed using the March CPS: age, gen-
der, and education. We measure age and education in years, as the average within λ

across all t. Gender is an indicator function that equals one if λ corresponds to a fe-
male labor type. We use seven task characteristics, which we measure by merging job
task requirements from O*NET to their corresponding Census occupation classifications,
following Acemoglu and Autor (2011). We provide details in Appendix A.2. We use
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X (λ) βλ (κ1)− βλ (κ2) X (σ) βσ (κ1)− βσ (κ2) βeducation×j

Age -0.003 Analyzing data/information 0.180 0.269a

Female 0.237b Thinking creatively 0.499a 0.033
Education 0.330a Guiding, directing, motivating 0.001 -0.138a

Importance of repetition 0.570a -0.128a

Pace determined equipment -0.474a -0.028
Manual dexterity -0.628a -0.086a

Social Perceptiveness -0.728a 0.088c

Table 2: Comparative advantage
a, b, and c denote significance at the 99%, 95%, and 90% levels, where standard errors are robust to heteroskedasticity

the following 7 O*NET scales, each of which is between zero and ten: (i) Analyzing
data/information; (ii) Thinking creatively; (iii) Guiding, directing, and motivating sub-
ordinates; (iv) Importance of repeating the same tasks; (v) Pace determined by speed
of equipment; (vi) Manual dexterity; and (vii) Social Perceptiveness.24 Table 10 in Ap-
pendix A.2 lists these scales for each of the twenty occupations.

In Appendix A.3 we show how to estimate β, βλ (κ), and βσ (κ). Here we use these
estimates to summarize patterns of comparative advantage. Table 2 lists the parameter
vectors βλ (κ) and βσ (κ) as well as the components of βij that refer to i = education. This
table highlights three important results. First, each year of additional education raises
productivity in computer relative to non-computer equipment. Given two workers of the
same age and gender employed in the same occupation and with the same idiosyncratic
component of productivity, the one with a college degree (16 years of education) is about
exp (0.33× 4/θ) = 1.53 times more productive with computers (relative to non-computer
equipment) than the one with a high school degree (12 years of education). Second, com-
puters are relatively productive in tasks in which thinking creatively and repetition are
relatively important and relatively unproductive in tasks in which the pace is determined
by equipment and in which manual dexterity and social perceptiveness are relatively im-
portant. Finally, more educated workers have a comparative advantage in tasks in which
analyzing data/information is relatively important and have a comparative disadvantage
in tasks in which guiding, directing, and motivating subordinates, repetition, and manual
dexterity are relatively important.

24To provide some context for these scales, Acemoglu and Autor (2011) incorporate (i) and (ii) into their
measure of “Non-routine cognitive: Analytical,” (iii) into “Non-routine cognitive: Interpersonal,” (iv) into
“Routine cognitive,” (v) into “Routine manual,” and (vi) into “Non-routine manual physical.”
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84-89 89-93 93-97 97-03 84-03

Capital
κ1/κ2 0.52 0.50 0.11 0.38 1.51
Education
HSG/HSD 0.00 -0.06 0.02 -0.03 -0.05
SMC/HSD 0.03 -0.12 0.03 -0.09 -0.11
CLG/HSD 0.07 -0.06 0.06 0.03 0.12
GTC/HSD 0.09 0.15 0.14 0.00 0.40

Table 3: Changes over time in log relative capital and labor productivities.
HSD: high school dropout; HSG: high school graduate; SMC: some college; CLG: college; GTC: graduate training

5.3.2 Changes in task shifters, labor productivities, equipment productivities

Table 3 summarizes changes in capital equipment productivity. The relative productivity
of computer capital rises between each pair of years in our sample. This rise in the model
corresponds with the extraordinarily large increase in the quantity and decrease in the
price of computer equipment relative to all other capital equipment and relative to struc-
tures capital measured by the BEA (which we do not use in the estimation), as reviewed
in the introduction.

Table 3 also summarizes changes in worker productivity. We aggregate up from thirty
labor groups to five education groups and display changes in productivity of each group
relative to the lowest education group: high school dropouts. Note that over the full
sample, changes in worker productivity are non-monotonic—intermediate education lev-
els become relatively less productive than both low and high education levels—and this
non-monotonicity is driven by changes ocurring after 1989.

Finally, we find that task shifters rose in tasks in which educated workers have a com-
parative advantage and shrank in tasks in which they have a comparative disadvantage.
Table 10 in Appendix A.4 reports the change in task shifters for each occupation between
1984 and 2003; for example, the largest and smallest task shifters are in the “health ser-
vices” and “machine operators, assemblers, inspectors” occupations, respectively. As dis-
cussed above, estimated task shifters are shaped in general both by estimated τ̂σ (σ) and
estimated changes in incomes across tasks, ζ̂ (σ). As shown in Lemma 4 in Appendix A.1,

task shifters are given by ζ̂(σ)

ζ̂(σ1)

(
τ̂σ(σ)
τ̂σ(σ1)

)(ρ−1)(1−α)/θ
. Note that when the aggregate produc-

tion function is Cobb Douglas, ρ = 1, only changes in preference parameters, µ̂ (σ), matter
for the task shifter counterfactuals on wages; and these changes are fully summarized by
estimated changes in incomes across tasks ζ̂ (σ) /ζ̂ (σ1).25 Regressing ζ̂ (σ) /ζ̂ (σ1) (be-

25When ρ = 1, changes in task-level productivities, T̂σ (σ), are irrelevant for relative wages because task
prices and productivities adjust proportionately.
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Labor Task Labor Capital
Data supply shifters prod. prod.

84-89 0.054 -0.020 0.025 0.017 0.030
89-93 0.062 -0.009 0.022 0.020 0.029
93-97 0.025 -0.014 0.015 0.017 0.006
97-03 0.046 -0.025 0.032 0.020 0.020
84-03 0.182 -0.070 0.096 0.070 0.079

Table 4: Decomposing changes in the log skill premium

tween 1984 and 2003) separately on each of the seven task characteristics derived from
O*NET and discussed above yields three significant coefficients (each is significant at the
1% level). Occupations in which the pace is particularly determined by equipment and in
which manual dexterity is particularly important (occupations in which educated work-
ers have a comparative disadvantage according to Table 2) shrank whereas occupations
in which social perceptiveness is particularly important (occupations in which educated
workers have a comparative advantage according to Table 2) grew.

6 Results

Combining our parameterization and theory, we now turn to the results of our decompo-
sition.

Skill premium. We begin by decomposing changes in the composition-adjusted skill
premium between each pair of consecutive years and over the full sample, displayed
in Table 4. The first column reports the change in the data, which is also the change
predicted by the model when all changes (in labor supply, task shifters, labor productivity,
and capital productivity) are simultaneously considered. The subsequent four columns
summarize the change in the skill premium predicted by the model for each component
of the decomposition separately. While the sum of changes in the skill premium predicted
by the four components need not sum to the total predicted change in the skill premium
due to interactions, in practice the difference is very small.

Over the full sample, between 1984 and 2003, changes in capital productivity and task
shifters are the most important forces driving changes in the skill premium; see the final
row of Table 4. The capital productivity component alone accounts for roughly 43% of the
rise in the skill premium (0.43 ' 0.079/0.182) and roughly 32% of the sum of the forces
pushing the skill premium upwards (0.32 ' 0.079/(0.096 + 0.070 + 0.079)). Over sub-
periods, changes in capital productivity are particularly important in generating changes
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in the skill premium over 1984-1989, 1989-1993, and 1997-2003. These are precisely the
years in which the overall share of workers using computers rose most rapidly; see Table
1. We obtain the result that computerization has substantially increased the U.S. skill
premium because we find: (i) strong education-computer comparative advantage (see
Table 2), (ii) a substantial share of workers using computers (see Table 1), and (iii) large
growth in computer usage within worker-task pairs (see Table 3).26

The task shifter component is even more important than the capital productivity com-
ponent over the full sample. It accounts for rougly 53% of the rise in the skill premium
and 39% of the sum of the forces pushing the skill premium upwards. We obtain the result
that task shifters have substantially increased the U.S. skill premium (given our choice of
parameters) because we find: (i) strong education-occupation comparative advantage,
(ii) a substantial share of workers in the expanding or contracting occupations, and (iii)
large changes in task shifters.

Perhaps surprisingly, of the mechanisms pushing the skill premium upwards over the
full sample, the weakest is the one mechanism that was estimated to match observed
relative wages (and, therefore, changes in relative wages): labor productivity (recall our
discussion in Section 5.2.3). Over the full sample this component accounts for roughly
38% of the rise in the skill premium and roughly 29% of the sum of the forces pushing the
skill premium upwards.

Disaggregated groups. Table 5 decomposes changes in between-education-group wage
inequality at a higher level of disaggregation, comparing changes in composition-adjusted
average wages across the five education groups over the full sample, 1984-2003. The re-
sults reported in Table 4 are robust: the labor productivity component is not particularly
important for explaining the rise in between education-group inequality even at this more
disaggregated level. It either pushes the relative wage of education groups in the wrong
direction or accounts for a relatively small share of the rise in the relative wage of more
educated workers.

However, Table 5 demonstrates that, over the full sample, the impact of changes in
labor productivity on relative wages across education groups are U-shaped: they decrease

26DiNardo and Pischke (1997) critique Krueger (1993) by showing that pencils can explain wage premia
as well as computers. Their critique does not apply here for two reasons. First, our approach is fundamen-
tally different from Krueger (1993). Instead of using the October Supplement to regress wages on computer
usage, we use it to identify comparative advantage. Second, in order for pencils to drive changes in wages
(as we find computers do), we would have to find (i) strong worker-pencil comparative advantage (identi-
fied within occupations), (ii) a large share of workers using pencils, and (iii) extremely large and systematic
changes in pencil usage within worker-task pairs over time. Given the extraordinary decline (rise) over time
in the relative price (quantity) of computer equipment compared to all other equipment and structures, this
is not a reasonable concern.
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Labor Task Labor Capital
Data supply shifters prod. prod.

HSG/HSD 0.035 -0.024 0.040 -0.019 0.043
SMC/HSD 0.068 -0.052 0.083 -0.045 0.085
CLG/HSD 0.182 -0.091 0.128 0.015 0.128
GTC/HSD 0.286 -0.113 0.169 0.096 0.129

Table 5: Decomposing changes in log relative wages between education groups: 1984-2003
HSD: high school dropout; HSG: high school graduate; SMC: some college; CLG: college; GTC: graduate training

wages of intermediate education groups relative to the least educated group and relative
to the most educated groups. Table 3 provides the intuition for this result: labor produc-
tivity was estimated to rise in the extreme education groups relative to the intermediate
ones. Hence, whereas changes in labor productivity are not the most important force
driving the rise in between-education group inequality, at a disaggregated level they do
play an important role: they generate “wage polarization,” a feature of changes in wage
distributions in a number of countries over the last few decades; see e.g. Autor et al.
(2008) and Goos et al. (2009).

To further document this result, Figure 1 plots a cubic fit of the log change in average
hourly wages between 1989-2003 for the 15 male labor types against the log of the average
hourly wage in 1989. Even with only 15 labor types, we observe the wage polarization
that others have documented in the full (and especially male) income distribution follow-
ing 1988 in the U.S.; see e.g. Autor et al. (2008) and Acemoglu and Autor (2011). This
figure also plots the log change in average hourly wages between 1989-2003 predicted by
the model from the combination of the labor supply, task shifter, and capital productiv-
ity components. These changes do not generate wage polarization, either individually or
when combined. Instead, wage polarization is accounted for by changes in labor produc-
tivity, as shown in Figure 1.27

Gender. Between 1984-2003 the log change in the composition adjusted gender wage gap
(the average wage of males relative to females) in the data was −0.125. According to our
decomposition, the rise in female labor supply increased the gender wage gap by 0.024
log points, task shifters decreased it by 0.067 log points, labor productivity decreased it by
0.071 log points, and capital productivity decreased it by 0.005 log points. These numbers
highlight three important results. First, changes in task shifters and labor productivity
are the most imortant forces driving changes in the gender wage gap between 1984-2003;

27A similar conclusion emerges from the other periods in which we observe wage polarization in the
data, when we use a quadratic rather than cubic fit, and if we match tasks in the model to sectors in the
data.
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Figure 1: Cubic fit of the log change in average hourly wages between 1989-2003 (relative
to the lowest wage group in 1989) plotted against log average hourly wages in 1989.

together they account for roughly 97% of the forces decreasing the gender wage gap. Sec-
ond, they are almost equally important over this time period. Finally, capital productivity
has almost no effect on the gender wage gap. It is crucially important for this final result
that we estimate worker-computer comparative advantage using allocations to comput-
ers within occupations rather than at the aggregate level. In spite of the fact that women
are substantially more likely to use a computer at work than men—see Table 1—much of
the difference in computer usage across genders is accounted for by differences in the oc-
cupations to which men and women are allocated, rather than by differences in computer
usage within occupations.

7 Robustness and sensitivity analysis

In this section we consider two types of sensitivity exercises. First, we illustrate the im-
portance of all three types of comparative advantage by turning some of them off. Second,
we perform sensitivity to different values of ρ and θ.
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Labor Task Labor Capital
supply shifters prod. prod.

Baseline -0.070 0.096 0.070 0.079
Only labor-equipment CA 0 0 0.013 0.169
Only labor-task CA -0.075 0.108 0.142 0

Table 6: Decomposing changes in the log skill premium under different assumptions on
comparative advantage: 1984-2003

7.1 Sources of comparative advantage

Our model features three types of comparative advantage: (i) between labor and equip-
ment, (ii) between equipment and tasks, and (iii) between labor and tasks. To demon-
strate the importance of including each of these various sources of comparative advan-
tage, we perform two exercises. First, we abstract from comparative advantage related
to equipment, i.e. (i) and (ii). To do so, we impose in our estimation that τ (λ, κ1, σ) =

τ (λ, κ2, σ). This is equivalent, in terms of the model’s implications for changes in rela-
tive wages, to assuming that there a single equipment good. Second, we abstract from
comparative advantage related to tasks, i.e. (ii) and (iii), imposing in our estimation that
τ (λ, κ, σi) = τ (λ, κ, σ1) for i = 2, ..., nΣ. This is equivalent—again in terms of changes in
relative wages—to assuming that there is a single task.

Abstracting from any comparative advantage at the level of tasks (i.e. assuming away
worker-task and equipment-task comparative advantage) has two effects. First, it implies
that the labor supply and task shifters components of our decomposition go to zero. Since
the sum of these components pushes the skill premium up, this implies that holding fixed
the importance of the capital productivity component, the labor productivity component
must increase. Second, it implies that the only force generating the allocation of worker
types to equipment types is direct comparative advantage. Since we found in our baseline
exercise that educated workers use computers relatively more than non-computer equip-
ment both because of direct and indirect comparative advantage, abstracting from any
comparative advantage at the level of tasks magnifies the stength of worker-equipment
comparative advantage and increases the impact of the capital productivity component,
thereby reducing the impact of the labor productivity component. Table 6 confirms this
intuition: the strength of the capital productivity component becomes much stronger in
the absence of any comparative advantage at the level of tasks, so much so that the labor
productivity component becomes weaker. Abstracting from any comparative advantage
at the level of tasks, we would incorrectly conclude that almost all of the rise in the skill
premium (93%) has been driven by changes in relative equipment productivities.
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Abstracting from any comparative advantage at the level of equipment has similar ef-
fects. First, it implies that capital productivity component of our decomposition goes to
zero so that—holding fixed the importance of the labor supply and task shifters components—
the absolute value of the labor productivity component must become larger. Second, it
implies that the only force generating the allocation of worker types to tasks is the direct
comparative advantage. Since we found in our baseline exercise that educated workers
are employed in expanding tasks both because of direct and indirect comparative advan-
tage, abstracting from any comparative advantage at the level of equipment magnifies
the stength of this direct comparative advantage. Table 6 shows that abstracting from
any comparative advantage at the level of equipment magnifies the importance of labor
productivity in explaining the rise of the skill premium.

In summary, abstracting from any comparative advantage at the level of either tasks
or equipment has a large impact on the composition of changes in between-group in-
equality. It does so first by forcing changes in labor productivity to absorb the impacts of
the missing component(s) and second by changing the inferred strength of the remaining
source of comparative advantage.

7.2 Alternative parameter values

In this section we vary θ and ρ—recall that our decomposition results are indepenent of
the value of α ∈ (0, 1) given our baseline value ρ = 1—and report the implications of
these alternative values for our decomposition. We focus on changes only in the skill
premium and only over the full sample.

Alternative values for θ. A higher value of θ corresponds to less dispersion in idiosyn-
cratic productivities, ε, and—as shown in equation (12)—increases the elasticity of worker
allocation, π, with respect to changes in prices, rental rates, and productivities. Hence,
the same change in underlying primitives yields smaller changes in average wages. Ac-
cordingly, a higher values of θ will reduce the impact of changes in labor supply, task
shifters, and capital productivity on relative wages. In response, changes in labor pro-
ductivity must contribute more to the rise in between-education group inequality, since
τλ (λ)

/
τλ (λ1) is estimated to match relative wages.

Table 7 confirms this intuition. The middle row of the table replicates our baseline
results. We consider two extreme values of θ, θ = 2 and θ = 4, in addition to two alterna-
tive values that are consistent with estimates from Hsieh et al. (2013), θ = 2.9 and θ = 3.3.
Table 7 demonstrates that our baseline result—that the combination of changes in task
shifters and capital productivity explains the majority of the rise in between-education
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Labor Task Labor Capital
value of θ supply shifters prod. prod.

θ = 2 -0.099 0.130 0.032 0.110
θ = 2.9 -0.074 0.101 0.065 0.083
θ = 3.1 -0.070 0.096 0.070 0.079
θ = 3.3 -0.066 0.092 0.075 0.075
θ = 4 -0.056 0.080 0.089 0.064

Table 7: Decomposing changes in the skill premium for alternative values of θ: 1984-2003

group inequality—is largely robust to alterative values of θ within the range of 2 ≤ θ ≤ 4.
At θ = 2 labor productivity plays almost no role in increasing the skill premium between
1984 and 2003 whereas at θ = 4 it becomes relatively more important, but continues to
explain substantially less of the rise in the skill premium than the combination of task
shifters and capital productivity.

Alternative values for ρ. ρ is the elasticity of substitution across tasks in the aggregate
production function. The impact of ρ on the effect of changes in labor supply is straight-
forward. An increase in the relative supply of a given worker type tends to depress the
prices of the tasks in which that worker type has a comparative advantage, thus decreas-
ing that worker type’s relative wage and the relative wages of workers who have similar
patterns of comparative advantage across tasks. The larger is ρ, the less responsive are
relative task prices and the weaker is this effect. The impact of ρ on the direct effect of
changes in capital productivity is related, and was discussed in Section 3.4: a larger value
of ρ raises the impact, in response to changes in capital productivity, of changes in rental
rates relative to task prices.

The intuition for the impact of ρ on task shifters is more complicated. Between 1984
and 2003, we observe (i) an increase in income in skill-intensive occupations (those oc-
cupations in which educated workers are disproportionately allocated) and (ii) changes
in labor supply and capital productivity that tend to decrease the relative prices of these
occupations. If ρ is low, (ii) generates a large reduction in income in skill-intensive tasks.
Hence, to match (i), a lower value of ρ requires larger task shifters in favor of skill-
intensive tasks. Mechanically, our estimates of τ̂σ (σ), which are lower for skill-intensive
occupations, are independent of ρ. Since what matters for the impact of task shifters is
ζ̂(σ)

ζ̂(σ1)

(
τ̂σ(σ)
τ̂σ(σ1)

)(ρ−1)(1−α)/θ
, a lower value of ρ is similar to increasing task shifters in skill-

intensive occupations.
Table 8 confirms this intuition. The middle row of the table replicates our baseline

results. Our baseline result—that the combination of changes in task shifters and capital
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Labor Task Labor Capital
value of ρ supply shifters prod. prod.

ρ = 1/2 -0.085 0.130 0.065 0.059
ρ = 2/3 -0.079 0.118 0.067 0.066
ρ = 1 -0.070 0.096 0.070 0.079
ρ = 3/2 -0.060 0.072 0.073 0.092
ρ = 2 -0.052 0.054 0.076 0.102

Table 8: Decomposing changes in the skill premium for alternative values of ρ: 1984-2003

productivity explains the majority of the rise in between-education group inequality—is
robust to alternative values of ρ within the range of 1/2 ≤ ρ ≤ 2: the importance of labor
productivity remains stable. However, the relative importance of task shifters and capital
productivity changes dramatically as we vary ρ from 1/2 to 2. At ρ = 1/2 task shifters
are the dominant force explaining changes in the skill premium whereas at ρ = 2 capital
productivity is.

8 International trade

Our theoretical and quantitative analyses have focused on a closed economy. In this sec-
tion we extend our model to incorporate and quantify the impact of international trade
on inequality. We assume that consumption and investment goods are traded whereas
we abstract from trade in tasks (given the lack of data on trade in occupational out-
put). Hence, in this section international trade only affects relative wages through relative
prices of capital equipment goods and, therefore, equipment rental rates.

8.1 Environment and equilibrium

Environment. We denote countries by n. The final good is produced combining domesti-
cally performed tasks, as in equation (1). The output of this final good is used to produce
country n’s consumption good and country n’s capital goods, satisfying the resource con-
straint given by

Yn,t = qn,t (C)Yn,t (C) + ∑
κ

qn,t (κ)Yn,t (κ) .

Country n’s consumption is a CES aggregator over consumption goods from all source
countries,

Cn,t =

(
∑

i
C

η(C)−1
η(C)

in,t

) η(C)
η(C)−1

,
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where Cin,t ≥ 0 is consumption in country n of country i’s good at time t. World market
clearing in consumption goods requires

Yn,t (C) = ∑
i

dni,t (C)Cni,t

where dni,t(C) ≥ 1 is the iceberg trade cost for consumption goods from source coun-
try n to destination country i at time t. Similarly, country n’s investment in κ is a CES
aggregator over investment goods from all source countries,

In,t (κ) =

(
∑
n

Iin,t (κ)
η(κ)−1

η(κ)

) η(κ)
η(κ)−1

where Iin,t (κ) ≥ 0 is country n’s investment in country i’s κ good at time t. World market
clearing in investment κ goods requires

Yn,t (κ) = ∑
i

dni,t (κ) Ini,t (κ)

where dni,t(κ) ≥ 1 is the iceberg trade cost for investment good κ. Finally, the law of
motion for capital κ is

Kn,t+1 (κ) = (1− depn (κ))Kn,t (κ) + In,t (κ)

and utility of the representative household is given by ∑∞
t=0 un,t (Cn,t). We assume that

there are no intra-national trade costs: dnn,t (C) = dnn,t (κ) = 1 for all n, t, and κ. Note
that this model reduces to our baseline model when countries are in autarky: dni,t (C) =
dni,t (κ) = ∞ for all n 6= i, t, and κ.

Equilibrium in changes. Relative to the baseline closed-economy model summarized by
equations (9)-(13), the only change is to equation (13). Along a balanced growth path, we
now have

r̂n (κ) = P̂n (κ) = ŝnn (κ)
1/(η(κ)−1) P̂nn (κ)

and
P̂nn (κ)

P̂nn (κ′)
=

q̂n (κ)

q̂n (κ′)
.

Here snn,t (κ) = Pnn,t(κ)Inn,t(κ)
∑i Pin,t(κ)Iin,t(κ)

denotes expenditure on domestic investment good κ rel-
ative to total expenditure on investment good κ in country n (the “domestic aborption
share”), Pin,t (κ) denotes the price of country i’s investment good in country n (inclu-
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sive of trade costs), and Pn (κ) denotes the price of the aggregate investment good κ in
country n (a CES aggregator of Pin,t (κ) across i). The domestic absorption share is de-
termined in the world general equilibrium. If country n’s trade costs are set to infinity
(i.e. din,t (.) = ∞ for i 6= n), then snn,t (.) = 1. In the counterfactual exercises described
below, we consider either changing trade costs to infinity or matching observed changes
over time in snn,t (κ). Therefore, we do not need to specify conditions on trade balance
or solve for the equilibrium determination of snn,t (κ) in the world general equilibrium.
Combining the two previous equations, we obtain

r̂n (κ)

r̂n (κ′)
=

q̂n (κ)

q̂n (κ′)
× ŝnn (κ)

1/(η(κ)−1)

ŝnn (κ′)
1/(η(κ′)−1)

(22)

Because task markets are autarkic, trade only affects relative wages through its impact on
relative capital prices. Hence, given relative capital prices in country n, the equilibrium
allocation of factors and relative wages in country n are determined exactly as in our
baseline model.

The result that the effects of trade on allocations and prices can be summarized by
changes in domestic absorption shares, ŝnn (κ), and the gravity elasticity, η (κ)− 1, holds
across a wide range of quantitative trade models; see Arkolakis et al. (2012). We assume
an Armington trade model only for expositional simplicity.

With international trade in tasks, from which we have abstracted, trade would also
potentially explain a portion of the task shifter component of our decomposition. Because
the impact on relative wages of changes in task shifters is large in our decomposition, this
suggests that the role of trade on wages through this channel could be substantial.

8.2 Counterfactual exercises

In this section we show how to connect our extended model to the data, provide two
results that allow us to conduct counterfactuals, and quantify the impact of international
trade on relative wages in the United States.

Connecting model to data. Because the equilibrium allocation of factors and relative
wages are determined exactly as in our baseline model, for given rental rates and task
prices, our estimating equations and procedure are unchanged relative to the baseline
model. Whereas the definitions of all estimated parameters is the same as in the base-
line model, changes in estimated capital productivities τ̂n,κ (κ) now capture changes in
domestic technologies as in our baseline model as well as changes in all international
technologies, factor supplies, and trade costs, as summarized by changes in domestic ab-
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sorption shares ŝnn (κ),

τ̂n,κ (κ1)

τ̂n,κ (κ2)
=

(
T̂n,κ (κ1)

T̂n,κ (κ2)

(
q̂n (κ1)

q̂n (κ2)

) −α
1−α

)θ (
ŝnn (κ2)

1/(η(κ2)−1)

ŝnn (κ1)
1/(η(κ1)−1)

) θα
1−α

(23)

Counterfactuals. We use our framework to conduct two counterfactual exercises quanti-
fying the impact of international trade on relative wages through its impact on the relative
price of capital equipment. In the first counterfactual we hold all parameters in country n
fixed and increase trade costs between country n and its trade partners such that country
n moves to autarky. This counterfactual quantifies the impact on wages in country n if
it were to move to autarky at time t, holding all of country n’s paramaters fixed, which
we denote by ŵA

n,t (λ). The counterfactual change in the wage of λ workers relative to
λ′ workers is ŵA

n,t (λ) /ŵA
n,t (λ

′). Conducting this counterfactual is straightforward given
equation (22) and is summarized by the following proposition.

Proposition 3. ŵA
n,t (λ) /ŵA

n,t (λ1) for all λ is the solution to equations (9)-(12) and (22) with
T̂ (λ, κ, σ) = L̂ (λ) = µ̂ (σ) = q̂ (κ) = 1 and ŝnn (κ) = snn,t (κ)

−1.

This proposition follows trivially from the fact that changes in trade costs that move
country n to autarky cause absorption shares for each κ to rise from snn,t (κ) to 1, so that
ŝnn (κ) = snn,t (κ)

−1. The effect on relative wages of moving to autarky depends on η (κ)

and snn,t (κ). Intuitively, a high value of snn,t (κ) implies a small effect of moving to au-
tarky on the price of κ, since country n is not importing a large share of its investment in κ.
A lower elasticity of substitution, η (κ), so that the domestic investment good κ is a poor
substitute for the imported variety, magnifies the impact of a given change in snn,t (κ).

Whereas Proposition 3 provides a simple approach to quantify the impact on relative
wages of moving country n to autarky, it does not directly shed light on the impact of
international trade on inequality between two time periods t0 and t1. Our second coun-
terfactual does. It answers the following question: What are the differential effects of
changes in primitives (i.e. worldwide technologies, endowments, and trade costs) be-
tween periods t0 and t1 on wages in country n, relative to the effects of the same changes
in primitives if country n were a closed economy? Answering this question seems diffi-
cult, because our estimation procedure does not recover all changes in country n’s primi-
tives (e.g. trade costs, foreign technologies, or endowments). Nevertheless, we can apply
Proposition 3 to answer this question, as described in the following corollary.28

28To understand this result, define wn (λ; Φt, Φ∗t, dt) to be the average wage of worker type λ in
country n given that country n parameters are Φt, parameters in the rest of the world are Φ∗t , and the
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Year HSG/HSD SMC/HSD CLG/HSD GTC/HSD Skill premium

84 -0.000 -0.000 -0.001 -0.001 -0.001
03 -0.010 -0.019 -0.026 -0.027 -0.015

Table 9: The impact on log relative wages of moving to autarky in 1984 and 2003

Corollary 1. The differential effects of changes in primitives between periods t0 and t1 on relative
wages in country n, relative to the effects of the same changes in primitives if country n were a

closed economy, are given by
ŵA

n,t0
(λ)
/

ŵA
n,t0

(λ1)

ŵA
n,t1

(λ)
/

ŵA
n,t1

(λ)
.

According to Corollary 1, we can quantify the effects on wages between periods t0 and
t1 of international trade in country n following the same procedure described above, using
only observed domestic absorption shares at time t0 and t1, rather than (unobserved)
changes in primitives.

Results. Given our previous estimation, to conduct our counterfactuals we need only
to assign values to η (κ) and snn,t (κ) for the United States in 1984 and 2003. We impose
η (κ1) = η (κ2) and set η (κ) − 1 = 4.5 to match a trade elasticity of 4.5 estimated in
the equipment sector by Parro (2013). We calculate snn,t (κ) for the U.S. as snn,t (κ) =

Productionn,t(κ)−Exportn,t(κ)
Productionn,t(κ)−Exportn,t(κ)+Importn,t(κ)

obtaining Production, Export, and Import data for κ =

κ1, κ2 using the OECD’s STAN STructural ANalysis Database (STAN), equating κ1 in
the model to industry 30 (Office, Accounting, and Computing Machinery) and κ2 in the
model to industries 29-33 less 30 (Machinery and Equipment less Office, Accounting, and
computering Machinery) and 34-35 (Transport Equipment). We obtain similar domestic
aborption shares in κ1, snn,84 (κ1) = 0.796, and κ2, snn,84 (κ2) = 0.830, in 1984. Whereas
both domestic absorption shares fall between 1984 and 2003, the reduction in snn (κ1) is
much larger. In 2003 we obtain snn,03 (κ1) = 0.256 and snn,03 (κ2) = 0.650.

Table 9 reports the effect on log relative wages of moving to autarky in 1984 and 2003 in
the sectors and occupations models. The impact in 1984 is small, roughly 0.1 percentage
points, regardless of aggregation (the skill premium vs. five education groups). The
impact in 2003, while an order of magnitude larger than in 1984, is still small. Moving
from 2003 to autarky generates a 1.5 percentage point reduction in the skill premium and
a 2.7 percentage point reduction in the relative wage of the most educated to the least

full matrix of world trade costs are dt. Define dA
n,t to be an alternative matrix of world trade costs in

which country n’s trade costs are infinite (din,t = ∞ for all i 6= n). We are interested in calculating[
wn(λ;Φt′ ,Φ

∗
t′ ,dt′)

wn(λ;Φt ,Φ∗t ,dt)

] [
wn

(
λ;Φt′ ,Φ

∗
t′ ,d

A
n,t′
)

wn(λ;Φt ,Φ∗t ,dA
n,t)

]−1

. The result in Corollary 1 follows directly from Proposition 3 because

wn(λ;Φt ,Φ∗t ,dt)

wn(λ;Φt ,Φ∗t ,dA
n,t)

=
[
ŵA

n,t (λ)
]−1 for any time period.
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educated group.
How important was trade in generating relative wage changes between 1984 and

2003? To answer this question, Corollary 1 states that we can simply difference the 2003
and 1984 results presented in Table 9. If the U.S. were in autarky between 1984 and 2003
but otherwise experienced the same changes in primitives, the U.S. skill premium would
have risen by 1.4 percentage points less than it did over this time period. While this is a
substantial difference, it accounts for only a small share of the total impact of changes in
capital productivity—displayed in Table 4—and even less of the observed change in the
U.S. skill premium over this time period.

The impact of trade on the skill premium is relatively small in the US, which has a
comparative advantage in capital equipment. For the same estimated parameters, the
impact of trade on the skill premium would be much larger in countries that rely heavily
on imports for their capital equipment (see Burstein et al. (2013)).

9 Conclusions

To be added
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A.1 Proof of Proposition 2

Here we show how to conduct the decomposition between t = t0, t1 given (i) ρ, θ, and α; (ii)
Lt (λ)

/
Lt (λ1) ; (iii) ψτ (λ, κ, σ) for an arbitrary constant ψ; and (iv) τλt (λ)

/
τλt (λ1) , τσt (σ)

/
τσt (σ1) ,

and τκt (κ)
/

τκt (κ1) .

Given (i)− (iv) we construct πt0 (λ, κ, σ) and wt0 (λ) Lt0 (λ)
/

wt0 (λ1) Lt0 (λ1) using equations

(4), (5), and (14) as

πt0 (λ, κ, σ) =
ψτ (λ, κ, σ)

τλt0 (λ)

τλt0 (λ1)

τκt0 (κ)

τκt0 (κ1)

τσt0 (σ)

τσt0 (σ1)

∑κ′,σ′ ψτ (λ, κ′, σ′)
τλt0 (λ

′)

τλt0 (λ1)

τκt0 (κ
′)

τκt0 (κ1)

τσt0 (σ
′)

τσt0 (σ1)

and

wt0 (λ) Lt0 (λ)

wt0 (λ1) Lt0 (λ1)
=

∑κ,σ ψτ (λ, κ, σ)
τλt0 (λ)

τλt0 (λ1)

τκt0 (κ)

τκt0 (κ1)

τσt0 (σ)

τσt0 (σ1)

∑κ′,σ′ ψτ (λ1, κ′, σ′)


1/θ

Given (ii) we construct L̂(λ)
L̂(λ1)

=
Lt1 (λ)

Lt0 (λ)

Lt0 (λ1)

Lt1 (λ1)
, and given (iv) we construct τ̂x(x)

τ̂x(x1)
=

τxt1 (x)
τxt0 (x)

τxt0 (x1)

τxt1 (x1)
for

x = λ, κ, σ.

Given (i)− (iv), we have

ζt0 (σ)

ζt0 (σ1)
=

∑λ,κ
wt0 (λ)Lt0 (λ)

wt0 (λ1)Lt0 (λ1)
πt0 (λ, κ, σ)

∑λ′,κ′
wt0 (λ

′)Lt0 (λ
′)

wt0 (λ1)Lt0 (λ1)
πt0 (λ

′, κ′, σ1)

so that

ζ̂ (σ)

ζ̂ (σ1)
=

ζt0 (σ1)

ζt0 (σ)

∑λ,κ
wt0 (λ)Lt0 (λ)

wt0 (λ1)Lt0 (λ1)
πt0 (λ, κ, σ) ŵ(λ)L̂(λ)

ŵ(λ1)L̂(λ1)
π̂ (λ, κ, σ)

∑λ′,κ′
wt0 (λ

′)Lt0 (λ
′)

wt0 (λ1)Lt0 (λ1)
πt0 (λ

′, κ′, σ) ŵ(λ′)L̂(λ′)
ŵ(λ1)L̂(λ1)

π̂ (λ′, κ′, σ1)
,

We conduct each exercise as follows, using the previously constructed variables.

Lemma 1. Given changes in labor supplies, L̂ (λ)
/

L̂ (λ1) , and values of wt0 (λ) Lt0 (λ)
/
(wt0 (λ1) Lt0 (λ1))

and πt0 (λ, κ, σ), changes in relative wages between t0 and t1 can be calculated using

ŵ(λ)

ŵ(λ1)
=

 ∑κ,σ
(

p̂ (σ)
/

p̂ (σ1)
) θ

1−α πt0(λ, κ, σ)

∑κ′,σ′
(

p̂ (σ′)
/

p̂ (σ1)
) θ

1−α πt0(λ1, κ′, σ′)


1/θ

(
p̂ (σ)
p̂ (σ1)

)1−ρ

=
ζt0 (σ1)

ζt0 (σ)

∑λ,κ
wt0 (λ)Lt0 (λ)

wt0 (λ1)Lt0 (λ1)
πt0 (λ, κ, σ) ŵ(λ)L̂(λ)

ŵ(λ1)L̂(λ1)
π̂ (λ, κ, σ)

∑λ′,κ′
wt0 (λ

′)Lt0 (λ
′)

wt0 (λ1)Lt0 (λ1)
πt0 (λ

′, κ′, σ) ŵ(λ′)L̂(λ′)
ŵ(λ1)L̂(λ1)

π̂ (λ′, κ′, σ1)

π̂ (λ, κ, σ) =

(
p̂ (σ)

/
p̂ (σ1)

) θ
1−α

∑σ′,κ′
(

p̂ (σ′)
/

p̂ (σ1)
) θ

1−α πt0 (λ, κ′, σ′)
.
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Lemma 1 follows directly.

Lemma 2. Given changes in labor productivities, captured by τ̂λ (λ), and values of wt0 (λ) Lt0 (λ)
/
(wt0 (λ1) Lt0 (λ1))

and πt0 (λ, κ, σ), changes in relative wages between t0 and t1 can be calculated using

ŵ(λ)

ŵ(λ1)
=

 τ̂λ (λ)

τ̂λ (λ1)

∑κ,σ
(

p̂ (σ)
/

p̂ (σ1)
) θ

1−α πt0(λ, κ, σ)

∑κ′,σ′
(

p̂ (σ′)
/

p̂ (σ1)
) θ

1−α πt0(λ1, κ′, σ′)


1/θ

(
p̂ (σ)
p̂ (σ1)

)1−ρ

=
ζt0 (σ1)

ζt0 (σ)

∑λ,κ
wt0 (λ)Lt0 (λ)

wt0 (λ1)Lt0 (λ1)
πt0 (λ, κ, σ) ŵ(λ)

ŵ(λ1)
π̂ (λ, κ, σ)

∑λ′,κ′
wt0 (λ

′)Lt0 (λ
′)

wt0 (λ1)Lt0 (λ1)
πt0 (λ

′, κ′, σ) ŵ(λ′)
ŵ(λ1)

π̂ (λ′, κ′, σ1)

π̂ (λ, κ, σ) =

(
p̂ (σ)

/
p̂ (σ1)

) θ
1−α

∑σ′,κ′
(

p̂ (σ′)
/

p̂ (σ1)
) θ

1−α πt0 (λ, κ′, σ′)
.

Lemma 2 follows directly.

Lemma 3. Given changes in capital productivities, captured by τ̂κ (κ), and values of wt0 (λ) Lt0 (λ)
/
(wt0 (λ1) Lt0 (λ1))

and πt0 (λ, κ, σ), changes in relative wages between t0 and t1 can be calculated using

ŵ(λ)

ŵ(λ1)
=

 ∑κ,σ
(

p̂ (σ)
/

p̂ (σ1)
) θ

1−α
(
τ̂κ (κ)

/
τ̂κ (κ1)

)
πt0(λ, κ, σ)

∑κ′,σ′
(

p̂ (σ′)
/

p̂ (σ1)
) θ

1−α
(
τ̂κ (κ′)

/
τ̂κ (κ1)

)
πt0(λ1, κ′, σ′)


1/θ

(
p̂ (σ)
p̂ (σ1)

)1−ρ

=
ζt0 (σ1)

ζt0 (σ)

∑λ,κ
wt0 (λ)Lt0 (λ)

wt0 (λ1)Lt0 (λ1)
πt0 (λ, κ, σ) ŵ(λ)

ŵ(λ1)
π̂ (λ, κ, σ)

∑λ′,κ′
wt0 (λ)Lt0 (λ

′)

wt0 (λ1)Lt0 (λ1)
πt0 (λ

′, κ′, σ) ŵ(λ′)
ŵ(λ1)

π̂ (λ′, κ′, σ1)

π̂ (λ, κ, σ) =

(
p̂ (σ)

/
p̂ (σ1)

) θ
1−α
(
τ̂κ (κ)

/
τ̂κ (κ1)

)
∑σ′,κ′

(
p̂ (σ′)

/
p̂ (σ1)

) θ
1−α
(
τ̂κ (κ′)

/
τ̂κ (κ1)

)
πt0 (λ, κ′, σ′)

.

Lemma 3 follows directly.

Lemma 4. Given changes in task shifters, captured by τ̂σ (σ) and ζ̂ (σ), and values of wt0 (λ) Lt0 (λ)
/
(wt0 (λ1) Lt0 (λ1))

and πt0 (λ, κ, σ), changes in relative wages between t0 and t1 can be calculated using

ŵ(λ)

ŵ(λ1)
=

{
∑κ,σ

(
p̃ (σ)

/
p̃ (σ1)

)θ
πt0(λ, κ, σ)

∑κ′,σ′
(

p̃ (σ′)
/

p̃ (σ1)
)θ

πt0(λ1, κ′, σ′)

}1/θ

ζ̂t (σ)

ζ̂t (σ1)

(
τ̂σ (σ)

τ̂σ (σ1)

) (ρ−1)(1−α)
θ

(
p̃ (σ)
p̃ (σ1)

)(1−ρ)(1−α)

=
∑λ,κ

wt0 (λ)Lt0 (λ)

wt0 (λ1)Lt0 (λ1)
πt0 (λ, κ, σ) ŵ(λ)

ŵ(λ1)
π̂ (λ, κ, σ)

∑λ′,κ′
wt0 (λ

′)Lt0 (λ
′)

wt0 (λ1)Lt0 (λ1)
πt0 (λ

′, κ′, σ) ŵ(λ′)
ŵ(λ1)

π̂ (λ′, κ′, σ1)

π̂ (λ, κ, σ) =

(
p̃ (σ)

/
p̃ (σ1)

)θ

∑σ′,κ′
(

p̃ (σ′)
/

p̃ (σ1)
)θ

πt0 (λ, κ′, σ′)
,
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where p̃ (σ) ≡ p̂(σ)
1

1−α T̂σ (σ).

To prove Lemma 4, note that equation (10) and the definition of τσt (σ) imply that between

time t0 and t1, T̂σ (σ) and µ̂ (σ) must satisfy the following condition

µ̂ (σ)

µ̂ (σ1)
=

(
T̂σ (σ1)

T̂σ (σ)

(
τ̂σ (σ)

τ̂σ (σ1)

) 1
θ

)(ρ−1)(1−α)
ζ̂ (σ)

ζ̂ (σ1)
, (24)

Setting L̂ (λ), T̂λ (λ), T̂κ (κ), and q̂ (κ) all equal to one for each (λ, κ, σ) in equations (9)-(12) and

imposing condition (24), we obtain the system of equations in Lemma 4.

A.2 Data

To add

A.3 Estimation details

Here we explain in greater detail the estimation procedure in Section 5.2. As indicated in Propo-

sition 2, once we have assigned values to the parameters ρ, θ and α (see Section 5.2.1), performing

the decomposition described in Section 4 only requires identifying and estimating: (a) the compar-

ative advantage parameter τ(λ, κ, σ) (up to an arbitrary scale parameter ψ); and, (b) the relative

productivities τxt(x)/τxt(x0), for x = λ, κ, σ and for every t.
In order to estimate the different components of the τt(λ, κ, σ) (see equation (14)), we will

exclusively use data on wt(λ), and πt(λ, κ, σ), for every λ, κ, and σ. For each λ and period t,
wt(λ) denotes the population average wage; however, our measure of wt(λ) is based on a sample

average computed from a subset of a population of type λ. The same is true for πt(λ, κ, σ) for each

triplet (λ, κ, σ) and t, which denotes the population average of a dummy variable taking value 1

whenever a worker of type λ uses κ in σ.29

Given that we use sample averages to approximate population averages, in our estimation

procedure, we allow for sampling error that generates differences between the unobserved popu-

lation means, wt(λ) and πt(λ, κ, σ), and the observed sample averages, w∗t (λ) and π∗t (λ, κ, σ). We

denote these errors as ι1t(λ, κ, σ) and ι2(λ):

π∗t (λ, κ, σ) = πt(λ, κ, σ)ι1t(λ, κ, σ), ∀ (λ, κ, σ), (25a)

w∗t (λ) = wt(λ)ι2t(λ), ∀ λ. (25b)

Given the Law of Large Numbers, for every t and (λ, κ, σ), and for any real number ξ > 0, it holds

29Section 5.1 describes the sources of the data used to compute our measures of wt(λ), and πt(λ, κ, σ).
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that

P
[
| ln(ι1t(λ, κ, σ))| ≥ ξ

] Nt(λ)→∞−−−−−→ 0, ∀ (λ, κ, σ), (26a)

P
[
| ln(ι2t(λ))| ≥ ξ

] Nt(λ)→∞−−−−−→ 0, ∀ λ. (26b)

Lemma 1. Given equations (14), (15), and (17) in the main text, and equation (25) and (26) in this

Appendix, we can define an estimator δ(λ, κ, σ) such that, for every t, every (λ, κ, σ), and any real

number ξ > 0,

P
[∣∣∣δ(λ, κ, σ)− γθτ(λ, κ, σ)

∣∣∣ > ξ
] Nt(λ)→∞−−−−−→ 0. (27)

Proof. For every (λ, κ, σ), we define our estimator δ(λ, κ, σ) as

ln(δ(λ, κ, σ)) =
1
T

T

∑
t=1

ln(w∗t (λ)
θπ∗t (λ, κ, σ)). (28)

From equation (25) in this Appendix, we can rewrite this expression as

ln(δ(λ, κ, σ)) =
1
T

T

∑
t=1

ln(wt(λ)
θπt(λ, κ, σ)ι1t(λ, κ, σ)ι2t(λ))

=
1
T

T

∑
t=1

ln(wt(λ)
θπt(λ, κ, σ)) +

1
T

T

∑
t=1

ln(ι1t(λ, κ, σ)) +
1
T

T

∑
t=1

ln(ι2t(λ))

From equations (16) and (17) in the main text, we can rewrite this expression in terms of τ(λ, κ, σ)

as

ln(δ(λ, κ, σ)) = θ ln(γ) +
1
T

T

∑
t=1

ln(τ(λ, κ, σ)) +
1
T

T

∑
t=1

ln(ι1t(λ, κ, σ)) +
1
T

T

∑
t=1

ln(ι2t(λ))

Therefore, from equation (26) in this Appendix, we can conclude that

P

[∣∣∣∣∣ln(δ(λ, κ, σ))−
(

θ ln(γ) +
1
T

T

∑
t=1

ln(τ(λ, κ, σ))
)∣∣∣∣∣ > ξ

]
Nt(λ)→∞−−−−−→ 0,

or, equivalently,

P
[∣∣∣δ(λ, κ, σ)− γθτ(λ, κ, σ)

∣∣∣ > ξ
] Nt(λ)→∞−−−−−→ 0. �

Lemma 2. Given Lemma 1, equations (17), (18), (25a), and (26a), we can define an estimator δκt(κ)
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such that, for every t, every κ, and any real number ξ > 0,

P
[∣∣∣∣δκt(κ)−

τκt(κ)

τκt(κ1)

∣∣∣∣ > ξ

]
Nt(λ)→∞−−−−−→ 0. (29)

Proof: For every κ, we define our estimator δκt(κ) as:

ln(δκt(κ)) =
1

nΛnΣ
∑
λ,σ

ln
π∗t (λ, κ, σ)

δ(λ, κ, σ)

δ(λ, κ1, σ)

π∗t (λ, κ1, σ)
(30)

From equation (25a), we can rewrite this expression as:

ln(δκt(κ)) =
1

nΛnΣ
∑
λ,σ

ln
πt(λ, κ, σ)

δ(λ, κ, σ)

δ(λ, κ1, σ)

πt(λ, κ1, σ)
+

1
nΛnΣ

∑
λ,σ

ln
ι1t(λ, κ, σ)

ι1t(λ, κ1, σ)
.

From equation (17), we can rewrite this expression as:

ln(δκt(κ)) =
1

nΛnΣ
∑
λ,σ

ln
τt(λ, κ, σ)

δ(λ, κ, σ)

δ(λ, κ1, σ)

τt(λ, κ1, σ)
+

1
nΛnΣ

∑
λ,σ

ln
ι1t(λ, κ, σ)

ι1t(λ, κ1, σ)
.

From Lemma 1 and equation (26a), we conclude that

P

[∣∣∣∣∣ln(δκt(κ))−
1

nΛnΣ
∑
λ,σ

ln
τt(λ, κ, σ)

τ(λ, κ, σ)

τ(λ, κ1, σ)

τt(λ, κ1, σ)

∣∣∣∣∣ > ξ

]
Nt(λ,κ,σ)→∞−−−−−−−→ 0,

and, using equation (18),

P
[∣∣∣∣ln(δκt(κ))− ln

τκt(κ)

τκt(κ1)

∣∣∣∣ > ξ

]
Nt(λ)→∞−−−−−→ 0,

or, equivalently,

P
[∣∣∣∣δκt(κ)−

τκt(κ)

τκt(κ1)

∣∣∣∣ > ξ

]
Nt(λ)→∞−−−−−→ 0. �

Lemma 3. Given Lemma 1, equations (17), (19), (25a), and (26a), we can define an estimator δσt(σ)

such that, for every t, every σ, and any real number ξ > 0,

P
[∣∣∣∣δσt(σ)−

τσt(σ)

τσt(σ1)

∣∣∣∣ > ξ

]
Nt(λ)→∞−−−−−→ 0. (31)
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Proof: For every σ, we define our estimator δσt(σ) as:

ln(δσt(σ)) =
1

nΛnK
∑
λ,κ

ln
π∗t (λ, κ, σ)

δ(λ, κ, σ)

δ(λ, κ, σ1)

π∗t (λ, κ, σ1)
(32)

From equation (25a), we can rewrite this expression as:

ln(δσt(σ)) =
1

nΛnK
∑
λ,κ

ln
πt(λ, κ, σ)

δ(λ, κ, σ)

δ(λ, κ, σ1)

πt(λ, κ, σ1)
+

1
nΛnK

∑
λ,k

ln
ι1t(λ, κ, σ)

ι1t(λ, κ, σ1)
.

From equation (17), we can rewrite this expression as:

ln(δσt(σ)) =
1

nΛnK
∑
λ,κ

ln
τt(λ, κ, σ)

δ(λ, κ, σ)

δ(λ, κ, σ1)

τt(λ, κ, σ1)
+

1
nΛnK

∑
λ,κ

ln
ι1t(λ, κ, σ)

ι1t(λ, κ, σ1)
.

From Lemma 1 and equation (26a), we conclude that

P

[∣∣∣∣∣ln(δσt(σ))−
1

nΛnK
∑
λ,k

ln
τt(λ, κ, σ)

τ(λ, κ, σ)

τ(λ, κ, σ1)

τt(λ, κ, σ1)

∣∣∣∣∣ > ξ

]
Nt(λ)→∞−−−−−→ 0,

and, using equation (19),

P
[∣∣∣∣ln(δσt(σ))− ln

τσt(σ)

τσt(σ1)

∣∣∣∣ > ξ

]
Nt(λ)→∞−−−−−→ 0,

or, equivalently,

P
[∣∣∣∣δσt(σ)−

τσt(σ)

τσt(σ1)

∣∣∣∣ > ξ

]
Nt(λ)→∞−−−−−→ 0. �

Lemma 4 provides an alternative estimate of δλt (λ).

Lemma 4. Given Lemma 1, equations (14), (17), (25a), and (26a), we can define an estimator δ(λ)

such that, for every t, every λ, and any real number ξ > 0,

P
[∣∣∣∣δλt(λ)−

τλt(λ)

τλt(λ1)

∣∣∣∣ > ξ

]
Nt(λ)→∞−−−−−→ 0. (33)

Proof: For every λ, we define our estimator δ(λ) as:

ln(δλt(λ)) =
1

nΣnK
∑
σ,κ

ln
π∗t (λ, κ, σ)

δ(λ, κ, σ)

δ(λ1, κ, σ)

π∗t (λ1, κ, σ)
(34)
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From equation (25a), we can rewrite this expression as:

ln(δλt(λ)) =
1

nΣnK
∑
σ,κ

ln
πt(λ, κ, σ)

δ(λ, κ, σ)

δ(λ1, κ, σ)

πt(λ1, κ, σ)
+

1
nΛnK

∑
σ,k

ln
ι1t(λ, κ, σ)

ι1t(λ1, κ, σ)
.

From equation (17), we can rewrite this expression as:

ln(δλt(λ)) =
1

nΣnK
∑
σ,κ

ln
τt(λ, κ, σ)

δ(λ, κ, σ)

δ(λ1, κ, σ)

τt(λ1, κ, σ)
+

1
nΛnK

∑
σ,κ

ln
ι1t(λ, κ, σ)

ι1t(λ1, κ, σ)
.

From Lemma 1 and equation (26a), we conclude that

P

[∣∣∣∣∣ln(δλt(λ))−
1

nΣnK
∑
σ,k

ln
τt(λ, κ, σ)

τ(λ, κ, σ)

τ(λ1, κ, σ)

τt(λ1, κ, σ)

∣∣∣∣∣ > ξ

]
Nt(λ)→∞−−−−−→ 0,

and, using equation (14) to obtain

ln
τλt (λ)

τλt (λ1)
=

1
nΣnK

∑
σ,k

ln
τt (λ, κ, σ)

τ (λ, κ, σ)

τ (λ1, κ, σ)

τt (λ1, κ, σ)

we, therefore, have

P
[∣∣∣∣ln(δλt(λ))− ln

τλt(λ)

τλt(λ1)

∣∣∣∣ > ξ

]
Nt(λ)→∞−−−−−→ 0,

or, equivalently,

P
[∣∣∣∣δλt(λ)−

τλt(λ)

τλt(λ1)

∣∣∣∣ > ξ

]
Nt(λ)→∞−−−−−→ 0. �

Lemma 5. Given Lemmas 1, 2, and 3, equations (17), (20), (25b) and (26b), we can define an

estimator δM(λ) such that, for every t, every λ, and any real number ξ > 0,

P
[∣∣∣∣δM

λt (λ)−
τλt(λ)

τλt(λ1)

∣∣∣∣ > ξ

]
Nt(λ)→∞−−−−−→ 0. (35)

Proof: For every λ, we define our estimator δ(λ) as:

ln(δM
λt (λ)) = θ ln

w∗t (λ)
w∗t (λ1)

− ln
∑κ,σ δκt(κ)δσt(σ)δ(λ, κ, σ)

∑κ′,σ′ δ(κ
′)δ(σ′)δ(λ1, κ′, σ′)

. (36)

From equation (25b), we can rewrite this expression as:

ln(δM
λt (λ)) = θ ln

wt(λ)

wt(λ1)
− ln

∑κ,σ δκt(κ)δσt(σ)δ(λ, κ, σ)

∑κ′,σ′ δ(κ
′)δ(σ′)δ(λ1, κ′, σ′)

+ θ ln
ι2t(λ)

ι2t(λ1)
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From Lemmas 1, 2, and 3 and equation (26b), we conclude that

P
[∣∣∣∣ln(δM

λt (λ))−
(

θ ln
wt(λ)

wt(λ1)
− ln

∑κ,σ τκt(κ)τσt(σ)τ(λ, κ, σ)

∑κ′,σ′ τκt(κ′)τσt(σ′)τ(λ1, κ′, σ′)

)∣∣∣∣ > ξ

]
Nt(λ)→∞−−−−−→ 0.

Corollary 1. Given Lemmas 1, 2, 3, 4, and 5, the estimators δ(λ, κ, σ), δλt(λ), δM
λt (λ), δκt(κ), and

δσt(σ) such that, for every t, every (λ, κ, σ), and any real number ξ > 0,

P



∣∣∣∣∣∣∣∣∣∣∣∣∣



δ(λ, κ, σ)

δλt(λ)

δM
λt (λ)

δκt(κ)

δσt(σ)


−



γ−θτ(λ, κ, σ)

τλt(λ)/τλt(λ1)

τλt(λ)/τλt(λ1)

τκt(κ)/τκt(κ1)

τσt(σ)/τσt(σ1)



∣∣∣∣∣∣∣∣∣∣∣∣∣
> ξ


Nt(λ,κ,σ)→∞−−−−−−−→ 0. (37)

Lemma 6. Given equation (28), it holds that δ(λ, κ, σ)/δ(λ, κ, σ1), and δ(λ, κ, σ)/δ(λ, κ1, σ), for all

(λ, κ, σ), are independent of w∗t (λ), for every λ and every t.
Proof: Note that δ(λ, κ, σ)/δ(λ, κ, σ1) is independent of w∗t (λ), for every λ and every t, if and only

if ln(δ(λ, κ, σ))− ln(δ(λ, κ, σ1)) is independent of w∗t (λ). From equation (28), note that

ln(δ(λ, κ, σ))− ln(δ(λ, κ, σ1)) =
1
T

T

∑
t=1

ln(w∗t (λ)
θπ∗t (λ, κ, σ))− 1

T

T

∑
t=1

ln(w∗t (λ)
θπ∗t (λ, κ, σ1))

=
1
T

T

∑
t=1

ln(π∗t (λ, κ, σ))− 1
T

T

∑
t=1

ln(π∗t (λ, κ, σ1))

and

ln(δ(λ, κ, σ))− ln(δ(λ, κ1, σ)) =
1
T

T

∑
t=1

ln(w∗t (λ)
θπ∗t (λ, κ, σ))− 1

T

T

∑
t=1

ln(w∗t (λ)
θπ∗t (λ, κ1, σ))

=
1
T

T

∑
t=1

ln(π∗t (λ, κ, σ))− 1
T

T

∑
t=1

ln(π∗t (λ, κ1, σ))

Corollary 2. Given equations (30) and (32), and Lemma 6, the estimators δκt(κ), and δσt(σ), for

every t, every λ and every κ, are independent of the wage data and, therefore, also independent

of the measurement error in wages, ι2t(λ), for every λ and every t.
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A.4 Comparative advantage in the data

Following Acemoglu and Autor (2011), we merge job task requirements from O*NET to their

corresponding Census occupation classifications. We hold σ characteristics fixed over time.

We are interested in task characteristics to the extent that they shape worker and equipment

comparative advantage across tasks. Hence, for our purposes the cleanest approach is to use di-

rectly a given number O*NET Work Activity and Work Context Importance scales, rather than

aggregate these up, as in Acemoglu and Autor (2011), to form composite measures. We use the

following 7 O*NET scales (with the O*NET code in paratheses): (i) Analyzing data/information

(4.A.2.a.4); (ii) Thinking creatively (4.A.2.b.2); (iii) Guiding, directing, and motivating subordi-

nates (4.A.4.b.4); (iv) Importance of repeating the same tasks (4.C.3.b.7); (v) Pace determined by

speed of equipment (4.C.3.d.3); (vi) Manual dexterity (1.A.2.a.2); and (vii) Social Perceptiveness

(2.B.1.a).

We normalize βλi (κ2) = βσj (κ2) = 1 for all i and j and estimate βλi (κ) using variation in the

share of worker types within each task using κ2 relative to κ1. According to equation (21), we have

1
nΣ

∑
σ

log
(

τ (λ, κ1, σ)

τ (λ, κ2, σ)

/
τ (λ′, κ1, σ)

τ (λ′, κ2, σ)

)
=

nλ

∑
i=1

βλi (κ1)
(
Xi (λ)− Xi(λ

′)
)

.

Whereas there are nλ = 4 parameters and nΛ − 1 = 29 observations for a given λ′, we estimate

this equation stacking observations for every possible λ′ and adjust standard errors accordingly.

We estimate βσj (κ) symmetrically using

1
nΛ

∑
λ

log
(

τ (λ, κ1, σ)

τ (λ, κ2, σ)

/
τ (λ, κ1, σ′)

τ (λ, κ2, σ′)

)
=

nσ

∑
j=1

βσj (κ1)
(
Xj (σ)− Xj(σ

′)
)

.

Again, whereas there are nσ = 7 parameters and nΣ − 1 = 19 observations for a given σ′, we

estimate this equation stacking observations for every possible σ′ and adjust standard errors ac-

cordingly. Finally, we estimate βij using

1
nK

∑
κ

log
(

τ (λ, κ, σ)

τ (λ, κ, σ′)

/
τ (λ′, κ, σ)

τ (λ′, κ, σ′)

)
=

nλ

∑
i=1

nσ

∑
j=1

βij
(
Xi (λ)− Xi

(
λ′
)) (

Xj (σ)− Xj(σ
′)
)

,

similarly.

B Sectors

To add
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Table 10: Occupations, their characteristics, and task shifters (1984-2003)
Task Occupation characteristics

Occupations shifter Data Create Guide Repeat Pace Dext. Social

Executive, administrative, managerial 1 5.45 5.41 6.13 4.95 1.77 1.80 7.42

Management related 0.99 5.80 4.79 4.70 5.73 1.59 1.86 6.63

Professional specialty 1.21 5.33 5.81 5.00 4.74 1.80 2.38 7.56

Technicians and related support 1.03 5.34 5.11 4.20 5.96 2.38 3.15 6.12

Financial sales and related 1.00 4.78 4.88 5.48 4.95 1.69 2.50 7.27

Retail sales 0.85 3.80 4.28 3.66 5.04 2.12 2.68 6.95

Administrative support 1.14 4.22 4.21 3.70 6.40 2.11 2.49 6.54

Housekeeping, cleaning, laundry 0.67 2.38 2.31 3.09 4.32 3.07 3.09 5.00

Protective service 0.84 4.63 4.51 4.94 6.09 1.98 3.46 7.14

Food preparation and service 1.13 3.22 3.78 4.07 4.62 2.72 3.75 6.60

Health service 1.23 3.54 4.21 3.55 5.10 2.03 3.23 7.19

Building, grounds cleaning, maintenance 0.82 2.80 3.89 3.55 4.04 2.79 3.85 5.78

Personal appearance, misc. personal care

and service, recreation and hospitality 1.05 3.60 5.58 4.08 4.98 1.79 3.86 7.51

Child care 0.91 2.89 5.52 4.12 3.58 1.37 2.85 7.76

Farm operators and managers, other

agricultural and related, extractive 0.63 4.34 4.25 4.23 4.41 3.60 4.20 5.56

Mechanics and repairers 0.67 4.49 4.76 4.25 4.60 2.66 4.52 5.71

Construction trades 0.62 4.11 4.70 4.84 4.40 2.84 4.12 5.74

Precision production 0.79 4.32 4.89 5.14 5.18 4.29 3.68 5.95

Machine operators, assemblers, inspectors 0.48 4.19 4.20 3.85 5.05 4.49 4.08 5.04

Transportation and material moving 0.75 3.74 3.95 3.65 4.88 3.64 4.02 5.80
Task shifter reports the change in task shifters between 1984 and 2003, evaluated at ρ = 1, and relative to the “Executive, admin-

istrative, managerial” occupation; Data: Analyzing data/information; Create: Thinking creatively; Guide: Guiding, directing, and

motivating subordinates; Repeat: Importance of repeating the same tasks; Pace: Pace determined by speed of equipment; Dext.:

Manual dexterity; Social: Social Perceptiveness.
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