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Abstract

Work schedules play an increasingly important role as production becomes more time-
sensitive and utilizes workers more interchangeably. I find two types of strategic physician
behavior near end of shift (EOS) in emergency department shift work. First, on an extensive
margin, physicians accept fewer patients near EOS (“slacking off”). Second, on an intensive
margin, physicians distort patient care, incurring higher costs as they spend less time on
patients accepted near EOS. I demonstrate a tradeoff between these two strategic behaviors,
by examining how they change with shift overlap. Accounting for both costs of physician
time and patient care, I find that physicians slack off at approximately second-best optimal
levels.
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1 Introduction

The clock, which made industrial work possible, fundamentally changed the nature of

work and, subsequently, the rest of life, making time scarce.

Robinson and Godbey (2010)

There is no more wasteful entity in medicine than a rushed doctor.

Jauhar (2014)

Two broad changes have altered the intertemporal use of labor in health care production.

First, technological advances have caused a proliferation in the diagnostic and therapeutic de-

cisions that should be made in rapid order from a patient’s presentation.1 Second, changes in

work and society, including the emergence of dual-earner families, have driven worker preferences

for more predictable hours (e.g., Goldin, 2014; Presser, 2003). Thus, increasingly, health care

is delivered by organizations, and uncertain work is assigned by schedules (e.g., Briscoe, 2006;

Casalino et al., 2003). While an expanding operations literature has focused on mechanically

efficient scheduling,2 this paper observes that the very existence of schedules induces a margin

for strategic behavior: Schedules define boundaries of worker availability, but the nature of work

often is neither sharply nor predictably delimited in time. This may be exploited by workers

who have a private value for their time.

This possibility has implications for workplace design, which I consider in emergency depart-

ment (ED) shift work. As in other settings, shifts in the ED are meant to specify a minimum

quantity of hours worked, in which the end of shift (EOS) represents the time when physicians

may stop accepting new work and go home if their work is complete. If physicians incur a

private cost for time spent past EOS (e.g., if they are not compensated adequately, or at all,

1A related result of technological advances is specialized knowledge, which requires care delivered in teams.
Although technological advances have been widespread, see Messerli et al. (2005) for the particularly impressive
example of modern cardiovascular care, compared to Dwight Eisenhower’s heart attack treatment in 1955.

2A large and active literature in operations management has investigated how staffing can be made more
efficient by reducing labor costs and increasing profitability (e.g., Perdikaki et al., 2012; He et al., 2012; Green, 2004,
1984), including recent investigations that describe how worker throughput responds to environmental features
such as “system load” (Kc and Terwiesch, 2009). Many service companies are increasingly using computerized
staffing tools (Maher, 2007).
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for this marginal time), schedules induce two forms of strategic behavior near EOS: First, on

an extensive margin, physicians will accept fewer patients than socially optimal. Second, on an

intensive margin, physicians may rush to complete their work, distorting their production to

spend less time on patients they do accept near EOS.

Exploiting variation in the arrival of patients relative to physician schedules, I empirically

ask whether patients are treated differently by physicians nearing their shift ends. Shifts ending

at different times allow me to separate effects related to shift work from differences due to the

time of day. Shifts of different lengths allow separating these effects from “fatigue,” which I

consider to depend on the time since the beginning of shift. I show that physicians accept fewer

patients near EOS. For patients they do accept, I also show that physicians shorten the duration

of care (“length of stay”) in the ED and increase formal utilization, inpatient admissions, and

overall costs as the time of arrival approaches EOS.

To interpret changes in patient care as strategic behavior, I use another source of variation

from shift structure: the overlapping time between when a peer arrives on a new shift and when

the index physician reaches EOS. My identifying assumption is that, conditional on the volume

of work, the time from the beginning of the shift, and the time from the peer’s arrival, the EOS

should not otherwise matter for socially efficient reasons, since it is merely when physicians may

go home if work is complete. I show that distortions on the intensive margin of patient care are

greatest when physicians have the least time to offload work onto a peer before EOS. In fact,

there is no increased utilization or admissions when overlap is four or more hours.

This evidence suggests a policy tradeoff between the extensive and intensive margins of

strategic behavior. On the extensive margin, workers “slack off” by accepting fewer patients,

akin to “presenteeism” in which workers are present but not working or stay at work apparently

longer than useful. While slacking off represents a waste of physicians’ time, it reduces workload

when time becomes more costly and, on the intensive margin, mitigates physicians inefficiently

substituting other inputs for time.3 The assignment of work is largely observable and therefore

manageable, but distortion on the intensive margin could be much more costly. Considering

3The idea of time per effective work is related to work by Coviello et al. (2014), who discuss of the effect
of dividing time among tasks, although with a single worker who works indefinitely. The time for completing a
project mechanically is lower when fewer projects are active because time is divided among fewer projects.
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a wide range counterfactual regimes of patient assignment near EOS, I find that observed as-

signment patterns approximately minimize costs of physician time and patient care. In other

words, given information asymmetry between workers and managers in patient care, slacking off

is approximately second-best optimal at least in this setting.4

This paper is related to several strands of literature. First, a central economic question is

how to induce workers to work efficiently. A mostly theoretical literature has broadly examined

levers of financial incentives (Lazear, 2000), social incentives (Kandel and Lazear, 1992), perfor-

mance measurement (Baker, 1992), and monitoring (Holmstrom, 1982).5 This paper empirically

demonstrates a general tradeoff betweeen the assignment of work and the subsequent perfor-

mance of work, implying a second-best policy that allows workers to avoid work. This finding

is thus related to the design of second-best incomplete contracts, for schedules as contracts that

specify minimum quantity (or scheduled amount of time) of labor (Weitzman, 1974).

Second, this paper relates to a literature on improving productivity through workplace design

(Ichniowski et al., 1997; Lazear, 1995), including recent work by Bloom et al. (2014) investigating

the effect of working at home on productivity. An older literature has studied the tradeoff

between labor and leisure, but its mapping to current work environments seems at best coarse.

In practice, availability for work is scheduled, with frequent, often daily boundaries between work

and time off. This paper shows the productivity implications of potential worker agency, with

respect to time, for the key workplace design issues of scheduling availability and distributing

work. When managerial levers such as piece-rate pay emphasize performing “more” work, overall

efficiency may be reduced when workers are preparing to leave work.

Third, my findings contribute to research on the health and social consequences of shift

work (e.g., Gordon et al., 1986; Gold et al., 1992), as well as an increasing realization of the

difficulties imposed by non-standard schedules on families (Kelly et al., 2011; Kantor, 2014;

Greenhouse, 2014), as two-fifths of Americans now work mostly at non-standard times (Presser,

4Another informational friction taken as given is the ability of workers to hand off work to each other. This
friction of client-worker specificity is fundamental and has been discussed as the root of temporal inflexibility in
many jobs (Briscoe, 2007; Goldin, 2014). In this case, the specificity occurs ex post patient assignment.

5A growing empirical component has studied social incentives (Mas and Moretti, 2009; Bandiera et al., 2005,
2009; Jackson and Schneider, 2011) and monitoring (Nagin et al., 2002; Duflo et al., 2013). A related empirical
literature has examined nonlinear financial incentives with windows of performance measurement (Oyer, 1998;
Larkin, 2014).
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2003). Within health care, there has been a vigorous policy debate about physician work hours

from a patient-safety standpoint (e.g., Shetty and Bhattacharya, 2007; Volpp and Rosen, 2007;

Nasca et al., 2010). I draw attention to strategic behavior in scheduled work more generally.

Considering the worker value of certainty and convenience may inform important production

issues in health care and beyond, in which rushing to get home may incur wasteful costs.

The remainder of this paper is organized as follows: Section 2 describes the institutional

setting and data. Section 3 discusses a conceptual framework to consider EOS effects. Section

4 investigates physician acceptance of new patients. Section 5 reports EOS effects for patients

who are accepted and considers evidence for patient selection and physician fatigue. Section 6

considers the relationship between shift overlap, workload, and patient-care distortion. Section 7

presents simulations of counterfactual regimes of patient assignment and shows that the observed

assignment regime is approximately second-best optimal. Section 8 concludes.

2 Institutional Setting and Data

2.1 Shift Work

I study a large, academic, tertiary-care ED with a high frequency of patient visits. Like in

virtually all other EDs around the country, work is organized by shifts. In the study sample

from June 2005 to December 2012, shifts range from seven to twelve hours in length (`). Shifts

also differ in overlap with a previous shift (o) or with a subsequent shift (o) in the same location.

I observe 23,990 shifts in 35 different shift types summarized by 〈`, o, o〉. Table A-2 lists the

number of observations for each shift type in terms of shifts, hours, and patients.

For physicians working in these shifts, the end of shift (EOS) is simply the time after which

they are allowed to go home if they have completed their work. Because I focus on behavior

at EOS, I pay special attention to o. This overlap is the time prior to EOS during which a

physician shares new work with another physician who has begun work in the same location.6

6I distinguish between shifts that end with the closure of a patient location, or “terminal shifts” with o = 0,
and those continuing patient care with another shift in the same location, or “transitioned shifts” with o > 0.
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“Location” refers to a set of beds in the ED in which a physician may treat patients. This

managerial definition may differ from broader physical areas, or “pods,” where physicians may

see each other but may not share the same beds. That is, a pod may contain more than one

managerial location. During my sample period, I observe two to three pods, with a new pod

opening in May 2011, that at various times were divided into two to five managerial locations.

In the study period, the ED underwent 15 different shift schedule changes at the location-

week level. Within each regime, the pattern of shifts could differ across day of the week. As

is common in scheduled work, shift times were designed around estimated workload needs, and

schedule changes reflected changes in the flow of patients to ED. Some shift regime changes

were merely minor tweaks in the times of specific shifts, while others involved larger changes. In

particular, the regime change in May 2011 included the introduction of a new pod to increase

the number of available beds to meet increasing ED volume. All regime changes, however, can

be summarized as a set of shifts, each described by a shift type 〈`, o, o〉, a starting day and time,

location, and range of months that the shift was in effect (see Figure A-1; Table A-1 details

these shift descriptions).

Shifts are scheduled many months in advance, and physicians are expected to work in all

types of shifts at all times and locations. Physicians may only request rare specific shifts off,

such as holidays and vacation days, and shift trades are rare. During a shift, physicians cannot

control the volume of patients arriving to the ED or the patient types that the triage nurse

assigns to beds. Throughout the entire study period, physicians were exposed to the same

financial incentives: They were paid a clinical salary based on the number of shifts they work

with a 10% productivity bonus based on clinical productivity (measured by Relative Value Units,

or RVUs, per hour) and modified by research, teaching, and administrative metrics.7

2.2 Patient Care

After arrival at the ED, patients are assigned to a bed by a triage nurse. This assignment

determines the managerial location for the patient and therefore the one or more physicians who

7The metric of Relative Value Units (RVUs) per hour is a financial incentive that encourages physicians to
work faster, because RVUs are mostly increased on the extensive margin by seeing more patients and are rarely
increased by doing more for the same patients.
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may assume care for the patient. Once the patient arrives in a bed, a physician may sign up for

that patient on the computer order entry system. Physicians are expected to complete work on

any patient for whom they have assumed care, in order to reduce information loss with hand-offs

(e.g., Apker et al., 2007), except in uncommon cases where the patient is expected to stay much

longer in the ED. For patients arriving near EOS, physicians may opt not to start work and

leave the patient for another physician. This option is more acceptable if this physician peer

will arrive soon or has already arrived in the same location.

In addition to the attending physician (or simply “physician”), patient care is also provided

by resident physicians or physician assistants and by nurses (not to be confused with the triage

nurse). These other providers also work in shifts. Generally shifts of different team members do

not end at the same time as each other, except when a location closes. More importantly, unlike

physicians, care by nurses, residents, and physician assistants is readily transferred between

providers in the same role when they end their respective shifts, perhaps reflecting the lesser

importance of their information and discretion. In contrast, only physicians have the authority

to make patient discharge decisions.

For physicians in the ED, the concept of patient discharge is a matter of discretion. Patient

care usually expected to continue after discharge, in either outpatient or inpatient settings. The

key criterion for completion of work – or discharge – is whether the physician believes that

sufficient information has been gathered for a discharge decision out of the ED. This decision

is often made with incomplete diagnosis and treatment. Rather, the physician may decide to

discharge a patient home with outpatient follow-up after “ruling out” serious medical conditions,

or the physician may admit the patient for inpatient care if the patient could still possibly have

a serious condition that would make discharge home unsafe.8

Physicians may gather the information they need to make the discharge decision in several

ways. Formal diagnostic tests are an obvious way to gain more information on a patient’s clinical

condition. Treatment can also inform possible diagnoses by patient response, such as response

to bronchodilators for suspected asthma. But time – for a careful history and physical, serial

8In this ED, there is yet a third discharge destination to “ED observation,” if the patient meets certain criteria
that make discharge either home or to inpatient unclear and justify watching the patient in the ED for a substantial
period of time (usually overnight) to watch clinical progress.
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monitoring, or a well-planned sequence of formal tests and treatment – remains an important

input in the production of information. Diagnostic tests and treatments can be complements

or substitutes for time: Formal tests (e.g., CT and MRI scans) take time to complete and can

thus prolong the length of stay, but testing can also substitute for a careful questioning or serial

monitoring to gather information more rapidly.

2.3 Observations and Outcomes

From June 2005 to December 2012, I observe 442,244 raw patient visits to the ED. I com-

bine visit data with detailed timestamped data on physician orders, patient bed locations, and

physician schedules to yield a working sample of 372,224 observations. Details of the sample

definition process are described in Table A-1. In the sample, I observe the identities of 102

physicians, 1,146 residents and physician assistants, and 393 nurses.

Table A-2 summarizes the number of observations for each shift type, in terms of hours,

potential patients who arrive during a time when a shift of that type is in progress, and actual

patients who are seen by a physician working in a shift of that type. Because I focus on

behavior near EOS, I also present in Figure 1 key variation in the time of day for EOS and the

shift length, which separates EOS behavior from the time of the day and from time relative to

the shift beginning, as well as variation in the time of day and the overlap with another shift at

EOS.

I measure ED length of stay as a important input in patient care. Length of stay for patients

arriving near EOS is exactly the measure that determines when a physician can leave work. I

measure length of stay from the arrival at the pod to entry of the discharge order, which is

unaffected by downstream events (e.g., inpatient bed availability, patient home transportation,

or post-ED clinical care). I also use timestamped orders as measures of utilization and to create

intervals of time within length of stay.

Since the primary product of ED care is the physician’s discharge decision, I focus on the

decision to admit a patient as a key outcome measure, which has has also received attention as

a source of rising system costs (Schuur and Venkatesh, 2012; Forster et al., 2003). I accordingly

measure total direct costs, including costs incurred both by formal utilization in the ED and
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during a subsequent admission.9 Finally, I measure thirty-day mortality, occurring in 2% of the

sample visits, and return visits to the ED within 14 days (“bounce-backs”), occurring in 7%

of the sample (Lerman and Kobernick, 1987). However, these latter outcomes are less strongly

influenced by the ED physician and depend on a host of factors outside the ED and hospital

system, reducing the precision of their estimated effects.

2.4 Patient Observable Characteristics

When patients arrive at the ED, they are evaluated by a triage nurse and assigned an

Emergency Severity Index (ESI), which ranges from 1 to 5, with lower numbers indicating a

more severe or urgent case (Tanabe et al., 2004). When the patient is assigned a bed, this

information is communicated via a computer interface, together with the patient’s last name,

age, sex, and “chief complaint” (a phrase that describes why the patient arrived at the ED). I

observe all this information displayed to physicians prior to patient acceptance.

In addition, I observe patient characteristics that are usually known (if ever) by physicians

only after patient acceptance – insurance status, language, race, zip code of residence, and rich

diagnostic information – since physicians do not interact with patients or examine their charts

prior to accepting them. I codify the diagnostic information into 30 Elixhauser indicators based

on diagnostic ICD-9 codes for comorbidities (e.g., renal disease, cardiac arrhythmias) that have

been validated for predicting clinical outcomes using administrative data (Elixhauser et al.,

1998). Diagnostic codes of course are also partly determined by patient care.

2.5 Descriptive Evidence

Figure 2 shows a plot of the distribution of visits over arrival time prior to EOS and length

of stay. Panel A shows the raw patient visit count in each fifteen-minute bin of arrival time

interacted with each fifteen-minute bin of length of stay. Some findings are apparent from these

visit plots. First, few patients are seen within the last two hours prior to EOS.10 Second, lengths

of stay are shorter for patients who arrive and are accepted by a physician closer to EOS than for

9Direct costs are for services that physicians control and are directly related to patient care. Indirect costs
include administrative costs (e.g., paying non-clinical staff, rent, depreciation, and overhead).

10Although relatively few patients are also seen arriving greater than nine hours prior to EOS, this fact reflects
that relatively few shifts are greater than nine hours in length.
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patients farther from EOS. There also appears to be an additional density of visits just prior to

the 45-degree line mapping when length of stay roughly equals the time prior to EOS, implying

that patients are more likely to be discharged just prior to EOS than at times before or after.

In order to examine more closely the discharge of patients conditional on acceptance, I plot

in Panel B of Figure 2 the density of length of stay conditional on arrival time (and acceptance)

prior to EOS. This plot shows a greater density of early discharges with arrival times closer to

EOS. As in Panel A, for visits with arrival times between two to seven hours prior to EOS,

there appears to be a linear mass of discharges along the 45-degree line in which discharges are

roughly just prior to EOS.

3 Conceptual Framework

I introduce a simple model in this section to consider how schedules may distort three types

of decisions made by ED physicians. First, they decide whether they will care for a patient

arriving in their location. Second, if they assume care of the patient, they decide on the inputs

of care: time and formal diagnostic tests and treatment. Third, based on information from these

inpus, they produce a discharge decision, either for inpatient admission or to home. Because

ED physicians may go home after EOS only if she has completed patient care, time becomes

more privately costly as a physician nears EOS, with implications for all three decisions.

3.1 Model Setup

Consider a physician at the time t of patient arrival, in work environment Et ≡ (Wt,W ′t).

Wt ≡ (t, wt) captures the start time of the physician’s shift, t, and her current workload, wt.

W ′t ≡ (t′, w′t) describes similar information for a potential peer in the subsequent shift in the same

managerial location. The patient’s underlying health state is θ ∈ {0, 1}, which is unobservable

on arrival, but the patient is known on arrival to have θ = 1 with probability p. Given the

patient’s arrival, the physician takes the following actions:

1. Given t, Et, and p, the physician decides on a ∈ {0, 1}, whether to accept the patient

(a = 1) or not (a = 0).
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2. If she accepts the patient, she decides on inputs z in patient care: observation time τ1,

tests and treatments z, and subsequent time τ2 to follow up on these tests and treatments.

3. After duration τ ≡ τ1 + τ2, θ is observed with probability q (z), and the physician decides

on d ∈ {0, 1} ,to admit (d = 1) or discharge home the patient (d = 0).

4. The patient’s health state θ is observed, and the physician receives the following utility:

u (t, Et; θ; a, z, d) =


O (Et; θ) , a = 0

V (θ, d)− cτ
(
t, τ, t

)
− czz, a = 1

. (1)

O (Et; θ) is the value of the “outside option” if a = 0, which captures concerns about the

patient and a peer, who may or may not yet be present. V (θ, d) is the utility due to

discharge decision d for patient with health state θ. cτ
(
t, τ, t

)
is time cost of care, which

is at least partly private and dependent on t, the time of EOS; czz is the test-treatment

cost of care. I discuss O (Et; θ), V (θ, d), and cτ
(
t, τ, t

)
more below.

3.2 Producing a Discharge Decision

I first examine EOS effects on the inputs to patient care and the discharge decision, assuming

that the physician has chosen to accept the new patient (a = 1). Discharge decisions have

important efficiency implications for resource utilization and patient health. Formally, patients

with θ = 0 should be discharged home, while those with θ = 1 should be admitted: V (0, 0) >

V (0, 1) and V (1, 1) > V (1, 0). Discharging a sick patient home is particularly harmful, or

equivalently, physicians are risk-averse: V (1, 1)− V (1, 0) > V (0, 0)− V (0, 1). Because of this

last fact, if θ remains unobserved, the physician will admit if and only if p > p∗ < 1
2 :

E [V |d = 0, p = p∗] = E [V |d = 1, p = p∗]

p∗V (1, 0) + (1− p∗)V (0, 0) = p∗V (1, 1) + (1− p∗)V (0, 1)

1− p∗

p∗
=

V (1, 1)− V (1, 0)

V (0, 0)− V (0, 1)
> 1.
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Patient care increases the probability q of observing θ and therefore appropriate discharges.11

This probability is increased by formal diagnostic tests and treatment, z, and by clinical obser-

vation and reasoning over time, τ . τ can be thought of as two components, τ1 and τ2, which are

substitutes and complements with formal testing and treatment, respectively. Testing, treat-

ment, and time all entail costs to the physician, but I assume that time also becomes privately

more costly as the physician nears EOS, since time spent on patient care past EOS prolongs the

time the physician must stay at work.

I impose the following production relationships: q is increasing and concave with respect to

inputs to patient care z (τ1, τ2, and z). τ1 and z are substitutes in production (∂2q/ (∂τ1∂z) < 0),

while τ2 and z are complements (∂2q/ (∂τ2∂z) > 0). Effective time per patient is reduced with

higher workload wt: ∂2q/ (∂τ1∂wt) < 0 and ∂2q/ (∂τ2∂wt) < 0. This contrasts with formal

inputs, for which I make the normalizing assumption ∂2q/ (∂z∂wt) = 0.

Finally, I assume that the cost of time τ = τ1 + τ2 depends on whether it extends beyond

EOS: cτ
(
t, τ, t

)
= c0

τ (τ) + c̃τ
(
τ + t− t

)
, where c0

τ (·) and c̃τ (·) (respectively the social and

additional private costs of time) are positive, increasing, and convex.12 To be precise about the

implications of a private wedge in the cost of time due to EOS, consider a welfare function W

identical to Equation (1) except that it does not include private costs of time:

W (t, Et; θ; a, z, d) =


O (Et; θ) , a = 0

V (θ, d)− c0
τ (τ)− czz, a = 1

. (2)

Proposition 1. Denote decisions in Section 3.1 that maximize expected utility in Equation (1),

conditional on patient acceptance (a = 1), as τ∗, z∗, and d∗. Denote corresponding decisions

that maximize welfare in Equation (2) as τ∗∗, z∗∗, and d∗∗.

(a) As t→ t, τ∗ decreases, z∗ may decrease (if τ1 dominates) or increase (if τ2 dominates),

11I abstract away from treatment within the ED that can improve the patient’s health. This can easily be
incorporated into the model and would not change qualitative results.

12To incorporate fatigue, c0τ may also depend on t − t, but the crucial assumption is that only private time
costs depend on t. Private time costs could also be positive for τ + t− t < 0 if the physician needs to reduce her
workload or attend to other duties (e.g., dictating charts) before going home.
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and E [d∗] increases as long as 1− F (p∗) > 1
2 .

(b) For all t, τ∗ < τ∗∗, and E [d∗] < E [d∗∗].

(c) If the effect from τ1 dominates that from τ2, then z∗ < z∗∗, and z∗∗− z∗ increases in wt,

holding t constant and for all t. The reverse is true if τ2 dominates.

As the physician nears EOS, she will shorten length of stay τ = τ1 + τ2. The intensity of

diagnostic tests and treatments may decrease or increase, depending on whether decreases in

τ1 or τ2 dominate. Finally, she observes θ with lower probability q. This increases admissions,

as long as E [θ] < 1 − F (p∗), where F (·) is the c.d.f. of p. A sufficient condition for this is

1− F (p∗) > 1
2 , which includes all symmetric distributions over p ∈ [0, 1] . These distortions are

greater with greater workload wt, because wt further increases the cost of time by reducing the

effective time per patient to produce q.

3.3 Accepting a Patient

I next consider the physician’s upstream decision to assume the care of a new patient arriving

near EOS. A patient arriving near EOS may be seen by the physician ending her shift or another

physician beginning in the same managerial location. If the other physician has not yet begun

his shift, then the patient would have to wait in order to be seen by him.

Formally, the physician decides whether or not to accept the patient, a ∈ {0, 1}, in environ-

ment Et. This decision is a comparison between expected utility under a = 1,

E [u (t, Et; θ; 1, z∗, d∗)] = max
z

{
E

[
max
d
V (θ, d)

]
− cτ

(
t, τ, t

)
− czz

}
,

where

E

[
max
d
V (θ, d)

]
=


E [V (θ, 0)] + pq (V (1, 1)− V (1, 0)) , p < p∗

E [V (θ, 1)] + (1− p) q (V (0, 0)− V (0, 1)) , p ≥ p∗
,

and expected utility under a = 0, E [O (Et; θ)].
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Proposition 2. Denote a∗ as the patient acceptance decision in Section 3.1 that maximizes

expected utility in Equation (1). Denote a∗∗ as the corresponding acceptance decision that max-

imizes expected welfare in Equation (2). a∗ ≤ a∗∗, and a∗∗ − a∗ weakly increases as t→ t.

By construction, a∗ = 1 if E [u (t, Et; θ; 1, z∗, d∗)] > E [O (Et; θ)]. As t→ t, the outside option

O (Et; θ), under a = 0, captures peer considerations and increases with t before the peer has

arrived (t < t′), since this diminishes the time that an unattended patient would have to wait

for care. It also is intuitive that the patient increasingly should be assigned to the peer, as

t→ t, for first-best reasons such as fatigue. Moreover, higher private time costs further decrease

expected utility under a = 1 as t→ t, via higher overall input costs and lower-quality discharges

(lower q) under reoptimization. Thus, a∗∗ − a∗ weakly increases as t→ t.

3.4 Efficiency Considerations

A fundamental root of this inefficiency is that information the physician has about the pa-

tient is difficult to observe by a manager and difficult to communicate between physicians. If a

manager could observe the same information as the physician, then management could impose

a∗∗, z∗∗, and d∗∗. Further, information and the rationale behind decisions are difficult to com-

municate, even in the absence of misaligned incentives, reflective of “worker-client specificity”

that is not unique to health care (Briscoe, 2006, 2007; Goldin, 2014).

Considering the informational environment as fixed, I focus on work assignment as the

primary policy lever. Two efficiency considerations of this policy are notable. First, im-

posing a∗∗ alone may actually decrease welfare relative to allowing a∗, i.e., it may be that

W (t, Et; θ; a∗∗, z∗, d∗) < W (t, Et; θ; a∗, z∗, d∗). Second, when assignment can be controlled, work-

load acts as the key connection between “extensive” distortions in a and in “intensive” distortions

in z and d. In an expanded dynamic model, consider two patients arriving at different times,

t and t + 1, and respective decisions (at, zt, dt) and (at+1, zt+1, dt+1). Increasing at may in-

crease wt+1 and thus, from Proposition 1, reduce welfare by worsening distortions in z∗t+1 and
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d∗t+1. In Section 6.2, I empirically focus on overlap o ≡ t − t′ as a mechanism to decrease a∗t

through raising O (Et; θ). In Section 7, I consider the same intuition more broadly by a set

of patient-assignment policies, over which welfare may be (second-best) maximized subject to

informational problems.13

4 Effect on Patient Acceptance

In this section, I describe the effect of approaching EOS on the physician’s decision to accept

patients. As in Proposition 2, it is natural that physicians will be less likely to accept patients

as EOS nears, because time for patient care is more costly. The simple analysis in this section

presents the unadjusted probability that a patient will be accepted by a physician nearing EOS

across a variety of shift types. In particular, I will verify that greater overlap o allows physicians

to decline patients earlier relative to EOS.

Figure 3 presents the hourly average rates of new patient visits, with each panel representing

shifts with a different o, for the index physician (patients accepted), for the location inclusive

of the index physician (patients assigned by the triage nurse), and for the entire ED (patients

arriving at the ED). Regardless of the shift type, physicians generally accept between two to

three new patients per hour at most, and rates of acceptance are highest near the beginning of

shift. Thereafter, in transitioned shifts with o > 0, the average rates of patient flow show two

consistent relationships with time. First, patient flow declines precipitously in the hour prior to

the transitioning peer’s arrival at the location. Second, patient flow declines close to zero in the

two to three hours prior to EOS. If there is sufficient o, patient flow is relatively constant but

diminished in that duration. In terminal shifts, where o = 0, the decline in patient flow begins

earlier, at least four hours prior to EOS.

Also in Figure 3, patients who are not accepted by the index physician may wait up to

an hour to be seen by a peer yet to arrive, but patient flow to transitioning peers generally

13Another policy might be to fix the price of work by overtime, although this generally will not result in
cτ

(
t, τ, t

)
= c0τ (τ), given a second-best world, and may be inferior to quantity policies (Weitzman, 1974). Other

mechanisms could aim to assign patient types that confer less discretion to physicians near EOS or to reduce of
information asymmetry, including facilitating handoffs between physicians. However, it is likely that informational
frictions are pervasive across environments and would be more difficult to address (Apker et al., 2007; Briscoe,
2006).
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at least makes up for the decline in flow for the index physician. That is, despite declines in

patient acceptance, patients continue to arrive at the pod at similar or greater rates prior to the

peer’s transitioning shift. Finally, Figure 3 plots the flow of patients to the entire ED, showing

background patient flow to other pods that seems unrelated to flows to the index physician.

Naturally, overall ED flow appears more stable when averaged across greater shift observations

and variation across times of the day (see Figure 1, e.g., o = 1 and o = 6).

These relationships are remarkably consistent, over different o, despite being presented as

unadjusted averages. It is intuitive that physicians would decrease their acceptance of new

patients as they approach EOS, since the cost of seeing new patients increases with proximity

to EOS. The cost is both in the time cost to the physician ending her shift and also in terms of

the resulting distortion in patient care.

The earlier arrival of peers allows for earlier reductions in patient acceptance relative to

EOS. This includes reductions prior to peer arrival, especially in shifts with shorter transitions,

suggesting anticipatory behavior. For terminal shifts, remarkably, the long decline in patient

flow rates is implemented the triage nurse assigning fewer patients to the terminal location,

suggesting that the triage nurse spares physicians work in terminal shifts nearing EOS. Thus,

“slacking off” is achieved between coworkers sharing a location and, in cases without coworkers,

by managerial assignment itself.

5 Effect on Patient Care

5.1 Main EOS Effects

My main analysis addresses the following: What is the effect of a patient’s arrival near a

physician’s EOS on that patient’s care by that physician? Although I address patient selection

more directly later, I first control for a rich set of patient characteristics. I use variation within

the same health care providers working at different times and locations to control for fixed

provider unobservables. Using shift variation within locations and within times, I control for

unobservables (e.g., patient characteristics and ED resources) that vary by location and time

categories, such as time of the day or day of the week. I finally use variation in shift lengths to
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control for fatigue, which I consider due to time relative to the beginning of shifts.

In the full specification, I estimate the following equation:

Yijkpt =
−1∑

m=−6

αm1
(⌊
t− t (j, t)

⌋
= m

)
+
∑
m

γm1 (bt− t (j, t)c = m) + (3)

X′itβ + T′tη + ζp + νjk + εijkpt,

where outcome Yijkpt is indexed for patient i, physician j (in shift from t (j, t) to t (j, t)), assisting

team k (including the resident or physician assistant, and the nurse), pod p, and arrival time t.

The coefficients of interest in Equation (3) are {αm}, indicating the effect of arrival of patient i

at m hours (rounded down to the nearest negative integer) prior to physician j’s EOS. I control

for time relative to the shift beginning (t − t (j, t)), patient characteristics Xit, time categories

Tt (for month-year, day of the week, and hour of the day), pod identities ζp, and physician-team

identities νjk.

Table 1 shows results for log length of stay, estimating coefficients {αm} for time prior to

EOS, from versions of Equation (3) with varying sets of controls. All models estimate highly

significant and negative coefficients for approaching time to EOS, with visits seven or more

hours prior to EOS being the reference category. The reduction in length of stay grows larger

in magnitude as time approaches EOS. By the last hour prior to EOS, versions of Equation (3)

estimate effects on log length of stay ranging from −0.53 to −0.72. The full model, shown in

the last column of Table 1 and plotted in Panel A of Figure 4, estimates an effect on log length

of stay of −0.59 in the last hour and serves as the baseline model for this paper.

Although I address selection and fatigue more directly later, results in Table 1 shed light on

both of these. The difference in estimates between the first and second columns represents the

effect of including a rich set of patient characteristics, which is about 0.06 on log length of stay

in the last hour prior to EOS. The difference between the fourth and last columns represents the

effect of time relative to shift beginning, which can include fatigue and is separately identified

from EOS effects due to variation in shift lengths. This difference, about 0.13 in the last hour

prior to EOS, also accounts for only a minor portion of the overall effect.

Table 2 shows results for other outcome measures, including the order count, inpatient
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admission, log total cost, 30-day mortality, and 14-day bounce-backs. Estimates for αm are

generally insignificant for hours before the last hour prior to EOS, but are significantly positive

in the last hour. Patients arriving and accepted in the last hour prior to EOS have 1.4 additional

orders for formal tests and treatment, from a sample mean of 13.5 orders.14 These patients are

also 5.7 percentage points more likely to be admitted, which is 21% relatively higher than the

sample mean of 27%. Log total costs are 0.21 greater in the last hour prior to EOS. Mortality and

bounce-backs do not exhibit a significant effect with respect to EOS, although these outcomes

are either rare (mortality) or imprecisely predicted (bounce-backs). I plot coefficients for orders,

admissions, and total costs in Panels B to D of Figure 4.

5.2 A Closer Look at Patient Care

I undertake two analyses to further examine the use of time in patient care. First, I consider

effective time per patient to capture the fact physicians with more patients must devote less time

per patient, holding length of stay constant. This concept highlights the link between patient

assignment, workload, and patient care: Assigning physicians more patients near EOS increases

workload and thus decreases the effective time physicians spend on each patient’s care.

For each patient i accepted by physician j at time t, I construct a measure of workload-

adjusted length of stay, as length of stay (τijt) divided by the average number of patients cared

for by j during the i’s length of stay (wijt):

τijt/wijt = τijt

[
1

τijt

ˆ
t̃∈[t,t+τijt]

wjt̃dt̃

]−1

, where (4)

wjt̃ =
∑
i,t

1
(
t̃ ≥ t

)
1
(
t̃ ≤ t+ τijt

)
1 (j = J (i, t)) . (5)

Workload wjt̃ for j at time t̃ is the number of patients under j’s care at t̃ (i.e. j’s patient

“census” at t̃, counting patients who were accepted prior to t̃ and discharged after t̃), where

J (i, t) is a function assigning patient i at t to a physician.

I then regress the log of workload-adjusted length of stay using Equation (3). As shown in

14I find that the percentage of orders for diagnostic tests, including laboratory and radiology tests, are slightly
higher in the last hour prior to EOS, although this is not statistically significant.
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the last column of Table 2, time relative to EOS has little effect on workload-adjusted length of

stay until the last hour prior to EOS, when this measure decreases significantly. Thus, adjusting

length of stay for workload reconciles previous results in which length of stay progressively

decreases as EOS approaches, but orders, admissions, and costs increase only in the last hour.

At least in sample, distortions in patient care, including the use of time, appear to only become

significant in the last hour prior to EOS.15

Second, I examine the components of time, τ1 and τ2 in Section 3, that can be respectively

thought of as substitutes and complements of formal utilization. Roughly speaking, τ1 is time

spent on clinical monitoring and reasoning that substitutes for brute-force utilization (e.g., serial

abdominal examination as opposed to CT scan). On the other hand, τ2 is time needed to follow

up on utilization (e.g., waiting for CT scan report). In practice, τ1 and τ2 are not neatly divided,

but some intuitive distinctions can be made: I assume that time spent prior to the first formal

order belongs to τ1 and that time spent after the last formal order belongs to τ2. Although time

in between the first and last orders could belong to either τ1 or τ2, the spacing of these orders

often reflects clinical monitoring and reasoning more closely related to τ1.

Measuring length of stay in three component shares – time between pod arrival and first

order, time between first and last (non-discharge) orders, and time between last and discharge

orders – I estimate a fractional logit model (Papke and Wooldridge, 1996) using similar regressors

as in Equation (3). Figure A-2 presents results of marginal effects relative to EOS. Panel A scales

time shares by the median predicted length of stay in each hour prior to EOS according (3); Panel

B simply plots the unscaled proportional shares. These proportions remain relatively unchanged

except for the last hour prior to EOS, when the proportions for time prior to first order and inter-

order time both decrease. These results suggest relative reductions in τ1, particularly in the last

hour prior to EOS, and are consistent with the increase in formal utilization (net substitution)

in the last hour shown in Table 2 and Figure 4.

5.3 Patient Selection

As described in Section 2.4, physicians observe a limited set of information when accepting

15In Section 7, I consider counterfactual assignment regimes with greater assignment near EOS than observed
in the data, which result in greater and earlier distortions in patient care.
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patients, but I observe a richer set of patient characteristics, including diagnoses and other

characteristics that generally are unobserved by physician at patient acceptance.16 In this

analysis, I evaluate patient selection based on two sets of characteristics: those that are observed

by a physician or triage nurse prior to acceptance, Xprior
it , and others that include rich diagnosis

codes, insurance status, race, and language that are at best incompletely observed until after

patient acceptance, Xfull
it .

Separately for each set, I first generate predicted outcomes by

Yijkpt =
(
Xset
it

)′
βset + εijkpt, (6)

where set ∈ {prior , full}. Next, I estimate the following regression describing the relationship

between the predicted outcomes for selected patients, Ŷ set
ijkpt = β̂setXset

it , using β̂set estimated

from Equation (6), and the time of selection relative to EOS:

Ŷ set
ijkpt =

−1∑
m=−6

αset
m 1

(⌊
t− t (j, t)

⌋
= m

)
+
∑
m

γm1 (bt− t (j, t)c = m) + (7)

T′tη + ζp + νjk + εijkpt,

leaving out variables in Xit as regressors. I interpret each coefficient αset
m as the EOS effect on

patient selection as described by a predicted outcome measure. Comparing results between the

two sets of patient characteristics roughly assesses the degree of selection on unobservables.

Figure 5 presents estimates of selection for each set of patient characteristics and for each of

the outcomes of length of stay, orders, admission, and costs. To reference magnitude, selection

estimates are overlaid onto estimates for the EOS effect from Equation (3) for each respective

outcome. Coefficients for selection estimated using the two sets of characteristics are remarkably

similar, suggesting negligible selection on unobservables. Selection nearing EOS appears to be

in the direction of healthier or less resource-intensive patients: those expected to have shorter

lengths of stay, lower frequencies of admissions, and incur lower costs and fewer orders. Predicted

16Of course, some of this information may be known at patient acceptance, for example by informal com-
munication by nursing, e.g., “Doctor, this patient has [formally undocumented issues] that need attention right
now.”

19



length of stay is 5.4% lower in the last hour prior to EOS compared to seven or more hours prior

to EOS, about an order of magnitude smaller than effects for actual length of stay. All predicted

outcomes show a decreasing relationship with proximity to EOS, in contrast to increases in actual

admission, costs, and orders.

In Appendix A-1, I undertake a more formal analysis, based on Altonji et al. (2005), to

compute the degree of selection on patient unobservables relative to selection on observables

required to explain my length of stay results. This approach considers, at each hour prior to

EOS, the explanatory power of observables in determining whether patients are selected and the

explanatory power of observables in determining length of stay. I find that selection on patient

unobservables must be 475 times greater than selection on observables in order to explain the

entire effect on length of stay for patients arriving in the last hour prior to EOS.

5.4 Effects Relative to Shift Beginning

The literature on shift work has almost exclusively focused on cumulative health effects and

fatigue (e.g., Brachet et al., 2012; Shetty and Bhattacharya, 2007; Volpp and Rosen, 2007),

while I explore the possibility of strategic behavior in this paper. Unlike shifts of 36 hours in

the residency work-hours debate, significant fatigue is less likely near the end of a shift of nine

hours, the modal shift length in this setting. Nonetheless, I specifically address this issue by

exploiting variation in shift length to control for effects, such as fatigue, correlated with time

since the beginning of shift. I assume that, conditional on time since beginning of shift, fatigue

is independent of time to EOS.

In the full model of Equation (3), I show robust EOS effects controlling for time since the

beginning of shift. The effect attributable to time since shift beginning is minor compared to the

overall effect for length of stay.17 Here I illustrate the robustness of EOS effects more directly

by simply showing the effect on length of stay for each hour prior to EOS separately for three

categories of shift lengths. I study shifts that are nine hours in length, as well as shifts that

are seven or eight hours in lengths and shifts that are ten hours in length. Figure A-3 plots

coefficients αm from Equation (3) estimated separately for each shift-length category. Panel A

17For other outcomes (orders, admission, and costs), the size of the EOS effect actually increases when control-
ling for time since shift beginning.
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plots coefficients according to time relative to EOS and shows coefficients largely similar across

shift lengths and within hour prior to EOS. Panel B arranges the coefficients according to time

from shift beginning, illustrating the corollary that the EOS effect is largely independent of the

time since beginning the shift.

5.5 Discharge Hazard over Time

Recall that Figure 2 revealed a density mass slightly before EOS for patients arriving at

various times prior to EOS. It would be unlikely for an increase in the conditional probability

(i.e., hazard) of discharge at EOS but not before or after to represent something other than

strategic behavior in patient care. Patient selection at acceptance, for example, should apply

to all discharge hazard rates before and after EOS. Fatigue should also continuously increase

discharge hazard rates.

In order to formally apply this intuition to the pattern of patient arrival and discharge times

in Figure 2, I estimate a discrete-time logit hazard model for discharge. I model the hazard as

a logistic function, Pr (dit = 1 |di,t−1 = 0) = (1 + exp (−h))−1, where

h (t, τ, i, j, k, p) =

3∑
m=−9

αm1
(
t− t (j, t) = m

)
+
∑
m

γm1 (t− t (j, t) = m) + (8)

γτ Ê
[
Yijkpt|Xi, j, k, p, T̃t

]
+ ηt + ζτ .

t is discrete in hourly intervals, and τ is the hour of the stay (time relative to arrival). The

coefficients of interest are the set of αm for each time relative to EOS. In this hazard model

framework, I include fixed effects for each hour of the day (ηt) and fixed effects for each hour of

the stay (ζτ ). I also control for time relative to shift beginning (t− tj) and predicted log length

of stay (Ê
[
Yijkpt|Xi, j, k, p, T̃t

]
) conditional on patient characteristics, provider identities, pod

identity, and other time categories T̃t(month-year and day of the week).

Figure 6 shows marginal effects, estimated from Equation (8), for each hour m relative to

EOS. The hourly discharge hazard ranges from 22% to 31% for the span of time between nine

hours prior to EOS and four hours past EOS. The peak of 31% corresponds to probability of

discharges within the last hour prior to EOS, and the discharge hazard decreases on both sides
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of the peak with increasing distance.

These results are consistent with strategic behavior in targeting discharge times right around

EOS. As EOS approaches, physicians are increasingly likely to discharge remaining patients.

However, after EOS has past, the discharge hazard begins to decrease, possibly reflecting the

fact that remaining selected patients have conditions requiring further evaluation and treatment

in the ED. After the fourth hour past EOS, exceedingly few patients remain and are likely to

be transferred to another physician’s care.

6 Shift Overlap, Workload, and Distortion

I evaluate how workload and patient-care effects vary across shifts with varying overlap near

EOS, for two purposes: First, this supports the interpretation that EOS effects reflect strategic

behavior, under the identifying assumption that the EOS by itself has no first-best implications

for patient care, conditional on volume of work, time since beginning work, and time since a

peer’s arrival. Conditional on these, overlap (i.e., time between peer arrival and EOS) only

changes when a physician is allowed to leave work. Second, this analysis demonstrates shift

structure as a policy lever for patient assignment, with implications on the efficiency of patient

care through workload: Assigning more patients reduces effective time per patient, worsening

the EOS distortion in patient care. I note here that many potential levers (e.g., rules, financial

incentives, social incentives, managerial assignment) primarily influence patient assignment and

consider patient assignment more generically in Section 7.

6.1 Patient Censuses over Time

I measure workload as the number of patients cared for by a physician (her “census”) at a

given time, as in Equation (5). Figure A-4 shows unadjusted census averages at each 30-minute

interval, for the nine hours prior to EOS, in different shift types by o. On average, censuses

start at around two patients at the beginning of all shift types, representing unstaffed patients

from the previous shift, except for shift types with o = 2, which happen not to transition from

another shift. The census peak coincides with the beginning of the transition time in shifts with

o ≥ 4 but occurs progressively earlier as o decreases. Patients remain on the census at EOS.
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The number of patients remaining on census in the last 30 minutes prior to EOS is consistently

close to four, with the exception of shifts with o = 1, which have censuses of about six.

In order to leave work, physicians must generally reduce censuses to zero. With smaller o,

they have less time and scope to reduce their censuses before EOS.18 Put more accurately, with

smaller o, physicians are allowed to go home (at EOS) at an earlier point relative to peer arrival.

Holding constant time from beginning of shift and time from peer arrival, smaller o thus induces

a greater incentive for strategic behavior on the intensive margin.

6.2 Evidence of Tradeoff

I explore the interaction between patient-care effects and shift overlap. Larger patient-care

effects with small o, conditional on time from beginning of shift, are consistent with strategic

behavior. Further, the interaction provides evidence of the intuitive tradeoff between extensive

and intensive margins of strategic behavior: If physicians have more time to slack off before

EOS, workload near EOS will be lower, and patient-care distortions will be smaller.

I consider three categories of overlap at EOS – terminal shifts (o = 0), minimally transitioned

shifts (o = 1), and substantially transitioned shifts (o ≥ 2)19 – and estimate

Yijkpt =

−1∑
m=−6

∑
O

αms1
(⌊
ti − t (j, t)

⌋
= m

)
1
(
o (j, t) ∈ O

)
+ (9)∑

m

γm1 (bt− t (j, t)c = m) + X′itβ + T′tη + ζp + νjk + εijkpt,

similar to Equation (3) but interacting the hourly EOS effects by overlap o (j, t) in categories

O. I normalize coefficients so that, as before, the reference category includes times seven hours

or greater prior to EOS in each of the overlap categories.

Figure 7 shows EOS effects, across the three categories of shift types, for length of stay,

orders, admission, and total costs. The EOS effect on length of stay is largely similar among

shift categories (Panel A). All three shift categories show a substantial decline in length of stay

18When o = 0, workload is mostly decompressed by fewer assignments by the triage nurse, as shown in Figure
3, but note that it si also more difficult to hand off patients in these terminal shifts.

19While I observe shifts with o ∈ {2, 3}, they entail very few observations, as listed in Table A-2. Results
are essentially unchanged whether I omit these observations or consider them as belonging to the minimally
transitioned shift category.
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as EOS approaches. However, EOS effects are notably absent in shifts with o ≥ 2 for orders,

admission probability, and total costs (Panels B to D). In contrast, shifts with o ≤ 1 show large

increases in orders, admissions, and total costs at EOS.

Patient acceptance differs across these shift categories over several hours prior to EOS, while

differences in EOS effects become apparent in the last hour prior to EOS. This is consistent

with the idea that earlier patient assignment affects future workload and future distortion. In

Table A-4, I consider effects on workload-adjusted length of stay, computed by Equation (4),

and show that workload-adjusted length of stay decreases substantially in the last hour prior to

EOS when o ≤ 1. In contrast, when o ≥ 2, workload-adjusted length of stay does not decrease

near EOS and, if anything, slightly increases prior to the last hour of shift.20

7 Counterfactual Assignment Policies

Despite important variation in patient assignment across shifts with different o, observed

assignment – either between physician peers or by the triage nurse – dramatically diminishes

near EOS in all shifts. In this section, I consider the assignment of work as a sufficient statistic for

a wide range of managerial policies (e.g., rules, financial incentives) including but not limited

to shift structure and – using model of patient assignment, discharges, and cost – assess the

efficiency implications of a fuller range of counterfactual assignment policies.

The thought experiment is that, while a manager can control work assignment via policies,

downstream effects on patient care cannot be directly monitored or managed. Patient assignment

and discharges determine workload. Discharges and workload determine the effective time spent

per patient. Based on Section 5.2, I consider workload-adjusted length of stay as the relevant

measure of time in patient care that substitutes for formal utilization and raises patient-care

costs (from formal utilization and admissions) when decreased. I then consider overall costs due

to both physician time and patient care. Assigning more patients to physicians mechanically

improves physician-time costs by reducing the number of physician-hours to process patient flow,

but by increasing workload near EOS, it also worsens patient-care costs.

20Such potential increases in workload-adjusted length of stay above baseline do not appear to be associated
with increases or decreases in other outcomes of orders, admissions, or costs. This could be consistent with
increases in length of stay for strategic purposes, as discussed in Chan (2014).
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I estimate discrete-time functions for patient assignment and discharge that crucially depend

on time to EOS. Patient discharge follows a hazard model D (t, σs, wjt, τ̂ist) that depends on time

t, shift characteristics σs for shift s (i.e., shift type 〈`, o, o〉s and time of EOS t (s)), physician j’s

workload wjt at t, and patient i’s predicted length of stay τ̂ist (details are given in Appendix A-2,

including model fit, shown in Figure A-5). Assignment follows a zero-inflated Poisson model

A (t, σs, wj,t−1) that similarly depends on time t, shift characteristics σs, and workload wj,t−1

from the previous period. The patient-assignment function allows a convenient specification of

counterfactual policies in which assignment is modified only by how time to EOS is considered.

For example, a counterfactual assignment policy may assign more patients one hour prior to

EOS by assigning as if the time were three hours prior to EOS. Although patient assignment

may be modified, physicians continue to discharge patients according to actual time to EOS.

Specifically, consider the assignment function A (t, σs, wj,t−1), which assigns N r
st patients

in shift s during discrete time t in simulation r, and define counterfactual assignment policies

A∆ (t, σs, wj,t−1) ≡ A
(
t̆ (t, s,∆) , σs, wj,t−1

)
by an index ∆ representing a time shift in assign-

ment patterns near EOS: Starting at |∆| hours before EOS, assignments are “curtailed” by using

t̆ > t if ∆ < 0, while they are “extended” by using t̆ < t if ∆ > 0. Formally,

t̆ (t, s,∆) =


t+ κmax

(
1 + t− t (s) ,∆

)
, ∆ < 0

t, ∆ = 0

t+ max
(
0,min

(
∆ + t− t (s) ,∆

))
, ∆ > 0

, (10)

where κ = max
(
0,min

(
1, t− t (s)−∆

))
∈ [0, 1] is a scale to ensure that t̆ is continuous in t

when ∆ < 0. Figure 8 shows example counterfactual policies, for ∆ ∈ {−4,−2, 2, 4}.

For each counterfactual policy ∆ ∈ [−4, 4], I simulate assignments and discharges using

functions A∆ (t, σs, wj,t−1) and D (t, σs, wjt, τ̃ist), respectively, where τ̃ist is a prediction of τ̂ist.

Using observations generated by each simulation r = 1, . . . , 100 of each policy ∆, I calculate

counterfactual costs from both physician time and patient care:

Costsr∆ = PhysicianTimeCostsr∆ + PatientCareCostsr∆. (11)
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I consider physician-time costs as wasted “presenteeism” wage. Assuming a “no-waste” process-

ing rate of 2.22 patients accepted per hour,21 I calculate this as

PhysicianTimeCostsr∆ =
∑
s

t(s)∑
t=t(s)

Wage×max

(
0, 1− N∆,r

st

2.22φ

)
, (12)

where φ = 0.25 converts hourly rates to arrivals within fifteen-minute intervals. This assumes

that the ED may hire more physicians to generate throughput and thus also captures social

time costs of patient care, including the cost of patients waiting for empty beds. I use Wage =

$100/hour (close to actual wages) in my base case but also consider Wage = $500/hour.

I consider patient-care costs as increased costs due to strategic behavior, conditional on

assignment. Costs per patient increase as physicians substitute time with formal utilization

and are more likely to admit patients. Specifically, in simulation r of assignment policy A∆, I

measure decreases in workload-adjusted length of stay for that policy as coefficients α∆,r
m in this

regression:

log Ỹij = α+
−1∑

m=−6

α∆,r
m 1

(⌊
ti − t (s (j, ti))

⌋
= m

)
+ g (ti − t (s (j, ti)))

′ γg + εij , (13)

where Ỹij is workload-adjusted length of stay, ti is the assignment time of patient i, and g (·)

creates is a vector of cubic splines of time from beginning of shift.22 I calculate patient-care

costs as

PatientCareCostsr∆ =
∑
m

exp
(
BaseLogCosts− 1.15 ·min

(
0, α̂∆,r

m − α̂0
−2

))
× (14)

∑
s

t(s)∑
t=t(s)

1
(⌊
t− t (s)

⌋
= m

)
N∆,r
st

21This number is the maximum average processing rate observed in an hour relative to EOS, and therefore this
assumption is conservative in the sense that it yields the highest possible physician time cost. Processing rates
are fairly stable at times sufficiently prior to EOS and peer arrival (see Figure 3).

22For notational simplicity, I assume one visit per patient and I drop superscripts ∆ and r on Ỹij , ti, α, γg, and
εij (see Equation (A-9) for the fully notated version). I omit other controls, e.g., those in Equation (3), because
I regress simulated data, in which many of the controls are meaningless (e.g., nurse-resident-physician identities,
month-year interactions, and individual patient characteristics). Results using actual data are qualitatively robust
to controlling for all of these and are shown in Table A-4. This is consistent with results in Section 5.3, showing
negligible effects due to patient selection.
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where BaseLogCosts = [log $ +] 6.750, and α̂0
−2 ≡ 1

100

∑100
r=1 α̂

0,r
−2 = −0.059. Based on actual

data, I use −1.15 as the elasticity of patient-care costs to workload-adjusted time, which applies

to decreases in workload-length of stay greater than 5.9% as a conservative benchmark.23 Equa-

tion (14) reflects two sources of increasing patient-care costs as more patients are assigned near

EOS: Per-patient costs increase (the first line), and this increase applies to more patients (the

second line). I conservatively assume that patient health is not harmed even as physicians pro-

duce less information for the discharge decision, given no effects on mortality and bounce-backs

in sample (Table 2).

Figure 9 shows average changes in daily costs under counterfactual policies ∆ ∈ [−4, 4].

I find that both curtailing and extending patient assignment increase overall costs relative to

those under the actual assignment policy. While allowing physicians to slack off incurs the

cost of wasted physician time, increasing patient-care costs dominate when extending patient

assignment beyond the actual assignment policy. This is true even under the extreme assumption

of a $500 per hour physician wage. These results suggest that, given physician discretion in

patient care, attempting to reduce slacking off could be very costly, and observed patterns of

assignment may indeed be approximately second-best optimal.

8 Conclusion

I examine the behavior of ED physicians working in shifts and find evidence consistent

with strategic behavior as a consequence of scheduled work: First, on an extensive margin,

physicians are less likely to accept new patients near EOS. Second, on an intensive margin,

physicians complete their work earlier as end of shift (EOS) approaches. As the input of time

becomes more costly, physicians modify the mix of inputs in patient care, and as they produce

less information for discharge decisions, they are more likely to admit patients. This increases

patient-care costs by 21% in the last hour prior to EOS.

23The elasticity estimate is motivated by the fact that both observed total costs (Figure 4) and observed
workload-adjusted length of stay (Figure A-6) increase only in the last hour prior to EOS. In simulated data, I
find that workload-adjusted length of stay decreases by 18.1% in the last hour of shift when ∆ = 0 (an estimate
very close to but more conservative than based on actual data in Table A-5). Since total costs increase by 20.8% in
the last hour prior to EOS, I calculate the elasticity as 20.8%/−18.1% = −1.15. More detail is given in Appendix
A-2.3.
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The EOS phenomenon documented in this paper reflects a definitional issue of scheduled

work: Although scheduled availability begins and ends at set times, the true nature of work

usually blurs across these constructed boundaries. Due to informational problems, there remain

substantial worker discretion and “client-worker specificity” in many job settings. Workers who

are nominally on duty are thus subject to behavioral incentives that may distort their acceptance

and performance of work. I show a tradeoff between these extensive and intensive margins of

strategic behavior. In fact, observed patterns of “presenteeism” or “slacking off” may indeed be

approximately second-best optimal. This implies that a wide set of policy levers (e.g., rules and

financial incentives) that largely act on the extensive margin to prevent workers from sitting

idly could be quite costly when used at the wrong time in scheduled work.
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Figure 1: Shift Variation
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Note: This figure illustrates the variation in observations across shift types. Panel A plots shifts by shift

ending time and shift length. Panel B plots shifts by shift ending time and the length of overlapping

transition at the end of shift.
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Figure 2: Density of Visits on Arrival Time and Length of Stay
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Note: This figure plots the distribution of visits over arrival times relative to EOS and length of stay.

Panel A plots visit counts within fifteen-minute intervals of arrival time and length of stay. Panel B plots

the density of visits, conditional on arrival time.
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Figure 3: Flow of Patient Visits over Time
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Note: This figure shows unadjusted average hourly rates of patient visits for each 30-minute interval

relative to end of shift (EOS). Each panel shows results for shifts with a given EOS overlap time. Patient

visits for the index physician are shown in closed circles; patient visits for the location are shown in open

circles; and patient visits for the entire ED are shown with a dashed line with no markers. Subsequent

shift starting times are marked with a vertical line.
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Figure 4: End of Shift Effects
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Note: This figure plots average effects for each hour prior to end of shift (EOS) on length of stay (Panel

A), orders (Panel B), inpatient admissions (Panel C), and costs (Panel D). Each outcome is estimated

separately using Equation (5). The reference category is any time greater than six hours prior to EOS.

Bracketed dashed lines represent 95% confidence intervals for each estimate.
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Figure 5: Patient Selection Relative to End of Shift
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Note: This figure shows selection on observables for each hour prior to end of shift (EOS) on length of

stay (Panel A), orders (Panel B), inpatient admissions (Panel C), and costs (Panel D). Each outcome is

predicted based on patient characteristics only observable prior to treatment (open circles) and on the

full set of characteristics, including endogenous diagnoses (open triangles). Coefficients are estimated for

predicted outcome using Equation (7). For reference, adjusted effects on actual outcomes from Figure 4

are shown in closed circles. The reference category is any time greater than six hours prior to EOS.
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Figure 6: Discharge Hazard over Time
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Note: This figure plots marginal effects for a discrete-time logit hazard model of discharge for each hour

relative to end of shift (EOS), as given in Equation (8). Marginal effects are shown in closed circles; 95%

confidence intervals are shown in dashed lines.
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Figure 7: End of Shift Effects by Shift Overlap
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Note: This figure shows heterogeneous end of shift (EOS) effects by EOS overlap times on length of

stay (Panel A), orders (Panel B), inpatient admissions (Panel C), and costs (Panel D). Each outcome

is estimated separately using Equation (9). Estimates for terminal shifts (o = 0) are shown in open

triangles; estimates for minimally transitioned shifts (o = 1) are shown in open circles; and estimates for

substantially transitioned shifts (o ≥ 2) are shown in closed circles.
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Figure 9: Change in Daily Cost over Counterfactual Regimes
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Note: This figure plots changes in daily cost relative to actual daily cost averaged over 100 simulations

for each counterfactual assignment regime. Assignment regimes may either curtail or extend assignment,

as illustrated in Figure 8. Hours of curtailment or extension are represented as negative or positive

numbers, respectively, and “0” represents the actual assignment regime. Daily costs include both costs

spent on physician time and patient care. Changes in daily cost are plotted under the assumption of a

$100 hourly wage (diamonds) and $500 hourly wage (circles).
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Appendix

A-1 Selection on Unobservables

This appendix provides details of how I implement a procedure similar to that outlined in Altonji

et al. (2005) to quantify the amount of selection on unobservables necessary to explain decreases

in length of stay for patients accepted near EOS. The basic intuition is that the possibility that

selection on unobservables explains estimated effects can be quantified by the extents to which

selection and outcomes can be explained by observables.

A-1.1 Conceptual Framework

Consider a condensed form of the outcomes regression Equation (3):

Y =
∑
m

αmA
m + Ω′Γ

=
∑
m

αmA
m + W′ΓW + ξ, (A-1)

where I omit subscripts for simplicity. Am ≡ 1
(⌊
t− t (j, t)

⌋
= m

)
is an abbreviation for the

familiar indicator for whether the time t that patient i was assigned to physician j was in the

mth hour from j’s EOS. αm is the causal effect of a patient being assigned in the mth hour prior

to EOS. W is the full set of other variables, both observed and unobserved, that determine

outcome Y , while W includes only observed patient, time, and provider characteristics (to be

distinguished from Xit in Equation (3), which only includes patient characteristics). Γ is the

causal effect of W on Y . ΓX is the subvector of Γ that corresponds to W within Ω, and ξ is

an index of the unobserved variables.

Since variables in X̃ are likely correlated with ξ, rewrite Equation (A-1) as

Y =
∑
m

αmA
m + W′γW + ε, (A-2)

where γX and ε are constructed so Cov (ε,W) = 0 by definition. Thus γW captures both the

causal effect of W on Y (ΓW ), as well as the portion of ξ that may be correlated with W. Note

that, for the regression estimate of αm to be unbiased, the standard OLS assumption is that

Cov (ε,Am) = 0, or E [ε |Am = 1]− E [ε |Am = 0] = 0.

A-1.2 Measure of Selection on Unobservables

Altonji et al. (2005) argue for upper bound of selection on unobservables, specified by

E [ε |Am = 1]− E [ε |Am = 0]

Var(ε)
=
E [W′γW |Am = 1]− E [W′γW |Am = 0]

Var(W′γW )
, (A-3)
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which states that the relationship between the index of unobservables in Equation (A-2) and

the indicator for selection Am is equal in magnitude to the relationship between unobservable

predictors of Y and Am, respectively normalizing for variance.

They argue that this condition represents an upper bound because of observed variables

are not randomly collected but rather were collected because they represent important charac-

teristics for outcomes of interest. Furthermore, and more importantly, because many observed

variables are in fact collected after the selection event, they include random shocks that cannot

have influenced the selection event. This latter argument is related to the fact that I observe

a rich set of patient characteristics that are either determined by the physician after accepting

the patient or are rarely observable by the physician at the time of acceptance.

A-1.3 Estimation of Potential Bias

In order to estimate the potential bias at the upper bound implied by Equation (A-3), consider

the following linear selection equation:

Am = W′βW + Ãm, (A-4)

where Ãm is a residual that is orthogonal to W. Then Equation (A-2) can be stated as

Y =
∑
m

αmÃ
m + W′ (γW + αβW ) + ε.

This leads to a statement of the potential bias due to selection on unobservables:

plim α̂m ≈ α+
Cov

(
Ãm, ε

)
Var

(
Ãm
)

= α+
Var (Am)

Var
(
Ãm
) (E [ε |Am = 1]− E [ε |Am = 0]) ,

From Equation (A-3), the bias can be stated in terms of E [W′γW |Am = 1]−E [W′γW |Am = 0]:

Bias =
Var (Am) Var (ε)

Var
(
Ãm
)

Var (W′γW )

(
E
[
W′γW |Am = 1

]
− E

[
W′γW |Am = 0

])
(A-5)

Under the null hypothesis that αm = 0, γW can be consistently estimated by Equation (A-1).

I can then arrive at a consistent estimate of bias in Equation (A-5) with the following

procedure, with results shown in Table A-3: For each m ∈ {−6, . . . ,−1}, I define Am ≡
1
(⌊
t− t (j, t)

⌋
= m

)
over all observations and empirically calculate V̂ar (Am) for each m. I

also calculate V̂ar
(
Ãm
)

after estimating Equation (A-4) for each m. Similarly, I estimate

V̂ar (ε) = 0.160 and V̂ar (W′γW ) = 0.580 from Equation (A-2). Equation (A-2) also allows me
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to form an estimate of selection on observables, Ê [W′γW |Am = 1]− Ê [W′γW |Am = 0]. Using

the Altonji et al. (2005) condition in Equation (A-3) that normalized selection on unobservables

is bounded by normalized selection on observables, I then calculate an upper bound of the bias

due to selection on unobservables with Equation (A-5). As shown in Table A-3, the upper bound

of the bias in α̂−1, the effect of arriving in the last hour of shift on the length of stay, estimated

by Equation (3), is −0.00124. Given that α̂−1 = −0.5873, this implies that normalized selection

on unobservables would have to be 475 times greater than normalized selection on observables.

As a comparison, in their example of the impact of Catholic school on educational attainment,

Altonji et al. (2005) argue that selection on unobservables is highly unlikely with an ratio 3.55.

A-2 Structural Model Implementation

This appendix details the procedure to simulate observations under counterfactual assignment

policies and impute overall costs under these policies, as discussed more briefly in Section 7. To

summarize, I first estimate arrival and discharge functions in discrete time. Actual arrivals and

discharges imply patient censuses, or the number of patients under the care of a physician at each

point in discrete time, i.e., those who have arrived and have not yet been discharged. I create

counterfactual assignment policies by modifying time in the arrival function, and I simulate of

patient observations (including arrival times, discharge times, and patient censuses) using this

modified arrival function and the (unmodified) discharge function. Finally, I impute of overall

costs by regressing simulated workload-adjusted length of stay on time relative to EOS and

translating decreases in workload-adjusted length of stay into increases in patient-care costs.

Overall costs are the sum of costs due to patient care and physician time.

A-2.1 Estimating Arrival and Discharge Functions

In each fifteen-minute time interval of each of the 23,990 shifts during the study period ranging

from June 2005 to December 2012, I calculate the number of patients assigned to the physician

on shift s during time interval t. Restricting to t ∈
[
t (s)− 3 hours, t (s)

]
yields 1,151,888

observations over t and s with patient arrival (or “assignment”) numbers

Nst ≡
∑
i

1 (tai = t) 1 (s (J (i) , tai ) = s) ,

where tai is the arrival time of patient i, s (j, t) is a shift assignment function for physician j and

time t, and J (i) is a physician assignment function, assuming for notational convenience that

each patient has only one visit.

Of
∑

s,tNst = 370, 843 patients arriving during valid times, I further restrict the estimation

sample to arrivals and discharges of 350,053 patients whose length of stay is at most twelve hours

and who arrived at most twelve hours prior to EOS. The remaining 20,790 patients, whom I
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denote as i ∈ Soutside, are therefore not modeled in either arrivals or discharges, but I count them

toward workload defined below. As I describe in Section A-2.2, I take arrivals and discharges of

patients i ∈ Soutside as fixed in every simulation.

For Nst, I estimate a zero-inflated Poisson model. I call this an arrival or assignment function

A (t, σs, wj,t−1) , which depends on t, shift characteristics σs of s (i.e., shift type 〈`, o, o〉s and

time of EOS t (s)), and physician j’s census (or workload) wj,t−1 in the previous period (for j

satisfying s (j, t) = s). wjt is defined in Equation (5), which I slightly rephrase here as

wjt ≡
∑
i

1 (tai ≥ t) 1
(
t ≤ tdi

)
1 (j = J (i)) , (A-6)

where tdi is the corresponding discharge order time for patient i, again taking advantage of the

notational assumption that i refers to a unique patient visit.

As introduced by Lambert (1992), the zero-inflated Poisson model allows for two “regimes,”

one which always yields Nst = 0, and the second which follows a Poisson process leading to

Nst ≥ 0. In particular,

Pr (Nst = 0) = Pr (Regime 1) + Pr (Nst = 0|Regime 2) Pr (Regime 2) ;

Pr (Nst = n) = Pr (Nst = n|Regime 2) Pr (Regime 2) , n = 1, 2, . . . ,

where Pr (Regime 1)+Pr (Regime 2) = 1. Pr (Regime 1 |t, σs ) is specified as the logistic function

of a linear combination of shift-type indicators interacted with splines of ts−t. Pr (Nst = n|Regime 2)

is specified as a Poisson model:

Pr (Nst = n|Regime 2) =
exp (−λst)λnst

n!
, n = 0, 1, 2, . . . ,

where log λst = logE [Nst| t, σs, wj,t−1] is a linear combination of splines of time of the day,

splines of month-year interactions, indicators for day of the week, splines of ts − t, splines of

wj,t−1, interactions between splines of ts − t and splines of wj,t−1, and interactions between

shift-type indicators interacted with splines of ts − t.
For discharge times tdi , I estimate a logit hazard model, similar to but more richly specified

than that estimated by Equation (8) in Section 5.5, as

Pr
(
tdi = t

∣∣∣tdi ≥ t− 1
)
≡ D (t, σs, wjt, τ̂ist) =

1

1 + exp (−h (t, σs, wjt, τ̂ist))
,

where h (t, σs, wjt, τ̂ist) is estimated, separately for shifts of different length `, as a linear com-

bination of indicators for hour of the day of tai , splines of t − tai , splines of t (s) − t, splines

of t (s) − tai , splines of wjt, predicted log length of stay (τ̂ist), interactions between splines of

t − tai and splines of t (s) − tai , interactions between splines of t (s) − t and splines of wjt, and

interactions between τ̂ist and splines of t (s)− tai .
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Predicted log length of stay (τ̂ist) is a linear combination of indicators for day of the week,

month-year interactions, patient age and squared age, sex, ESI indicators, Elixhauser indicators,

race indicators, language indicators, pod indicators, and physician-nurse-resident joint indica-

tors. As a separate model, I estimate a model τ̃ist of τ̂ist based on day of the week, month-year

interactions, pod indicators, shift-type indicators interacted with splines of t (s)− t, and physi-

cian indicators. The reason for the first prediction (τ̂ist of τijkpt) is to condense a large number

of characteristics about the patient visit into a single linear score for ease of estimation. The

reason for the second prediction (τ̃ist of τ̂ist) is to allow simulation of predicted log length of stay

without simulating many of the characteristics that enter into τ̂ist, such as nurse and resident

identities, which I discuss in the next section.

A-2.2 Simulating Patient Observations

After estimating arrival and discharge functions from actual data, I simulate patient arrivals

and discharges under counterfactual assignment policies. I create the counterfactual policies,

A∆ (t, σs, wj,t−1) ≡ A
(
t̆ (t, s,∆) , σs, wj,t−1

)
, by modifying patient assignment indexed by a time

shift ∆, so that patients are assigned as if time were t̆ (t, s,∆) rather than t. Starting at |∆| hours

before EOS, assignments are “curtailed” assignments with t̆ > t if ∆ < 0 or “extended” with t̆ < t

if ∆ > 0 (Equation (10) formally defines t (t, s,∆), and Figure 8 shows example counterfactual

policies). While assignments are explicitly modified in these policies, the underlying discharge

function is fixed, and discharge behavior only changes as wjt increases or decreases near EOS,

with ∆ > 0 or ∆ < 0, respectively.

Specifically, I follow this procedure for each simulation r of counterfactual policy ∆:

1. Start t at three hours before the beginning of each shift s. Set w∆,r
j,t−1 = 0.

2. Determine new assignments at t for each s.

(a) Simulate N∆,r
st new assignments for s at t, using A∆

(
t, σs, w

∆,r
j,t−1

)
. Denote each of

these new assignments with an unused i /∈ Soutside, note that ta∆,r,i = t, and simulate

predicted log length of stay τ̃∆,r
ist .

(b) Assign patients i ∈ Soutside where toutside,a
i = t to the relevant shifts s.

3. Calculate workload w∆,r
jt by Equation (A-6).

4. If t ≥ t (s) and w∆,r
jt > 0, determine discharges at t for each s.

(a) Simulate d∆,r
it ≡ 1

(
td∆,r,i = t

)
for each i /∈ Soutside where d∆,r

i,t−1 = 0, usingD
(
t, σs, wjt, τ̃

∆,r
ist

)
.

(b) Discharge patients i ∈ Soutside where toutside,d
i = t from the relevant shifts s.

5. The procedure is complete for s such that t ≥ t (s) and w∆,r
jt = 0. For the remaining s,

revise t = t+ 1 and return to Step #2.
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The resulting collection of ta∆,r,i, t
d
∆,r,i, and w∆,r

jt form the underlying simulated data. Simulated

workload-adjusted length of stay for patient i under physician j can be calculated by dividing i’s

simulated length of stay by simulated average censuses under j during i’s length of stay. Slightly

adapting Equation (4) to discrete time,

Ỹ ∆,r
ij ≡ τ∆,r

i /w∆,r
ij ,

= 0.25 ·max
(
td∆,r,i − ta∆,r,i, 0.3

) 1

td∆,r,i − ta∆,r,i + 1

td∆,r,i∑
t̃=ta∆,r,i

w∆,r

jt̃


−1

. (A-7)

The term 0.25 · max
(
td∆,r,i − ta∆,r,i, 0.3

)
reflects that, in actual data, Ê [τi] ≈ 0.075 hours if

tdi = tai , but otherwise Ê [τi] ≈ 0.25
(
tdi − tai

)
hours if tdi > tai (recall that t is in fifteen-minute

intervals).

A-2.3 Imputing Costs

Having simulated arrival and discharge data, I am now in the position to impute overall costs

for each counterfactual simulation r of ∆. Overall costs include both physician-time costs and

patient-care costs. Repeating Equation (11):

Costsr∆ = PhysicianTimeCostsr∆ + PatientCareCostsr∆. (A-8)

The first cost, physician-time costs, represents wasted physician-hours as physicians “slack

off” near EOS. Patients they do not accept must be seen by another physician, and the ED

must allocate physician-hours accordingly, either choosing to hire more physicians to meet the

demand or to allow patients to wait while patient assignments slow down. Thus, assuming

efficiently priced wages, the physician wage represents a true opportunity cost for the ED or

social planner. I calculate physician-time costs as

PhysicianTimeCostsr∆ =
∑
s

t(s)∑
t=t(s)

Wage×max

(
0, 1− N∆,r

st

2.22× 0.25

)
,

or simply the wasted “presenteeism” wage incurred when physicians are assigned anything less

than the maximum throughput rate of 2.22 patients per hour, again multiplied by 0.25 to correct

for the fact that I measure time in fifteen-minutes intervals. Since 2.22 is the maximum observed

throughput rate in the data, the assumption that anything less than this is conservative, in the

sense that it overestimates physician-time costs. I use Wage = $100/hour (close to actual wages)

in my base case but also consider the extreme case of Wage = $500/hour.

The second cost in Equation (A-8), patient-care costs, represents costs incurred by the

physician, conditional on assignment and time to EOS. Physicians near EOS substitute time
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spent in patient care with formal utilization and are more likely to admit patients. As shown in

Section 5.2 and Table 2, workload-adjusted length of stay, formal orders, admissions, and total

costs all increase only in the last hour of shift, suggesting that workload-adjusted length of stay

is a good measure of time that increases patient-care costs as it is decreased. In each simulation

r of each policy ∆, I estimate the EOS effect on workload-adjusted length of stay by coefficients

α̂∆,r
m in this regression:

log Ỹ ∆,r
ij = α∆,r +

−1∑
m=−6

α∆,r
m 1

(⌊
ta∆,r,i − t

(
s
(
j, ta∆,r,i

))⌋
= m

)
+ (A-9)

g
(
ta∆,r,i − t (s (j, ti))

)′
γ∆,r
g + ε∆,r

ij ,

where Ỹ ∆,r
ij is simulated workload-adjusted length of stay from Equation (A-7), and g (·) creates

a vector of cubic splines of assignment time relative to shift beginning.

In simulated data with ∆ = 0, I estimate α̂0
−1 ≡ 1

100

∑100
r=1 α̂

0,r
−1 = −0.240 and α̂0

−2 ≡
1

100

∑100
r=1 α̂

0,r
−2 = −0.059, which implies that workload-adjusted length of stay decreases by 18.1%

in the last hour of shift under the observed assignment policy. Note that this difference is slightly

smaller (more conservative) than that implied by coefficients α̂−1 = −0.232 and α̂−2 = −0.069

estimated without simulation using actual data (Table A-5). Given that total costs increase by

20.8% in the last hour prior to EOS, I estimate the elasticity of patient-care costs to workload-

adjusted length of stay, for decreases in workload-adjusted length of stay that are 5.9% below

baseline, as 20.8%/− 18.1% = −1.15. I thus calculate patient-care costs as

PatientCareCostsr∆ =
∑
m

exp
(
BaseLogCosts− 1.15 ·min

(
0, α̂∆,r

m − α̂0
−2

))
×

∑
s

t(s)∑
t=t(s)

1
(⌊
t− t (s)

⌋
= m

)
N∆,r
st

where BaseLogCosts = [log $ +] 6.750. Note patient-care costs increase with greater assignments

(higher ∆) both because per–patient costs increase, and the number of patients that this applies

to also increases. As discussed in the main paper, I conservatively assume no negative effects

on patient health, even as physicians produce less information for the discharge decision, since

I observe none in sample (Table 2).

A-3 Additional Results

In this appendix, I present the following additional empirical results, as well as a brief discussion

of some of these results:

• Table A-1 describes the process of constructing the sample, including the number of ob-

servations in each step.
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• Table A-2 lists the number of observations for each shift type. Observations are counted

in terms of unique shifts, hours, potential patients (who could be assigned to a shift of

that shift type at time of arrival), and actual patients (who are assigned to a shift of that

shift type).

• Table A-4 reports coefficients for EOS effects on workload-adjusted length of stay. Workload-

adjusted length of stay is calculated by Equation (4). Coefficients are estimated on actual

data using regressions that adjust for the full set of covariates, as described in Table 1, for

example. This table is continued by Table A-5.

• Table A-5 reports coefficients for EOS effects on workload-adjusted length of stay, as a

continuation of Table A-4. Results in this table are estimated with the full set of controls

but only control for time relative to shift beginning. Results are estimated on both actual

and simulated data.

• Figure A-1 shows example weekly pod schedules.

• Figure A-2 shows EOS effects on time components of length of stay, according to time

before first order, time between first and last (non-discharge) order, and time between last

order and discharge.

• Figure A-3 shows EOS effects on length of stay for shifts of different lengths, presented

both as time relative to EOS and time relative to shift beginning.

• Figure A-4 shows average patient counts (“censuses”) for physicians in shifts with different

overlap o.

• Figure A-5 shows the fit between actual and simulated data, where the simulated assign-

ments, length of stay, and censuses are calculated by discrete-time functions of patient

assignment and discharge.

• Figure A-6 shows coefficients for EOS effects on workload-adjusted length of stay, reported

in Table A-5, estimated on both actual and simulated data.

Tables A-4 and A-5 both report coefficients for EOS effects on workload-adjusted length of stay.

As shown in Tables 1 and 2, length of stay continuously decreases as time approaches EOS,

but orders, admissions, and costs only increase in the last hour prior to EOS. In Section 5.2, I

show that adjusting length of stay for average workload reconciles these different patterns, in

that workload-adjusted length of stay only decreases from baseline in the last hour of shift, and

thus represents a more accurate measure of the input of time in patient care. Table A-4 further

documents that workload-adjusted length of stay decreases with little overlap (o ≤ 1) but shows

no decrease relative to baseline with more substantial overlap (o ≥ 2), which is consistent with

the fact that orders, admissions, and costs do not change near EOS for o ≥ 2 (Figure 7).
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In Table A-5, I present evidence qualitatively consistent with results in Table A-4, except

that I do not control for patient characteristics, time indicators other than time relative to shift

beginning, and provider identities. I consider these more parsimonious regressions in Table A-5

to operationalize workload-adjusted length of stay as the key substitute for patient-care costs

in the structural model in Section 7, in which simulating the rich set of covariates would either

be impractical. Specifically, as workload-adjusted length of stay decreases, patient-care costs

increase via increased formal utilization and admission likelihood. Tables A-4 and A-5 both

show that workload-adjusted length of stay increases above baseline in the hours before the

last of shift (while utilization is unchanged). This could be consistent with “foot-dragging” in

which physicians delay discharge but do not otherwise change patient care (Chan, 2014); in the

structural model, I therefore assume that increases in workload-adjusted length of stay do not

change patient-care costs.

Figure A-2 examines EOS effects on time components defined by patient arrival, physician

first order, physician last (non-discharge) order, and patient discharge. As explained in Section

5.2, the purpose of this exercise is to consider components of length of stay that are conceptually

substitutes (τ1) vs. complements (τ2) with respect to formal utilization. Time spent before the

first order is likely to be part of τ1, whereas time after the last order is likely be part of τ2. Time

between the first and last orders is a mix of the two but is likely to more closely represent τ1.

Results in Figure A-2 are consistent with a decreasing proportion of time in τ1 and an increasing

proportion of time in τ2, which is consistent with net substitution (increasing formal utilization)

in the last hour of shift.

Figure A-3 depicts EOS effects on length of stay in shifts of different lengths, where coeffi-

cients are arranged both by time relative to EOS (Panel A) and by time relative to shift beginning

(Panel B). As explained in Section 5.4, this illustrates that changes in length of stay with time

relative to shift beginning are negligible compared to EOS effects. Of course, essentially all

regressions (e.g., Equation (3)) in the paper control for time relative to shift beginning.

Figure A-5 shows the fit between actual data and simulated data from the structural model

described in Sections 7 and A-2. Assignments (Panel A) are simulated according to a zero-

inflated Poisson model, and length of stay (Panel B) results from discharges simulated accord-

ing to a logit hazard model, both of which consider time in fifteen-minute discrete intervals.

Censuses (Panel C) – or workload as measured by numbers of patients under a physician’s care

(between assignment and discharge) – are simulated by both the assignment and discharge mod-

els. Workload-adjusted length of stay, calculated by Equation (4), is derived from discharges

and censuses. Figure A-6 shows the fit in regression coefficients (also reported in Table A-5) of

workload-adjusted length of stay between actual and simulated data.
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Table A-2: Shift Type Observation Numbers

Shift type Shifts Hours
Potential
patients

Actual
patients

〈7, 0, 1〉 95 665 1,645 1,160
〈7, 1, 0〉 237 1,659 6,674 2,597
〈7, 1, 1〉 101 707 4,281 1,783
〈8, 0, 1〉 319 2,552 8,453 4,952
〈8, 1, 0〉 174 1,392 7,440 1,981
〈9, 0, 1〉 3,453 30,879 84,292 58,589
〈9, 0, 2〉 325 2,349 6,411 4,541
〈9, 0, 4〉 408 2,898 9,326 4,839
〈9, 0, 6〉 364 3,276 16,186 5,899
〈9, 1, 0〉 3,414 30,528 118,030 59,897
〈9, 1, 1〉 2,909 26,181 116,108 54,221
〈9, 1, 4〉 2,249 19,170 80,279 28,694
〈9, 1, 5〉 60 540 2,554 892
〈9, 1, 6〉 211 1,899 8,157 2,524
〈9, 2, 0〉 464 3,294 12,027 6,317
〈9, 3, 1〉 485 3,277 17,013 6,699
〈9, 3, 3〉 60 540 3,226 1,089
〈9, 4, 0〉 347 2,347 9,996 3,994
〈9, 4, 1〉 212 1,908 8,974 3,370
〈9, 4, 3〉 426 2,752 16,730 5,344
〈9, 4, 4〉 772 5,094 26,094 9,413
〈9, 4, 6〉 2,141 19,269 99,726 29,007
〈9, 5, 3〉 60 540 2,851 1,043
〈9, 6, 0〉 634 5,706 34,943 9,244
〈9, 6, 1〉 1,504 13,536 61,197 21,861
〈9, 6, 4〉 575 5,175 31,088 9,597
〈9, 9, 1〉 353 3,177 15,965 4,598
〈10, 0, 0〉 176 1,760 4,812 2,578
〈10, 0, 1〉 243 2,430 5,783 4,615
〈10, 0, 2〉 137 1,040 2,631 1,901
〈10, 0, 4〉 139 1,050 3,616 2,378
〈10, 1, 0〉 277 2,770 9,092 4,401
〈10, 4, 0〉 139 1,050 4,335 1,834
〈12, 0, 0〉 142 1,704 4,119 2,423
〈12, 4, 9〉 319 3,828 16,490 5,566
Total 23,924 206,942 860,544 369,841

Note: This table lists the number of observations for each shift type, each defined as 〈`, o, o〉, where `

is the shift length in hours, o is the overlap in hours with a previous shift, and o is the overlap in hours

with a subsequent shift in the same location. Observations are counted in terms of unique shifts, hours,

potential patients (patients who arrive at the ED during a time when there is a shift of type 〈`, o, o〉 in

progress), and actual patients (patients who are treated by a physician on a shift of type 〈`, o, o〉).
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Figure A-2: Time Components
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Note: This figure plots time components of length of stay as a function of hours relative to end of shift

(EOS): time from pod arrival to first order (open circles), time from first to last (non-discharge) order

(open triangles), and time from last order to discharge order (closed circles). Panel B shows marginal

effects from a fractional logit model on these shares. Panel A represents these results as time in hours,

incorporating results on the EOS effect on length of stay.
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Figure A-3: Effects on Length of Stay by Shift Length
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B: Shift Beginning

Note: This figure shows coefficients from Equation (3) estimated separately for shifts of seven or eight

hours in length (open circles), nine hours in length (closed circles), and ten hours in length (open trian-

gles). Panel A arranges estimates by hours relative to end of shift (EOS). Panel B arranges estimates by

hours relative to shift beginning.
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Figure A-4: Censuses over Time
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Note: This figure plots average censuses over time relative to the end of shift (EOS). Each panel shows

results for physicians in shifts with a given EOS overlap time. Subsequent shift starting times are marked

with a vertical line.
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