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Abstract

Electric vehicles offer the promise of reduced environmental externalities relative to

their gasoline counterparts. We determine the spatial heterogeneity in these external-

ities and evaluate several spatially-differentiated policies to correct them. To do this,

we combine a discrete-choice model of new vehicle purchases, an econometric analysis

of the electric power industry, and the AP2 air pollution model. We find three main

insights. First, there is considerable spatial variation in the environmental benefit of

electric cars, ranging from a positive $2144 in California to a negative $2607 in North

Dakota. Second, the vast majority of environmental externalities from driving an elec-

tric car in one place are exported to other places, implying that electric cars may be

subsidized locally, even though they may lead to negative environmental benefits over-

all. Third, spatially differentiated policies can raise welfare, but the effect is much

stronger for taxes on miles driven than for subsidies on vehicle purchases.

JEL Codes: Q48, Q53

Keywords— electric vehicles, spatial heterogeneity, air pollution, subsidy policy

1 Introduction

Due to a combination of factors, including technological advances, environmental con-

cerns, and entrepreneurial audacity, the market for electric vehicles, which was moribund

for more than a century, is poised for a dramatic revival. Several models are already selling

in considerable volumes, the portfolio of electric vehicles is beginning to span the consumer

vehicle choice set, and almost all major manufacturers are bringing new models to the mar-

ket. The Federal Government is encouraging these developments by providing a significant

subsidy for the purchase of an electric vehicle, and some states augment the Federal subsidy

with their own additional subsidy. One of the main motivating reasons for these subsidies is

the belief that electric vehicles provide an environmental benefit relative to gasoline vehicles

by reducing externalities from air pollution.

In this paper we analyze the degree to which this environmental benefit exists, giving

careful consideration to the spatial heterogeneity in the externalizes from both electric and
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gasoline vehicles. We also analyze the welfare implications of spatial variation in policies

that target these externalities, such as subsidies on the purchase of an electric vehicle and

taxes on electric and/or gasoline miles.

We first document the considerable spatial heterogeneity in the environmental benefit of

an electric vehicle relative to a gasoline vehicle. Regardless of the spatial level considered

(state, MSA, or county) this benefit is large and positive in some places and large and

negative in other places. For example, California has relatively large damages from gasoline

vehicles, a relatively clean electric grid, and a large positive environmental benefit of an

electric vehicle. These conditions are reversed in North Dakota. Using the environmental

benefit, we calculate the optimal spatial subsidies on electric vehicle purchases. Even in

the outliers such as California, optimal subsidy values are significantly less than the current

Federal subsidy. And in North Dakota the optimal subsidy actually implies a tax on the

purchase an electric vehicle.

Our second set of results shows the remarkable degree to which electric vehicles driven

in one place lead to environmental externalities in other places. For example, at the state

level, over ninety one percent of non-greenhouse damages from driving an electric vehicle are

exported to other states, i.e. accrue to states other than the state in which the vehicle is

driven. In contrast, only nineteen percent of non-greenhouse damages from driving a gasoline

vehicle are exported to other states. This discrepancy has interesting political economy

implications. Suppose that a given state is considering whether or not to implement a

subsidy on the purchase of an electric vehicle. It is not obvious whether the state will

consider total damages, or only native damages (those damages which actually occur in the

given state) when setting policy. The difference may be considerable. Accounting for total

damages the optimal subsidy is positive in 12 states. Accounting for only native damages,

the optimal subsidy is positive in 35 states.

The final set of results concerns the welfare gains from using a spatially differentiated pol-

icy relative to a uniform policy. We compare, for example, the total welfare associated with a

uniform national subsidy on the purchase of an electric vehicle with the total welfare associ-

ated with of a set of state-specific subsidies. Our theoretical analysis reveals that the welfare

gains from spatially differentiated subsidies depend on the second and higher order moments
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of the spatial distribution of environmental benefits. A companion numerical analysis shows

the magnitude of these gains. Much greater gains are realized by using differentiated taxes

on electric and gasoline miles rather than differentiated purchase subsidies.

To obtain these results, we extend and integrate three component models. The first com-

ponent builds on discrete choice transportation models to allow for consumer choice between

electric and gasoline vehicles and to analyze the benefits of spatially differentiated policy.1

The second component builds on the econometric analysis of the relationship between elec-

tricity generation and air pollution emissions to analyze the effects of changes in electricity

load due to charging electric vehicles on emissions from individual electric power plants.2

The third component builds on air pollution integrated assessment models to describe the

relationship between emissions from a given smokestack or tailpipe and damages at a given

spatial location.3 Combining the components together yields a powerful modeling framework

for analyzing electric vehicle policy.

In Section 2 we develop a simple general equilibrium model that includes discrete choice

over vehicle type and environmental externalities from driving. We derive several theoretical

results about optimal policy choices and the welfare benefits from differentiation. In Section

3 we describe the methods by which we determine emissions and damages from electric and

gasoline vehicles. Section 4 presents the results. In Section 5 we consider how the interaction

with other environmental regulations such as the Corporate Average Fuel Economy (CAFE)

standards may effect the optimal subsidies on electric vehicles. Section 6 concludes.

1Examples of discrete choice transportation models include De Borger (2001), De Borger and May-
eres (2007), and Perry and Small (2005). Spatially differentiated policy is analyzed by Weitman (1974),
Mendelsohn (1986), Stavins (1996), Banzhaf and Chupp (2012), Muller and Mendelsohn (2009), and Fowlie
and Muller (2013).

2 Babaee et al (2014), Graff Zivin et al (2014), Michalek et al (2011) analyze the benefits of electric
vehicles at the aggregate level, ours is the first to consider the spatial variation in these benefits at the state
and county level.

3Previous works includes Mendelsohn (1980), Burtraw et al. (1998), Mauzerall et al. (2005), Tong et
al. (2006), Fann et al. (2009), Levy et al. (2009), Muller and Mendelsohn (2009), Henry et al. (2011),
Mauzerall et al. (2005), and Tong et al. (2006). In our application of integrated assessment, we model
both ground level-emissions and power plant emissions throughout the contiguous U.S., and we and report
damages within the county of emission, within the state of emission, and in total (across all receptors).
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2 Theoretical Model

Consider a general equilibrium discrete choice model with five goods. There are two trans-

portation options: a gasoline vehicle and an electric vehicle.4 The vehicles are used to

consume transportation miles. Both vehicles and miles are produced from labor with a con-

stant returns to scale technology, so that producer prices are fixed in the model. Consumers

in the market for a new vehicle all have the same “universal” utility function which depends

on leisure `, electric miles e, and gasoline miles g. The utility function has a quasi-linear

form

U(`, g, e) = ` + f(g) + h(e),

where f and h are strictly concave functions. Because the marginal utility of income is

constant, there are no income effects on the purchase of gasoline or electric miles. Consumers

have an endowment of time T .

We consider several policy variables for the government. The government may place a

tax tg on gasoline miles, a tax te on electric miles, a subsidy s on the purchase of the electric

vehicle, or use some combination of these policies. Per capita tax revenue R is returned in

a lump sum manner. We normalize the units so that the wage rate is equal to one.

The indirect utility of consuming leisure and gasoline miles is given by

Vg = max
`,g

U(`, g,0) s.t. ` + (pg + tg)g = T +R − p,

where p is the price of the gasoline vehicle and pg is the price of gasoline miles. Likewise,

the indirect utility of consuming leisure and electric miles is given by

Ve = max
`,e

U(`,0, e) s.t. ` + (pe + te)e = T +R − (pΩ − s),

where pΩ is the price of the electric vehicle and pe is the price of electric miles.

Following the discrete choice literature, we define the conditional utility, given that a

4In supplementary Appendix B, we extend the model to include several gasoline vehicles and several
electric vehicles.
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consumer elects the gasoline vehicle, as

Ug = Vg + εg,

and the conditional utility, given that a consumer elects the electric vehicle, as

Ue = Ve + εe,

where the ε’s are i.i.d. random variables that follow the extreme value distribution.5 A

consumer selects the gasoline vehicle if Ug > Ue. The probability of the consumer selecting

the gasoline vehicle is given by

π = Probability(Ug > Ue) =
exp(Vg/µ)

exp(Vg/µ) + exp(Ve/µ)
,

where µ is a measure of the variance of the extreme value random variables. The expected

utility of a new vehicle purchase is given by6

E [max[Ue,Ug]] = µ ln (exp(Ve/µ) + exp(Vg/µ)) .

Consumers create an environmental externality when they consume transportation miles

due to damages from air pollution. They ignore this externality when making choices about

the type of vehicle and number of miles. Gasoline vehicles cause damages through tailpipe

emissions and electric vehicles cause damages though smokestack emissions from the electric

power plants that charge them. We assume that the damage functions are linear. The

marginal damage (in dollars) of an electric vehicle mile is given by δe and the marginal

damage (in dollars) of an gasoline vehicle mile is given by δg. Following Alcott et al. (2012),

5For examples of discrete choice models, see Anderson et al. 1992, Small and Rosen 1981, de Borger 2001,
de Borger and Mayeres 2007. The extreme value distribution (or double exponential distribution) has two
parameters, η and µ. The expected value is µγ + η where γ is Euler’s constant (0.577). The variance is
µ2π2

/6. We assume that the expected value is zero.
6There are two ways to think about non-externality welfare in a discrete choice model. First, just define

welfare as the expected value of the maximum over the utility choices (i.e. de Borger 2001.) Second, use the
standard notion of compensating variation. In our model, there are no income effects. Under this condition,
Small and Rosen 1981 show that these two methods are equivalent.
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we assume that the regulator’s objective is to maximize the expected welfare associated with

a consumer’s purchase of a new vehicle, defined as the difference between expected utility

and expected pollution damage

W = µ (ln(exp(Ve/µ) + exp(Vg/µ))) − (δgπg + δe(1 − π)e).

We now determine the optimal policy choices for the government. Resuls for a subsidy

on electric vehicle purchases are in the main text. Results for taxes on miles are in the

Appendix.

2.1 Single region: Subsidy on the purchase of an electric vehicle

In the most basic form of our model, there is a single region. The optimal subsidy on the

purchase of an electric vehicle is described in the following Proposition (all proofs are in the

Appendix).

subsidy Proposition 1. The optimal subsidy on the purchase of the electric vehicle is given by s∗

where

s∗ = (δgg − δee) .

The term δgg − δee is simply the difference between the damages when a consumer drives

a gasoline vehicle and the damages when a consumer drives an electric vehicle. Even if the

electric vehicle emits less pollution per mile than the gasoline vehicle, the sign of the optimal

subsidy is ambiguous, because the number of miles driven may be different. If the miles

driven are indeed the same, and the electric vehicle emits less pollution per mile than the

gasoline vehicle, then the optimal subsidy is positive. We refer to the difference δg −δe as the

environmental benefit of the electric vehicle. Keep in mind, though, that this concept really

only makes sense when the number miles driven by the two types of vehicles is the same (an

assumption we will maintain throughout the empirical section below).
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2.2 Multiple regions: Uniform vs. differentiated regulation

Next we analyze a simple spatial model in which there are m regions. The utility functions

and (pre-policy) prices are the same across regions but both the marginal damages from the

consumption of miles and the population of new vehicle buyers varies across regions. The

marginal damage of gasoline miles consumed in region i is denoted by δgi. It is important

to stress that this number includes the native damages that accrue to region i as well as

external damages that accrue to other regions. Marginal damages from electric miles δei are

defined analogously. Let αi be the proportion of the total population of new vehicle buyers

that resides in region i. It follows that δ̄g = ∑αiδgi and δ̄e = ∑αiδei are the weighted average

marginal damages from gasoline and electric miles.

Under differentiated regulation, each regional government selects a region-specific subsidy

on the purchase of the electric vehicle. Revenue is also region specific. If the subsidy in region

j increases, this decreases the revenue in region j, but does not effect the revenue in other

regions. For the moment, we assume that each regional government cares about both native

and external damages. We will relax this assumption below. Regional government i selects

the subsidy si to maximize the welfare associated with the purchase of a new vehicle within

the region

Wi = µ (ln(exp(Vei/µ) + exp(Vgi/µ))) − (δgiπig + δei(1 − πi)e).

Because there are no income effects, the subsidy does not effect the purchase of miles e and

g. Hence the values of e and g do not vary across regions. From Proposition 1, it follows

that that the optimal differentiated subsidy in region i is given by

s∗i = (δgig − δeie) .

Under uniform regulation, the same subsidy applies to all m regions. The central gov-

ernment sets the subsidy and all revenue is returned equally across all regions in a lump

sum manner. The government’s objective is to maximize the weighted average of welfare

across regions. The next proposition delineates the optimal uniform subsidy. It also de-

scribes an approximate formula for the welfare gain in moving from the uniform policy to
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the differentiated policy.

spatial Proposition 2. The optimal uniform subsidy on the purchase of an electric vehicle is given

by

s̃ = (δ̄gg − δ̄ee) .

Furthermore, let W(S∗) be the weighted average of welfare from using the optimal differen-

tiated subsidy s∗i in each region and let W(S̃) be the weighted average of welfare from using

the optimal uniform subsidy s̃ in each region. To a second-order approximation, we have

W(S∗) −W(S̃) ≈ 1

2
π(1 − π) ( 1

µ
∑αi(s∗i − s̃)2 + 1

µ2
(1 − 2π)∑αi(s∗i − s̃)3) .

In both formulas, π is evaluated at the optimal uniform subsidy.

This result has a nice interpretation in the special case in which g = e and the population of

new vehicle buyers is the same in each region. Consider the distribution of the environmental

benefits of an electric vehicle, i.e. the distribution of the difference between δei and δgi. Using

the second-order approximation formula, we see that the welfare gain from using the optimal

differentiated subsidies rather than the optimal uniform subsidy depends on both the second

and third moments for the distribution of the environmental benefits of an electric vehicle.

The formula in Proposition 2 provide useful intuition for the factors that influence the

welfare gains from using differentiated subsidies. And it provides an interesting point of

comparison to previous work on differentiation. For example, Mendelsohn (1986) finds the

exact welfare improvement from differentiation to be a function of the second moment of

the distribution of the relevant environmental parameter (intercept of marginal abatement

costs) across regions. In contrast, we find that the second-order approximation to the welfare

improvement depends on both the second and third moment of the distribution of the relevant

environmental parameter (the benefits of an electric vehicle). The reasons for this difference

are discussed in Additional Appendix C. But the practical applicability of the formula is

limited it depends on the value of µ. Recall that this parameter is a measure of the variance

of the random variables in the utility function. If we determine a value for µ, either by

an econometric procedure (Dubin and McFadden 1984) or by a calibration procedure (De
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Borger and Mayeres 2007), then we will generally be able to determine the exact numerical

value of the welfare gain, which eliminates the need for an approximation.

2.3 Political economy considerations

It may be the case that a given region only cares about native damages. In this case, the

objective of region i is to maximize

µ (ln(exp(Vei/µ) + exp(Vgi/µ))) − (βgiδgiπig + βeiδei(1 − πi)e),

where βgi and βei are the proportion of marginal damages that are occur solely in region i.

It follows that the political economy subsidy ŝ∗i is

ŝ∗i = (βgiδgig − βeiδeie) .

We would expect considerable heterogeneity in the β’s due to the various chemical and

physical process that govern the flow of emissions across regions. In general, however, we

would expect βgi to be greater than βei due to the distributed nature of most grid-tied

electricity consumption. This implies that the political economy subsidy is likely to be

larger than the optimal differentiated subsidy. The greater the extent to which the electric

emissions are exported to other regions, the greater the extent to which the given region

may want to subsidize the purchase of an electric vehicle.

These issues suggest it may be interesting to compare between a differentiated policy in

which each regional government selects their own subsidies but ignores the external effects

of their own emissions on other regions, and a uniform policy in which a central government

accounts for all effects of emissions. The first-order welfare comparison between these systems

can be stated as a simple Corollary to Propostition 2.

political Corollary 1. Let W(Ŝ∗) be the weighted average of welfare from using the optimal political

economy subsidies ŝ∗i in each region and let W(S̃) be the weighted average of welfare from
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using the optimal uniform subsidy s̃ in each region. To a first-order approximation, we have

W(Ŝ∗) −W(S̃) ≈ 1

µ
π(1 − π) (∑αi(s∗i − s̃)(ŝ∗i − s̃)) .

We now turn to the task of determining empirical values for the marginal damages from

driving gasoline and electric vehicles.

3 Damages from emissions of gasoline and electric ve-

hicles

We consider the damages from air-pollution emissions of five pollutants: CO2, SO2, NOx,

PM2.5, and VOCs. These pollutants account for the majority of air pollution damages and

have been a major focus of public policy.7

Estimating the marginal damages of emissions of these pollutants (in dollars per mile)

requires different procedures for gasoline and electric vehicles. For gasoline vehicles, our

first step is to calculate the emissions rates (in grams per mile) of the five pollutants. As

in our theoretical model, the marginal damages from these emissions may vary spatially

according to the location of the vehicle. So our second step is to use the AP2 model (for

example, see Muller and Mendelsohn 2009) to map emissions from a given region into a

spatially distributed plume of concentrations of pollutants across many regions and then

determine the overall damages (in dollars per mile) associated with the plume. For electric

vehicles, the procedure is more complicated, even though electric vehicles have no tailpipe

emissions. Our first step is to calculate the electricity required (kWh) per mile for electric

vehicles. Our second step is to use an econometric model to estimate the marginal emissions

from additional electricity usage in a given region at a given time across all power plants.

Combining these first two steps with a charging-time profile gives us the emissions rates (in

grams per mile) from power plants that result from charging an electric vehicle in a given

7A more complete analysis would also include assessment of emissions from CO and toxics as well as a
“cradle-to-grave” life-cycle assessment (damages from construction, use, and wear of vehicles, roads, and
refineries). See for example, the analysis by Michalek et al. (2011) of the life-cycle damages from hybrid
electric vehicles.
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region. Our third step is to use the AP2 model map these emissions from power plants into

a spatially distributed plume and then into overall damages (in dollars per mile).

We now describe these steps in turn.

3.1 Emissions per mile for gasoline vehicles

Data for gasoline vehicle emissions comes from EPA’s Tier 2 emission standards and the

GREET model developed by Argonne National Laboratory.8 Our set of gasoline vehicles is

meant to capture the closest substitutes to existing electric vehicles. For each of the eleven

2014 pure electric vehicle models in the EPA fuel efficiency database, we identify the gasoline

vehicle which is the closest substitute to the electric vehicle in terms of non-price attributes.

In many cases, we are able to simply use the gasoline powered version of the identical vehicle,

e.g., the gasoline-powered Ford Focus is the closest substitute for the electric Ford Focus.

However, in other cases, we identify a make and model which is a close substitute, e.g., we

identify the BMW 750i as the closest substitute for a Tesla Model S. The resulting emissions

rates for these vehicles are reported in Appendix Table 1.

3.2 Emissions from Electric Vehicles

Electricity usage per mile varies across vehicles but is straightforward to calculate. For each

electric vehicle, we use the EPA estimates of MPG equivalent (i.e., the estimated kWh per

mile).

The increase in emissions due to an increase in electricity use to charge electric vehicles

depends on both the time of day and the specific location at which the vehicle is charged.

To account for the time of day, we hypothesize eight charging profiles: one profile based on

Electric Power Research Institute (EPRI) estimates, a second profile based on a flat profile,

and six profiles based on non-overlapping four-hour charging blocks (See Appendix Figure 1

for the EPRI profile.)

To account for the location of charging, we must model the electricity grid because an

increase in electricity usage at a specific location causes a responses from many power plants.

8See the Appendix for additional details.
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Some plants may increase generation even if they are not in the same state, while others

may even have to decrease generation in order to keep electricity flows continuously bal-

anced on the power grid. A broad view of the U.S. electric power grid starts with three

“interconnects”: Eastern, Western, and Texas. In theory, any area within an interconnect

is completely connected to any other area within the same interconnect. But in practice,

transmission constraints and losses can prevent electricity from flowing costlessly throughout

an interconnect. Given this, we follow the North American Electric Reliability Corporation

(NERC) classification system in which the contiguous U.S. is divided into 9 distinct regions.9

We use these 9 NERC regions to define the spatial scale for measuring electric vehicle emis-

sions. We assume that an electric vehicle charged at any place within a given region will

generate the same marginal emissions as an electric vehicle charged at any other place within

the same region. (In practice, there is some variation in marginal emissions within a given

NERC region due to local transmission congestion, but the variation across regions is more

consistent and substantial.)

To estimate the response of each power plant to increases in electricity usage, we collect

data from 2010 to 2012 on hourly emissions of CO2, SO2, NOx, and PM2.5 at 1486 power

plants. We also collect data on hourly electricity consumption (i.e., electricity load) for each

of the nine NERC regions.10 We estimate the marginal emissions using methods similar to

Graff Zivin et al. (2014). We allow for an integrated market where electricity consumed

within an interconnection may be provided by any power plant within that interconnection.

In contrast to Graff Zivin et al. (2014), we estimate the effect of changes in electricity load

separately for each power plant in the interconnection. The dependent variable, yit, is power

plant i’s hourly emissions (CO2, SO2, NOx, or PM2.5) at time t. For each power plant,

we regress the dependent variable on the contemporaneous electricity load in each of the

regions within the power plant’s interconnection. In order to examine charging times, the

coefficients on load vary by hour of the day. The regression includes fixed effects for each

hour of the day interacted with the month of the sample. For power plant i and time t, we

9See http://www.nerc.com/AboutNERC/Documents/NERC%20Overview%20AUG13.pdf for a descrip-
tion of NERC regions. We model the Eastern interconnection as the six NERC regions FRCC, MRO, NPCC,
RFC, SERC, and SPP, the Western interconnection as California and the rest of the WECC, and the Texas
interconnection is simply the coterminous ERCOT.

10More details about this data are given in the Appendix.
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regress:

yit =
24

∑
h=1

J(i)

∑
j=1

βijhHOURhREGIONjLOADjt +
24

∑
h=1

12

∑
m=1

αihmHOURhMONTHm + εit, (1)

where J(i) equals the number of regions in the interconnection in which power plant i is

located, HOURh is an indicator variable for hour of the day h, REGIONj indicates elec-

tricity region j, MONTHm indicates month of the sample m, and LOADjt is the electricity

consumed in region j at time t. The main coefficients of interest are βijh, which represents

the marginal change in emissions at plant i from an increase in electricity usage in region

j in hour h. The collection of the βi for a given j and h captures the increase in emissions

from charging an electric vehicle in region j in hour h.

3.3 Air Pollution Damages

For CO2, we estimate damages by using the EPA social cost of carbon.11 For the other

pollutants, we estimate damages by using the AP2 model. AP2 uses an air quality module to

map the emissions by sources into ambient concentrations of pollutants at receptor locations,

an economic valuation module to map the ambient concentrations of pollutants into monetary

damages, and finally an algorithm module to determine the marginal damages associated

with emissions of any given source.12

With the marginal damages from AP2 in hand, we can turn to the question of calculating

the marginal damages from operating gasoline and electric vehicles. In either case, the basic

unit of account is the county (although we can aggregate up to the MSA or state if desired).

For gasoline vehicles, we simply multiply the emissions rates (e.g., in tons of NOx per mile)

for a given vehicle in a given county by the marginal damages (e.g., in $ per ton of NOx) from

the AP2 model (or by $35 per ton for CO2). We then sum the damages across pollutants to

estimate the damage per mile of a vehicle in each county.

For electric vehicles, the results from estimation of the econometric model above are

11We use a value of $35/ton (in year 2000 dollars), which is in the midrange of the EPA estimates. See
http://www.epa.gov/climatechange/EPAactivities/economics/scc.html.

12 See Muller, 2011; 2012; 2014. The AP2 model is an updated version of the APEEP model (Muller
and Mendelsohn 2007; 2009; 2012; NAS NRC 2010; Muller, Mendelsohn, Nordhaus 2011; Henry, Muller,
Mendelsohn 2011). More details of our implantation of AP2 are given in the Appendix.
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coupled with the marginal damage estimates produced by AP2. Specifically, consider an

electric vehicle charged in a given county. The county is located in a specific NERC region.

The increase in the electric load in that region is based on the vehicle’s efficiency, i.e., in

kWh per mile. Our econometric model estimates the responses in terms of emissions at all

the power plants in the interconnection, e.g., in terms of tons of NOx per MWh. The AP2

model evaluates the damages resulting from the additional emissions at each of the power

plants, e.g., in terms of $ per ton of NOx. The damages from operating an electric vehicle are

then the product of the marginal emissions rate and the marginal damages summed across

all pollutants and all power plants in the interconnection.

We also use the AP2 model in a novel way to calculate native and external damages.

Since the model calculates the damages at each receptor, we can disaggregate the plume

of damages across all counties, i.e., we can calculate receptor-specific marginal damages.

For example, we can calculate the marginal damages to Orange County from a vehicle in

Los Angeles County. For a gasoline vehicle in Los Angeles County, the damages to Orange

County are governed by the source-receptor relationship between Los Angeles County and

Orange County. For an electric vehicle in Los Angeles County, the increase in electricity

load causes changes at power plants throughout the Western interconnection. The damages

in Orange County are then governed by the source-receptor relationships between Orange

County and each of the affected power plants. The receptor-specific marginal damages allow

us to estimate the percentage of emissions are exported across counties and states.

3.4 Vehicle miles travelled (VMT)

The above procedures allow us to calculate the marginal damage per mile for a specific

vehicle in a specific county. To analyze any policy which affects multiple counties, we need

a sense of the relative importance of the counties. In the theoretical model, we used αi

(the number of new vehicle buyers) for this purpose. In the empirical part of the paper,

we use Vehicle Miles Travelled (VMT).13 We collect VMT data by county and vehicle class

13These two concepts are essentially equivalent under the assumptions that vehicles are driven about the
same number of miles per year in each county, and vehicles last the same number of years in each county as
well.

15



estimated by the USEPA for their Motor Vehicle Emission Simulator (MOVES) model.

4 Results

All of our results are in terms of year 2000 dollars.

4.1 Damages from electric vehicles

Table 1 shows the damages per mile across the 9 NERC regions for a 2014 Ford Focus EV

as a function of various charing profiles. There is roughly an order of magnitude difference

between the NERC regions with the largest and smallest marginal damages. This difference

is generally robust across the various charging profiles. The lowest marginal damages tend to

occur during normal business hours. This is unfortunate as it is widely assumed (for example

in the EPRI charging profile) that the vast majority of electric vehicles will be charged at

night. We use the EPRI charging profile for all subsequent calculations. Table 2 shows the

damages per mile NERC region level level corresponding to each of the 2014 model year

electric vehicles that have been given an EPA fuel economy sticker. The electric vehicle with

the highest average damages (BYD e6) is 100 percent dirtier than the electric vehicle with

the lowest average damages (Chevy Spark EV). For subsequent calculations, the damages

from driving and electric vehicle in a given county are assigned the value for damages from

the NERC region in which that county is located.

4.2 Electric vehicles vs. gasoline vehicles

Assuming both vehicles are driven the same distance in their lifetime, the environmental

benefit of an electric vehicle is simply the difference between the damages caused by the

electric vehicle and the damages caused by the forgone gasoline vehicle. Table 3 shows the

county level results by vehicle. (As described above, for each electric vehicle we selected a

companion gasoline vehicle to serve as the forgone vehicle.) Many of the averages in this

table are negative. In the average county, most electric vehicles lead to greater damages

than the forgone gasoline vehicle. The distributions are skewed however, as in each case the
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median is less than the mean. In a small number of places, electric vehicles are a very good

idea.

Data at the MSA further illustrate this point, as shown Table 4. In this table, and

all subsequent tables, we use the Ford Focus as the standard vehicle of comparison. The

value for a given MSA is determined by the weighted average of environmental benefits

across counties in the MSA, with the weights given by VMT. Communities in California are

generally characterized as having large damages from gasoline vehicles and a clean electric

grid. Hence electric vehicles generate considerable environmental benefit. In contrast, in

the Upper Midwest these conditions are reversed, and electric vehicles impose significant

environmental costs.

It is also interesting to consider states as the jurisdictional unit. Indeed, many states

have implemented subsidies for the adoption of electric vehicles, above and beyond the

federal subsidy.14 Table 5 present the environmental benefit of an electric vehicle across

states. The value for a given state is determined by the weighted average of environmental

benefits across counties in the state, with the weights given by VMT. Generally speaking,

the environmental benefit of an electric vehicle is large and positive in many western states,

and large and negative in the Midwest. The overall average for the entire United States is

slightly negative.

Using Proposition 2, we can convert the environmental benefit per mile of an electric

vehicle into the optimal subsidy on the purchase of an electric vehicle. Figure 1 shows the

optimal subsidy for each county in the contiguous U.S. for the Ford Focus. Except for a

few counties around New York City, Chicago, and Atlanta, the optimal subsidy is negative

throughout the eastern part of the country. It is large and negative in the Upper Midwest.

It is positive in most places in the west, and, consistent with the MSA data described above,

large and positive in many counties in California. The optimal subsidies as the state level

are given in the last column in Table 5. The values range from $2144 in California to

-$2607 in North Dakota. There are only 12 states in which the optimal subsidy is positive.

14Six states offer a purchase subsidy: California ($2500), Colorado ($6000), Georgia ($5000), Illinois
($4000), Maryland ($3000), and Massachusetts ($2500). States also offer a variety of other subsides such as
carpool lane access, electricity discounts, and parking benefits. A small number of states impose a special
registration fee for electric vehicles.
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The optimal uniform subsidy for the entire United States is -$424. In the average state, a

2014 Ford Focus electric causes $424 more environmental damages over its lifetime than the

equivalent gas powered Ford Focus. With these results in mind, it is interesting to note that

the current Federal subsidy for electric vehicles is $7500 (or $5440 in year 2000 dollars).

4.3 Exporting pollution: Full and native damages

As discussed in Section 2, using a vehicle in a given region may lead to damages within that

region as well as surrounding region. So we found it useful to break up full damages (the

sum of all the damages across all regions from driving a vehicle) into native damages (only

damages within the given region) and exported damages (only damages to other regions).

Although both gasoline and electric vehicles export pollution to other regions, this occurs

to a remarkable degree for electric vehicles. Before discussing numerical results, it is useful

to make this point visually. Panel 1 in Figure 2 shows the change in PM2.5 associated with

driving a gasoline-powered Ford Focus for 150 million miles in Fulton County, Georgia. (Or

equivalently, a fleet of 10,000 vehicles driven 15,000 miles each.) Most of the increase in

PM2.5 is centered within a few nearby counties, although there are small increases several

states away. Panel 2 in Figure 2 shows the change in PM2.5 associated with same number

of miles driven by an electric powered Ford Focus that is charged in Fulton County, thereby

increasing the production of electricity in the SERC region. Clearly the spatial footprint of

the environmental externalities from driving is much greater with the electric vehicles than

it is with the gasoline vehicle. As shown in Figure 3 (Cook County Illinois) and Figure 4

(Los Angeles County California) this relationship holds throughout the country.

A corresponding numerical analysis is given in Tables 6-7. Table 6 shows that, at the

county level, almost all of the damages due to driving an electric vehicle in a given county

are exported to other counties. Even at the state level, ninety one percent of damages

are exported to other states. In contrast, only fifty seven percent of gasoline damages are

exported at the county level and only nineteen percent at the state level. So it is not

surprising, when we account only for native damages, that electric vehicles now appear to

provide positive environmental benefits in many more states and counties. As shown in

Table 7, the state benefit for an electric vehicle, using native damages, is positive in 35 out
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of 49 states. This suggests that, insofar as politicians only care about damages within their

jurisdiction, there will be motivation to subsidize electric vehicles in these places.

4.4 Welfare gains from differentiation

In Supplementary Appendix D, we describe our calibration procedure. With the calibrated

model, we can analyze welfare gains from differentiated policies. Table 8 shows the results for

a variety of policies and also shows the sensitivity of these results to the value of µ. (These

are exact welfare calculations, not first or second order approximations.) For example, the

“Welfare gain state specific vs uniform national” row shows benefit from adopting a state

specific subsidy on the purchase of an electric vehicle rather than adopting a uniform federal

subsidy. The overall message is that the benefits of differentiated policies are in the order

of $2-$10 per new vehicle sold. To put this in context, annual vehicle sales in the United

States are approximately 15 million. In addition, using the county as the jurisdiction rather

than the state leads to about a fifteen percent improvement in welfare. Table 8 also includes

considerations of native damages. As discussed above in conjunction with Corollary 1, a

natural comparison is between state regulation with native damages and federal regulation

with full damages. As shown in the “Welfare gain state specific (native) vs uniform” row,

these two regulatory structures lead to roughly the same welfare. Notice that there is a

non-monotonic relationship between the benefits of differentiation and the value of µ, but

the model results do no appear to be very sensitive to the value of µ.

Differentiation can also be done by state governments. Here we compare the benefits of

differentiation between the state and the county level, so we have 49 sets of results, one for

each state. As can be seen in Table 9, these benefit are generally small, with the exception

of states like California, NY, and South Dakota.15 From Proposition 2, we know that the

gains from differentiation will depend on the variance and skewness of the distribution for

the difference between environmental damages across counties. Indeed, the reason that

South Dakota generates relatively large benefits from differentiation is that, although most

15For a few states, the welfare gains from differentiation under native damages are slightly negative. This
is due to the fact that the subsidy is determined using native damages but welfare is determined using full
damages.
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of the counties are connected to a relatively dirty electric grid, there are three counties in

the southwest corner of the state that are connected to a much cleaner grid. Table 9 also

lists the optimal state specific subsidy for the purchase of electric vehicles accounting for

full damages, and the political economy subsidy (which accounts only for native damages).

Consistent with previous results, the optimal state specific subsidy is positive in 12 states,

but the political economy subsidy is positive in 34 states.

We also computed welfare calculations for taxes on miles. First consider a policy in

which there are taxes on both gasoline miles and electric miles and these taxes are set at

the Pigovian level (i.e. te = δe and tg = δg.) The results are shown in Table 10 and Table

11. Comparing Tables 8 to 10, as well as Tables 9 to 11, reveals that the welfare gains

from differentiated taxes on miles are generally much greater than the welfare gains from

differentiated taxes on the purchase of an electric vehicle. The benefits of differentiated tax

policies are in the order of $10-$40 per new vehicle sold. Also of interest are the results in

the “Welfare gain state specific (native) vs uniform” row in Table 10. Recall that we found

very little differences between these two policies under purchase subsidies. In contrast, under

taxes on fuel, the state specific policy performs significantly worse than the uniform policy.

Table 10 also shows that the optimal federal tax on gasoline miles (1.535 cents per mile)

is slightly less than the optimal federal tax on electric miles (1.819 cents per mile). This

relationship does not hold as the state level, however, as shown in Table 11. For example,

for California, the optimal tax on gasoline miles is 1.983 cents/mile, and the optimal tax

on electric miles is 0.554 cents/mile. If California implemented county specific taxes rather

than a uniform state wide tax, the welfare gain per vehicle would be over $36. Again, this is

much greater than the corresponding gain in California from implementing county specific

purchase subsidies.

Next consider single tax policies. For a policy in which there is tax on gasoline miles only

(electric miles are untaxed) and the baseline value for µ = 396.8, the optimal federal tax on

gasoline miles (1.426 cents per mile) is less than the optimal Pigovian tax on gasoline miles

(1.535 cents per mile), as predicted by Proposition 3 in the Appendix. The welfare cost of

using only a gasoline tax at the federal level instead of the Pigovian taxes on gasoline and

electric miles is $84 per vehicle. The welfare gain of a differentiated taxes on gasoline miles
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is $7 per vehicle at the state level and $17 per vehicle at the county level. For a policy in

which there is a tax on electric miles only (gasoline miles are untaxed) and the baseline value

for µ = 396.8, the optimal federal tax on electric miles (1.237 cents per mile) is less than the

optimal Pigovian tax on electric miles (1.819 cents per mile). The welfare cost of using only

a electric tax at the federal level instead of the Pigovian taxes on gasoline and electric miles

is $433 per vehicle. The welfare gain of a differentiated taxes on electric miles is $5.5 per

vehicle at the state level and $5.8 per vehicle at the county level.

5 Effects of other regulations

Up to this point, we have analyzed the environmental benefit of electric vehicles in isolation

from other environmental regulations. In practice, these other regulations may impact the

electricity market and/or the market for vehicles, and hence have an effect of the environ-

mental benefit of electric vehicles.

For example, electric power plants in the Northeast are subject to two regional cap-

and-trade emission permit markets. Emissions of NOx are caped by an EPA program and

emissions of CO2 are capped by the Regional Greenhouse Gas Initiative. In our model of

the electricity market, we determine the marginal increase in emissions due to an increase in

the load on the electricity grid. We do not model the constraint that overall emissions are

capped. This implies that our calculation of the environmental benefit of an electric vehicle

in the Northeast is biased downward. However, it is likely that the effect of this bias is small.

During the period of our analysis, the permit prices in both markets were quite low, which

suggests that the constraints due to the cap were not very severe.

Another example is the Corporate Average Fuel Economy (CAFE) standards. Under

CAFE, the sales-weighted harmonic mean of MPG for a given manufacturer’s fleet of vehi-

cles must meet a certain requirement. Electric vehicles are assigned a MPG equivalent for

this calculation. These values are generally much larger than any existing gasoline vehicle.

Assuming that the CAFE requirement is initially binding, selling an electric vehicle enables

a manufacturer to meet a lower standard for the rest of their fleet. This implies an indirect

effect of selling an electric vehicle is that environmental damage from the rest of the fleet
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may increase. Starting in 2017, this effect will be exacerbated, as the CAFE standards will

treat electric vehicles even more generously. An electric vehicle sale will receive a multiplier,

starting at 2 and then lowering over time. In other words, when a manufacturer sells an

electric vehicle, they will get credit in the CAFE calculation as if they have sold two electric

vehicles. This will enable them to decrease the fuel economy of the rest of their fleet even

more.

A thorough analysis of the interaction between CAFE standards and electric vehicle sales

would require a model of both supply and demand for the entire new vehicle market, because

selling an electric vehicle enables a manufacturer to change the composition of their fleet.

This has welfare effects for the consumers in the market, and, in addition, a change in the

fleet composition actually changes the CAFE standard itself.16 Incorporating these elements

is beyond the scope of this paper, but we can give a preliminary analysis of the effect of

CAFE standards on the environmental benefit of an electric vehicle that is consistent with

our model. Let the CAFE induced environmental cost of an electric vehicle be defined as

the increase in environmental damage from the rest of the fleet when an electric vehicle is

sold. In Supplementary Appendix E we determine a simple formula for the CAFE induced

environmental cost under both the current and 2017 CAFE standards. With respect to the

2017 CAFE standards, we show that double counting the electric vehicle more than doubles

its CAFE induced environmental cost. And we show that the optimal subsidy on the purchase

of an electric vehicle is decreased by the amount of the CAFE induced environmental cost.

Applying our baseline values for the Ford Focus and Ford Focus EV, the CAFE induced

environmental cost under current CAFE standards turns out to be $1229. The magnitude of

this is significant in comparison with even the largest optimal subsidy for an electric vehicle

found in our study ($2144, in California).

16The CAFE standard compares the sales weighted harmonic mean of actual MPG with a sales weighted
harmonic mean of targeted MPG. The targeted MPG for each vehicle is based on its footprint.
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6 Conclusion

Our analysis reveals an interesting property of electric vehicles. In the vast majority of states

when a consumer opts for an electric vehicle rather than a gasoline vehicle, they improve the

air pollution in their state. But at the same time, in all but twelve states, this purchase makes

society as a whole worse off because electric vehicles tend to export air pollution to other

states more than gasoline vehicles. Thus we would not be surprised to see a proliferation of

state-specific subsidies for electric vehicles, even in states in which the overall environmental

benefit of an electric vehicles is negative.

Of course, given the spatial heterogeneity in the benefits of an electric vehicles, spatial

differences in policy are in fact appropriate, provided they account for all externalities,

not just native ones. We find that differentiated taxes on miles driven lead to greater

welfare increases than differentiated subsidies on vehicle purchases. This is not surprising,

as economists have long recognized the superiority of putting a direct price on externalities

relative to other indirect corrective policies. Unfortunately, this insight does not seem to

have had much influence on policy, as political decision makers often implement indirect

policies instead. A consequence of this predilection is that multiple indirect policies may

target the same externalities, as is the case with CAFE standards and purchase subsidies on

electric vehicles. Our preliminary analysis suggests that the interaction of these policies may

have significant unintended consequences. It seems worthwhile to devote additional study

to this issue.

There are several important caveats to our results. First, they are based on a simple

snapshot of the electricity grid in the year 2011. We might expect the grid to become cleaner

over time by integrating new lower-emission fuels and technologies. Of course, gasoline

vehicles may become cleaner over time as well. The overall effect on the environmental

benefit of electric vehicles will depend on the relative rates of changes of these two factors.

Second, we have focused only on the environmental externalities. To the extent that there

is a geo-political externality from gasoline use, our results understate the total benefits of

electric vehicles. Third, we have only considered air pollution from use of the vehicle, we

have not compared life-cycle emissions from manufacture and disposal of the vehicle. Fourth,
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we have focused on the marginal emissions from an increase in the demand for electric

power due to electric vehicles charging. This is appropriate when the electricity demand

for electric vehicles is a small fraction of overall electricity use. As electric vehicles become

more commonplace, it may be more appropriate to look at average rather than marginal

emissions.

Although we have focused on light-duty vehicles, there is a broader trend toward electri-

fication of a variety of forms of transportation. Our methodology, which combines discrete-

choice models, distributed electricity generation, and air pollution models, may yield a useful

template for further analysis of the environmental consequences of this trend.
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Figure	  1	  	  Op+mal	  Subsidy	  by	  County	  for	  Ford	  
Focus	  
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Figure	  2	  	  Panel	  A:	  Change	  in	  PM2.5	  Preliminary	  Fulton	  County:	  	  
1000	  ICE	  Focus	  
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Figure	  2	  	  Panel	  B:	  Change	  in	  PM2.5	  :	  1000	  EV	  Focus	  in	  SERC	  Region	  
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Figure	  3	  Panel	  A:	  Change	  in	  PM2.5	  Preliminary	  Cook	  County:	  	  
1000	  ICE	  Focus	  
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Figure	  3	  	  Panel	  B:	  Change	  in	  PM2.5	  :	  1000	  EV	  Focus	  in	  RFC	  Region	  
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Figure	  4	  	  Panel	  A:	  Change	  in	  PM2.5	  Preliminary	  Los	  Angeles	  County:	  	  
1000	  ICE	  Ford	  Focus	  
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Figure	  4	  	  Panel	  B:	  Change	  in	  PM2.5	  :	  1000	  EV	  Focus	  in	  CA	  Region	  
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Table	  1:	  Damages	  per	  mile	  across	  NERC	  electricity	  regions	  for	  a	  2014	  Ford	  Focus	  EV	  for	  different	  
charging	  profiles.	  

 
Damage	  per	  mile	  

	    
Region	   EPRI	   Flat	   Hr	  1-‐4	   Hr	  5-‐8	   Hr	  9-‐12	   Hr	  13-‐16	   Hr	  17-‐20	   Hr	  21-‐24	  

	  

VMT	  
(bill)	  

California	   $0.006	   $0.006	   $0.005	   $0.006	   $0.006	   $0.007	   $0.007	   $0.005	  
	  

182.93	  
WECC	  w/o	  
CA	   $0.008	   $0.007	   $0.009	   $0.008	   $0.006	   $0.006	   $0.006	   $0.008	  

	  
154.56	  

ERCOT	   $0.010	   $0.009	   $0.011	   $0.011	   $0.008	   $0.008	   $0.008	   $0.009	  
	  

125.13	  
SPP	   $0.017	   $0.021	   $0.016	   $0.036	   $0.017	   $0.022	   $0.018	   $0.014	  

	  
68.68	  

FRCC	   $0.018	   $0.016	   $0.024	   $0.018	   $0.017	   $0.011	   $0.012	   $0.016	  
	  

102.57	  
SERC	   $0.020	   $0.020	   $0.020	   $0.017	   $0.020	   $0.022	   $0.020	   $0.020	  

	  
375.40	  

NPCC	   $0.022	   $0.019	   $0.029	   $0.026	   $0.011	   $0.015	   $0.018	   $0.016	  
	  

146.07	  
RFC	   $0.026	   $0.026	   $0.025	   $0.024	   $0.028	   $0.022	   $0.025	   $0.030	  

	  
343.57	  

MRO	   $0.030	   $0.024	   $0.039	   $0.027	   $0.021	   $0.018	   $0.016	   $0.025	  
	  

78.64	  

	             Total	   $0.018	   $0.017	   $0.020	   $0.018	   $0.017	   $0.016	   $0.016	   $0.018	  
	  

1577.54	  
	  

Notes:	  The	  regions	  are	  listed	  by	  the	  damage	  per	  mile	  under	  the	  “Flat”	  charging	  profile.	  	  The	  EPRI	  
charging	  profile	  is	  illustrated	  in	  Appendix	  Figure	  1.	  	  The	  flat	  charging	  profile	  assumes	  charging	  is	  equally	  
likely	  across	  hours.	  	  Other	  profiles	  assume	  charging	  occurs	  only	  in	  the	  indicated	  hours.	  	  Damages	  are	  
weighted	  by	  gasoline-‐car	  VMT	  by	  county.	  
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Table	  2:	  Distributions	  across	  NERC	  regions	  (counties)	  of	  damages	  per	  mile	  for	  2014	  electric	  vehicles	  	  

Vehicle	   mean	   med	  
std.	  
dev.	   min	   max	  

Chevy	  Spark	  EV	   $0.016	   $0.018	   $0.007	   $0.005	   $0.026	  
Honda	  Fit	  EV	   $0.016	   $0.018	   $0.007	   $0.005	   $0.026	  
Fiat	  500e	   $0.016	   $0.018	   $0.007	   $0.005	   $0.027	  
Nissan	  Leaf	   $0.017	   $0.019	   $0.007	   $0.005	   $0.027	  
Mitsubishi	  i-‐Miev	   $0.017	   $0.019	   $0.007	   $0.005	   $0.028	  
Smart	  fortwo	  electric	  
coupe	   $0.018	   $0.020	   $0.007	   $0.005	   $0.029	  
Ford	  Focus	  Electric	   $0.018	   $0.020	   $0.008	   $0.006	   $0.030	  
Tesla	  Model	  S	  (60	  kW-‐hr)	   $0.020	   $0.022	   $0.008	   $0.006	   $0.032	  
Tesla	  Model	  S	  (85	  kW-‐hr)	   $0.022	   $0.024	   $0.009	   $0.007	   $0.035	  
Toyota	  Rav4	  EV	   $0.025	   $0.028	   $0.011	   $0.008	   $0.041	  
BYD	  e6	   $0.031	   $0.034	   $0.013	   $0.009	   $0.050	  
	  

Notes:	  Damages	  are	  from	  power	  plant	  emissions	  of	  NOx,	  VOCs,	  PM2.5,	  SO2,	  and	  CO2e	  for	  electric	  cars	  
assuming	  the	  EPRI	  charging	  profile.	  	  Damages	  are	  weighted	  by	  gasoline-‐car	  VMT	  by	  county.	  	  	  
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Table	  3:	  	  Distribution	  across	  counties	  of	  the	  environmental	  benefit	  per	  mile	  of	  an	  equivalent	  2014	  
electric	  car	  

Vehicle	   mean	   med	   std.	  dev.	   min	   max	  

Chevy	  Spark	  EV	   -‐$0.0019	   -‐$0.0045	   $0.0082	   -‐$0.0158	   $0.0232	  
Honda	  Fit	  EV	   $0.0003	   -‐$0.0025	   $0.0086	   -‐$0.0141	   $0.0275	  
Fiat	  500e	   -‐$0.0018	   -‐$0.0046	   $0.0087	   -‐$0.0163	   $0.0250	  
Nissan	  Leaf	   -‐$0.0062	   -‐$0.0088	   $0.0082	   -‐$0.0202	   $0.0174	  
Mitsubishi	  i-‐Miev	   -‐$0.0028	   -‐$0.0056	   $0.0086	   -‐$0.0173	   $0.0229	  
Smart	  fortwo	  electric	  	   -‐$0.0037	   -‐$0.0067	   $0.0091	   -‐$0.0191	   $0.0239	  
Ford	  Focus	  Electric	   -‐$0.0028	   -‐$0.0056	   $0.0089	   -‐$0.0179	   $0.0232	  
Tesla	  Model	  S	  (60	  kW-‐hr)	   $0.0005	   -‐$0.0028	   $0.0101	   -‐$0.0163	   $0.0314	  
Tesla	  Model	  S	  (85	  kW-‐hr)	   $0.0014	   -‐$0.0022	   $0.0108	   -‐$0.0166	   $0.0342	  
Toyota	  Rav4	  EV	   -‐$0.0073	   -‐$0.0113	   $0.0120	   -‐$0.0274	   $0.0266	  
BYD	  e6	   -‐$0.0128	   -‐$0.0176	   $0.0142	   -‐$0.0363	   $0.0249	  
	  

Notes:	  The	  environmental	  benefit	  is	  the	  difference	  in	  damages	  between	  a	  gasoline-‐powered	  car	  and	  the	  
equivalent	  electric	  car.	  	  Equivalent	  cars	  are	  defined	  as	  the	  identical	  make	  where	  possible.	  	  The	  
equivalent	  car	  for	  the	  Nissan	  Leaf	  is	  the	  Toyota	  Prius;	  for	  the	  Mitsubishi	  i-‐Miev	  is	  the	  Chevy	  Spark;	  for	  
the	  Tesla	  Model	  S	  is	  the	  BMW	  740	  or	  750;	  and	  for	  the	  BYD	  e6	  is	  the	  Toyota	  Rav4.	  	  Environmental	  benefit	  
is	  weighted	  by	  gasoline-‐car	  VMT	  by	  county.	  
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Table	  4:	  	  Top	  10	  and	  bottom	  10	  Metropolitan	  Statistical	  Areas	  by	  environmental	  benefit	  per	  mile	  for	  a	  
2014	  Ford	  Focus	  (electric	  v.	  gasoline)	  

Metropolitan	  Statistical	  Area	  

Environmental	  
benefit	  per	  
mile	  

Total	  
environmental	  
benefit	  
(billions)	  

VMT	  
(billions)	  

Damage	  
per	  mile	  
(gasoline)	  

Damage	  
per	  mile	  
(electric)	  

Los	  Angeles-‐Long	  Beach-‐Santa	  Ana,	  CA	   $0.023	   $1.051	   45.4	   $0.029	   $0.006	  
Oakland-‐Fremont-‐Hayward,	  CA	   $0.017	   $0.210	   12.6	   $0.022	   $0.006	  
San	  Jose-‐Sunnyvale-‐Santa	  Clara,	  CA	   $0.016	   $0.145	   9.1	   $0.022	   $0.006	  
San	  Francisco-‐San	  Mateo-‐Redwood	  
City,CA	   $0.015	   $0.108	   7.5	   $0.020	   $0.006	  
Santa	  Ana-‐Anaheim-‐Irvine,	  CA	   $0.014	   $0.220	   15.7	   $0.020	   $0.006	  
San	  Diego-‐Carlsbad-‐San	  Marcos,	  CA	   $0.014	   $0.226	   16.2	   $0.019	   $0.006	  
Vallejo-‐Fairfield,	  CA	   $0.013	   $0.036	   2.7	   $0.019	   $0.006	  
Santa	  Cruz-‐Watsonville,	  CA	   $0.012	   $0.014	   1.1	   $0.018	   $0.006	  
Stockton,	  CA	   $0.011	   $0.039	   3.5	   $0.017	   $0.006	  
Napa,	  CA	   $0.010	   $0.005	   0.5	   $0.016	   $0.006	  

	   	   	   	   	   	  Total	   -‐$0.003	   -‐$4.464	   1577.5	   $0.015	   $0.018	  
Non-‐urban	   -‐$0.007	   -‐$2.128	   301.1	   $0.013	   $0.020	  

	   	   	   	   	   	  Sheboygan,	  WI	   -‐$0.017	   -‐$0.007	   0.4	   $0.013	   $0.030	  
Ames,	  IA	   -‐$0.017	   -‐$0.005	   0.3	   $0.013	   $0.030	  
Wausau,	  WI	   -‐$0.017	   -‐$0.012	   0.7	   $0.013	   $0.030	  
La	  Crosse,	  WI-‐MN	   -‐$0.017	   -‐$0.009	   0.5	   $0.013	   $0.030	  
Sioux	  Falls,	  SD	   -‐$0.017	   -‐$0.017	   1.0	   $0.013	   $0.030	  
Fargo,	  ND-‐MN	   -‐$0.017	   -‐$0.019	   1.1	   $0.012	   $0.030	  
Sioux	  City,	  IA-‐NE-‐SD	   -‐$0.017	   -‐$0.012	   0.7	   $0.012	   $0.030	  
Bismarck,	  ND	   -‐$0.017	   -‐$0.011	   0.6	   $0.012	   $0.030	  
Grand	  Forks,	  ND-‐MN	   -‐$0.017	   -‐$0.009	   0.5	   $0.012	   $0.030	  
Duluth,	  MN-‐WI	   -‐$0.018	   -‐$0.025	   1.4	   $0.012	   $0.030	  
	  

Notes:	  The	  environmental	  benefit	  is	  the	  difference	  in	  damages	  between	  the	  gasoline-‐powered	  Ford	  
Focus	  and	  the	  electric	  Ford	  Focus.	  	  Environmental	  benefit	  is	  weighted	  by	  gasoline-‐car	  VMT	  by	  county	  
within	  each	  MSA.	  	  Total	  environmental	  benefit	  multiplies	  environmental	  benefit	  by	  gasoline-‐car	  VMT.	  	  
Non-‐urban	  includes	  all	  counties	  that	  are	  not	  part	  of	  an	  MSA.	  

	   	  

35



Table	  5:	  	  Environmental	  	  benefit	  per	  mile	  and	  Optimal	  Subsidy	  for	  a	  2014	  Ford	  Focus	  (electric	  v.	  gasoline)	  

State	  

Environmental	  
benefit	  per	  
mile	  

Total	  
environmental	  
benefit	  
(billions)	  

VMT	  
(billions)	  

Damage	  
per	  mile	  
(gasoline)	  

Damage	  
per	  mile	  
(electric)	  	  	  

	  
Optimal	  
Subsidy	  

California	   $0.014	   $2.64	   184.6	   $0.020	   $0.006	   $2,144	  
Utah	   $0.007	   $0.08	   12.1	   $0.015	   $0.008	   $1,043	  
Colorado	   $0.006	   $0.15	   25.7	   $0.014	   $0.008	   $883	  
Arizona	   $0.006	   $0.17	   29.9	   $0.013	   $0.008	   $835	  
Washington	   $0.006	   $0.13	   23.0	   $0.013	   $0.008	   $830	  
Nevada	   $0.005	   $0.07	   13.1	   $0.013	   $0.008	   $764	  
Oregon	   $0.005	   $0.08	   15.7	   $0.013	   $0.008	   $720	  
Idaho	   $0.005	   $0.03	   7.2	   $0.012	   $0.008	   $695	  
Wyoming	   $0.004	   $0.02	   4.5	   $0.012	   $0.008	   $659	  
New	  Mexico	   $0.004	   $0.06	   12.9	   $0.013	   $0.009	   $648	  
Texas	   $0.004	   $0.55	   140.1	   $0.014	   $0.011	   $593	  
Montana	   $0.003	   $0.02	   5.9	   $0.012	   $0.009	   $429	  

U.S.	  Average	   -‐$0.003	   -‐$4.46	   1577.5	   $0.015	   $0.018	   -‐$424	  
Oklahoma	   -‐$0.003	   -‐$0.08	   24.9	   $0.014	   $0.017	   -‐$482	  
Kansas	   -‐$0.004	   -‐$0.06	   15.9	   $0.013	   $0.017	   -‐$536	  
Florida	   -‐$0.004	   -‐$0.43	   109.6	   $0.015	   $0.019	   -‐$595	  
District	  of	  
Columbia	   -‐$0.004	   -‐$0.01	   2.3	   $0.022	   $0.026	   -‐$598	  
New	  York	   -‐$0.004	   -‐$0.31	   74.2	   $0.018	   $0.022	   -‐$620	  
Georgia	   -‐$0.004	   -‐$0.25	   57.5	   $0.016	   $0.020	   -‐$644	  
Missouri	   -‐$0.005	   -‐$0.21	   37.4	   $0.014	   $0.019	   -‐$823	  
Illinois	   -‐$0.006	   -‐$0.21	   36.8	   $0.019	   $0.024	   -‐$856	  
North	  Carolina	   -‐$0.006	   -‐$0.24	   38.4	   $0.014	   $0.020	   -‐$930	  
Massachusetts	   -‐$0.006	   -‐$0.17	   27.7	   $0.015	   $0.022	   -‐$942	  
Arkansas	   -‐$0.006	   -‐$0.11	   16.5	   $0.013	   $0.020	   -‐$971	  
New	  Jersey	   -‐$0.006	   -‐$0.26	   40.0	   $0.020	   $0.026	   -‐$972	  
Louisiana	   -‐$0.007	   -‐$0.16	   24.9	   $0.013	   $0.019	   -‐$985	  
South	  Carolina	   -‐$0.007	   -‐$0.17	   25.6	   $0.014	   $0.020	   -‐$1,013	  
Tennessee	   -‐$0.007	   -‐$0.25	   37.7	   $0.014	   $0.020	   -‐$1,015	  
Kentucky	   -‐$0.007	   -‐$0.17	   25.7	   $0.014	   $0.021	   -‐$1,017	  
Alabama	   -‐$0.007	   -‐$0.23	   34.2	   $0.014	   $0.020	   -‐$1,031	  
Virginia	   -‐$0.007	   -‐$0.47	   65.9	   $0.014	   $0.021	   -‐$1,062	  
Mississippi	   -‐$0.007	   -‐$0.15	   20.1	   $0.013	   $0.020	   -‐$1,105	  
Connecticut	   -‐$0.007	   -‐$0.11	   15.4	   $0.014	   $0.022	   -‐$1,117	  
Rhode	  Island	   -‐$0.008	   -‐$0.04	   5.5	   $0.014	   $0.022	   -‐$1,151	  
New	  Hampshire	   -‐$0.009	   -‐$0.07	   8.6	   $0.013	   $0.022	   -‐$1,300	  
Maryland	   -‐$0.009	   -‐$0.27	   29.1	   $0.017	   $0.026	   -‐$1,386	  
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Vermont	   -‐$0.010	   -‐$0.05	   4.9	   $0.012	   $0.022	   -‐$1,449	  
Maine	   -‐$0.010	   -‐$0.10	   9.8	   $0.012	   $0.022	   -‐$1,454	  
Ohio	   -‐$0.011	   -‐$0.77	   72.2	   $0.016	   $0.026	   -‐$1,599	  
Pennsylvania	   -‐$0.011	   -‐$0.59	   53.8	   $0.015	   $0.026	   -‐$1,634	  
Indiana	   -‐$0.011	   -‐$0.46	   41.5	   $0.015	   $0.026	   -‐$1,675	  
Delaware	   -‐$0.011	   -‐$0.04	   3.8	   $0.015	   $0.026	   -‐$1,686	  
Michigan	   -‐$0.012	   -‐$0.53	   45.9	   $0.015	   $0.026	   -‐$1,734	  
West	  Virginia	   -‐$0.013	   -‐$0.14	   10.5	   $0.013	   $0.026	   -‐$1,937	  
South	  Dakota	   -‐$0.014	   -‐$0.07	   4.6	   $0.012	   $0.027	   -‐$2,169	  
Wisconsin	   -‐$0.015	   -‐$0.39	   26.1	   $0.014	   $0.029	   -‐$2,218	  
Minnesota	   -‐$0.015	   -‐$0.39	   26.0	   $0.015	   $0.030	   -‐$2,257	  
Nebraska	   -‐$0.016	   -‐$0.16	   9.8	   $0.013	   $0.029	   -‐$2,388	  
Iowa	   -‐$0.016	   -‐$0.26	   16.1	   $0.013	   $0.029	   -‐$2,463	  
North	  Dakota	   -‐$0.017	   -‐$0.08	   4.5	   $0.012	   $0.030	   -‐$2,607	  
	  

Notes:	  The	  environmental	  benefit	  is	  the	  difference	  in	  damages	  between	  the	  gasoline-‐powered	  Ford	  
Focus	  and	  the	  electric	  Ford	  Focus.	  	  Environmental	  benefit	  is	  weighted	  by	  gasoline-‐car	  VMT	  within	  each	  
state.	  
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Table	  6:	  Distribution	  across	  counties	  of	  native	  damages	  per	  mile	  for	  2014	  Ford	  Focus	  

Panel	  A:	  EPRI	  Load	  profile	  

Vehicle	   Damages	   mean	   med	   std.	  dev.	   min	   max	  

Electric	   All	   $0.0182	   $0.0204	   $0.0076	   $0.0055	   $0.0297	  

	  
Non-‐GHG	   $0.0111	   $0.0131	   $0.0063	   $0.0011	   $0.0211	  

	  
State	   $0.0010	   $0.0011	   $0.0005	   $0.0003	   $0.0021	  

	  
	  	  	  	  Export	  %	   91%	   91%	  

	    
90%	  

	  
County	   $0.0001	   $0.0001	   $0.0001	   $0.0000	   $0.0004	  

	  
	  	  	  	  Export	  %	   99%	   99%	  

	    
98%	  

	         Gasoline	   All	   $0.0154	   $0.0141	   $0.0038	   $0.0116	   $0.0326	  

	  
Non-‐GHG	   $0.0039	   $0.0026	   $0.0038	   $0.0001	   $0.0211	  

	  
State	   $0.0031	   $0.0019	   $0.0036	   $0.0000	   $0.0199	  

	  
	  	  	  	  Export	  %	   19%	   27%	  

	    
5%	  

	  
County	   $0.0017	   $0.0008	   $0.0027	   $0.0000	   $0.0143	  

	  
	  	  	  	  Export	  %	   57%	   71%	  

	    
32%	  

	         Env	  Ben	   All	   -‐$0.0028	   -‐$0.0056	   $0.0089	   -‐$0.0179	   $0.0232	  

	  
Non-‐GHG	   -‐$0.0072	   -‐$0.0100	   $0.0077	   -‐$0.0208	   $0.0161	  

	  
State	   $0.0021	   $0.0009	   $0.0037	   -‐$0.0020	   $0.0179	  

	  
County	   $0.0015	   $0.0006	   $0.0026	   -‐$0.0004	   $0.0141	  

	  

Note:	  “All”	  reports	  damages	  from	  all	  pollutants	  at	  all	  receptors.	  	  “Non-‐GHG”	  reports	  damages	  from	  local	  
pollutants	  (i.e.,	  excluding	  CO2)	  at	  all	  receptors.	  	  “State”	  reports	  damages	  from	  local	  pollutants	  from	  
receptors	  within	  the	  same	  state	  as	  the	  source.	  	  “County”	  reports	  damages	  from	  local	  pollutants	  from	  
receptors	  within	  the	  same	  county	  as	  the	  source.	  	  “State	  Export	  %”	  reports	  the	  share	  of	  non-‐GHG	  
damages	  which	  occur	  at	  receptors	  outside	  the	  state.	  	  “County	  Export	  %”	  reports	  the	  share	  of	  non-‐GHG	  
damages	  which	  occur	  at	  receptors	  outside	  the	  county.	  	  Electric	  damages	  assume	  the	  EPRI	  charging	  
profile.	  	  Damages	  are	  weighted	  by	  gasoline-‐car	  VMT.	   	  
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Table	  7:	  State	  benefit	  from	  electric	  cars	  for	  all	  states	  by	  environmental	  benefit	  per	  mile	  for	  a	  2014	  Ford	  
Focus	  (electric	  v.	  gasoline)	  

State	  
Total	  
benefit	  

Non-‐GHG	  
pollutant	  
benefit	  

State	  
benefit	  

State	  
gasoline	  
damages	  

Gasoline	  
export	  %	  

State	  
electric	  
damages	  

Electricity	  
export	  %	  

California	   $0.014	   $0.007	   $0.00744	   $0.008	   2%	   $0.001	   33%	  
Utah	   $0.007	   $0.001	   $0.00272	   $0.003	   8%	   $0.000	   87%	  
Colorado	   $0.006	   $0.000	   $0.00157	   $0.002	   18%	   $0.000	   88%	  
Arizona	   $0.006	   $0.000	   $0.00133	   $0.002	   17%	   $0.000	   88%	  
Washington	   $0.006	   $0.000	   $0.00154	   $0.002	   4%	   $0.000	   88%	  
Nevada	   $0.005	   -‐$0.001	   $0.00074	   $0.001	   30%	   $0.000	   88%	  
Oregon	   $0.005	   -‐$0.001	   $0.00072	   $0.001	   14%	   $0.000	   88%	  
Idaho	   $0.005	   -‐$0.001	   $0.00026	   $0.001	   47%	   $0.000	   88%	  
Wyoming	   $0.004	   -‐$0.001	   -‐$0.00018	   $0.000	   89%	   $0.000	   88%	  
New	  Mexico	   $0.004	   -‐$0.001	   $0.00040	   $0.001	   49%	   $0.000	   89%	  
Texas	   $0.004	   -‐$0.001	   $0.00194	   $0.003	   13%	   $0.001	   85%	  
Montana	   $0.003	   -‐$0.003	   -‐$0.00017	   $0.000	   77%	   $0.000	   91%	  
Oklahoma	   -‐$0.003	   -‐$0.005	   $0.00104	   $0.002	   28%	   $0.000	   94%	  
Kansas	   -‐$0.004	   -‐$0.006	   $0.00063	   $0.001	   40%	   $0.000	   94%	  
Florida	   -‐$0.004	   -‐$0.009	   $0.00146	   $0.003	   4%	   $0.001	   88%	  
District	  of	  
Columbia	   -‐$0.004	   -‐$0.006	   $0.00217	   $0.003	   69%	   $0.001	   93%	  
New	  York	   -‐$0.004	   -‐$0.010	   $0.00325	   $0.005	   13%	   $0.002	   87%	  
Georgia	   -‐$0.004	   -‐$0.009	   $0.00293	   $0.004	   12%	   $0.001	   91%	  
Missouri	   -‐$0.005	   -‐$0.009	   $0.00068	   $0.002	   33%	   $0.001	   92%	  
Illinois	   -‐$0.006	   -‐$0.009	   $0.00489	   $0.006	   15%	   $0.001	   93%	  
North	  Carolina	   -‐$0.006	   -‐$0.010	   $0.00102	   $0.002	   20%	   $0.001	   91%	  
Massachusetts	   -‐$0.006	   -‐$0.012	   $0.00120	   $0.003	   18%	   $0.002	   87%	  
Arkansas	   -‐$0.006	   -‐$0.010	   -‐$0.00012	   $0.001	   47%	   $0.001	   92%	  
New	  Jersey	   -‐$0.006	   -‐$0.009	   $0.00355	   $0.005	   44%	   $0.001	   93%	  
Louisiana	   -‐$0.007	   -‐$0.010	   $0.00006	   $0.001	   24%	   $0.001	   92%	  
South	  Carolina	   -‐$0.007	   -‐$0.011	   $0.00026	   $0.001	   35%	   $0.001	   91%	  
Tennessee	   -‐$0.007	   -‐$0.011	   $0.00033	   $0.001	   31%	   $0.001	   91%	  
Kentucky	   -‐$0.007	   -‐$0.011	   $0.00047	   $0.002	   41%	   $0.001	   92%	  
Alabama	   -‐$0.007	   -‐$0.011	   $0.00026	   $0.001	   31%	   $0.001	   91%	  
Virginia	   -‐$0.007	   -‐$0.011	   $0.00039	   $0.002	   45%	   $0.001	   92%	  
Mississippi	   -‐$0.007	   -‐$0.012	   -‐$0.00021	   $0.001	   39%	   $0.001	   91%	  
Connecticut	   -‐$0.007	   -‐$0.014	   -‐$0.00049	   $0.002	   44%	   $0.002	   87%	  
Rhode	  Island	   -‐$0.008	   -‐$0.014	   -‐$0.00051	   $0.002	   40%	   $0.002	   87%	  
New	  Hampshire	   -‐$0.009	   -‐$0.015	   -‐$0.00138	   $0.001	   57%	   $0.002	   87%	  
Maryland	   -‐$0.009	   -‐$0.011	   $0.00227	   $0.003	   38%	   $0.001	   93%	  
Vermont	   -‐$0.010	   -‐$0.016	   -‐$0.00184	   $0.000	   62%	   $0.002	   87%	  
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Maine	   -‐$0.010	   -‐$0.016	   -‐$0.00169	   $0.000	   33%	   $0.002	   87%	  
Ohio	   -‐$0.011	   -‐$0.013	   $0.00207	   $0.003	   22%	   $0.001	   93%	  
Pennsylvania	   -‐$0.011	   -‐$0.013	   $0.00162	   $0.003	   29%	   $0.001	   93%	  
Indiana	   -‐$0.011	   -‐$0.013	   $0.00124	   $0.002	   34%	   $0.001	   93%	  
Delaware	   -‐$0.011	   -‐$0.013	   -‐$0.00006	   $0.001	   70%	   $0.001	   93%	  
Michigan	   -‐$0.012	   -‐$0.014	   $0.00150	   $0.003	   19%	   $0.001	   93%	  
West	  Virginia	   -‐$0.013	   -‐$0.015	   -‐$0.00037	   $0.001	   58%	   $0.001	   93%	  
South	  Dakota	   -‐$0.014	   -‐$0.018	   -‐$0.00073	   $0.000	   77%	   $0.001	   95%	  
Wisconsin	   -‐$0.015	   -‐$0.017	   $0.00044	   $0.001	   35%	   $0.001	   95%	  
Minnesota	   -‐$0.015	   -‐$0.018	   $0.00160	   $0.003	   17%	   $0.001	   95%	  
Nebraska	   -‐$0.016	   -‐$0.019	   $0.00003	   $0.001	   36%	   $0.001	   95%	  
Iowa	   -‐$0.016	   -‐$0.019	   -‐$0.00043	   $0.001	   57%	   $0.001	   95%	  
North	  Dakota	   -‐$0.017	   -‐$0.020	   -‐$0.00086	   $0.000	   82%	   $0.001	   95%	  
	  

Note:	  Benefit	  is	  the	  difference	  between	  gasoline	  and	  electric	  damages.	  	  Total	  benefit	  includes	  all	  
pollutants	  at	  all	  receptors.	  	  Non-‐GHG	  benefit	  includes	  only	  local	  pollutants	  at	  all	  receptors.	  	  State	  
gasoline	  damages,	  state	  electric	  damages,	  and	  state	  benefit	  include	  only	  local	  pollutants	  at	  receptors	  
within	  the	  state.	  “Export	  %”	  reports	  the	  share	  of	  non-‐GHG	  damages	  which	  occur	  at	  receptors	  outside	  
the	  state.	  	  Export	  %	  is	  “NA”	  if	  non-‐GHG	  damages	  are	  negative.	  
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Table	  8:	  Benefits	  of	  Differentiation:	  Federal	  vs.	  State	  or	  County,	  Purchase	  Subsidy	  

	  

μ	  =	  
254.2	  

μ	  =	  
396.8	  

μ	  =	  
531.7	  

μ	  =	  
842.8	  

μ	  =	  
1378.8	  

μ	  =	  
2881.4	  

Probability	  of	  Gas	  Car	  Adoption	   0.991	   0.953	   0.905	   0.805	   0.704	   0.602	  
Welfare	  gain	  state	  specific	  vs	  uniform	   1.966	   6.032	   8.539	   9.608	   7.728	   4.233	  
Welfare	  gain	  county	  specific	  vs	  uniform	   2.339	   7.065	   9.939	   11.123	   8.924	   4.882	  
Improvement:	  County	  vs	  State	   19%	   17%	   16%	   16%	   15%	   15%	  
Welfare	  gain	  state	  specific	  (native)	  vs	  
uniform	   -‐0.021	   -‐0.142	   -‐0.251	   -‐0.336	   -‐0.292	   -‐0.166	  
Welfare	  gain	  county	  specific	  (native)	  vs	  
uniform	   0.292	   0.724	   0.917	   0.915	   0.688	   0.364	  
Welfare	  gain	  state	  specific	  vs	  state	  
specific	  (native)	   1.987	   6.175	   8.790	   9.945	   8.020	   4.399	  
Welfare	  gain:	  county	  specific	  vs	  county	  
specific	  (native)	   2.047	   6.341	   9.021	   10.208	   8.235	   4.518	  
	  

Note:	  Welfare	  units	  are	  dollars	  per	  new	  car	  sale.	  The	  optimal	  uniform	  subsidy	  on	  electric	  car	  purchase	  Is	  
-‐$424.	  
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Table	  9:	  Benefits	  of	  Differentiation:	  State	  vs.	  County,	  Purchase	  Subsidy	  

 
Full	  Damages	   Native	  Damages	  

State	  

Optimal	  State	  
Specific	  Purchase	  
Subsidy	  

Within	  State	  
Welfare	  Gain	  
County	  Specific	  vs.	  
State	  Specific	  

Political	  Economy	  
Purchase	  Subsidy	  	  

Within	  State	  
Welfare	  Gain	  
County	  Specific	  vs.	  
State	  Specific	  

Alabama	   -‐1031	   0.0341	   39	   0.0302	  
Arizona	   835	   0.0835	   199	   0.0836	  
Arkansas	   -‐971	   0.1755	   -‐18	   0.0487	  
California	   2144	   4.3438	   1115	   4.2951	  
Colorado	   883	   0.1672	   236	   0.1665	  
Connecticut	   -‐1117	   0.0420	   -‐73	   0.0148	  
Delaware	   -‐1686	   0.0369	   -‐9	   0.0267	  
District	  of	  Columbia	   -‐598	   0.0000	   326	   0.0000	  
Florida	   -‐595	   0.2327	   218	   0.2183	  
Georgia	   -‐644	   1.0121	   439	   0.9948	  
Idaho	   695	   0.0146	   39	   0.0105	  
Illinois	   -‐856	   1.0554	   733	   -‐0.0567	  
Indiana	   -‐1675	   0.1081	   186	   0.0622	  
Iowa	   -‐2463	   0.2562	   -‐64	   0.0160	  
Kansas	   -‐536	   0.0888	   95	   0.0865	  
Kentucky	   -‐1017	   0.4174	   71	   0.1938	  
Louisiana	   -‐985	   0.1769	   8	   0.0373	  
Maine	   -‐1454	   0.0065	   -‐253	   0.0055	  
Maryland	   -‐1386	   0.3683	   341	   0.2123	  
Massachusetts	   -‐942	   0.1714	   180	   0.1655	  
Michigan	   -‐1734	   0.1495	   226	   0.1330	  
Minnesota	   -‐2257	   0.2970	   240	   0.2654	  
Mississippi	   -‐1105	   0.0158	   -‐31	   0.0084	  
Missouri	   -‐823	   0.2916	   102	   0.1691	  
Montana	   429	   2.3087	   -‐26	   0.1887	  
Nebraska	   -‐2388	   1.0000	   5	   0.0486	  
Nevada	   764	   0.0405	   111	   0.0397	  
New	  Hampshire	   -‐1300	   0.0276	   -‐208	   0.0121	  
New	  Jersey	   -‐972	   1.7272	   532	   1.2428	  
New	  Mexico	   648	   0.6467	   60	   0.1234	  
New	  York	   -‐620	   3.4719	   488	   3.4571	  
North	  Carolina	   -‐930	   0.1056	   153	   0.1027	  
North	  Dakota	   -‐2607	   0.0011	   -‐129	   0.0008	  
Ohio	   -‐1599	   0.1394	   310	   0.1204	  
Oklahoma	   -‐482	   0.0993	   156	   0.0404	  
Oregon	   720	   0.0518	   108	   0.0506	  
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Pennsylvania	   -‐1634	   0.2606	   242	   0.2539	  
Rhode	  Island	   -‐1151	   0.0451	   -‐77	   0.0423	  
South	  Carolina	   -‐1013	   0.0600	   39	   0.0474	  
South	  Dakota	   -‐2169	   4.0031	   -‐110	   0.3391	  
Tennessee	   -‐1015	   0.0419	   49	   0.0402	  
Texas	   593	   0.9849	   290	   0.4340	  
Utah	   1043	   0.9479	   408	   0.9375	  
Vermont	   -‐1449	   0.0008	   -‐276	   -‐0.0006	  
Virginia	   -‐1062	   0.7240	   58	   0.2748	  
Washington	   830	   0.2002	   231	   0.1996	  
West	  Virginia	   -‐1937	   0.0392	   -‐55	   -‐0.0062	  
Wisconsin	   -‐2218	   0.4503	   67	   0.3139	  
Wyoming	   659	   0.0019	   -‐27	   0.0005	  
	  

Note:	  Welfare	  units	  are	  dollars	  per	  new	  car	  sale.	  
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Table	  10:	  Benefits	  of	  Differentiation:	  Federal	  vs.	  State	  or	  County,	  Taxes	  on	  Fuel	  

	  

μ	  =	  
254.2	  

μ	  =	  
396.8	  

μ	  =	  
531.7	  

μ	  =	  
842.8	  

μ	  =	  
1378.8	  

μ	  =	  
2881.4	  

Probability	  of	  Gas	  Car	  Adoption	  	   0.989	   0.948	   0.897	   0.797	   0.698	   0.599	  
Welfare	  gain	  state	  specific	  vs	  
uniform	   7.432	   11.228	   15.315	   22.560	   29.146	   35.391	  

Welfare	  gain	  county	  specific	  vs	  
uniform	   17.339	   20.999	   24.795	   31.292	   37.019	   42.348	  

Welfare	  gain	  state	  specific	  
(native)	  vs	  uniform	   -‐257.706	   -‐283.380	   -‐315.390	   -‐379.319	   -‐443.125	   -‐506.891	  

Welfare	  gain	  county	  specific	  
(native)	  vs	  uniform	   -‐249.606	   -‐275.483	   -‐307.814	   -‐372.490	   -‐437.120	   -‐501.756	  

Welfare	  gain	  state	  specific	  vs	  
state	  specific	  (native)	   265.139	   294.608	   330.705	   401.879	   472.270	   542.282	  

Welfare	  gain	  county	  specific	  vs	  
county	  specific	  (native)	   266.945	   296.483	   332.608	   403.782	   474.139	   544.105	  

	   	   	   	   	   	   	  
	   	   	   	   	   	   	  
	  

Note:	  Welfare	  units	  are	  dollars	  per	  new	  car	  sale.	  Optimal	  uniform	  gas	  tax	  is	  $0.015.	  Optimal	  uniform	  
electric	  tax	  is	  $0.018.	  	  
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Table	  11:	  Benefits	  of	  Differentiation:	  State	  vs.	  County,	  Taxes	  on	  Fuel	  	  

 
Full	  Damages	   Native	  Damages	  

State	  

Optimal	  State	  
Specific	  Gas	  
Tax	  

Optimal	  
State	  
Specific	  
Electric	  Tax	  

Within	  State	  
Welfare	  Gain	  
County	  
Specific	  vs.	  
State	  Specific	  

Optimal	  
State	  
Specific	  
Gas	  Tax	  

Optimal	  
State	  
Specific	  
Electric	  Tax	  

Within	  State	  
Welfare	  Gain	  
County	  Specific	  
vs.	  State	  
Specific	  

Alabama	   0.0135	   0.0204	   0.5931	   0.0014	   0.0011	   0.3925	  
Arizona	   0.0134	   0.0078	   1.1126	   0.0016	   0.0003	   0.7761	  
Arkansas	   0.0131	   0.0196	   0.6606	   0.0009	   0.0010	   0.1384	  
California	   0.0198	   0.0055	   36.0349	   0.0082	   0.0008	   29.9929	  
Colorado	   0.0137	   0.0078	   2.1498	   0.0018	   0.0003	   1.6605	  
Connecticut	   0.0143	   0.0218	   0.7217	   0.0016	   0.0021	   0.1797	  
Delaware	   0.0150	   0.0263	   0.6763	   0.0011	   0.0011	   0.5930	  
District	  of	  
Columbia	   0.0223	   0.0263	   0.0000	   0.0033	   0.0011	   0.0000	  
Florida	   0.0145	   0.0185	   2.7963	   0.0029	   0.0015	   2.0676	  
Georgia	   0.0161	   0.0204	   14.4144	   0.0041	   0.0011	   11.5048	  
Idaho	   0.0125	   0.0078	   0.2043	   0.0005	   0.0003	   0.0549	  
Illinois	   0.0186	   0.0243	   26.2631	   0.0060	   0.0011	   18.7686	  
Indiana	   0.0151	   0.0263	   1.9352	   0.0024	   0.0011	   0.5079	  
Iowa	   0.0129	   0.0293	   0.3802	   0.0006	   0.0010	   0.1001	  
Kansas	   0.0133	   0.0169	   1.4259	   0.0011	   0.0005	   1.3491	  
Kentucky	   0.0142	   0.0210	   3.2522	   0.0016	   0.0011	   2.6375	  
Louisiana	   0.0128	   0.0194	   0.5927	   0.0010	   0.0009	   0.4268	  
Maine	   0.0121	   0.0218	   0.1272	   0.0004	   0.0021	   0.1091	  
Maryland	   0.0170	   0.0263	   5.9945	   0.0034	   0.0011	   2.7704	  
Massachusetts	   0.0155	   0.0218	   2.7518	   0.0033	   0.0021	   2.3822	  
Michigan	   0.0147	   0.0263	   2.3141	   0.0026	   0.0011	   1.7688	  
Minnesota	   0.0147	   0.0297	   5.9163	   0.0026	   0.0010	   4.5483	  
Mississippi	   0.0130	   0.0204	   0.2819	   0.0009	   0.0011	   0.0321	  
Missouri	   0.0140	   0.0194	   2.3230	   0.0016	   0.0010	   1.8777	  
Montana	   0.0121	   0.0092	   2.7157	   0.0001	   0.0003	   0.6509	  
Nebraska	   0.0131	   0.0290	   2.4529	   0.0010	   0.0010	   1.5632	  
Nevada	   0.0129	   0.0078	   0.5571	   0.0010	   0.0003	   0.4739	  
New	  Hampshire	   0.0131	   0.0218	   0.5121	   0.0007	   0.0021	   0.2356	  
New	  Jersey	   0.0198	   0.0263	   21.7024	   0.0047	   0.0011	   19.1698	  
New	  Mexico	   0.0128	   0.0085	   1.3194	   0.0007	   0.0003	   0.4043	  
New	  York	   0.0176	   0.0218	   42.4079	   0.0053	   0.0021	   36.5061	  
North	  Carolina	   0.0142	   0.0204	   1.7536	   0.0022	   0.0011	   1.3811	  
North	  Dakota	   0.0123	   0.0297	   0.0258	   0.0001	   0.0010	   0.0193	  
Ohio	   0.0156	   0.0263	   2.4470	   0.0032	   0.0011	   1.6425	  
Oklahoma	   0.0136	   0.0168	   1.0523	   0.0015	   0.0005	   0.5232	  
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Oregon	   0.0126	   0.0078	   0.7160	   0.0010	   0.0003	   0.5688	  
Pennsylvania	   0.0154	   0.0263	   4.5711	   0.0027	   0.0011	   4.2299	  
Rhode	  Island	   0.0141	   0.0218	   0.7818	   0.0015	   0.0021	   0.5682	  
South	  Carolina	   0.0136	   0.0204	   1.0219	   0.0014	   0.0011	   0.6528	  
South	  Dakota	   0.0122	   0.0267	   3.4470	   0.0002	   0.0009	   1.2549	  
Tennessee	   0.0136	   0.0204	   0.7240	   0.0015	   0.0011	   0.5718	  
Texas	   0.0145	   0.0105	   3.6032	   0.0026	   0.0006	   2.3150	  
Utah	   0.0148	   0.0078	   11.3297	   0.0030	   0.0003	   8.9513	  
Vermont	   0.0121	   0.0218	   0.0161	   0.0002	   0.0021	   -‐0.0176	  
Virginia	   0.0143	   0.0214	   4.0741	   0.0015	   0.0011	   3.2825	  
Washington	   0.0134	   0.0078	   2.6126	   0.0018	   0.0003	   1.9559	  
West	  Virginia	   0.0133	   0.0262	   0.3998	   0.0008	   0.0011	   -‐0.0705	  
Wisconsin	   0.0138	   0.0286	   2.1858	   0.0015	   0.0010	   1.8108	  
Wyoming	   0.0122	   0.0078	   0.0273	   0.0001	   0.0003	   0.0091	  
	  

	  

Note:	  Welfare	  units	  are	  dollars	  per	  new	  car	  sale.	  
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Appendix

Optimal taxes on miles

Suppose the government uses both a tax on gasoline miles and a tax on electric miles. As

is well known, the government can obtain the first-best outcome by utilizing the Pigovian

solution. Here taxes are equal to the marginal damages, so that tg = δg and te = δe.
Now suppose for some reason the government can only tax gasoline miles. What is the

optimal gasoline tax, accounting for the externalities from both gasoline and electric vehicles?

The answer to this question is given in the next Proposition.

gas Proposition 3. The optimal tax on gasoline miles alone is given by

t∗g =
⎛
⎜
⎝
δg + δe

⎛
⎜
⎝

e

−g ( p
g(pg+t∗g)

εg
εG
+ 1)

⎞
⎟
⎠

⎞
⎟
⎠
,

where εg is the own-price elasticity of gasoline and εG is the own-price elasticity of the

gasoline car.

The optimal tax on gasoline miles alone is less than the Pigovian tax on gasoline miles.

This occurs because the consumers have the option to substitute into the electric car and

thereby avoid taxation on the externalities they generate.

The welfare gains from differentiated taxes are given in Additional Appendix A.

Proof of the Propositions

We now turn to the proofs of the propositions.

We start with a few preliminary observations. Let G = πg and E = (1−π)e. For a generic

policy variable ρ we have

∂W
∂ρ

= µ( 1

exp(Vg/µ) + exp(Ve/µ)
)( 1

µ
exp(Vg/µ)

∂Vg
∂ρ

+ 1

µ
exp(Ve/µ)

∂Ve
∂ρ

) − (δg
∂G

∂ρ
+ δe

∂E

∂ρ
) ,
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which simplifies to

∂W
∂ρ

= ((1 − π)∂Ve
∂ρ

+ π∂Vg
∂ρ

) − (δg
∂G

∂ρ
+ δe

∂E

∂ρ
) . (2) focg

From the definition of π we have

∂π

∂ρ
=

(exp(Vg/µ) + exp(Ve/µ)) exp(Vg/µ) 1
µ
∂Vg
∂ρ − exp(Vg/µ)(exp(Vg/µ) 1

µ
∂Vg
∂ρ + exp(Ve/µ) 1

µ
∂Ve
∂ρ )

(exp(Vg/µ) + exp(Ve/µ))2
.

which simplifies to
∂π

∂ρ
= π(1 − π)

µ
(∂Vg
∂ρ

− ∂Ve
∂ρ

). (3) dpi

Using this result we can derive the following

∂G

∂ρ
= g∂π

∂ρ
+ π∂g

∂ρ
= gπ(1 − π)

µ
(∂Vg
∂ρ

− ∂Ve
∂ρ

) + π∂g
∂ρ

(4) theg

and
∂E

∂ρ
= −e∂π

∂ρ
+ (1 − π)∂e

∂ρ
= −eπ(1 − π)

µ
(∂Vg
∂ρ

− ∂Ve
∂ρ

) + (1 − π)∂e
∂ρ
. (5) thee

With these in hand we turn to the proof of the Propositions.

Proof of Proposition 3.

From the Envelope Theorem, we have (under our normalization of the wage rate, the

marginal utility of income is equal to one)

∂Vg
∂tg

= −g + ∂R
∂tg

,

and
∂Ve
∂tg

= ∂R
∂tg

.

The first-order condition for tg comes from substituting these expressions into (2) with ρ = tg,
setting the resulting expression equal to zero, and simplifying. This gives

(∂R
∂tg

− πg) − (δg
∂G

∂tg
+ δe

∂E

∂tg
) = 0.
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Expected per capita tax revenue is given by

R = tgπg

so
∂R

∂tg
= G + tg

∂G

∂tg
.

Using this in the first-order condition gives

((G + tg
∂G

∂tg
) − πg) − (δg

∂G

∂tg
+ δe

∂E

∂tg
) = 0.

Now, because G = πg, this simplifies to

(tg − δg)
∂G

∂tg
− (δe)

∂E

∂tg
= 0.

Solving for tg gives

tg =
⎛
⎝
δg + δe

∂E
∂tg

∂G
∂tg

⎞
⎠
.

Now from (3), (4), and (5), we have

∂π

∂tg
= −π(1 − π)

µ
g,

∂G

∂tg
= −π(1 − π)

µ
g2 + π ∂g

∂tg
.

and
∂E

∂tg
= π(1 − π)

µ
eg + (1 − π) ∂e

∂tg
.

Now because there are no income effects, tg does not effect the choice of e, so this latter

equation simplifies to
∂E

∂tg
= π(1 − π)

µ
eg.
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Substituting these into the first-order condition for tg and simplifying gives

tg =
⎛
⎜⎜
⎝
δg + δe

⎛
⎜⎜
⎝

e
∂g
∂tg

µ

(1−π)g − g

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
.

We can further express this equation in terms of elasticities. The own-price elasticity of gas

miles is

εg =
∂g

∂tg

pg + tg
g

.

For discrete choice goods, own-price elasticities are defined with respect to the choice proba-

bility. The own-price elasticity of the gasoline car, given a change in the price of the gasoline

car, is

εG = ∂π
∂p

p

π
= π(1 − π)

µ
(∂Vg
∂p

− ∂Ve
∂p

) p
π
= π(1 − π)

µ
(−1 − 0) p

π
= −(1 − π)p/µ.

Substituting the elasticities into the first-order condition for tg gives

tg =
⎛
⎜
⎝
δg + δe

⎛
⎜
⎝

e

−g ( p
g(pg+tg)

εg
εG
+ 1)

⎞
⎟
⎠

⎞
⎟
⎠
.

∎
Proof of Proposition 1. From the Envelope Theorem, we have

∂Vg
∂s

= ∂R
∂s

and
∂Ve
∂s

= (∂R
∂s

+ 1) .

The first-order condition for s comes from substituting these expressions into (2) with ρ = s,
setting the resulting expression equal to zero, and simplifying. This gives

(∂R
∂s

− (1 − π)) − (δg
∂G

∂s
+ δe

∂E

∂s
) = 0.
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Expected per-capita tax revenue is

R = −s(1 − π).

So we have
∂R

∂s
= −(1 − π) + s∂π

∂s
.

Substituting this into the first-order condition and simplifying gives

(s∂π
∂s

) − (δg
∂G

∂s
+ δe

∂E

∂s
) = 0. (6) focss

So the optimal s is given by

s =
δg

∂G
∂s + δe ∂E∂s

∂π
∂s

(7) opts

From (4) and (5), we have
∂G

∂s
= ∂g
∂s
π + g∂π

∂s
= g∂π

∂s
,

and
∂E

∂s
= ∂e
∂s

(1 − π) − e∂π
∂s

= −e∂π
∂s
,

where the second equality in both equations follows from the fact that there are no income

effects, so ∂g
∂s and ∂e

∂s are equal to zero. Substituting these into the first-order condition for s

and simplifying gives

s = (δgg − δee) .

∎
Proof of Proposition 2. First consider the optimal uniform subsidy. Except for δgi, δei,

and αi, the regions are identical, and the government is selecting the same subsidy for each

region. Therefore, the values for e, g, and π will be same across regions. It follows that the

per-capital welfare in region i is

W̃i = µ (ln(exp(Ve/µ) + exp(Vg/µ))) − (δgiG − δeiE).

The government wants to pick the value for s to minimize W̃(s) = ∑αiW̃i. There is a single
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per-capita revenue expression

R = −(1 − π)s

that applies to the budget constraint for each consumer in each region. It follows from (6)

that the first-order condition for s is

∑ sαi
∂π

∂s
−∑αi (δgi

∂G

∂s
+ δei

∂E

∂s
) = 0.

Which can be written as

s
∂π

∂s
− (∂G

∂s
∑αiδgi +

∂E

∂s
∑αiδei) = 0.

Solving for s gives the optimal single subsidy s̃

s̃ = 1
∂π
∂s

(δ̄g
∂G

∂s
+ δ̄e

∂E

∂s
) . (8) singles

The equation in the Proposition now follows from the same manipulations used in the proof

of Proposition 1. The value for welfare is W̃(s̃).
Next consider the case in which each region i has subsidy si and per capita revenue

Ri = −(1 − πi)si. As discussed in the main text, because there are no income effects, the

values for e and g will not vary across regions. Let W(S) denote the weighted average of

per capita welfare across regions as a function of the vector of taxes S = (s1, s2, . . . , sn). We

have

W(S) =∑αiWi(si) =∑µαi (ln(exp(Vei/µ) + exp(Vgi/µ))) − (δgiGi − δeiEi),

where Gi = πig and Ei = (1−πi)e. We now want to take the first and second derivatives of the

regulator’s objective with respect to si. Because ∂W
∂si

does not depend on sj, the cross-partial

derivative terms will all be equal to zero. We have

∂W
∂si

= siαi
∂πi
∂si

− αi (δgi
∂Gi

∂si
+ δei

∂Ei
∂si

)
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From (3), (4), and (5) we have: ∂πi
∂si

= −πi(1−πi)µ , ∂Gi

∂si
= −πi(1−πi)µ g and ∂Ei

∂si
= πi(1−πi)

µ e. With

these we can write the derivative as

∂W
∂si

= αi
πi(1 − πi)

µ
(−si + δgig − δeie) .

Now take the second derivative. We have

∂2W
∂s2

i

= αi
µ2
πi(1−πi)(1−2πi) (−si + δgigi − δeiei)−αi

πi(1 − πi)
µ

= 1

µ
(1−2πi)

∂W
∂si

−αi
πi(1 − πi)

µ
.

Now consider the point S̃ = (s̃, s̃, . . . , s̃) where s̃ is the optimal single subsidy described

above. At S̃, all the revenue equations are the same across regions. It follows that

W(S̃) = W̃(s̃).

In other words, W(S̃) describes the weighted average welfare under the optimal single sub-

sidy. Using the definition of the optimal region-specific subsidy

s∗i = (δgig − δeie),

the derivatives above become

∂W
∂si

∣
S̃

= αi
µ
π(1 − π)(s∗i − s̃), (9) dd

and
∂2W
∂s2

i

∣
S̃

= 1

µ
(1 − 2π) ∂W

∂si
∣
S̃

− αi
µ
π(1 − π). (10) ddd

Because the cross-partial derivatives are equal to zero, the second-order Taylor series

expansion of W at the point S̃ can be written as

W(S) −W(S̃) ≈∑
∂W
∂si

∣
S̃

(si − s̃) +
1

2
∑

∂2W
∂s2

i

∣
S̃

(si − s̃)2.
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We use this expansion to evaluate W(S∗) −W(S̃). From (9) and (10) we have

W(S∗)−W(S̃) ≈ 1

µ
π(1−π)∑αi(s∗i −s̃)2+1

2
( 1

µ2
π(1 − π)(1 − 2π)∑αi(s∗i − s̃)3 − 1

µ
π(1 − π)∑αi(s∗i − s̃)2) .

The formula for the second-order approximation follows by combining the quadratic (s∗i − s̃)
terms. ∎

Proof of Corollary 1. From the proof of Proposition 2, first-order Taylor series approxi-

mation to W (S) is

W(S) −W(S̃) ≈∑
∂W
∂si

∣
S̃

(si − s̃).

From (9) we have

W(S) −W(S̃) ≈∑
αi
µ
π(1 − π)(s∗i − s̃)(si − s̃).

Evaluating this expression at the point Ŝ gives the desired result. ∎

Data sources for emissions of gasoline cars

The emissions of SO2 and CO2 follow directly from the sulfur or carbon content of the fuels.

Since emissions per gallon of gasoline does not vary across vehicles, emissions per mile can

be simply calculated by the efficiency of the vehicle.17 For emissions of NOx, VOCs and

PM2.5, we use the Tier 2 standards for NOx, VOCs (NMOG) and PM. We augment the

VOC emissions standard with GREET’s estimate of evaporative emissions of VOCs and

augment the PM emissions standard with GREET’s estimate of PM2.5 emissions from tires

and brake wear. Electric cars are likely to emit far less PM2.5 from brake wear because they

employ regenerative braking. We had no way of separating emissions into tires and brake

wear separately, so we elected to ignore both of these emissions from electric cars. This gives

a small downward bias to emissions of electric cars.

17The carbon content of gasoline is 0.009 mTCO2 per gallon and of diesel fuel is 0.010 mTCO2 per gallon.
For sulfur content we follow the Tier 2 standards of 30 parts per million in gasoline (0.006 grams/gallon)
and 11 parts per million diesel fuel (0.002 grams/gallon).
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Data sources for the electricity demand regressions

The Environmental Protection Agency (EPA) provides data from its Continuous Emissions

Monitoring System (CEMS) on hourly emissions of CO2, SO2, and NOx for almost all fossil-

fuel fired power plants. (Fossil fuels are coal, oil, and natural gas. We aggregate data

from generating units to the power-plant level. Some older smaller generating units are not

monitored by the CEMS data.) CEMS does not monitor emissions of PM2.5 but does collect

electricity (gross) generation. We use additional data from the EPA’s eGrid database for

the year 2009 to convert hourly gross generation into hourly emissions of PM2.5 assuming

a constant annual average emissions rate. Power plant emissions of VOCs are negligible.

Based on the NEI for 2008, power plants accounted for about 0.25% of VOC emissions, but

75% of SO2 emissions and 20% of NOx emissions. In contrast, the transportation sector

accounted for about 40% of VOC emissions.

The hourly electricity load data are from the Federal Energy Regulatory Commission’s

(FERC) Form 714. Weekends are excluded to focus on commuting days. See Graff Zivin et

al. (2014) for more details on the CEMS and FERC data.

Details of the AP2 model

AP2 uses an air quality module to map the emissions by sources into ambient concentrations

pollutants at receptor locations, an economic valuation module to map the ambient concen-

trations of pollutants into monetary damages, and finally an algorithm module to determine

the marginal damages associated with emissions of any given source.

The inputs to the air quality module are the emissions ammonia (NH3), fine particulate

matter (PM2.5), sulfur dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds

(VOC)—from all of the sources in the contiguous U.S. that report emissions to the USEPA.18

18There are about 10,000 sources in the model. Of these, 656 are individually-modeled large point sources,
most of which are electric generating units. For the remaining stationary point sources, AP2 attributed
emissions to the population-weighted county centroid of the county in which USEPA reports said source
exists. These county-point sources are subdivided according to the effective height of emissions because
this parameter has an important influence on the physical dispersion of emitted substances. Ground-level
emissions (from cars, trucks, households, and small commercial establishments without an individually-
monitored smokestack) are attributed to the county of origin (reported by USEPA), and are processed by
AP2 in a manner that reflects the low release point of such discharges.
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The outputs from the air quality module are predicted ambient concentrations of the three

pollutants—SO2, O3, and PM2.5— at each of the 3,110 counties in the contiguous U.S.

The relationship between inputs and outputs captures the complex chemical and physical

processes that operate on the pollutants in the atmosphere. For example, emissions of

ammonia interact with emissions of NOx, and SO2 to form concentrations of ammonium

nitrate and ammonium sulfate, which are two significant (in terms of mass) constituents of

PM2.5. And emissions of NOx and VOCs are linked to the formation of ground-level ozone,

O3. The predicted ambient concentrations from the air quality module give good agreement

with the actual monitor readings at receptor locations (Muller, 2011).

The inputs to the economic valuation module are the ambient concentrations of SO2, O3,

and PM2.5 and the outputs are the monetary damages associated with the physical effects of

exposure to these concentrations. The majority of the damages are associated with human

health effects due to O3 and PM2.5, but AP2 also considers crop and timber losses due to O3,

degradation of buildings and material due to SO2, and reduced visibility and recreation due

to PM2.5. For human health, ambient concentrations are mapped into increased mortality

risk and then increased mortality risks are mapped into monetary damages.19 AP2 uses the

value of a statistical life (or VSL) approach to monetize an increase in mortality risk (see

Viscusi and Aldy, 2003). In this paper we use the USEPA’s value of approximately $600 per

0.0001 change in annual mortality risk.20 This value of an incremental change in mortality

risk yields a VSL of $6 x 106 = $600/0.0001.

The algorithm module uses the combined air quality module and economic valuation

module to determine marginal damages. First, baseline emissions data that specifies reported

values for all emissions at all sources is used to compute baseline damages. (For this paper, we

19Because baseline mortality rates vary considerably according to age, AP2 uses data from the U.S. Census
and the U.S. CDC to disaggregate county-level population estimates into 19 age groups and then calculates
baseline mortality rates by county and age group. The increase in mortality risk due to exposure of emissions
is determined by the standard concentration-response functions approach (USEPA, 1999; 2010; Fann et al.,
2009). In terms of share of total damage, the most important concentration-response functions are those
governing adult mortality. In this paper, we use results from Pope et al (2002) to specify the effect of PM2.5

exposure on adult mortality rates and we use results from Bell et al (2004) to specify the effect of O3 exposure
on adult mortality rates.

20Of course not all lifetime vehicle miles are driven in the same year. But we assume that marginal
damages grow at the real interest rate so that there is no need to discount damages from miles over the life
of the car.
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use emissions data from USEPA (2014) that contains year 2011 emissions.) Next, one ton of

one pollutant, NOx perhaps, is added to baseline emissions at a particular source, perhaps

a power plant in Western Pennsylvania. Then AP2 is re-run to estimate concentrations,

exposures, physical effects, and monetary damage at each receptor conditional on the added

ton of NOx. The difference in damage (summed across all receptors) between the baseline

case and the add-one-ton case is the marginal damage of emitting NOx from the power plant

in Western Pennsylvania.21 This routine is repeated for all pollutants and all sources in the

model.

21We can also analyze the marginal damages at each receptor.
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Appendix	  Table	  1:	  2014	  Electric	  vehicles	  and	  gasoline	  equivalent	  vehicles	  

	  

Electric	  
Vehicle	  

kW-‐
hrs/Mile	  

Gasoline	  
Equivalent	   MPG	   NOx	   VOC	   PM25	  	   SO2	  

Chevy	  
Spark	  EV	   0.283	  

Chevy	  
Spark	  	   34	   0.04	   0.127	   0.017	   0.004	  

Honda	  Fit	  
EV	   0.286	   Honda	  Fit	  	   29	   0.07	   0.147	   0.017	   0.005	  
Fiat	  500e	   0.291	   Fiat	  500e	   34	   0.07	   0.147	   0.017	   0.004	  
Nissan	  
Leaf	   0.296	  

Toyota	  
Prius	   50	   0.03	   0.112	   0.017	   0.003	  

Mitsubishi	  
i-‐Miev	   0.300	  

Chevy	  
Spark	   34	   0.04	   0.127	   0.017	   0.004	  

Smart	  
fortwo	  
electric	  	   0.315	  

Smart	  
fortwo	  
coupe	   36	   0.07	   0.147	   0.017	   0.004	  

Ford	  
Focus	  
Electric	   0.321	  

Ford	  
Focus	  	   30	   0.03	   0.112	   0.017	   0.005	  

Tesla	  
Model	  S	  
(60	  kW-‐
hr)	   0.350	   BMW	  740i	   22	   0.07	   0.147	   0.017	   0.007	  
Tesla	  
Model	  S	  
(85	  kW-‐
hr)	   0.380	   BMW	  750i	   19	   0.07	   0.147	   0.017	   0.008	  
Toyota	  
Rav4	  EV	   0.443	  

Toyota	  
Rav4	  	   26	   0.07	   0.147	   0.017	   0.006	  

BYD	  e6	   0.540	  
Toyota	  
Rav4	   26	   0.07	   0.147	   0.017	   0.006	  

	  

Notes:	  	  NOx,	  VOC,	  PM2.5,	  and	  SO2	  emissions	  rates	  for	  gasoline	  equivalent	  cars	  are	  in	  grams	  per	  
mile.	  
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Appendix	  Figure	  1:	  	  EPRI	  charging	  profile.	  

	  

	  

Source:	  “Environmental	  Assessment	  of	  Plug-‐In	  Hybrid	  Electric	  Vehicles,	  Volume	  1:	  Nationwide	  
Greenhouse	  Gas	  Emissions”	  Electric	  Power	  Research	  Institute,	  Inc.	  2007.	  	  p.	  4-‐10.	  
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Supplementary Appendix A: Welfare Gains From Dif-

ferentiation: Taxation of Gasoline and Electric Miles

Here there are taxes on both gasoline and electric miles. Before turning to the analysis of

multiple regions, it is first helpful to derive the result stated in the main text that Pigovain

taxes are optimal. Following the proof of Proposition 3, the first-order condition for tg is

(∂R
∂tg

− πg) − (δg
∂G

∂tg
+ δe

∂E

∂tg
) = 0.

We now deviate from the proof of Proposition 3, because we have taxes on both gasoline and

electric miles. Per capita revenue is therefore R = tgπg + te(1 − π)e. Taking the derivative of

the revenue constraint gives
∂R

∂tg
= G + tg

∂G

∂tg
+ te

∂E

∂tg
.

Using this in the first-order condition gives

((G + tg
∂G

∂tg
+ te

∂E

∂tg
) − πg) − (δg

∂G

∂tg
+ δe

∂E

∂tg
) = 0.
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Now, because G = πg, this simplifies to

(tg − δg)
∂G

∂tg
+ (te − δe)

∂E

∂tg
= 0.

Similar calculations with respect to te gives

(tg − δg)
∂G

∂te
+ (te − δe)

∂E

∂te
= 0.

It follows that the optimal taxes are tg = δg and te = δe, as stated in the main text.

Now turn to the case in which there are m regions. It is clear that the optimal region-

specific taxes are t∗gi = δgi and t∗ei = δei. In other words, each region implements the Pigovian

solution.

Now follow similar steps as in the proof of Proposition 2. Consider m regions and

determine the optimal uniform taxes. Per capita welfare in region i is

W̃i = µ (ln(exp(Ve/µ) + exp(Vg/µ))) − (δgiG − δeiE).

The government wants to pick the value for te and tg to minimize W̃(tg, te) = ∑αiW̃i. There

is a single per-capita revenue expression

R = tgπg + te(1 − π)e

that applies to the budget constraint for each consumer in each region. The values for e and

g will be the same across regions because the taxes are uniform. The first-order conditions

for tg and te are

∑αi ((tg − δgi)
∂G

∂tg
+ (te − δei)

∂E

∂tg
) = 0.

∑αi ((tg − δgi)
∂G

∂te
+ (te − δei)

∂E

∂te
) = 0.

The solution to these equations is t̃g = δ̄g and t̃e = δ̄e. In other words, the optimal uniform tax

on gasoline miles is equal to the weighted average of the marginal damages across regions.

The value for welfare is W̃(t̃g, t̃e).
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Next consider the case in which each region i has taxes tgi and tei on gasoline and

electric miles and per capita revenue Ri = tgiπigi + tei(1 − πi)ei. Let W(T ) denote the

weighted average of per capita welfare across regions as a function of the vector of taxes

T = (tg1, tg2, . . . , tgm, te1, te2, . . . , tem). We have

W(T ) =∑αiWi(tgi, tei) = µ∑αi (ln(exp(Vei/µ) + exp(Vgi/µ))) − (δgiGi − δeiEi).

We now want to take the first derivatives of the regulator’s objective with respect to the

elements of T . Because the problem is separable we can simply add subscripts and αi to the

derivatives we found in the single region case. We have

∂W
∂tgi

= αi(tgi − δgi)
∂Gi

∂tgi
+ αi(tei − δei)

∂Ei
∂tgi

and
∂W
∂tei

= αi(tgi − δgi)
∂Gi

∂tei
+ αi(tei − δei)

∂Ei
∂tei

Now consider the point T̃ = (t̃g, t̃g, . . . , t̃g, t̃e, t̃e, . . . , t̃e). At T̃ , all the revenue equations

are the same across regions It follows that

W(T̃ ) = W̃(t̃g, t̃e).

In other words, W(T̃ ) describes the weighted average welfare under the optimal uniform

taxes. Since this point has equal taxes in each region, the gasoline miles and electric miles

will be the same each each region. So we can drop the subscripts from g, e,G, and E. From

(4) we have
∂G

∂tg
= gπ(1 − π)

µ
(∂Vg
∂tg

− ∂Ve
∂tg

) + π ∂g
∂tg

= −g2π(1 − π)
µ

+ π ∂g
∂tg

.

∂E

∂tg
= −eπ(1 − π)

µ
(∂Vg
∂tg

− ∂Ve
∂tg

) + (1 − π) ∂e
∂tg

= geπ(1 − π)
µ

.

∂G

∂te
= gπ(1 − π)

µ
(∂Vg
∂te

− ∂Ve
∂te

) + π ∂g
∂te

= geπ(1 − π)
µ

.

∂E

∂te
= −eπ(1 − π)

µ
(∂Vg
∂te

− ∂Ve
∂te

) + (1 − π) ∂e
∂te

= −e2π(1 − π)
µ

+ (1 − π) ∂e
∂te

.
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This gives

∂W
∂tgi

∣
T̃

= αi(δ̄g − δgi)(−g2π(1 − π)
µ

+ π ∂g
∂tg

) + αi(δ̄e − δei) (ge
π(1 − π)

µ
)

and
∂W
∂tei

∣
T̃

= αi(δ̄g − δgi) (ge
π(1 − π)

µ
) + αi(δ̄e − δei) (−e2π(1 − π)

µ
+ (1 − π) ∂e

∂te
)

The first-order Taylor series expansion of W at the point T̃ can be written as

W(T ) −W(T̃ ) ≈∑
∂W
∂tgi

∣
T̃

(tgi − t̃g) +∑
∂W
∂tei

∣
T̃

(tei − t̃e).

Using the expressions above gives

W(T ∗)−W(T̃ ) ≈∑(αi(δ̄g − δgi)(−g2π(1 − π)
µ

+ π ∂g
∂tg

) + αi(δ̄e − δei) (ge
π(1 − π)

µ
)) (t∗gi−t̃g)+

∑(αi(δ̄g − δgi) (ge
π(1 − π)

µ
) + αi(δ̄e − δei) (−e2π(1 − π)

µ
+ (1 − π) ∂e

∂te
)) (t∗ei − t̃e).

Which can be written as

W(T ∗) −W(T̃ ) ≈ π(1 − π)
µ

(∑αi (g2(t∗gi − t̃g)2 − 2ge(t∗gi − t̃g)(t∗ei − t̃e) + e2(t∗ei − t̃e)2))−

π
∂g

∂tg
∑αi(t∗gi − t̃g)2 − (1 − π) ∂e

∂te
∑αi(t∗ei − t̃e)2.

Substituting in the values t∗gi = δgi, t∗ei = δei, t̃g = δ̄g and t̃e = δ̄e gives

W(T ∗) −W(T̃ ) ≈ π(1 − π)
µ

(∑αi (g2(δgi − δ̄g)2 − 2ge(δgi − δ̄g)(δei − δ̄e) + e2(δei − δ̄e)2))−

π
∂g

∂tg
∑αi(δgi − δ̄g)2 − (1 − π) ∂e

∂te
∑αi(δei − δ̄e)2,

which can be written as

W(T ∗) −W(T̃ ) ≈ π(1 − π)
µ

(∑αi (g(δgi − δ̄g) − e(δei − δ̄e))
2)−
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π
∂g

∂tg
∑αi(δgi − δ̄g)2 − (1 − π) ∂e

∂te
∑αi(δei − δ̄e)2.

It is interesting to compare this formula to the one derived in Proposition 2 for a tax on

the purchase of the electric car. Using the fact that s∗i = −(δgig − δeie) and s̃ = −(δ̄gg − δ̄ee),
we can write the first-order approximation formula in Proposition 2 as

W(S∗) −W(S̃) ≈= π(1 − π)
µ

(∑αi(e(δei − δ̄e) − g(δgi − δ̄g))2)

The first term in the formula for W(T ∗) −W(T̃ ) has exactly the same structure as the

formula for W(S∗) −W(S̃), but the values for π, e, and g will be different across the two

formulas. The formula for W(T ∗) −W(T̃ ) also has two extra terms that correspond to the

price effects of the taxes on the purchase of gasoline and electric miles. Because these price

effects are negative, both of the extra terms increase the benefit of differentiated regulation.

In the special case in which the population in each region is the same and e = g, first term

in the formula for W(T ∗) −W(T̃ ) is proportional to the variance of the difference between

the list of numbers δgi and δei, the second term is proportional to the variance the list of

numbers δgi, and the third term is proportional to the variance of the list of numbers δei.

Supplementary Appendix B: Choice over several gaso-

line and electric cars

Here we expand the model to allow for a richer consumer choice set. There are me electric

cars and mg gasoline cars. Gasoline cars are indexed by the subscript i and electric cars are

indexed by the subscript j. Each car has a different purchase price and price of a mile, and

we allow for the possibility of car specific taxes on miles and purchases. The universal utility

function is

U = ` +∑
i

fi(gi) +∑
j

hj(ej),

where gi is the consumption of miles from the i’th gasoline car and ej is the consumption of

miles from the j’th electric car. The indirect utility of consuming leisure and gasoline miles
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from the i’th gasoline car is given by

Vgi = max
`,gi

U(`, gi) s.t. ` + (pgi + tgi)gi = T +R − pi.

The indirect utility of consuming leisure and electric miles from the j’th electric car is given

by

Vej = max
`,ej

U(`, ej) s.t. ` + (pej + tej)ej = T +R − (pΩj − sj).

The conditional utility, given that a consumer elects gasoline car i, is given by

Ugi = Vgi + εgi.

The conditional utility, given that a consumer elects the electric car j

Uej = Vej + εej

The consumer selects the car that obtains the greatest conditional utility. Following the

same distributional assumptions as in the main text, the probability of selecting the gasoline

car i is

πi =
exp(Vgi/µ)

∑i exp(Vgi/µ) +∑j exp(Vej/µ)
.

The probability of selecting the electric car j is

πj =
exp(Vej/µ)

∑i exp(Vgi/µ) +∑j exp(Vej/µ)
.

And of course ∑i πi +∑j πj = 1. Including the pollution externality, the expected per capita

utility is given by

W = µ ln(∑
i

exp(Vgi/µ) +∑
j

exp(Vej/µ)) − (∑
i

δgiπigi +∑
j

δejπjej) ,

where δgi is the damage per mile from gasoline car i and δei is the damage per mile from

electric car j. It is useful to define Gi = πigi and Ej = πjej.
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Differentiated taxes on purchase of electric car

Here we consider a policy in which the government selects car-specific tax on the purchase

of electric cars. Let sj be the tax on electric car j. Government revenue is R = −∑πjsj.
Now consider a given electric car, say car k. The optimal tax on the purchase of this car,

sk, solves the first-order condition

∂W
∂sk

=∑
i

πi
∂Vgi
∂sk

+∑
j

πj
∂Vej
∂sk

−∑
i

δgi
∂Gi

∂sk
−∑

j

δej
∂Ej
∂sk

= 0.

From the Envelope Theorem, we have

∂Vgi
∂sk

= ∂R

∂sk

and, for j ≠ k,
∂Vej
∂s

= ∂R

∂sk
.

For j = k we have
∂Vej
∂sk

= ( ∂R
∂sk

+ 1) .

Substituting these expressions into the first-order condition gives

∂W
∂sk

=∑
i

πi
∂R

∂sk
+∑

j

πj
∂R

∂sk
+ πk −∑

i

δgi
∂Gi

∂sk
−∑

j

δej
∂Ej
∂sk

= 0.

This can be simplified to

∂W
∂sk

= ∂R

∂sk
+ πk −∑

i

δgi
∂Gi

∂sk
−∑

j

δej
∂Ej
∂sk

= 0.

Now
∂R

∂sk
= −πk −∑

j

∂πj
∂sk

sj.

Substituting this into the first-order condition gives

∂W
∂sk

= −∑
j

∂πj
∂sk

sj −∑
i

δgi
∂Gi

∂sk
−∑

j

δej
∂Ej
∂sk

= 0.
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Now, since there are no income effects,

∂Gi

∂sk
= gi

∂πi
∂sk

and
∂Ej
∂sk

= ej
∂πj
∂sk

Substituting the derivatives of Gi and Ej gives

∂W
∂sk

= −∑
j

∂πj
∂sk

sj −∑
i

δgigi
∂πi
∂sk

−∑
j

δejej
∂πj
∂sk

= 0. (11) dtec

We have one of these equations for each k. So we must solve the system of me equations for

the me unknowns sj. Since we do not obtain an explicit solution for the optimal taxes on

purchase, we cannot derive analytical welfare approximations to the gains from differentiation

analogous to Proposition 2. We can, of course, obtain exact welfare measures by numerical

methods.

Uniform subsidy on the purchase of an electric car

Now suppose that the government places a uniform tax s on the purchase of any electric

car. Expected per capita government revenue is given by R = −∑j πjs. The optimal s can

be found as a special case of the differentiated subsidy formula presented above. Let sk = s
for every k. Then (11) becomes

∂W
∂s

= −s∑
j

∂πj
∂s

−∑
i

δgigi
∂πi
∂s

−∑
j

δejej
∂πj
∂s

= 0.

Solving for s gives

s = −∑i
δgigi

∂πi
∂s +∑j δejej

∂πj
∂s

∑j
∂πj
∂s

Now since ∑i πi +∑j πj = 1 it follows that

∑
i

∂πi
∂s

+∑
j

∂πj
∂s

= 0.
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Using this gives

s = ∑i
δgigi

∂πi
∂s

∑i ∂πi∂s

− ∑j
δejej

∂πj
∂s

∑j
∂πj
∂s

.

In the special case in which gi = g and ej = e, we have

s = g∑i
δgi

∂πi
∂s

∑i ∂πi∂s

− e∑j
δej

∂πj
∂s

∑j
∂πj
∂s

.

The optimal subsidy is a function of the weighted sum of marginal damages from each

car in the choice set, where the weights are equal to the partial derivative of the choice

probabilities with respect to s. This generalizes the result in Proposition 1 in the main

text. The informational requirements of the two results are different, however. To evaluate

the optimal subsidy in Proposition 1, we need only make an assessment of the damage

parameters (the δ′s) and the lifetime miles (e and g). To evaluate the optimal subsidy when

there is an expanded choice set, we need, in addition, the partial derivatives of the adoption

probabilities, which requires a fully calibrated model.

Supplementary Appendix C: Comparison with Mendel-

sohn (1986)

Applying our approximation methodology to Mendelsohn’s model reveals the differences in

the welfare gain of differentiation in our model and his. In Mendelsohn’s model, the derivative

of the objective function with respect to the policy variable is linear in the environmental

parameter. And the second derivative does not depend on the environmental parameter. In

contrast, in our model, both the first and second derivatives are linear in the environmental

variable.

More formally, consider Mendelsohn’s model and let Q∗ be the optimal differentiated reg-

ulation and Q̄ be the optimal uniform regulation. The first-order Taylor series approximation

to the welfare gain form differentiation is

W (Q∗) −W (Q̄) ≈ ∂W
∂Q

(Q∗ − Q̄).
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Both ∂W
∂Q and (Q∗−Q̄) are linear in the environmental parameter, so the welfare difference is

is quadratic in the environmental parameter. Now consider the second-order Taylor series:

W (Q∗) −W (Q̄) ≈ ∂W
∂Q

(Q∗ − Q̄) + 1

2

∂2W

∂Q2
(Q∗ − Q̄)2.

The first term in this expression is quadratic in the environmental parameter. In the second

term, the second derivative does not depend on the environmental parameter, so the second

term in quadratic in the environmental parameter as well. So we see for both the first

and second order approximations, the welfare difference is quadratic in the environmental

parameter. Because Mendelsohn’s objective is quadratic, the second order approximation is

in fact exact.

In our model, the second-order approximation has a term that is cubic in the envi-

ronmental variable, which implies that the welfare benefit depends on the skewness of the

distribution of this variable. As in Mendelsohn’s model, (S∗ − S̃) is linear in the environ-

mental parameter. So the difference between models is due to differences in the first and

second derivatives. In particular, due to the discrete choice nature of our model, the first

and second derivatives are both linear in the environmental parameter. To see this, recall

that our objective function has terms such at πδ where delta is the environmental parameter

and π is the choice probability. Now π i is a function of the policy variable s. From (3) we

have
∂π

∂s
= − 1

µ
π(1 − π),

and so it follows that
∂2π

∂s2
= − 1

µ
(π(1 − π) − 2π2(1 − π)),

and, as a consequence, the first and second derivatives are both linear in δ.

Supplementary Appendix D: Calibration

To analyze welfare issues, we must have a value for µ. We determine this value by calibrating

a numerical version of the model. For this calibration, we assume a specific functional form
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for the utility of consuming electric miles and gasoline miles. For gasoline miles we have

f(g) = gγg and for electric miles we have h(e) = eγe . We determined the values for γg and γe

such that the consumer would, in the absence of any policy intervention, consume 150,000

lifetime miles for each type of vehicle. As in the main text, we compared the Ford Focus

with the Ford Focus Electric. The values for all of the parameters except µ are shown in

Table A.22

For µ, we specified a range of possible values. This range was determined by considering

a range of values for the probability, in the absence of any policy intervention, that the

consumer would select the gasoline car. See Table B.

Table A: Calibration Parameters (2013 Dollars) : Ford Focus and Ford Focus Electric parmsa

Parameter Value Economic Interpretation Source/Notes

p` 20.7 Value of time ( $ per hour) US BLS : $827 week
T 87600 Endowment of time Hours in 10 year car lifetime
pe 0.0389 Price of electric miles ($ per mile) EIA : 0.1212 $ per kWh * 0.321 kWh/mile
pg 0.1126 Price of gasoline miles ($ per mile) CNN : 3.49 $ per gallon / 31 miles/gallon
pΩ 35170 Price of electric car ($) Ford Motors
p 16810 Price of gasoline car ($) Ford Motors
γg 0.6048 Gas miles preference parameter Calculated so that g = 150,000.
γe 0.5272 Electric miles preference parameter Calculated so that e = 150,000.

Table B: Value of µ as a function of the probability, with no policy intervention, of selecting
the gasoline car

µ Probability

254.2 0.99
396.8 0.95
531.7 0.90
842.8 0.80
1378.8 0.70
2881.4 0.60

parmsb

22These parameters were converted to year 2000 dollars to be consistent with the values from the AP2
model.
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Supplementary Appendix E: CAFE Standards

Consider an automobile manufacturer that produces three models a, b, and g with corre-

sponding fuel economies in miles per gallon fa < fb < fg. As the notation indicates, car g

will play the role of the gasoline car in the main text. The sales are each model are na, nb

and ng. The CAFE standard requires that fleet fuel economy (defined as the sales-weighted

harmonic mean of individual fuel economies) exceeds a given value k. So we have

na + nb + ng
na

fa
+ nb

fb
+ ng

fg

≥ k.

Suppose initially that the cafe standard is binding, which implies that the market would

prefer to swap from a high MPG car purchase to a low MPG car purchase, but cannot do

so because of the standard. It is helpful to write the initial condition in terms of gallons per

mile rather than miles per gallon:

na

fa
+ nb

fb
+ ng

fg

na + nb + ng
= 1

k
.

We want to analyze the impact of selling an electric car on the composition of the fleet,

under the assumption that the total amount of cars sold stays the same. For CAFE purposes,

the electric car is assigned it’s MPG equivalent, which is typically much greater than the

MPG of the most efficient gasoline car. Let this be denoted by fe where fe > fg. Since the

total amount of cars sold stays the same, the sale of an electric car leads to a reduction in

sales of another type of car. This clearly raises the fleet fuel economy, the CAFE standard

is no longer binding, and so the previously restricted swap from high to low MPG may now

be allowed to take place. Assume that the electric car sale replaces a sale of a model g car,

and that the desired swap is from b to a. Also assume that the footprint of g and e are the

same, and the footprint of b and a are the same. (This keeps the value of k constant.) The

swap of a for b can be done if the resulting fleet fuel economy satisfies the standard:

na+1
fa

+ nb−1
fb

+ ng−1
fg

+ 1
fe

na + nb + ng
≤ 1

k
. (12) swap
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Using the initial condition this becomes

1

k
+

1
fa
+ −1

fb
+ −1
fg
+ 1
fe

na + nb + ng
≤ 1

k
,

and so the condition becomes
1

fa
− 1

fb
≤ 1

fg
− 1

fe
. (13) cafe

The right-hand-side of (13) specifies the maximum feasible increase in gallons per mile that

may occur in the rest of the fleet due to the sale of an electric car. If the CAFE constraint

binds in the resulting fleet (which we would generally expect to be the case), then this

maximum will be obtained. And of course this increase in gallons per mile has an associated

cost to society from emissions damage.

We see that CAFE regulation induces an additional environmental cost from electric cars

due to the substitution of a low MPG car for a high MPG car. We can sketch a back-of-

the-envelope calculation for the magnitude of this CAFE induced environmental cost and its

effect on the optimal tax on electric cars as follows. Assume that car a and car b are in the

same Tier 2 “bin”. For cars in the same bin, the vast majority of environmental damages

are due to emissions of CO2. In addition, without a explicit model of the new car market,

we don’t know which region the car a will be driven. So we are content to calculate the

CAFE induced environmental cost due to CO2 emissions only. Let δa and δb be the damage

(in $ per mile) due to CO2 emissions from car a and b, respectively.23 It follows that the

additional environmental cost is give by (δa − δb)g.

Next we integrate CAFE standards with the model in the main part of the paper. We

do not try to model both supply and demand for the market for cars. Rather we simply

assume that the consumer chooses between the electric car and car g, and this choice induces

a change in the composition of the rest of the fleet due to CAFE regulation considerations.

The basic welfare equation becomes

W = µ (ln(exp(Ve/µ) + exp(Vg/µ))) − (π(δb + δg)g + (1 − π)(δee + δag)).
23For example, δa =

$0.344
fa

, where the numerator is the CO2 damages per gallon in our model.
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We see that if the consumer selects the gasoline car, then the fleet consists of this gasoline car

in conjunction with car b. But if the consumer selects the electric car, then the fleet consists

of the electric car in conjunction with car a. (We are ignoring the utility benefit generated

by the switch from b to a.) Following similar arguments as in the proof of Proposition 1, the

optimal subsidy is determined to be

s∗ = ((δg − (δa − δb))g − δee).

We see that the optimal subsidy is decreased by the amount equal to the CAFE induced

environmental cost (δa − δb)g. Using our Ford Focus baseline numbers, the CAFE induced

environmental cost turns out to be $1229.24

Starting in 2017, CAFE regulation will make things worse, because it will allow the

manufacturer to claim credit for two electric car sales for each actual sale of an electric car.

Thus (12), the condition for the swap from b to a becomes

na+1
fa

+ nb−1
fb

+ nc−1
fc

+ 2
fe

na + nb + nc + 1
≤ 1

k
.

Notice that we are keeping the actual amount of cars sold constant, but the CAFE regulation

enables the manufacturer to do the calculation as if they had sold one additional electric

car. Using the initial condition, this can be written as

1
fa
+ −1

fb
+ −1

fc
+ 2
fe

na + nb + nc
≤

na

fa
+ nb

fb
+ nc

fc

na + nb + nc
(na + nb + nc + 1) − (na

fa
+ nb
fb
+ nc
fc

) .

Which simples to
1

fa
− 1

fb
≤ ( 1

fc
− 1

fe
) + (1

k
− 1

fe
) . (14) cafee

Comparing (13) with (14), we see that the effect of double counting the electric car is to

24The right-hand-side of (13) is given by 1/30−1/105 = 0.0238. Assuming this equation holds with equality,
we have (δa − δb) = 0.344 ∗ 0.0238. Multiplying by a lifetime of 150,000 miles gives $1229. We should also
note that the EPA posted MPG number for a given car is different from the CAFE MPG number for that
same car. On average, the EPA number is eighty percent of the CAFE number. We use the EPA number
in the calculation of the additional environmental cost because it more accurately reflects real word gas
consumption.
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more than double the CAFE induced environmental cost of the electric car, provided the

gallons per mile used by car c is smaller than CAFE limit on gallons per mile 1/k.
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