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Abstract 

Income inequality is rising in China at the same time that urban air pollution remains high.  

Households can purchase market products such as masks and air filters to protect themselves from 

pollution. Using a unique data set of Internet purchases, we document that households invest more 

in such products when ambient pollution levels exceed key alert thresholds. Richer people are more 

likely to invest in these products. By combining several existing pieces of research, we provide an 

estimate of the differential exposure to pollution between rich and poor people in urban China.   

This differential has implications for life expectancy across groups and suggests that quality of life 

inequality exceeds cross-sectional measures of income inequality.  

 

Significance Statement 

Urban air pollution remains high in China.  During hazy days, Chinese urbanites wear masks 

outdoors and use air filters indoors to protect themselves against the dirty air. Using a unique data 

set of Internet purchases, we find that people buy more masks and filters when local air pollution is 

higher. Richer people are more likely to invest in such self-protection products. By combining 

several pieces of information, we estimate that the poor inhale more PM2.5, and this shortens their 

life expectancy relative to richer individuals.  This differential is due to differential self-protection 

investments. We conclude that in China’s cities today that quality of life inequality exceeds income 

inequality. 
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Income inequality has been rising sharply in China. The Gini coefficient reached 0.491 in 2008 

(National Bureau of Statistics of China, thereafter NBSC). Xie and Zhou (2014) estimate that 

China’s Gini was 0.50 in the year 2010.  At a time when there is renewed interest in the causes of 

income inequality (Piketty 2014), it is equally important to examine the consequences of this trend 

and its implications for trends in quality of life inequality.  National income accounts that measure 

a nation’s per-capita Gross National Product do not reflect broader measures of well being such as 

the damage to health and quality of life caused by local pollution (Stiglitz, Sen and Fitoussi 2010, 

Smith 2012).   

This study measures pollution exposure inequality in urban China across income groups.  

China’s urban air pollution challenges have been well documented.  The Asian Development Bank 

reports that less than 1% of the 500 largest cities in China meet the air quality standards 

recommended by the World Health Organization, and seven of these cities are ranked among the 

top ten polluted cities in the world (Asian Development Bank 2012).  In 2013, about half of China 

suffered from the heavy haze in December (http://usa.chinadaily.com.cn/china/2013-

12/09/content_17160658.htm).  Pollution exposure impacts both the quantity and quality of life. 

Breathing polluted air as measured by particular matter (PM) raises one’s risk of heart and lung 

disease (Chay and Greenstone 2003; Evans and Smith 2005; Moretti and Neidell 2011). 

There are two strategies for reducing the social costs of air pollution. First, government can 

introduce regulations to reduce emissions from various polluting sectors such as industry, 

transportation, and construction.   Second, private individuals can invest in avoidance behavior to 

reduce their pollution exposure.  While investments in public goods (the first strategy) broadly 

benefit everyone, investments in private self protection may be mainly an option for richer 

households. 

In reviewing long run United States health trends over the last 150 years, Costa (2014) argues 

that health inequality declined when public investments such as sewage treatment plants were built 

and that health inequality rose when the main source of health progress was private household 

investments in customized health care. In the past two decades, China’s central government focused 

on economic growth with an emphasis on GDP as the key evaluation criteria of local officials’ 

performance. Facing these incentives, local officials invested little in environmental protection 

(Zheng and Kahn 2013; Wu et al. 2014). The central government has recently prioritized making 

environmental progress but China’s ongoing coal reliance, industrial production, and increased 

vehicle use suggest that tangible environmental progress will only be observed in the medium term. 

As Chinese urbanites become richer and more highly educated, they have strong incentives to invest 

more in avoidance behavior. 



The objectives of this research are two-folds. First, we test whether Chinese urbanites respond 

to high levels of outdoor air pollution by buying masks for outdoor use and investing in indoor air 

filters. Second, we investigate whether richer people are more likely to engage in this defensive 

expenditure. We use estimates from the literature and input from experts to quantify the expected 

life expectancy inequality across Chinese urban income groups caused by differential exposure to 

air pollution. 

 Self-Protecting Against Air Pollution in China 

By choosing a city and a neighborhood within that city, urban residents have some control over 

their exposure to air pollution. The poor, with their limited budget, are more likely to live the most 

polluted cities and the dirtier areas within a city.  Several studies have documented that real estate 

prices are higher and that housing demand is higher in less polluted geographic areas (Chay and 

Greenstone 2005).  Using data from within the Los Angeles metro region, Sieg et al. (2004) 

document that exogenous improvements in air pollution trigger a migration by richer people into 

the community.  Cross-county migration research documents that households reveal a high 

willingness to pay for clean air (Bayer, Keohane and Timmins 2009). Using cross-sectional data on 

real estate prices across Beijing, Zheng and Kahn (2008) find that a home’s price is 4.1% higher at 

the location with a 10μg/m3 lower average PM10 concentration. Zheng et al. (2014) find that a 10% 

decrease in imported neighbor pollution is associated with a 0.76% increase in local home prices. 

They also report that the marginal valuation for clean air is larger in richer Chinese cities.  

One’s location alone is not sufficient for describing one’s pollution exposure. When the outdoor 

air is polluted, people decrease their outdoor activity (Neidell 2009). Richer people have a higher 

probability of owning cars, which protect them from the outdoor dirty air. Using micro-data from 

the 2006 Chinese Urban Household Survey conducted by NBSC, Zheng et al. (2011) estimate the 

income elasticity of car ownership is 0.81. Low-skilled workers are more likely to work in outdoor 

occupations such as construction, street cleaning and delivering mail.  In contrast, high-skilled 

workers work indoors in climate controlled buildings. According to the Environmental Exposure 

Related Activity Patterns Survey in China, the ratio of office staffs’ average daily outdoor time to 

that for all workers is 0.64.   

China’s nascent market economy offers households a growing array of products intended to 

improve day to day quality of life.  In the case of avoiding air pollution, masks and air pollution 

filters represent key examples of such market products. The rich and poor have differential access 

to these goods.  Risk perception studies have documented that the population is aware of the risks 

they face from pollution and the private benefits from investing in self-protection and averting 

behavior (Smith, Devousges and Payne 1995; Smith 2008; Zivin and Neidell 2009). Economists 



have posited that more educated people are more future focused and patient (Becker and Mulligan 

1997) and these traits would further encourage richer (more educated) people to invest more in self 

protection to mitigate the pollution challenge. Differential investments in these items between the 

rich and poor will exacerbate pollution exposure differences and hence increase health inequality.  

Many urban residents in major cities purchase products online, especially those easy-shipping 

products. This fact allows us to build a novel data base. Alibaba Group is China’s largest e-

commerce company and it provides the largest online shopping platform Taobao (with hundreds of 

million online consumers) in China similar to eBay and Amazon. According to Taobao’s statistics, 

Chinese consumers spent 870 million yuan (US$143 million) on 4.5 million online transactions 

purchasing anti-smog products in 2013. During a hazy week at the end of 2013, mask and air filter 

sales reached 760,000 and 140,000 respectively, with the weekly growth rates (compared to the 

previous week) of 52.35% and 74.1% respectively.  While concerns about the “digital divide” raise 

the possibility that the poor are less likely to shop online, in China low income people prefer to use 

Taobao because its prices are lower than bricks and mortar stores. It is likely that some of the very 

poor people and the elderly may not use Taobao because they do not know how to use computer or 

access to the Internet.  

Taobao divides all buyers into three groups based on the 25th and 75th percentile values of the 

overall distribution of buyers’ purchase expenditures. These three groups are called “low-income” 

(0 – 25 percentile), “middle-income” (25 – 75 percentile) and “high-income” (75 – 100 percentile) 

groups in our study. For instance, a consumer who is in the 90th percentile of total expenditure would 

be classified as “high income” (see the Materials and Methods section).  

An air filter is much more expensive than a mask. Their average prices are 490 and 0.9 US 

dollars, respectively. Consumers have to change the air filter’s strainer once per year but a mask 

only last for about ten days. Thus, the daily user cost (including electricity expenditure) of an air 

filter is more than ten times that of a mask. For both the mask and air filter transactions on 

Taobao.com in 2013, the high-income group (the top 25% of total consumers) bought 31.9% of 

masks and 47.9% air filters.  

These online purchase records allow us to test two hypotheses. 

Hypothesis #1: People respond to higher levels of air pollution by buying more masks and 

filters. They respond to both government’s pollution alerts (determined by PM2.5 exceeding key 

thresholds) and to the level of outdoor PM2.5. Market Internet purchases of other goods (socks and 

towels) are not correlated with pollution alerts and the level of outdoor PM2.5.  

Hypothesis #2: Compared to poorer people, richer people invest more in self-protection 

products when air pollution is higher.   



Eq. 1 and Eq. 2 (described in detail in the Materials and Methods section) are estimated to test 

Hypothesis #1 and #2. 

Results 

Findings testing Hypothesis #1:  As described in the Materials and Methods section, we have 

collected city level daily data from November 1, 2013 to January 31, 2014 on sales of masks, filters, 

socks and towels for 34 major cities.  We seek to study how the sales of these products evolve as 

a function of a city’s local daily PM2.5 concentration level and the local government’s alerts about 

the severity of air pollution on that day (see details in the Materials and Methods section). This 

three-month time period covers a large number of foggy and haze days in the past year, and the 

severe haze at the end of 2013. 

Table 1. Daily Internet Sales by Product Category as a Function of Air Pollution 

Variables (1) (2) (3) (4) 

Dependent variable: mask filter  sock  towel  

Six Government Alerts: 

excellent (default) 

good 0.131** -0.015 -0.060 -0.011 

 (0.057) (0.066) (0.060) (0.057) 

lightly polluted 0.201** 0.100 -0.020 0.023 

 (0.088) (0.096) (0.062) (0.066) 

moderately polluted 0.372*** 0.219* -0.084 -0.014 

 (0.092) (0.115) (0.072) (0.072) 

heavily polluted 0.648*** 0.386*** -0.165** -0.138 

 (0.129) (0.131) (0.071) (0.087) 

severely polluted 1.357*** 0.915*** -0.237** -0.246** 

 (0.194) (0.246) (0.106) (0.096) 

ln(PM2.5) 0.268*** 0.102* 0.091*** 0.083*** 

 (0.052) (0.054) (0.024) (0.032) 

Control variables YES YES YES YES 

Observations 3085 3085 3085 3085 

Notes: Four negative binomial regression estimates are reported.  Robust standard errors in parentheses. The 

control variables include; a constant, shopping festival dummies, national holiday dummies, daily weather 

attributes, city-fixed effects and a linear time trend are included. * p<0.10. ** p<0.05. *** p<0.01. 

Table 1 reports the regression results of Eq. 1. The dependent variable in Columns (1) and (2) 

is the daily sales of masks and air filters, respectively.  The omitted category is an “excellent” (blue 

skies) day.  We find that Chinese households respond to government’s pollution alerts and also 

respond to the PM level. Note the monotonic relationship between the severity of the government 

alerts and the sales of masks and filters. The daily sales of masks on the days when the government 



has issued a “heavily polluted” and “severely polluted” alert are 2.5 and 11.2 times those during an 

“excellent” day. These two ratios are 1.3 and 4.9, respectively for air filter sales.  This evidence 

suggests that the population trusts the government’s pollution alerts.   

Controlling for the discrete government alert, consumers also respond to the actual PM2.5 

concentration level by buying more masks and air filters. On days when the government announces 

a “heavily polluted” or a “severely polluted” alert, people check their smartphones more often for 

real time updates about the reading of current PM2.5 concentration. 

We report results from two additional regressions reported in columns (3) and (4).  In these 

regressions, we switch the dependent variables to the Internet sales of socks and towels.  These 

products do not offer self protection against outdoor air pollution. In the case of socks and towels, 

we find no evidence of increased sales as a function of government alerts of the severity of the 

pollution. In fact, we find that sales of these items decline on days when the pollution is especially 

severe.  As shown by the positive PM2.5 coefficient, we do find that within pollution threshold 

categories that there is a positive correlation between PM2.5 concentrations and socks and towel 

sales. It is important to note that the economic magnitude of this effect is small. If PM2.5 is one 

standard deviation higher, the mean sock and towel sales increase 7.8% and 6.9% respectively, but 

the mean mask sales increase 19.7%.2  

Findings testing Hypothesis #2:  To test whether richer people invest more in self protection, 

we use the monthly Internet sales data stratified by the three income categories and test whether 

richer people are purchasing more masks and filters on more polluted days (details provided in the 

Materials and Methods section). The sample covers 34 cities for the period from April 2013 to April 

2014. We use monthly data, instead of daily data, to test this hypothesis is because that no daily 

sales index stratified by income-group is available. The government alert variable is not available 

for this longer period, so the key independent variable is the monthly average PM2.5 concentration 

data, and we interact this variable with income group dummies. Table 2 presents the regression 

results based on estimating equation (2). 

In the first column in Table 2, a 1% increase in PM2.5 concentration is associated with a 

statistically significant increase of 0.81% in mask purchases by the low-income group (the default 

category).  We reject the hypothesis that the middle-income and high-income groups purchase 

more masks than the low-income group when PM2.5 concentration rise.  This finding may be due 

to the fact that masks are cheap so that even the poor can afford them.  Also, recall that the rich 

                                                        
2 Based on a similar taobao.com transaction data set, an independent work by Mu and Zhang (2014) finds that a 

100-point increase in Air Quality Index increases the consumption of all masks by 54.5 percent and anti-PM2.5 

masks by 70.6 percent. These results are consistent with our findings here but our emphasis is on cross income 

group exposure differences and hence on the role of income inequality, as we discuss in the subsection below. 



can stay inside for longer time during the polluted days so they do not need to wear masks intensively. 

In contrast, the air filter is quite expensive (490 US dollars each on average) and its main function 

is cleaning the indoor air. As expected, the income gradient for air filter purchases is statistically 

significant. The low-income group has a nearly a zero elasticity of air filter purchases with respect 

to PM2.5 increases, while the middle-income and high-income groups have significantly positive 

elasticities of 0.23 and 0.27, respectively. The interaction terms in the placebo tests in columns (3) 

and (4) are all statistically insignificant.  

Table 2. Internet Sales as a Function of Air Pollution and Household Income 

Variables (1) (2) (3) (4) 

Dependent variable: mask filter  sock  towel  

ln(PM2.5) 0.8078*** -0.0556 0.4549*** -0.1075 

 (0.165) (0.111) (0.093) (0.069) 

ln(PM2.5)*middle income 0.0012 0.2325*** 0.0030 0.0225 

 (0.062) (0.079) (0.042) (0.048) 

ln(PM2.5)*high income 0.1237 0.2746*** 0.0169 0.0940 

 (0.094) (0.075) (0.064) (0.085) 

Control variables YES YES YES YES 

Observations 1326 1326 1326 1326 

R-squared 0.843 0.888 0.857 0.913 

Notes: Robust standard errors in parentheses; The constant and the control variables for income categories, 

weather attributes, city-fixed effects and time trend are included but not reported. * p<0.10. ** p<0.05. *** 

p<0.01. 

Discussion and Conclusion 

Chinese urbanites engage in self-protection against air pollution and richer individuals are 

more likely to make these investments.  For a given level of outdoor air pollution, an individual 

can reduce her exposure by spending less time outside and wearing an effective mask when one is 

outside.  Such an individual can reduce her exposure to indoor air pollution by purchasing an 

effective filter. 

To provide a preliminary estimate of the total effect of these choices, on particulate matter 

exposure, we borrow several results from the literature.  Based on equations (3) and (4) (see the 

Materials and Methods section), we calculate the average mean exposure to PM2.5 by income group.   

On average, low-income urbanites inhale 28% more PM2.5 than high-income urbanites. To translate 

differences in PM2.5 exposure concentrations into differences in life expectancy, we use estimates 

from Pope III et al. (2009). They find that an increase of 10μg/m3 in the PM2.5 concentration is 

associated with about a 0.61 year reduction in life expectancy.  

In Table 3, we use this information to present three scenarios (A, B and C refer to the PM2.5 



concentration as the average value of the 35 major cities, that in the most polluted city, and that in 

the cleanest city, respectively. Details are reported in Materials and Methods). Table 3 shows that 

life expectancy inequality (the difference in life expectancy between the high-income group and the 

low-income group) is 8.49 months if everyone is exposed to the average PM2.5 level across the 35 

cities. This gap grows to 14.1 months if everyone is exposed to the Chinese city with the highest 

PM2.5 level (Shijiazhuang City). As we discuss in the Materials and Methods section, it is important 

to note that these calculations are based on several assumptions that we explicitly state in that section. 

Table 3. Life Expectancy Differentials across Income Groups in Different Types of Cities 

Scenario Life expectancy inequality 

Scenario A (35 cities average, baseline) 8.49 months 

Scenario B (most polluted city) 14.09 months 

Scenario C (cleanest city) 3.64 months 

Table 3 shows that public investment in pollution control and the resulting air pollution 

improvement will differentially improve the life expectancy of the Chinese urban poor.  

 

Materials and Methods 

Sample and Data.  Our core data set for city level sales of self-protection products is based 

on data from Taobao.com which accounts for about 90% of the online Consumer-to-Consumer sales 

and 57% of online Business-to-Consumer sales in China (http://dealbook.nytimes.com/ 

2013/09/25/alibaba-said-to-shift-target-from-hong-kong-to-u-s-for-i-p-o/). As iResearch reported, 

Taobao’s gross sales volume exceeded 1 trillion RMB Yuan in the first eleven months in 2012, 

which accounted for about 5.4% of China’s sales of social retail goods in that year 

(http://www.iresearchchina.com/views/4730.html). Many daily consumption items are purchased 

on Taobao.com because of its low prices and easy shipping.  Taobao.com provides daily and 

monthly sales indices (which bears a linear relationship with the real sales volume) of each market 

good covering the 34 major cities (all municipalities directly under the federal government, 

provincial capital cities, and quasi provincial capital cities, excluding Lhasa in Tibet). We collect 

daily sales index from November 1, 2013 to January 31, 2014 to estimate equation (1). This time 

period covered several major pollution events; including in early December 2013, the Pearl River 

Delta where Shanghai and Nanjing locate suffered from the most severe haze event of the past ten 

years. Beijing and Shijiazhuang also experienced terrible haze days in December 2013 and January 

2014.  

To estimate the results reported in Table 2, we collect monthly sales index from April 2013 to 

April 2014 for each of the three income groups (high-income, middle-income and low-income).  



These categories correspond to buyers within the 75%-100%, 25%-75% and 0%-25% percentiles in 

the distribution of the online shopping expenditure per capita. No daily index stratified by income-

group is available. 

 The air pollution data and the daily pollution alerts are from the China’s Ministry of 

Environmental Protection (MEP). According to China’s new Ambient Air Quality Standards 

(GB3095-2012), there are six levels of pollution alerts: excellent, good, lightly polluted, moderately 

polluted, heavily polluted and severely polluted. Each alert is based on the air quality index created 

by the MEP. Fu et al. (2014) list the detailed ranges of the air quality index for each alert.  Daily 

and monthly PM2.5 concentrations are calculated from the MEP’s official hourly real-time data 

(http://113.108.142.147:20035/emcpublish/). We obtained city level historical weather record such 

as daily temperature, humidity, wind speed and presences of rain, snow and fog from the website 

TuTiempo.net (http://www.tutiempo.net/en/Climate/China/CN.html).  

The Econometric Model.  To estimate the results reported in Table 1, we estimate the 

negative binomial count model presented in Eq.1: 

Qit =α0+α1·ln(PMit)+α2·Ait+α3·Xit+α4·Tt+α5·Ci+εit         [1] 

Where Qit is the sales index of each market product (masks or air filters) in city i in day t. PMit 

is the daily PM2.5 concentration in city i in day t. Five pollution alert dummies are included as Ait. 

(“excellent” as the default). Xit is a vector of weather attributes and control variables such as China’s 

national holidays. The two variable Tt and Ci represent time trend and city-fixed effects, respectively. 

εit is a disturbance term. We also run the placebo tests with the sales of socks and towels as the 

dependent variables in Eq. 1.  

To estimate the results reported in Table 2, we estimate Eq. 2:  

ln(Qijt)=β0+β1·ln(PMit)+β2·ln(PMit)·middle incomei+β3·ln(PMit)·high incomei+β4·Wit 

β5·Tt+β6·Ci+νijt              [2] 

Where Qijt is income group j (high-income, middle-income, low-income)’s sale index of each 

market product in city i in month t. middle income and high income are two dummy variables in city 

i. Wit is a vector of weather attributes. The coefficient β2 (or β3) of the pollution-income interaction 

term measures the differential of the respond gradient to pollution increase between the middle 

income group (or high income group) and the low income. νit is a disturbance term. 

Variable definitions and summary statistics are listed in Table 4. Summary statistics of the 

control variables, such as weather attributes and national holidays, are not listed but are available 

upon request. 



Table 4. Variable Definitions and Summary Statistics 

Variable Definition Mean (Std. Dev.) 

  Daily Monthly 

PM2.5 PM2.5 concentration (in μg/m3)  96.34 (70.64) 66.22 (33.01) 

mask Taobao.com sales index of “mask” 51.50 (223.8) 216.4 (869.3) 

filter Taobao.com sales index of “air filter”  6.285 (20.66) 35.30 (85.82) 

sock Taobao.com sales index of “sock”  77.71 (160.3) 621.0 (967.8) 

towel Taobao.com sales index of “towel” 24.66 (52.09) 212.3 (300.2) 

Six Government Pollution Alerts: 

excellent 1=“excellent” level, 0=otherwise 0.068 (0.252) － 

good 1=“good” level, 0=otherwise 0.366 (0.482) － 

lightly polluted 1=“lightly polluted” level, 0=otherwise 0.273 (0.445) － 

moderately polluted 1=“moderately polluted” level, 

0=otherwise 

0.139 (0.346) － 

heavily polluted 1=“heavily polluted” level, 0=otherwise 0.114 (0.318) － 

severely polluted 1=“severely polluted” level, 0=otherwise 0.040 (0.196) － 

Income Categories:    

low income 1=low-income group, 0=otherwise － 0.333 (0.472) 

middle income 1=middle-income group, 0=otherwise － 0.333 (0.472) 

high income 1=high-income group, 0=otherwise － 0.333 (0.472) 

Key parameters used in the life expectancy estimations. Eq. 3 shows how we quantify the 

PM2.5 pollution exposure differential by income group.   

exposurei=PM2.5out*shareout,i*probi(mask)*(1-E(mask))+PM2.5out*shareout,i*(1-probi(mask)) 

+PM2.5in*sharein,i*probi(filter)* (1-E(filter))+PM2.5in*sharein,i*(1-probi(filter))   [3] 

In Eq. 3, exposure is daily PM2.5 exposure; PM2.5out and PM2.5in is the outdoor and indoor 

PM2.5 concentration, respectively; shareout and sharein is the share of time spent outside and inside, 

respectively; prob is self-protection product purchase probability and 1-prob is the probability of 

not buying a mask or filter. E is the effectiveness of the corresponding product as measured by what 

percent of the pollution it removes. The subscript i represents income group i. 

We calculate equation (3) for each income group and then use the Pope III et. al. (2009) 

estimate to measure the life expectancy reduction.  These inputs are used to create equation (4).  

Life expectancy differential=Marginal life expectancy reduction*PM2.5 exposure differential [4] 

Four key parameters are needed to estimate Equations (3) and Equation (4). The first parameter 

is the PM2.5 concentration. We present three scenarios. In Scenario A (the baseline), the outdoor 

PM2.5 concentration is defined as the average value of 34 major cities in 2013 (67.32μg/m3). In 

Scenario B (high case), outdoor PM2.5 concentration is defined as the most polluted city’s 

(Shijiazhuang City) annual mean concentration (111.67μg/m3). Similarly, in Scenario C (low case), 



outdoor PM2.5 concentration is defined as the cleanest city’s (Haikou City) annual mean 

concentration (28.85μg/m3). According to Chen and Zhao (2011), the indoor concentration is about 

0.8 times of the outdoor concentration on average. We use this estimate to calculate the indoor PM2.5 

concentration in each of the three scenarios. We obtain an adult’s daily outdoor and indoor time 

spent from the Environmental Exposure Related Activity Patterns Survey of Chinese Population. 

We calculate the usage probability of each self-protection product based on the Taobao.com sales 

index and a survey conducted by the National Bureau of Statistics of China.  To measure the 

effectiveness of masks, we use research from the Department of Building Science at Tsinghua 

University. Professor Zhang, the director of Center for Building Environment Test and his research 

team have conducted experiments measuring mask effectiveness. Moreover, China Consumer 

Association provides test results to show the effectiveness of many air filters (http://www.cca. 

org.cn/web/xfzd/newsShow.jsp?id=67720). These studies indicate that the mean effectiveness of 

masks and air filters is 33.0% and 92.0% respectively. That is, we assume that mask and filter 

owning urbanites are exposed to 67.0% and 8.0% of the original PM2.5 pollution.  

Income groups differ with respect to their time spent outside and their probability of buying 

masks and filters.  These differentials are presented in Table 5.  In calculating this differential, we 

assume that for a given income group that a person’s propensity to buy a mask or a filter is an 

additively separable function of the person’s income and the local air pollution level. In this 

calculation we do not allow for the possibility that richer people may be even more likely to purchase 

self protection equipment in more polluted cities. Technically, we do not allow for an interaction 

effect between income and local air pollution. Such a positive interaction would only increase the 

inequality estimate.  

Table 5.  Parameters Used to Generate Table 3   

Income group (quantiles) 
Low-income Middle-income 

 

High-income 

 

Time spending 

(minutes per day) 

Outdoor 

(Indoor) 

241.19 

(1198.81) 

227.36 

(1212.64) 

185.81 

(1254.19) 

Usage probability of 

self-protection (%) 

Mask 

(Air filter) 

13.51 

(6.36) 

15.11 

(12.72) 

16.97 

(31.80) 
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