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Abstract. This paper empirically investigates how sentences to be assigned at

trial impact plea bargaining. The analysis is based on a variation of a bargaining

model with asymmetric information due to Bebchuk (1984). I provide conditions for

the non-parametric identification of the model, propose a consistent non-parametric

estimator, and implement it using data on criminal cases from North Carolina. Em-

ploying the estimated model, I evaluate how different sentencing reforms affect the

outcome of criminal cases. My results indicate that lower mandatory minimum

sentences could greatly reduce the total amount of incarceration time assigned by

the courts, but may increase conviction rates. In contrast, the broader use of non-

incarceration sentences for less serious crimes reduces the number of incarceration

convictions, but has a negligible effect over the total assigned incarceration time.

I also consider the effects of a ban on plea bargains. Depending on the case char-

acteristics, over 20 percent of the defendants who currently receive incarceration

sentences would be acquitted if plea bargains were forbidden. Nevertheless, the

option of settling their cases makes defendants ex-ante substantially better off.
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1. Introduction

This paper analyzes how the harshness of sentences to be assigned at trial affects

plea bargaining. I build upon a model by Bebchuk (1984) and establish sufficient

conditions under which the model is non-parametrically identified. I then propose a

non-parametric estimator and implement it using data on criminal cases from North

Carolina state courts. The estimates allow me to evaluate the impact of commonly

proposed sentencing reforms on the final result of cases. In particular, I consider a

reduction in minimum mandatory sentences, and the wider use of non-incarceration

sentences for mild offenses. I also assess the proportion of cases that are currently

settled for incarceration sentences but that would result in an acquittal at trial if plea

bargains were banned.

The results presented here are relevant for the debate on sentencing reform. Due

mainly to the high incarceration rates in the United States, a discussion has developed

over whether current sentencing guidelines should be made more lenient. Prior to

considering what the optimal guidelines should be, however, a better understanding

is required of the effects of different sentencing reforms on the outcomes of prosecuted

cases. This task is complicated by the prevalence of plea bargaining in the American

justice system. Indeed, the vast majority of criminal cases in the United States are

settled without a trial.1 Thus it is likely that the impact of any sentencing policy

depends largely on how it affects plea-bargaining, rather than on the outcome of

cases actually brought to trial. In order to contemplate the effects of changes in the

sentencing guidelines on the final outcome of cases, it is necessary to account for plea

bargaining.

In the model, a prosecutor and a defendant bargain over the outcome of a case.

The prosecutor offers the defendant to settle for a sentence. If there is no agreement,

the case proceeds to trial, which is costly to both parties. The defendant is better

informed than the prosecutor about the probability of being found guilty at trial,

so that bargaining takes place under asymmetric information. The sentence to be

assigned in the event of a trial conviction is common knowledge.

Although the defendant’s private information is continually distributed, her action

space consists simply of accepting or rejecting the prosecutor’s offer. The lack of a

one-to-one mapping between defendants’ types and actions poses a challenge to the

1In 2001, 94% of Federal cases were resolved by plea bargain (Fischer, 2003). Numbers for state
cases are similar. In 2000, 95% of all felony convictions in state courts were the result of a plea
agreement (Durose and Langan, 2003).
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identification of the model. To overcome that challenge, I exploit information on the

distribution of defendants’ types conveyed by the prosecutor’s offers. Specifically,

there is a one-to-one mapping between the the trial sentence and the prosecutor’s

optimal offer. If such a mapping is known by the econometrician, the distribution

of defendants’ types can be recovered. The identification of the prosecutor’s optimal

offer as a function of the trial sentence, however, is complicated by a selection prob-

lem. Indeed, the prosecutor’s offer is observed only if plea bargaining is successful,

while the trial sentence is available only in cases resulting in a trial conviction trial.

Nevertheless, I show that the prosecutor’s optimal offer function satisfies an equation

relating the (observed) distributions of accepted settlement offers and assigned trial

sentences. I present sufficient conditions for that functional equation to be solved.

These conditions amount to the existence of a source of variation in the distribution of

trial sentences that does not affect the other model primitives model. My application

uses cross-judge heterogeneity in sentencing patterns as such a source of variation.

The estimation of the model closely follows the identification strategy. First, I

compute kernel density estimates for the observed distributions of trial and settlement

sentences. I then use sieve methods to solve an empirical analogue to the functional

equation defined above and to obtain an estimator for the prosecutor’s optimal offer

function, which I show to be uniformly consistent. Employing this function, I recover

the model’s primitives..

I implement the estimator using data on cases filed in the North Carolina Superior

Courts, the main general-purpose trial courts in that state, between 1996 and 2009.

The estimated model fits the main features of the data well. It accurately reproduces

the observed settlement and conviction rates, as well as the average length of assigned

sentences. I find that the asymmetric information between prosecutors and defendants

is quantitatively relevant and that the prosecutors incur high costs for bringing a case

to trial. Defendants, however, behave as if their costs of going to trial were negligible.

Such differences in trial costs, together with the informational asymmetry, help to

explain why sentences assigned in settled cases are shorter than those assigned in

trial convictions.

I employ the estimated model to evaluate the effects of a number of policy inter-

ventions on the final outcome of criminal cases. My results indicate that a decrease

in mandatory minimum sentences, which I express in the model by shortening the

potential trial sentences in all cases, greatly reduces the total amount of incarceration

time assigned, but raises the proportion of cases that result in a conviction. Because
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of the latter effect, such intervention may actually raise incarceration rates in the

short run. Another intervention, the broader use of non-incarceration sentences for

mild cases, has little effect on the total assignment of incarceration time, but may re-

duce conviction rates significantly. In a third experiment, I eliminate the asymmetric

information between prosecutors and defendants. Besides serving as a reference for

evaluating policies such as the enhancement of discovery rules, the results of this ex-

periment quantify the informational rents obtained by the defendants in the process

of plea bargaining. I estimate such rents to be substantial. In my last experiment,

I assess the impact of eliminating plea bargains. I find that a large proportion of

the defendants that currently settle their cases for incarceration sentences would be

acquitted at trial if bargaining was forbidden. Depending on the characteristics of

the case, such proportion is well above 20 percent. Insofar as trials accurately con-

vict the guilty and acquit the innocent, these numbers suggest that plea bargaining

leads a disturbing number of defendants to be unjustly incarcerated. Nevertheless,

my results indicate that, in expectation, defendants would be considerably worse off

if settlements were not allowed, relative to the present situation.

The identification and estimation strategies proposed here are adaptable to con-

texts that extend beyond the resolution of legal disputes. Many important situations

in economics can be modeled as bargaining games in which one party is privately

informed on the consequences of bargaining failure. An example is the acquisition of

public companies, where the board of the target firm must decide whether to accept

the acquirer’s proposal for a friendly takeover. If negotiations fail, the acquirer may

proceed with a hostile takeover, but the target’s board has private information on the

quality of the company’s takeover defenses or on the likelihood of winning a proxy

fight. Another example is debt renegotiation, where the debt holder is privately in-

formed on the likelihood of going into bankruptcy if the renegotiation fails. To widen

the applicability of my empirical strategy, I generalize the identification result to

settings in which more than two outcomes are possible, after bargaining failure.

The paper is organized as follows: Section 2 discusses the contribution of this

study to the literature. Section 3 describes the North Carolina Superior Courts, as

well as the data used in the paper. In Section 4, I present the theoretical model

on which the empirical analysis is based. The structural model is then presented

in Section 5, followed by the empirical results, in Section 6. Section 7 contains the

policy experiments and Section 8 concludes. In the Appendix, I show proofs omitted

from the main text, details concerning the estimation procedure and a more detailed
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comparison between my analysis and the previous literature. In an online Appendix,

I present a reduced form analysis supporting key assumptions of the model, details

on the manipulation of the data and extensions of my identification strategy to more

general settings.

2. Related Literature

This paper contributes to a vast Law and Economics literature on settlement.2

Most papers in that literature use game-theoretic models to investigate the litigation

and resolution of civil disputes, but the same framework is readily adaptable to the

analysis of plea bargaining.3 Several studies explore the empirical implications of

settlement models using data on criminal cases, with a particular interest in how

the severity of sentences to be assigned at trial affects plea bargaining outcomes.

For example, Elder (1989) provides evidence that factors that may aggravate a trial

punishment (e.g., the possession of a firearm by the defendant at the moment of

the alleged offense) reduce the probability of settlement. LaCasse and Payne (1999),

examining federal court cases, show a positive correlation between plea and trial

sentences of cases under the responsibility of the same judge. Boylan (2012) finds

similar results. Kuziemko (2006) analyzes homicide cases and finds that defendants

subject to the death penalty tend to accept harsher settlements. Taken ogether these

results serve as strong evidence that plea bargaining takes place in the shadow of a

trial.

My investigation differs from the existing plea-bargaining literature in that I de-

velop and implement a framework for the structural analysis of data on judicial cases.

This approach has several advantages over those of previous studies. First, I quan-

tify the relationship between potential trial sentences and plea-bargaining results.

Also, I recover objects that are not directly observable, such as the full distribution

of sentences to be assigned at trial. Most importantly, I am able to conduct policy

experiments to evaluate the impact of different interventions on the justice system.

2The literature offers two basic explanations for why settlements fail, resulting in a costly trial. One
theory is that agents bargain under asymmetric information (classic contributions include Bebchuk
(1984); Reinganum and Wilde (1986); Nalebuff (1987); and Kennan and Wilson (1993)). The other
is that agents have divergent priors on the distribution of trial outcomes (see, for example, Priest
and Klein, 1984). It is beyond the scope of my paper to compare the merits of these two branches
of literature. See Daughety and Reinganum (2012) for a detailed review.
3Theoretical papers that apply settlement models to the criminal context include Rubbinfeld and
Sappington (1987), Reinganum (1988), Kobayashi (1992), Miceli (1996), Baker and Mezzetti (2001)
and Bjerk (2007).

5



In that sense, my study is related to a group of papers that conduct the structural

estimation of settlement models using data on civil cases—notably, Waldfogel (1995),

Sieg (2000) and Watanabe (2009). My paper differs from those in three important

aspects: First, my focus is on criminal, rather than civil, cases. Second, I conduct a

careful identification analysis, showing what can be learned from the data using only

restrictions derived from the theoretical model, and imposing minimal parametric

assumptions on the model’s primitives. The non-parametric approach is particularly

valuable in the empirical investigation of legal disputes since, due to the endogenous

selection of cases for trial, the raw data provide little guidance about the adequacy

of different parametric specifications for the model. Accordingly, my estimation pro-

cedure is non-parametric. Third, and due mainly to my focus on plea bargaining,

the model estimated here departs from the ones used in previous papers. Waldfogel

(1995) does not account for variation across cases in the size of trial awards, which

would be the civil cases’ equivalent to trial sentences. Such lack of variation prevents

the investigation of how awards affect settlement decisions, which is the centerpiece

of my analysis. Watanabe (2009) is interested primarily in dynamic aspects of the

bargaining process, such as the costs of bargaining delays, which are more relevant

in the context of tort cases than in that of criminal ones. His model, for example,

emphasizes the differences between cases settled with and without the filing of a law-

suit, whereas the latter group of cases has no clear equivalent in the criminal justice

system. The model estimated by Sieg (2000) is probably the closest to the one studied

here. However, some features of Sieg’s model make it inappropriate for the analysis

of criminal cases. Specifically, that model does not allow changes in the distribution

of potential trial sentences to affect conviction rates, which are of great interest in

the discussion of sentencing reform. As Section 4 makes clear, the model estimated in

my paper does not have such a limitation. I present a detailed comparison between

Sieg’s paper and mine in Appendix A.3.

More generally, my paper proposes a new strategy for the non-parametric iden-

tification and estimation of bargaining games with asymmetric information, which

can, in principle, be applied to settings other than the settlement of judicial cases.

Models of bargaining with asymmetric information are used in several fields of Eco-

nomics, and recent years have seen a renewed interest in the empirical analysis of such

models. Besides the papers on settlement mentioned above, recent studies by Merlo,

Ortalo-Magné and Rust (2008), Keniston (2011) and Larssen (2014) estimate models

of bargaining over the sale of a good in which agents have private information about
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their valuations. Using rich data on offers and counteroffers, these papers analyze

dynamic aspects of bargaining. However, data on many relevant topics are rarely

available at such a level of detail. The techniques developed here are useful in the far

more common scenario, where only the final outcome of bargaining is observable.

My paper also contributes to a growing empirical literature on political incentives

in the justice system. Studies such as Huber and Gordon (2004), Gordon and Huber

(2007) and Lim (2013) evaluate how elections affect the sentencing behavior of trial

judges. But measuring such behavior based only on observed sentences is challeng-

ing since numerous cases are resolved by plea bargain. Lim (2013) treats trial and

settlement sentences equally, which may lead to overestimation of the differences in

the sentencing patterns across different judges. Indeed, according to most settlement

models, including the one I consider, harsher trial sentences make it more difficult

to settle cases. Moreover, settled sentences are normally considerably shorter than

the ones assigned at trial. Therefore, if one specific judge tends to be harsher than

another, the difference between the observed sentencing patterns of these two judges

may be explained not only because the former assigns longer sentences than the lat-

ter, but also because cases under the responsibility of the former judge are more likely

to be resolved at trial. Huber and Gordon (2004) and Gordon and Huber (2007) use

indicators of whether a case is resolved by plea bargain as a control variable in their

estimation procedures, but that does not account for the endogeneity of settlement.

The empirical framework presented recovers the full distribution of trial sentences,

which could be used to assess the harshness of different judges.

3. Data and Institutional Details

I use data on criminal cases prosecuted in the North Carolina Superior Courts—the

highest of the general trial courts in North Carolina’s justice system. The Superior

Courts have exclusive jurisdiction over all felony cases, as well as over civil cases

involving large amounts of money and misdemeanor and infraction cases appealed

from a decision in the lower District Courts.4 The state is divided into eight Superior

Court divisions, and each division is further divided into districts for electoral and

administrative purposes.5 There are 46 such districts statewide.

4Felonies are the most serious offenses in the criminal code, whereas misdemeanors are less serious
crimes. Whether the main charge in a case is a felony or a misdemeanor often depends on several
circumstances. In assault cases, for example, a felony may be characterized by the use of a lethal
weapon, the intention to seriously injure, or the actual injuries suffered by the victim.
5Until 1999, there were only four Superior Court Divisions statewide. In that year, each division
was split in two.
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A unique feature of the North Carolina Superior Courts is the rotation of judges.

About 90 judges are elected for eight-year terms by voters in their districts, and

may be re-elected indefinitely.6 Although each judge belongs to a district, the state

constitution mandates judges to rotate among the districts within their divisions on

a regular basis. The rotation schedule for judges in the whole state is determined by

the Administrative Office for the Courts. According to such schedule, judges rotate

from one district to another every six months.

All Superior Court cases brought to trial are decided by a jury of 12, who decides

whether the defendant is guilty or not guilty of the charged offenses. If the defendant

is convicted, the judge decides on a sentence. The judge must follow a set of struc-

tured sentencing guidelines—i.e., a sentence is selected from a predetermined range

of options, which depends on the severity of the crime and on the defendant’s pre-

vious criminal record.7 The sentence may include incarceration time and alternative

punishments, such as fines, community service and probation.

I use case-level data provided by the North Carolina Administrative Office of the

Courts.8 Such data comprise all criminal cases filed at the Superior Courts from 1996

to 2009 and include detailed information on case disposition, charged offenses and

characteristics of the defendants. The data also identify the judge hearing each case.

I match judges with their respective judicial district using the annual editions of the

North Carolina Manual.9

The structural analysis to be presented in Section 5 requires a degree of homogene-

ity across cases in the sample. Such homogeneity cannot be achieved with samples

that comprise offenses too different from each other. It is likely, for example, that

the prosecution of a traffic offense is far different than that of a drug-related crime.

Therefore, I use a reduced sample of cases, comprising offenses that do not vary much

in nature. The chosen sub-sample cannot be too small, in practice, since the non-

parametric estimation procedure, described in Section 5, demands a relatively large

number of observations to be implemented. I consider a sample of cases in which

the main offense is a non-homicide violent crime—a category that consists of assault,

6A few judges may be appointed by the Governor for five-year terms.
7The judge sets only the minimum sentence length. The maximum length is determined according
to a formula. There is no parole under the structured sentencing system in North Carolina. Of-
fenders must serve at least their entire minimum sentence in incarceration and may serve up to the
maximum length. Whether the offender serves more than the minimum sentence is determined by
the Department of Corrections, not by the judge. For convenience, in the remainder of the paper, I
refer to the assigned minimum sentence simply as the assigned sentence.
8Dyke (2007) uses the same data to analyze prosecutors’ political incentives.
9See Appendix B.3 for details.
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sexual assault and robbery.10 Drug-related offenses are not included. Non-homicide

violent crimes are, at the same time, homogeneous and numerous enough to allow the

estimation of the model.11 Unless otherwise specified, the tables and results presented

throughout the paper are based on this sub-sample.

For each case, I observe the following defendant’s characteristics: Gender, race,

ethnicity, age and previous criminal record. The latter variable is reported in terms

of points, which the North Carolina justice system assigns for the purposes of setting

sentencing guidelines. In my sample, these points range from zero to 98. I also observe

the type of defense counsel employed in the case. Counsel services are provided

by a public defender or, alternatively, by a privately-retained or court-appointed

attorney.12

Table 1 contains descriptive statistics of the defendant’s characteristics. Over half

of the defendants in the data are African-American, and the vast majority of the re-

maining defendants are non-Hispanic white. Less than four percent of the defendants

are Hispanic and around to two percent are from other race or ethnicity. More than

90 percent of the defendants are male, and the mean defendant’s age is approximately

29 years. Public defenders and court-appointed attorneys represent about 23 percent

and 50 percent of the defendants, respectively. In roughly 22 percent of the cases,

the defendants are represented by a privately-retained attorney. Less than 3 percent

of the defendants either employ others types of counsel services or waive counsel.

The focus of this study is on incarceration sentences. In many of the cases in the

data, the defendant receives an alternative punishment, such as probation, commu-

nity service or the payment of a fine. Unfortunately, such punishments cannot be

incorporated into my analysis since every criterion for representing incarceration and

10Robbery is defined as the taking or attempted taking of personal property, either by force, or by
threat of force. It is, therefore, both a property crime and a crime against the person.
11The Federal Bureau of Investigation employs the larger category of violent crimes (comprising also
homicides) in its Uniform Crime Reporting Program. I exclude homicides from the sample because
of the prevalence of death and life sentences assigned to defendants convicted of such crimes. There
would be no clear way of incorporating death sentences in my analysis. See Appendix B.3 for details
on the classification of the offenses in the data.
12Public defenders are full-time state employees who represent indigent defendants accused of crimes
that may result in incarceration. Public defender offices are only present in 16 judicial districts in
North Carolina. In the absence of such an office, indigent defendants are entitled to be represented
by a court-appointed private attorney. Notice that these counsel services are provided at a subsidized
rate, but not free of charge to the defendant. In the event of a conviction, the defendant is ordered
to reimburse the state for the value of the counsel services provided either by public defenders or
court-appointed attorneys.
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Table 1. Descriptive statistics – defendant’s characteristics

Race, ethnicity, gender and counsel type

Characteristic Observations Frequency

Race/ethnicity
African-American 66755 56.12%
Non-Hispanic White 45618 38.35%
Hispanic 4126 3.47%
Other 2449 2.06%
Total 118948 100.00%

Gender
Male 110495 92.89%
Female 8453 7.11%
Total 118948 100.00%

Counsel type
Court-appointed 62325 52.40%
Public defender 27331 22.98%
Privately-held 25769 21.66%
Other 3523 2.96%
Total 118948 100.00%

Defendant’s age and previous criminal record

Characteristic Mean Variance

Age (years) 28.88 10.64
Criminal record points 3.93 5.03

non-incarceration sentences on the same space would be arbitrary.13 Thus, in my

empirical analysis, I treat any alternative sentence as no sentence whatsoever.

Table 2 presents descriptive statistics of the case outcomes. 88.69 percent of the

cases in the sample are solved by plea agreements—the majority of which result in

an alternative sentence. The share of cases that settle for a incarceration sentence is

32.83 percent. Of the 9.91 percent of cases that reach trial, slightly more than half

result in an acquittal. 3.91 percent of all cases result in a conviction with incarceration

time at trial. In 83.00 percent of the cases, the main charge is a felony. In the other

cases, the charge is either a misdemeanor or not known. Trial sentences tend to be

13Moreover, in many cases where an alternative sentence is assigned, the data do not report the
exact nature or the severity of such a sentence. Thus, in order to take alternative sentences into
account in my analysis, I would either have to treat all such sentences as equivalent to each other,
or I would have to deal with a severe missing-variables problem.
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Table 2. Descriptive statistics – non-homicide violent crimes

Distribution of cases by outcome

Case outcome Observations Frequency

Settlement
Incarceration 39048 32.83%
Alternative sentence 66443 55.86%
Total 105491 88.69%

Trial conviction
Incarceration 4654 3.91%
Alternative sentence 779 0.65%
Total 5433 4.56%

Trial acquittal / dismissed
Absolved by jury 5049 4.24%
Dismissed by judge 1319 1.11%
Total 6368 5.35%

Dismissed by prosecutor 1656 1.39%
Total 118948 100.00%

Distribution of cases by severity of the charge

Main charged offense Observations Frequency

Felony 98726 83.00%
Other 20222 17.00%
Total 118948 100.00%

Sentences’ length

Conviction method Mean Standard deviation

Trial convictions† 100.73 106.41
Settlement convictions† 38.98 47.92

† : Measured in months.

longer than those of settled cases. The average length of the former is 100.73 months,

while that for the latter is 38.98 months. Sentence dispersion is high. The standard

deviations of trial and settlement sentences are 106.41 and 47.92, respectively.
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4. The Model

4.1. Setup. In this section, I briefly describe Bebchuk’s (1984) settlement model,

which will guide my analysis in subsequent sections.14 Two agents—the prosecutor

and the defendant—bargain over the outcome of a case. The agents’ utility functions

are linear in the sentence assigned to the defendant. Specifically, the defendant wants

to minimize the sentence, whereas the prosecutor wants to maximize it.15

If bargaining fails, the case is brought to trial, where the defendant is found guilty

with probability Θ. This probability represents the strength of the case against the

defendant and is drawn at the beginning of the game from a distribution F . I make

the following technical assumptions:16 F is distributed over an interval (θ, θ̄) ⊆ (0, 1)

and is twice differentiable. The associated density function f is strictly positive on

(θ, θ̄) and is non-increasing in a neighborhood of θ̄. Moreover, to rule out multiple

equilibria, I assume that the hazard rate f/ [1− F ] is strictly increasing in θ.

Bargaining takes place under asymmetric information. Specifically, only the defen-

dant knows the realization θ of Θ. The assumption that the defendant has private

information on the probability of being convicted at trial is motivated by noticing

that most defendants know whether they are guilty. As Scott and Stuntz (1992)

point out, such knowledge may assume several forms. A defendant may, for example,

not be involved in the crime at all. Alternatively, the defendant may be involved, but

may have committed the offense without the requisite criminal intent. Regardless of

guilt, the defendant may have more information than the prosecutor on the quality of

the evidence that may be used at trial (e.g., what, exactly, a given witness knows).17

14Bebchuk’s game was originally proposed for the study of civil cases. Since I use the model for
analyzing plea bargaining, the names of the agents and certain variables are changed in order to
better suit the criminal-law context. For example, the plaintiff in the original model is named the
prosecutor, the judgment to which a winning plaintiff is entitled is named a trial sentence, etc.
15Alschuter (1968) provides several pieces of anecdotal evidence that prosecutors mostly play the
role of advocates in the process of plea bargaining. The author explains that “... in this role, the
prosecutor must estimate the sentence that seems likely after a conviction at trial, discount this
sentence by the possibility of an acquittal, and balance the “discounted trial sentence” against the
sentence he can ensure through a plea agreement.” The assumption that the prosecutor’s utility is
linear in the assigned sentence captures such behavior in a simple way. Landes (1971) uses a similar
utility function for the prosecutor.
16These assumptions ensure that, without conditioning in Θ, the probability of settlement is strictly
between zero and one.
17Ideally, I should allow for private information on the prosecutor’s side, as well. Such an extension,
however, would make the empirical analysis of the model impractical. See Schweizer (1989), Sobel
(1989), Daughety and Reinganum (1994) and Friedman and Wittman (2007) for models of settlement
with two-sided asymmetric information.
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In the event of a conviction at trial, a common knowledge sentence t is assigned.

The assumption that t is common knowledge may be interpreted as follows: At the

bargaining stage, the prosecutor and the defendant know enough about the case

to determine exactly what sentence the judge will assign if the defendant is found

guilty at trial. Such information comes, for example, from the charged offenses, the

defendant’s criminal record, sentencing guidelines, the judge’s previous sentencing

patterns, etc. The prosecutor and the defendant, respectively, pay costs cp and cd for

reaching the trial stage. I interpret the costs for the prosecutor as the opportunity

costs of taking a case to trial. For the defendant, the costs are associated with

attorney fees and court fees in general. Similarly to t, I assume that cp and cd are

common knowledge to both players.

The bargaining protocol is take-it-or-leave-it, so that the model constitutes a stan-

dard screening game. The prosecutor offers the defendant to settle for a sentence s.

If the defendant accepts it, the game ends. Payoffs are then s for the prosecutor and

−s for the defendant. If the defendant rejects the offer, the case reaches the trial

stage. The trial payoffs for the prosecutor are t− cp if the defendant is found guilty,

and −cp otherwise. For the defendant, the trial payoffs are −t − cd in the case of

a conviction, and −cd otherwise. Whereas imposing a take-it-or-leave-it bargaining

protocol is not without loss of generality, notice that, under fairly general conditions,

that procedure is optimal from the prosecutor’s perspective (Spier, 1992). Since the

prosecutor is a recurrent player in the plea-bargaining game, reputational incentives

make the commitment with a take-it-or-leave-it offer plausible.

For now, I assume that the prosecutor cannot withdraw the case. Therefore, the

case may be brought to trial even if the expected value of doing so is negative for

the prosecutor. Such an assumption is justified in the criminal-law context since

prosecutors often have incentives to stay in a case—either due to career concerns

or for the sake of their reputation.18. Later, in my empirical analysis, I clarify how

dropped cases are dealt with.

4.2. Equilibrium. The relevant equilibrium concept is subgame perfection, and the

game is solved by backward induction. The defendant accepts a prosecutor’s offer s

if and only if s ≤ θt + cd. Therefore, for every value s chosen by the prosecutor, the

18Bebchuk (1984) assumes that θt ≥ cp holds, so that it is always better for the prosecutor to go to
trial than to drop the case. See Nalebuff (1987) for a game in which the prosecutor cannot commit
to bringing a case to trial if, by doing that, the expected payoff becomes negative.
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defendant’s strategy is characterized by a cutoff

θ(s) =
s− cd
t

(4.1)

such that the defendant accepts the prosecutor’s offer if and only if the probability

of conviction at trial is greater then or equal to θ(s).

The prosecutor then solves the following problem:

max
s
{1− F [θ(s)]} s+ F [θ(s)]

−cp + t

∫ θ(s)
θ

xf(x)dx

F [θ(s)]

 .

Bebchuk (1984) shows that the optimal prosecutor’s offer s∗ satisfies θ(s∗) ∈ (θ, θ̄),

so that the prosecutor’s first-order condition, presented below, holds with equality

t

cp + cd
=

f [θ(s∗)]

{1− F [θ(s∗)]}
. (4.2)

Equations (4.1) and (4.2) characterize the equilibrium. Without conditioning on Θ,

the equilibrium probability that the prosecutor’s offer is rejected is given by F [θ(s∗)]

and is strictly between zero and one. The probability of conviction is the sum of the

probabilities of settlement and conviction at trial, and is given by

1− F [θ(s∗)] +

∫ θ(s∗)

θ

xf(x)dx = 1−
∫ θ(s∗)

θ

(1− x)f(x)dx. (4.3)

4.3. Empirical implications. Keeping the trial costs cp and cd constant, I perform a

comparative static analysis by letting the trial sentence t vary and verifying how that

affects the equilibrium outcome. Define the functions s̃(·) and θ̃(·), which, for any trial

sentence t, respectively return the equilibrium prosecutor’s offer and the equilibrium

cutoff point for the defendant. The domain of both functions is <++. Bebchuk (1984)

shows that both s̃(·) and θ̃(·) are strictly increasing, and s̃(·) is strictly convex.19

Since θ̃(·) is strictly increasing and the density f is strictly positive over the whole

support of Θ, the probability that the defendant rejects the prosecutor’s offer de-

creases strictly with the trial sentence t. Furthermore, it is clear from the right-hand

side of (4.3) that the probability of conviction also decreases strictly with t.

In Appendix B.1, I present reduced-form results indicating that the data are con-

sistent with these empirical implications of the model. In particular, I show evidence

19That θ̃(·) is strictly increasing follows from (4.2) and the assumption that the hazard rate for
the defendants’ type is strictly increasing. The strict monotonicity and convexity of s̃(·) are then
obtained from (4.1).
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that the settlement of a case becomes less likely as the sentence to be assigned in the

event of a trial conviction increases.

5. Structural analysis

This section contains the structural analysis of the data, based on the model out-

lined in Section 4. I first describe the data-generating process, which adapts the model

to the institutional setting presented in Section 3. Then, I show sufficient conditions

for the model to be identified and propose an estimator for it.

5.1. Data-generating process.

5.1.1. Primitives. For every case i, let the (possibly vector valued) random variable

Zi, defined on the space ∆, describe case-level characteristics that are observable

to the econometrician. Such characteristics include variables related to the charged

offense, the defendant, the judge responsible for the case, the time and the location

where prosecution takes place, etc. The other primitives of the structural model,

which are presented below, are defined conditional on Zi.

To each case i corresponds a potential incarceration sentence, which is assigned if

the defendant is convicted at trial. Note that such a sentence exists even for cases

settled by a plea bargain or for cases in which there is a trial, but the defendant is

found not guilty. The potential trial sentence is described by the random variable Ti,

which, conditional on Zi, is assumed to be i.i.d. across cases. Ti follows a conditional

mixture distribution. With probability ν(Zi), it is equal to zero, which means that,

in the event of conviction at trial, a non-incarceration sentence is assigned. With

probability 1− ν(Zi), Ti is distributed according to the CDF G(·|Zi), defined on the

interval [t, t̄], where t > 0.20 Assume that G(·|Zi) is continuous, and denote by g(·|Zi)
the associated conditional pdf. Moreover, assume that g(t|Zi) > 0 for all t ∈ [t, t̄].

The defendant’s probability of conviction at trial also varies across cases. For case

i, such a probability is described by the random variable Θi, with support (θ, θ̄) ⊆
(0, 1). Assume that, conditional on Zi, Θi is i.i.d. across cases, and let F (·|Zi) be its

conditional distribution. Assume, also, that Θi and Ti are independent, conditional

on Zi.
21 Make the following technical assumptions: F (·|Zi) is twice differentiable,

and the associated conditional density, denoted by f(·|Zi), is strictly positive over

20I could, in principle, allow the support [t, t̄] to vary with Zi. In the estimation of the model, which
is discussed below, I chose not to do so due to sample size limitations. Accordingly, here I assume
a constant support, in order to keep the notation as clear as possible.
21Relaxing the independence assumption I partially identify the model. See Appendix B.2.
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the whole support and non-increasing on a neighborhood of θ̄. Moreover, assume

that the conditional hazard rate f(·|Zi)/ [1− F (·|Zi)] is strictly increasing.

Let cd(Zi) and cp(Zi) be the trial costs for the defendant and the prosecutor, respec-

tively. Notice that, conditional on Zi, such variables are deterministic. At this point,

two observations are in order. First, cd(Zi) and cp(Zi) are just the costs expected

by the agents at the moment of plea bargaining. It is possible that the actual trial

costs vary across cases. Second, as shown below, the model is overidentified under

the assumption that, conditional on Zi, the trial costs are constant. Indeed, I still

identify the model after allowing the trial costs for the defendant and the prosecutor

to vary deterministically with Ti. In the estimation of the model, I assume that cd(Zi)

and cp(Zi) are linear functions of the trial costs.

The primitives of the structural model are then: (i) the conditional distribution

of potential trial sentences, characterized by the functions ν(Zi) and G(·|Zi); (ii) the

conditional distribution of defendants’ types, given by the F (·|Zi); (iii) the trial costs

cd(Zi) and cp(Zi); and (iv) the distribution of Zi.

5.1.2. Observables. For every case i, given realizations zi of Zi, ti of Ti and θi of Θi,

as well as F (·|Zi = zi), cd(zi) and cp(zi), the prosecutor and defendant play the game

described in Section 4. A prosecutor’s settlement offer to the defendant corresponds

to each case. As in Section 4, use equations (4.1) and (4.2) to define the functions

θ̃(t, z) and s̃(t, z). Such functions, respectively, return the defendant’s equilibrium

cutoff point and the prosecutor’s equilibrium offer, given a trial sentence t and case

characteristics z22. Assume that θ̃(0, z) = 0 and s̃(0, z) = 0 for every z. Hence, if

a non-incarceration sentence is to be assigned following a conviction at trial, then

the prosecutor offers to settle for a non-incarceration sentence. In equilibrium, the

defendant always takes such offer, so that the case settles with certainty.23

The prosecutor’s offer for case i, therefore, is described by the random variable

Si = s̃(Ti, Zi). Conditional on Zi, Si is i.i.d. across cases, and, similarly to Ti,

follows a mixed distribution. With probability ν(Zi), it equals zero. With probability

1 − ν(Zi), Si is conditionally distributed according to the CDF B(·|Zi), which has

22Notice that θ̃(t, z) and s̃(t, z) depend on z through F (·|Zi = z), cd(z) and cp(z).
23In my analysis, I consider all non-incarceration sentences as no sentence whatsoever. Thus, I make
no distinction between cases that settle for an alternative sentence and cases that the prosecutor
drops. Notice that the model does not allow for the assignment of alternative sentences at trial. As
shown in table 2 that is a rare event. Accommodating it would make the identification of the model
considerably more difficult.
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support [s̃(t, z), s̃(t̄, z)]. Notice that B(·|Zi) is continuous, and let b(·|Zi) be the

associated density.24

The model implies a selection process that complicates identification. The realiza-

tion ti of Ti is observable to the econometrician only in the event of a conviction at

trial. Similarly, the realization si of Si is available only for settled cases. Formally,

let Ψi be a discrete random variable describing the way case i is resolved. Define

Ψi =


0 if the case is dropped by the prosecutor or settled for an alternative sentence

1 if the case is settled for a incarceration sentence

2 if the case results in a incarceration conviction at trial

3 if the defendant is found not guilty at trial.

The observables for each case are (i) the realization ψi of Ψi; (ii) the realization zi of

Zi; (iii) the realization ti of Ti, if and only if ψi = 2; and (iv) the realization si of Si,

if and only if ψi = 1. To identify the model’s primitives, I must account for such a

selection problem.

In the remainder of this section, I refer to a settlement or a successful plea bargain

only if Ψi = 1. Similarly, by a trial conviction, I mean Ψi = 2. Moreover, for ease of

notation, I omit the index i when I refer to a specific case.

5.2. Identification. Since Θ is distributed continuously on (θ, θ̄), and the defen-

dants’ action space consists of merely accepting or rejecting the prosecutor’s offer,

there is no one-to-one mapping between the defendants’ types and actions. As a con-

sequence, techniques often employed by the auctions literature for the identification

of private types cannot be used here.25 However, the prosecutor’s equilibrium offer

conveys information on the distribution F . As shown below, such information can be

explored to recover all the model’s primitives.

The strategy described here provides the identification of the model’s primitives,

conditional on a realization z of Z. It consists of two main parts. First, I identify the

prosecutor’s optimal offer function s̃(·, z). Then, using s̃(·, z), I show how to recover

G(·|Z = z), F (·|Z = z), cd(z) and cp(z). Remember that the case characteristics,

represented by Z, are distributed over the space ∆. Since Z is always observable, the

identification of its distribution is straightforward, and I do not discuss it here. The

same observation holds for ν(z), as P [Ψ = 0|Z = z] is observable.

24To see that B(·|Zi) is, indeed, continuous, notice that both G(·|Zi) and s̃(t, z) are continuous.
25See Athey and Haile (2007) for an introduction to the identification of auction models.
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5.2.1. Conditions A and B. I begin by defining the following two conditions, which

pose restrictions on subsets of the space of case characteristics ∆. Together with the

technical assumptions stated in the definition of the primitives, such conditions are

sufficient for the identification of the model.

Definition 1. A subset ∆ρ of ∆ satisfies condition A if, for every pair z′, z′′ in

∆ρ, the following equalities hold

cd(z
′) = cd(z

′′)

cp(z
′) = cp(z

′′)

and F (θ|Z = z′) = F (θ|Z = z′′)

for all θ ∈ (θ, θ̄).

The trial costs and the distribution of defendants’ types are, thus, constant across

all z within a subset ∆ρ that satisfies condition A. Notice that ∆ρ satisfying condition

A implies that s̃(·, z′) = s̃(·, z′′) and θ̃(·, z′) = θ̃(·, z′′) for all z′, z′′ in ∆ρ. Notice, also,

that the condition does not restrict the distribution of potential trial sentences within

∆ρ. Condition A is not vacuous since it is trivially valid for every singleton subset of

∆. It is also plausible to assume that the condition holds for subsets of ∆ that present

little variation in the nature of the main offense, as well as in the characteristics of

potential jury members, prosecutors and defendants—the main determinants of trial

costs and the probability of convictions at trial.

Before I state the next definition, notice that a partition of an interval [a, b] is a

finite sequence of the form

a = x0 < x1 < · · · < xN = b

I now define the second identification condition.

Definition 2. Consider the function

φ(t, z′, z′′) ≡ g(t|Z = z′)

g(t|Z = z′′)
.

A subset ∆ρ of ∆ satisfies condition B on a bounded interval X ⊆ [t, t̄] if there is a

partition {x0, x1, · · · , xN} of X such that, for all n ∈ {1, · · · , N}, there are elements

z′, z′′ ∈ ∆ρ such that the function φ(·, z′, z′′) is strictly monotonic in t on the interval

[xn−1, xn].

The function φ(·, z′, z′′) consists of the ratio of the trial sentence densities g(·|Z =

z′) and g(·|Z = z′′). If ∆ρ contains only the two elements z′ and z′′, then it satisfies
18



condition B on an interval X if and only if φ(·, z′, z′′) is piecewise monotone on X.

If ∆ρ has more than two elements, condition B is easier to satisfy. It is enough that

X can be partitioned in a finite number of intervals, and, on each of such intervals,

φ(·, z′, z′′) is piecewise monotone for some pair z′, z′′ of elements of ∆ρ.

Conditions A and B can be regarded as exclusion and inclusion restrictions, re-

spectively, similar to the conditions for an instrumental variable. They require that

variation in some dimension of Z affects the conditional distribution of potential trial

sentences, but not the other primitives in the model. However, for ∆ρ to satisfy con-

dition B, there must be enough variation within ∆ρ, so that the distribution of trial

sentences is affected along its whole support.26

The selection of a subset ∆ρ that simultaneously satisfies conditions A and B in-

volves a trade-off. The fewer elements ∆ρ has, the more plausible condition A is. But

condition B becomes harder to satisfy as ∆ρ gets small.27 I propose the following

choice of ∆ρ: To satisfy condition A, I restrict ∆ρ according to the the nature of

the charged offense and to the defendant’s gender, race and previous criminal back-

ground. Moreover, I restrict ∆ρ by the place where the case is prosecuted, which

helps controlling for characteristics of the prosecutor and the jury members. I then

obtain the variation in the conditional distributions of trial sentences, which is neces-

sary for condition B to be satisfied, by allowing judge-specific characteristics to vary

within ∆ρ. Specifically, I divide the judges in the data into two groups—lenient and

harsh—based on their observed sentencing behavior. Section 6 presents the details of

such a classification of judges. Each ∆ρ considered has, thus, two elements—one for

each of the groups of judges mentioned above. The judge rotation system in North

Carolina ensures that, throughout a long enough time period, different judges decide

on similar cases in the same location. In Appendix B.1 I present evidence indicating

that the distributions of cases under the the responsibility of lenient and harsh judges

are, indeed, indistinguishable from one another—making it valid, for the purposes

of my analysis, to employ differences in the sentencing patterns between these two

groups as a source of variation in the distribution of trial sentences.

5.2.2. Prosecutor’s settlement offer function. Remember that g(·|Z) is the pdf of

potential trial sentences, and b(·|Z) is the pdf of prosecutors’ settlement offers, con-

ditional on Z. The following lemma is useful for the identification of s̃(·, z):

26Like the exclusion condition for an instrumental variable, condition A cannot be tested. The
validity of condition B, however, can be verified empirically. See footnote 30 below.
27The estimation of the model for a small ∆ρ may also be impractical, given a limited sample size.
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Lemma 1. Assume that (b [s|Z = z′] /b [s|Z = z′′]) and (g (t|Z = z′) /g (t|Z = z′′)) are

known for every z′, z′′ ∈ ∆ρ, s ∈ [s̃(t, z), s̃(t̄, z)] and t ∈ [t, t̄]. Assume, also, that

condition B holds on [t, t̄], and that there exists z̆ ∈ ∆ρ such that

b [s̃(t, z̆)|Z = z′]

b [s̃(t, z̆)|Z = z′′]
=
g (t|Z = z′)

g (t|Z = z′′)

for all z′, z′′ ∈ ∆ρ and t ∈ [t, t̄]. Then, the function s̃(·, z̆) is identified over [t, t̄].

See Appendix A for the proof.

The functional equation in the statement of Lemma 1 relates ratios of densities

for two different elements of ∆ρ. On the right-hand side is a ratio of trial sentence

densities, evaluated at t. On the left-hand side is a ratio of settlement offer densities,

evaluated at s̃(t, z̆). The lemma shows that, if such a functional equation is valid for

all t, then the left-hand side can be inverted to recover the function s̃(·, z̆). Condition

B ensures that the left-hand side of the functional equation is piecewise invertible.

My first main result states that, under conditions A and B, the prosecutor’s optimal

offer function is identified.

Proposition 1. Assume that the set ∆ρ ⊆ ∆ satisfies conditions A and B on [t, t̄].

Then, for all z ∈ ∆ρ, the prosecutor’s optimal offer function s̃(·, z) is identified over

the whole interval [t, t̄].

Condition A allows me to write a functional equation for s̃(t, z), equivalent to the

one that appears in the statement of Lemma 1. I use the same condition to recover the

two sides of the equation from the observables. Using condition B, I can then apply

Lemma 1 and identify s̃(t, z) for all z ∈ ∆ρ. I present the proof of the proposition

in the main text since it is important for understanding the estimation procedure

proposed later in the paper.

Proof. Since, for all z ∈ ∆, s̃(·, z) is strictly increasing in t, I can write

b(s|Z = z) = g
(
s̃−1(s, z)|Z = z

) ds̃−1(s, z)

ds
(5.1)

for all s ∈ [s̃(t, z), s̃(t̄, z)] and all z ∈ ∆
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Therefore, for every pair z′, z′′ ∈ ∆ρ and all t ∈ [t, t̄], I have that

b [s̃(t, z′)|Z = z′]

b [s̃(t, z′′)|Z = z′′]
=

g (s̃−1 [s̃(t, z′), z′] |Z = z′) ds̃−1(s̃(t,z),z′)
ds

g (s̃−1 [s̃(t, z′′), z′′] |Z = z′′) ds̃−1(s̃(t,z),z′′)
ds

=
g (t|Z = z′)

g (t|Z = z′′)
,

where the derivatives of the right-hand side of the first equality cancel out due to

condition A. Now consider any z̆ ∈ ∆ρ, and notice that, again by condition A,

s̃(·, z̆) = s̃(·, z′) = s̃(·, z′′). The equation above then implies

b [s̃(t, z̆)|Z = z′]

b [s̃(t, z̆)|Z = z′′]
=
g (t|Z = z′)

g (t|Z = z′′)
(5.2)

for all z′, z′′ ∈ ∆ρ and t ∈ [t, t̄].

If the full distribution of offers and potential trial sentences were observed, I would

be able to apply Lemma 1 to equation (5.2) in order to recover s̃(t, z) for all z ∈ ∆ρ.

However, due to selection, I do not observe such distributions, so that (5.2) cannot

be used directly. Still, I can employ the censored versions of the distributions of

settlement offers and trial sentences to obtain the density ratios in (5.2). Consider,

first, the settlement offers. Although b(·|Z = z) is not available, I observe b(·|Ψ =

1, Z = z), the distribution of accepted settlement offers. Given any z and any value

s, the equilibrium conditional probability of a successful plea bargain is

P [Ψ = 1|S = s, Z = z] = 1− F
[
θ̃
(
s̃−1(s, z), z

)
|Z = z

]
. (5.3)

From Bayes’ rule, I have that

b(s|Ψ = 1, Z = z) =
P [Ψ = 1|S = s, Z = z]b(s|Z = z)

P [Ψ = 1|Z = z]
. (5.4)

Notice that the support of b(s|Ψ = 1, Z = z) is still [s̃(t, z′), s̃(t̄, z′)].28 Since ∆ρ

satisfies condition A, P [Ψ = 1|S = s, Z = z′] = P [Ψ = 1|S = s, Z = z′′] for all s and

every z′ and z′′ in ∆ρ. Hence, I can write

b(s|Ψ = 1, Z = z′)

b(s|Ψ = 1, Z = z′′)

P [Ψ = 1|Z = z′]

P [Ψ = 1|Z = z′′]
=
b(s|Z = z′)

b(s|Z = z′′)
(5.5)

for every s ∈ [s̃(t, z′), s̃(t̄, z′)] and all z′, z′′ ∈ ∆ρ. Therefore, I recover the density ratio

on the left-hand side of equation (5.2), using the (observable) censored distribution

of accepted settlement offers.

28That is because the defendant’s equilibrium cutoff θ̃
(
s̃−1(s, z), z

)
belongs to the interval (0, 1) for

all values of s, so that P [Ψ = 1|S = s, Z = z] is always strictly positive.
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Turning to the potential trial sentences, I do not observe the full conditional density

g(·|Z = z). However, its censored counterpart, g(·|Ψ = 2, Z = z), is available for all

z. Given any sentence value t and any z ∈ ∆, the probability of conviction at trial is

P [Ψ = 2|T = t, Z = z] =

∫ θ̃(t,z)

θ

x f(x|Z = z) dx. (5.6)

Using Bayes’ rule once more, I have that

g(t|Ψ = 2, Z = z) =
P [Ψ = 2|T = t, Z = z]g(t|Z = z)

P [Ψ = 2|Z = z]
. (5.7)

The support of g(t|Ψ = 2, Z = z) is still [t, t̄].29 Condition A implies that, for all t and

every z′ and z′′ in ∆ρ, P [Ψ = 2|T = t, Z = z′] = P [Ψ = 2|T = t, Z = z′′]. Hence,

g(t|Ψ = 2, Z = z′)

g(t|Ψ = 2, Z = z′′)

P [Ψ = 2|Z = z′]

P [Ψ = 2|Z = z′′]
=
g(t|Z = z′)

g(t|Z = z′′)
(5.8)

for all t ∈ [t, t̄] and all z′, z′′ in ∆ρ. I thus use the (observable) censored distribution

of potential trial sentences for cases where the defendant is convicted at trial in order

to identify the density ratio on the right-hand side of equation (5.2).30 The proof of

the proposition then follows from Lemma 1. �

5.2.3. Completing the identification of the model. I now show that, once s̃(·, z) is

identified for a given value z, the model’s primitives can be recovered, conditional on

Z = z. Intuitively, the prosecutor’s optimal offer function conveys information about

the distribution of defendants’ private types, which allows the identification of the

whole model. The next proposition formalizes this idea.

Proposition 2. Assume that, for all z ∈ ∆ρ, the prosecutor’s optimal offer function

s̃(·, z) is identified over the whole interval [t, t̄]. Then, for all z ∈ ∆ρ, the follow-

ing objects are identified: (i) the distribution function G(·|Z = z), over the whole

interval [t, t̄]; (ii) the distribution of defendants’ types F (·|Z = z), over the interval

[θ̃(t, z), θ̃(t̄, z)]; and (iii) the trial costs cd(z) and cp(z).

See the Appendix A for the proof.

The proposition is based on the insight that, knowing s̃(·, z), I can employ the

first-order condition of the prosecutor’s optimization problem to recover the hazard

function for the distribution of defendants’ types. Using the hazard function, I am

29Indeed, θ̃(t, z) ∈ (0, 1) for all t, and f(θ|Z = z) > 0 for all θ ∈ (θ, θ̄), so that P [Ψ = 2|T = t, Z = z]
is always strictly positive.
30Equation (5.8) points to how condition B can be verified using the data, although a formal test
would require the computation of confidence bands for the density ratios.

22



able to identify the distribution itself, followed by all the other primitives of the model.

The distribution of defendants’ types F (·|Z = z) is identified only over the interval

[θ̃(t, z), θ̃(t̄, z)]. The proof of the proposition shows that the model is overidentified

under the assumption that cd(z) and cp(z) are constant. It is trivial to extend the

analysis to the case in which the trial costs are parametric functions of the trial

sentence T . In the estimation of the model, I let cd(z) and cp(z) vary linearly with

T . This result concludes the identification of the model.

5.3. Estimation. I propose an estimation procedure that closely follows my identi-

fication strategy. It consists of two parts. First I estimate s̃(·, z). Then, I use the

estimated function s̃(·, z) to obtain estimators for the model’s primitives.

5.3.1. Estimation of s̃(·, z). Let ∆ contain case-specific variables that affect F (·),
cd(·) and cp(·), as well as judge-specific variables that affect sentencing. I choose a

subset ∆ρ ⊆ ∆ in which the case-specific variables are constant (so that condition A

holds), but where the judge-specific characteristics vary.

For every z ∈ ∆ρ, I obtain the estimates

P̂ [Ψ = ψ|Z = z] for P [Ψ = ψ|Z = z] , ψ ∈ {0; 1; 2}

ĝ(t|Ψ = 2, Z = z) for g(t|Ψ = 2, Z = z)

and b̂(s|Ψ = 1, Z = z) for b(s|Ψ = 1, Z = z).

The estimates for the distribution of Ψ are trivially computed. The estimation of

the densities g(t|Ψ = 2, Z = z) and b(s|Ψ = 1, Z = z) can be conducted by a kernel

density estimator (KDE). There are two challenges to the estimation of these densities.

First, I must deal with the boundedness of [t, t̄]. When the standard KDE is applied

to distributions with bounded support, it tends to underestimate the density near the

boundaries, resulting in inconsistent estimates. To overcome this problem, I employ a

boundary-correction method recently developed by Karunamuni and Zhang (2008).31

Broadly speaking, the method generates artificial data beyond the boundaries of the

original distribution’s support. A kernel estimator applied to this enlarged data is

uniformly consistent on the entire support of the original distribution.32 The rate

31The Karunamuni and Zhang correction is an improvement on the correction proposed by Zhang,
Karunamuni and Jones (1999). It is applied to the non-parametric estimation of first-price auction
models by Hickman and Hubbard (2012).
32The bandwidth for most of the support is chosen by Silverman’s “rule-of-thumb” (Silverman,
1986). Near the boundaries, a modified bandwidth is employed. See Karunamuni and Zhang (2008)
for details. I use the Epanechnikov kernel kernel function.
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of convergence is the same as the one obtained away from the boundaries using the

standard KDE. The second challenge arises because the dimensionality of Z may be

large. The curse of dimensionality can prevent the estimation of g(t|Ψ = 2, Z = z)

and b(s|Ψ = 1, Z = z) using conventional KDE methods, even for large sample sizes.

I deal with this problem by, first, assuming that all variables in ∆ are discrete and,

then, employing smoothing techniques proposed by Li and Racine (2007) for the

estimation of conditional densities. This procedure divides the space of case-level

characteristics into a finite number of subsets and estimates the densities for each one

of these subsets. As opposed to a naive implementation of this idea, which would

employ only observation satisfying Z = z for the estimation of g(t|Ψ = 2, Z = z) and

b(s|Ψ = 1, Z = z), Li and Racine’s estimator uses all the available data, assigning

to each observation i a weight based on the realization of Zi. See Appendix A.2 for

more details about this procedure and how it is implemented in the present study.

Equation (5.2) implies that∫ t̄

t

{{
b [s̃(t, z)|Ψ = 1, Z = z′]

b [s̃(t, z)|Ψ = 1, Z = z′′]

P [Ψ = 1|Z = z′]

P [Ψ = 1|Z = z′′]

− g (t|Ψ = 2, Z = z′)

g (t|Ψ = 2, Z = z′′)

P [Ψ = 2|Z = z′]

P [Ψ = 2|Z = z′′]

}2
}
dH(t) = 0

for any measure H over [t, t̄]. Denote the lowest and highest observed trial sentences

for z ∈ ∆ρ by t̂ and ˆ̄t, respectively, and notice that such values are consistent estimates

for t and t̄. Similarly, denote by ŝ and ˆ̄s, respectively, the lowest and highest observed

plea-bargained sentences for z ∈ ∆ρ, and notice that these are consistent estimates

for s̃(t, z) and s̃(t̄, z). Remember that s̃(·, z) is increasing and convex, and let Υ be

the space of increasing and convex functions s(·) over [t, t̄] such that s(̂t) = s(ŝ) and

s(ˆ̄t) = s(ˆ̄s). Also, let C be the set of all pairwise combinations of points in ∆ρ. The

estimator ŝ(·, z) for the function s̃(·, z) can be found by solving

min
s∈Υ

∑
(z′,z′′)∈C

∫ t̄

t

{
b̂ [s(t, z′)|Ψ = 1, Z = z′]

b̂ [s(t, z′′)|Ψ = 1, Z = z′′]

P̂ [Ψ = 1|Z = z′]

P̂ [Ψ = 1|Z = z′′]

− ĝ (t|Ψ = 2, Z = z′)

ĝ (t|Ψ = 2, Z = z′′)

P̂ [Ψ = 2|Z = z′]

P̂ [Ψ = 2|Z = z′′]

}2

dH(t), (5.9)

where H is an arbitrary measure over [t, t̄].33 In order to solve this infinite-dimensional

optimization problem, I approximate the space Υ using splines—functions that are

33In the application described below, I set such a measure to be ĝ (t|Ψ = 2, Z = z′′).
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piecewise polynomial and have a high degree of smoothness at the points where the

polynomials meet.34 Splines can be conveniently represented as the linear combination

of a finite set of basis functions, which allow me to treat problem (5.9) as a finite-

dimension non-linear regression problem. A popular family of basis functions is B-

splines. Here, instead, I use C-splines, a set of basis functions recently proposed

by Meyer (2008). C-splines differ from B-splines in that the basis functions in the

former are strictly increasing and strictly convex. Because of such properties of the

basis functions, monotonicity and convexity can be easily imposed to the approximate

solution of (5.9), by restricting the regression coefficients to be non-negative.

To state the result showing the consistency of the estimator described above, define

the functions

b̃r(s, z
′, z′′) ≡ b [s|Ψ = 1, Z = z′]

b [s|Ψ = 1, Z = z′′]

P [Ψ = 1|Z = z′]

P [Ψ = 1|Z = z′′]

and g̃r(t, z
′, z′′) ≡ g (t|Ψ = 2, Z = z′)

g (t|Ψ = 2, Z = z′′)

P [Ψ = 2|Z = z′]

P [Ψ = 2|Z = z′′]

for (z′, z′′) ∈ C. I can now state the following proposition:

Proposition 3. Assume that, for every pair (z′, z′′) ∈ C, the following conditions

hold: (i) the function b̄r(·, z′, z′′) is differentiable and the absolute value of its deriv-

ative is bounded by b̊r(z
′, z′′); and (ii) the functions b̄r(·, z′, z′′) and ḡr(·, z′, z′′) are

positive and bounded by B̄r(z
′, z′′) and Ḡr(z

′, z′′), respectively. Then, the estimator of

the prosecutor’s settlement offer function s̃(·, z) for z ∈ ∆ρ is uniformly consistent.

See Appendix A for the proof.

The estimation of s̃(·, z) has two steps. First, I obtain P̂ [Ψ = ψ|Z = z], ĝ(t|Ψ =

2, Z = z) and b̂(s|Ψ = 1, Z = z), and then these estimates are used in the construction

of the objective function shown in (5.9). The proof of Proposition 3 is facilitated by

noticing that, given the first-step estimates, the objective function is non-random.

The restrictions on the density ratios b̄r(·, z′, z′′) and ḡr(·, z′, z′′) ensure the continuity

of the objective function. Such continuity allows me to apply standard techniques for

achieving the consistency of two-step estimators.

5.3.2. Estimation of the model’s primitives. Using ŝ(·, z), I am able to recover the

model’s primitives. I extend the basic model by allowing the trial costs to vary linearly

with the potential trial sentence T . Formally, I assume that the trial costs for the

defendant and the prosecutor are given, respectively, by cd(t, z) ≡ αd(z) + βd(z)t and

34See Eubank (1999) for an excellent introduction to spline approximation.
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cp(t, z) ≡ αp(z)+βp(z)t. The primitives to be estimated are then the cost parameters

αd(z), βd(z), αp(z) and βp(z), the distribution of defendant’s types F (·|Z = z) and

the distribution of trial sentences, characterized by ν(z) and g(·|Z = z).

For all z ∈ ∆ρ, I trivially estimate ν(z) by using the empirical probabilities that

Ψ = 0, conditional on Z = z. In the proof of proposition 2, I show that, given the

offer function s̃(·, z), I am able to write F (·|Z = z) and g(·|Z = z) in terms of the

following parameters: The cost parameters αd(z), βd(z), αp(z) and βp(z), as well as

the auxiliary parameters µ(z) and π(z).35 The proof of the proposition also makes

it clear that these six parameters are overidentified. Therefore, to obtain estimates

of the model primitives, I estimate αd(z), βd(z), αp(z), βp(z) and µ(z) by maximum

likelihood. I present details of the estimation procedure in Appendix A.2.

6. Empirical Results

In implementing the estimator above, I use differences in sentencing patterns across

judges as a source of variation in the distribution of trial sentences, which is necessary

for conditionB to hold. Precisely, I obtain OLS estimates of the following specification

sentencei = ϑ1Xi + ζ1 Judgei + ε1i, (6.1)

where sentencei is the length of the incarceration sentence assigned in case i, Judgei

is a vector of dummies identifying the judge responsible for case i, Xi is a vector

of control variables and ε1i is an error term.36 I consider the estimated judge fixed

effects from specification (6.1). Table 3 contains information on the distribution of

such estimates. The mean fixed effect is 31.58 months, and the median is 31.51

months. The heterogeneity across judges is substantial. The standard deviation and

interquartile range of the fixed effects are, respectively, 6.26 and 8.06 months.

35The auxiliary parameters capture information about the distribution F (·|Z = z) for points of the

support outside of the interval [θ̃(t, z), θ̃(t̄, z)]. Specifically,

µ(z) = exp

(
−
∫ θ̃(t,z)

θ

λ(x, z) dx

)

and π(z) =

∫ θ̃(t,z)

θ

x f(x|Z = z) dx.

See the proof of proposition 2 for details.
36The reduced form analysis presented in Appendix B.1 reports the OLS results of the specification
above. The vector of control variables includes the defendant’s gender, racial / ethnic group, previous
criminal record, age and squared age, as well as dummies indicating the type of attorney representing
the defendant. See Appendix B.1 for more details.
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Table 3. Variation of sentencing behavior across judges

Estimated judge fixed effects†

mean std. dev. min. 1st quart. median 3rd quart. max.

31.58 6.26 16.28 27.56 31.51 35.62 64.63

Number of judges: 169

†: Measured in months.

I divide the 169 judges in the data into two groups, depending on whether their

estimated fixed effects are smaller or larger than the median judge fixed effect reported

in table 3. Judges whose fixed effects are strictly smaller than the median are classified

as lenient, while the others are classified as harsh.37 Averaging across judges within

each group, the estimated fixed effects for lenient and harsh judges are 25.97 and

36.21, respectively. In Appendix B.1, I present evidence that the variation in the

distribution of trial sentences arising from differences in sentencing behavior across

judges is uncorrelated with other variables that may affect the outcome of the case.

I focus on cases that are relatively homogeneous, so that condition A is plausible.

I restrict the analysis to cases in which the main charged offense is a non-homicide

violent crime. Also, to control for observed heterogeneity across cases in my estima-

tion, I separate the observations in the sample into covariate groups, according to the

following variables: The Superior Court division where the case is prosecuted, the

type of defense counsel employed in the case and the defendant’s gender, race and

previous criminal record. I then estimate the model separately across these groups.

The motivation for separating cases by the Superior Court division is twofold: First,

doing so helps controlling for any case-specific characteristic that may be correlated

with the place of prosecution. Importantly, these characteristics include the district

of the prosecutor in charge of the case.38 Second, the judge rotation mandated by the

state constitution takes place at the division level. Thus, over the period of 14 years

37In principle, I could implement the estimator employing a finer classification of the judges in the
data. The advantage of a binary classification is that it maximizes the number of judges within each
group. Therefore, given the non-parametric nature of the estimator and the limited sample size, the
use of a binary classification of judges, such as the one considered here, is justified.
38North Carolina is divided into prosecutorial districts that roughly correspond to the Superior
Court districts described in Section 3. Sample size limitations prevent me from undertaking the
analysis at the Superior Court district level. Dividing the cases in the data by the Superior Court
division is a feasible alternative.
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covered by my data set, it is reasonable to assume that cases decided by different

judges within a division are drawn from the same pool.

I further separate the cases according to the type of defense attorney. I consider the

following three categories of counsel: privately-retained, public defender and court-

appointed. This classification is motivated by the empirical literature linking the

type of defense counsel and the outcome of criminal cases.39 Lastly, I divide cases by

defendant’s gender, race (African-Americans vs. others) and previous criminal record.

To avoid dividing the data into too many sparsely populated groups, I consider two

categories of criminal record: short (four points or less) and long (more than four

points).40 According to this definition, approximately one-fourth of the defendants in

the data have a long criminal record.

Separating the observations in the data according to the eight Superior Court di-

visions, three defense attorney types, two gender groups, two race groups and two

categories of previous criminal records results in 192 covariate bins. Some of these

bins contain relatively few observations. In particular, female defendants are only

represented in 7.11% of all cases. The estimation of the model based on such few ob-

servations would be inappropriate, due to the non-parametric nature of my estimator.

Therefore, I focus on covariate groups in which the defendant is male. Still, there

are 96 such groups. Estimating the model separately for each one of them would be

computationally too costly. I thus restrict my analysis to cases prosecuted at the 5th

Superior Court division, which comprises counties located in the northwestern part

of the state and is the division with the largest sample size in my data set.41 These

restrictions leave me with a total of 12 covariate groups, which are summarized in

table 4. The table also shows how many cases are observed in the data for each one

of the groups.42 Notice that, even though I do not recover the model primitives for

39See, for example, Iyengar (2007) and Anderson and Heaton (2012). The former paper examines
Federal District Court cases, while the latter analyzes homicide cases in Philadelphia. Both studies
find evidence that cases assigned to public defenders tend to result in more lenient sentences than
those assigned to court-appointed attorneys.
40To put this classification into perspective, notice that four points are equivalent to having a
previous conviction for setting fire to an unoccupied building (second-degree arson) or breaking and
entering an unoccupied residency with the intent to commit another crime (second-degree burglary).
41The 5th division has 22,658 cases overall. The 1st, 2nd, 3rd, 4th, 6th, 7th and 8th divisions have,
respectively, 11,084, 10,110, 19,906, 13,743, 13,047, 19,033 and 9,364 cases.
42Previous criminal records are only available for defendants who are convicted—either at trial or
by plea bargain. Therefore, I do not observe directly the number of cases by covariate group. To
compute the numbers reported in table 4, I first calculate the proportion of cases matching each
covariate group among all cases that result in a conviction. Then I multiply this proportion by the
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Table 4. Covariate groups

Group
Covariates

Obs.
Defendant’s Defendant’s Defense Defendant’s Sup. Court

race gender counsel record division

1 other Male appointed short 5 2141
2 Afr. American Male appointed short 5 2727
3 other Male appointed long 5 1989
4 Afr. American Male appointed long 5 2868
5 other Male public short 5 956
6 Afr. American Male public short 5 2049
7 other Male public long 5 915
8 Afr. American Male public long 5 2547
9 other Male private short 5 1922
10 Afr. American Male private short 5 1308
11 other Male private long 5 882
12 Afr. American Male private long 5 707

female defendants and divisions other than the 5th, I still employ observations corre-

sponding to these groups for the estimation of conditional densities of trial sentences

and settlement offers. See Section 5 and Appendix A.2 for details.

In the interest of space, I only report in the main text estimation results for co-

variates groups one and two. Both groups comprise defendants with short criminal

history and who are represented by court-appointed attorneys. Defendants in group

two are African-American, while those in group one are not. Appendix B.4 reports

the results for covariate groups three to 12. The differences in the estimation results

across groups one and two, presented below, suggest a non-trivial variation across

races in the outcome of criminal cases. The results for groups three to 12 largely

point in the same direction.43

Figure 1 depicts estimates of the trial sentence densities, conditional on a conviction

at trial, for lenient and harsh in covariate groups one and two.44 All distributions

number of cases in the data matching the following reduced list of covariates: Race/ethnicity and
gender of the defendant, defense counsel type and the Superior Court division of prosecution.
43Notice that the covariates group classification in table 4 attributes even numbers to groups in which
the defendant is African-American and odd numbers to groups in which the defendant is not. It is
possible to assess the differences between African-American and non-African-American defendants
by comparing the estimation results for subsequent odd and even-numbered groups. Groups seven
and eight are the only groups for which the estimation results differ considerably from those of
groups one and two. See Appendix B.4 for more details.
44Bandwidths are reported in Appendix A.2, together with other estimation details.
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show signs of multi-modality—with most of their mass concentrated at sentences

shorter than 100 months. The densities for group two vary as expected across lenient

and harsh judges. Indeed, the density associated with lenient judges has more mass

at short sentences, relative to that associated with harsh judges. For group one the

pattern is less clear. Although a formal test of condition B is beyond the scope of

the present study, the figures suggest that there is enough variation in the sentencing

behavior across judges to implement the estimator described in Section 5.

Figure 1. Conditional trial sentence densities – lenient and harsh judges
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See table 4 for a description of the covariate groups.

To estimate the prosecutor’s settlement offer function, I implement the spline re-

gression procedure described previously. I do so independently for each covariate

group. An important step in any spline regression is the selection of knots—the

points in the domain of the function to be estimated where the polynomial pieces

that constitute the spline connect. I set such knots at the 25th, 50th and 75th per-

centiles of the entire sample of trial sentences, irrespective of the covariate group.

The chosen knots are 21, 70 and 125 months. Notice that, because I constrain the

estimated offer function to be increasing and convex, the selection of knots is not as

critical in my analysis as it is in other spline regression applications (Meyer, 2008).

Figure 2 presents the estimated settlement offer functions. The variation of the

estimates across groups one and two is substantial. Specifically, the estimated offer

functions is more convex for group one than for group two. Remember that the only

difference between these groups is that defendants in group two are African-American.
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The result thus indicates that prosecutors tend to offer longer sentences to African-

American defendants than to their non-African-American counterparts, conditional

on the length of the trial sentence. This is not a rigorous result, however, since I do

not formally test whether one offer function is more convex than the other.

Figure 2. Settlement offer function
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See table 4 for a description of the covariate groups.

Once estimates for the settlement offer functions are obtained, I proceed with the

estimation of the model’s primitives. For each judicial division group, that consists

of estimating five scalar parameters: αp and βp, which characterize the prosecutor’s

trial costs; αd and βd, which characterize the defendant’s trial costs; and µ, which

captures the behavior of the distribution of defendants’ types for values of θ smaller

than θ̃(t, z). Let α̂p, β̂p, α̂d, β̂d and µ̂ be the respective estimates, which are obtained

separately for each covariate group.

Table 5 reports the estimation results, together with bootstrap standard errors.45

Trial costs are measured in terms of months. Accordingly, the trial cost intercepts α̂d

and α̂p are expressed in months, while β̂d and β̂p are coefficients. For both covariate

45See Appendix A.2 for details on the computation of the standard errors.
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Table 5. Parameter Estimates by Covariate Group

Group
Parameters

α̂d β̂d α̂p β̂p µ̂

1
0.02 0.00 0.00 0.97 1.00

(0.01) (0.00) (0.00) (0.41) (0.00)

2
0.00 0.00 0.00 1.06 1.00

(0.01) (0.00) (0.00) (0.26) (0.00)

Bootstrap standard errors in parenthesis.

See table 4 for a description of the covariate groups.

groups, both α̂d and β̂d are very small. The former parameter varies from 0.00 to 0.02,

depending on the group, and the latter is always 0.00. These numbers suggest that

defendants barely take the costs of going to trial into consideration when deciding

whether or not to accept the prosecutor’s offer. One possible interpretation of this

result is that, for the defendant, the costs of serving time in prison are so high that

every expenditure associated with the trial procedure is of second order.

For both groups, α̂p is equal to zero and α̂p is roughly one, suggesting that trial

costs for the prosecutor increase rapidly as the trial sentence gets longer. The dif-

ferences between the estimated trial costs for the defendant and the prosecutor may,

at first glance, seem striking. Notice, however, that the model does not allow for

the comparison of cardinal utility between the prosecutor and the defendant—which

implies that the trial cost estimates for the two parties are not directly comparable

either.46 Estimates of µ are one for both groups. Notice that F (θ̃(t)) = 1 − µ (see

footnote 35). My results thus indicate that defendants whose type belongs to the

interval [0, θ̃(t)] are very rare.

After the estimation of the remaining parameters, I am able to compute estimates

for the distribution of defendants’ types. Figure 3 depicts these distributions. For

each covariate groups, the figure shows both the estimated density function and the

estimated cumulative distribution function. All distributions have a mode at a type

lower than 0.3. The densities then sharply decrease, giving the impression that the

distributions of defendants’ types are unimodal. However, from Section 5, we know

46Indeed, the equilibrium outcome of the bargaining game is invariant to any monotone linear
transformation affecting both the parameters αp and βp and the utility derived by the prosecutor
from the assignment of a given incarceration sentence.
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Figure 3. Distribution of defendants’ types – density and CDF
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See table 4 for a description of the covariate groups.

that these distributions are only identified over part of their support—specifically, the

interval [θ̃(t), θ̃(t̄)]. For both covariate groups, this interval comprises a large portion

of the unit line. The lower bound of the identified range of the support varies from

zero to just above 0.2, depending on the covariate group, and the upper bound is

roughly 0.8 for both groups. But both distributions have substantial mass outside of

this range. For group one, the estimated cumulative distribution function evaluated

at the upper bound of the identified range is approximately 0.5, while for group two

this value is roughly 0.4. Such numbers suggest that the distributions of defendants’

types have at least one more mode, located at a relatively high type. In particular,

my results are consistent with distributions that concentrate mass at types located

near the boundaries of the unit line. Interestingly, these bimodal distributions of

types are precisely the ones that would arise if trials were generally, but not always,

successful at convicting the guilty defendants and acquitting the innocent ones.

The distributions shown in figure 3 help rationalizing the differences between the

estimated settlement offer functions of African-American and non-African-American

defendants, which were pointed-out in the discussion of figure 2. The estimate of

F (θ̃(t̄)) is greater for group one than for group two, indicating that the distribu-

tion of types for African-American defendants concentrates more mass at high types

than the distribution for other defendants. Thus, controlling for the other covari-

ates considered in my analysis, the results suggest that African-Americans are more

likely than others to to be convicted by the jury in the event of a trial. According

to the model, these differences in the distributions of types are considered by the
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prosecutors in the process of making settlement offers. Specifically, given an African-

American and a non-African-American defendant who face the same trial sentence, a

prosecutor offers to the former a longer sentence. Relatively generous offers made to

non-African-American defendants result in a more convex settlement offer function,

which is precisely the finding in figure 2. Two comments are in order here: First, as

pointed out in the discussion of the offer function estimates, a rigorous comparison

between the distribution of types of African-American and non-African-American de-

fendants would require formal tests that I do not carry out in this paper. Second,

even assuming that the likelihood of trial convictions is indeed higher for African-

Americans than for other defendants, it is not clear whether this difference is due to

the discretion of the jury or to variation in other case characteristics across groups

of defendants. These are interesting topics for further research. The final step in the

estimation of the model primitives is to obtain the full distribution of potential trial

sentences for each covariate group—i.e., the distribution without conditioning on a

trial conviction. In the interest of space, I report such distributions in Appendix B.4.

Table 6 presents information on the fit of the model. It separately shows the

probabilities of conviction to incarceration by plea bargain and at trial for each co-

variate group. The model fits well the probability of a plea bargain, while it slightly

under-estimates the probability of a conviction at trial (by approximately 2 to 3 p.p.,

depending on the group). As a result, the model under-estimates the total probability

of a conviction to incarceration by roughly the same amount. The table also shows

three versions of the average assigned sentences: (i) The overall average—i.e,, the

average sentence, conditional on either a conviction at trial or on a plea bargain; (ii)

the average sentence, conditional on a plea bargain; and (iii) the average sentence,

conditional on a trial conviction. The model fits the the overall average sentence well.

However, it substantially over-estimates the average trial sentence for group one. It

is useful to put such over-estimation into perspective by comparing it to the stan-

dard deviation of the observed trial sentences reported in table 2. The fitted model

predicts the average trial sentence of group one to be 0.59 standard deviations longer

than observed. A possible explanation for that is the small number of trial conviction

observations in my sample, which leads the maximum likelihood procedure used for

completing the estimation of the model to prioritize reproducing other features of the

data. For the exact same reason, the overestimation of the average trial sentences has

a very weak effect on the general fit of the model—as shown by the other moments on

table 6. As long as one is not particularly interested in the distribution of outcomes
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Table 6. Fitted values versus data

Group
Conviction probability

Any (Ψ ∈ {1, 2}) Settlement (Ψ = 1) Trial (Ψ = 2)

1
Data 38.35% 34.60% 3.75%
Model 36.59% 34.86% 1.73%

2
Data 44.11% 36.66% 7.45%
Model 42.22% 37.50% 4.71%

Group
Average sentence, conditional on method of resolution†

All (Ψ ∈ {1, 2}) Settlement (Ψ = 1) Trial (Ψ = 2)

1
Data 63.13 54.93 138.73
Model 57.12 49.97 201.18

2
Data 48.14 41.51 80.73
Model 45.08 40.63 80.50

† : Measured in months.
See table 4 for a description of the covariate groups.

for the small minority of cases that reach the trial stage, the model is able to replicate

the key aspects of the data very well for both covariate groups.

7. Policy Experiments

Sentencing reform has been at the center of the recent public policy discussion,

thanks to the growing consensus that the United States incarcerates too many people

for too long. About 0.7 percent of Americans were in prison or jail at the end of

2010 (Glaze, 2011)—the highest incarceration rate in the world (Walmsley, 2009).

Besides drastically affecting the lives of millions of inmates and their families, the

correctional system constitutes a major component of public spending. Nationwide

direct expenditures on corrections surpassed $70 billion in every year between 2000

and 2007 (Kyckelhahn, 2011). That, combined with the fiscal crisis in the past years,

has led policy makers to consider reforms intended to reduce the number of prisoners.

In particular, there have been an increasing number of proposals for reversing some

of the “tough on crime” sentencing reforms of the 1980s and 1990s.
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Two of the proposals that have recently gained political currency are the reduction

of mandatory minimum sentence lengths, and the broader use of alternative pun-

ishments for less serious offenses.47 In this section, I use the estimated model to

conduct counterfactual policy experiments on such reforms. Specifically, I consider

a decrease in trial sentences, capturing the effect of an across-the-board reduction

in the mandatory minimum sentence lengths. Also, I analyze the scenario in which

relatively short trial sentences are set to zero. Such a scenario simulates the effect of

abolishing incarceration sentences for the mildest offenses.

The focus of my counterfactual analysis is on the number of defendants who receive

incarceration sentences, as well as on the total time of incarceration assigned. The

outcomes of interest are: (i) the average probability that a case results in a incar-

ceration conviction, either at trial or due to a settlement; (ii) the average observed

incarceration sentence length; and (iii) the expected incarceration sentence length at

the beginning of the prosecution process, which is simply the product of outcomes

(i) and (ii). The total number of months of incarceration assigned in any given pe-

riod is determined by the number of defendants prosecuted over that period times

the expected sentence length. Outcome (iii) is, thus, the main variable of interest if,

for example, one is mostly concerned about the total incarceration costs of current

sentencing decisions.48 However, a decrease in the expected sentence length that is

solely due to shorter sentences may have no immediate effects on the incarceration

rate. To see that, consider the short-term impact of reducing a convicted defendant’s

sentence from 40 to 20 years. Changes in the probability of conviction are more likely

to capture short-term effects of sentencing reforms.

My counterfactual analysis ignores important outcomes of sentencing reform, such

as crime deterrence and recidivism. A more complete exercise would need to simul-

taneously account for these effects and plea bargaining. My analysis is one of partial

equilibrium, and can be thought of as a step towards the better understanding of

policy interventions in the criminal justice system. Endogenizing crime rates in a

model similar to the one considered here is an exciting avenue for further research.

47The following are examples of reforms adopted in 2010 alone: New Jersey reduced the mandatory
minimum sentence for defendants convicted of drug-related offenses committed within 1000 feet of
school property or a school bus. South Carolina equalized penalties for offenses involving crack and
powder cocaine. In the same state, the minimum sentence for non-violent second-degree burglary
was reduced from 15 to ten years. Tennessee enhanced alternative sentences for several non-violent
property offenses, including felony theft. See Porter (2011) for other policy reforms.
48Of course, that assumes the linearity of costs on incarceration time.
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I also consider two counterfactual experiments unrelated to sentencing reform. In

one of them I eliminate asymmetries of information between prosecutors and defen-

dants. In principle, better discovery rules could reduce such asymmetries, although at

the cost of longer and more burdensome negotiations. Therefore, this counterfactual

analysis serves as a reference for assessing the potential effects of more detailed dis-

covery. More importantly, the experiment allows me to assess the magnitude of the

defendant’s informational rents by comparing the average length of the incarceration

sentences assigned in the scenarios with and without asymmetric information.

The last counterfactual analysis addresses the scenario in which plea bargaining is

not allowed, so that every case is decided at trial. Admittedly, given that roughly

90 percent of all criminal cases are currently settled, completely eliminating plea

bargaining is likely to be too radical an intervention. But considering this extreme

scenario allows me to measure the loss of information that arises due to settlements.

Specifically, I compute the proportion of defendants who are currently convicted to

incarceration sentences, but who would be acquitted if their cases were decided at

trial. Insofar as trials correctly convict the guilty and acquit the innocent, this propor-

tion reveals the extent to which plea bargaining results in the conviction of innocent

defendants. I am also able to calculate the losses incurred by defendants who are

prohibited from settling their cases. In debating the merits of plea bargaining, legal

scholars make a distinction between its private and social benefits. A plea bargaining

is a voluntary contractual arrangement between the prosecutor and the defendant. If

both parties are rational, they will only agree to settle a case if such an arrangement

is mutually beneficial (Scott and Stuntz, 1992). But the conviction of innocent in-

dividuals imposes a negative externality to society—as attested, for example, by the

requirement that judges find factual basis before accepting guilty pleas (Schulhofer,

1992). Although my analysis does not provide direct estimates of this externality, it

allows me to assess how often innocent defendants agree to settle their cases. This re-

sult, along with my measure of the private costs of forbidding settlements, contributes

to a better understanding of the welfare implications of plea bargaining.

7.1. Reducing mandatory minimum sentences. Table 7 shows the effects of a

twenty percent reduction in the length of potential trial sentences for all cases in

the sample.49 The top half of the table reports the effect on the probability of an

49This policy experiment assumes that an across-the-board reduction in mandatory minimum sen-
tences would lower the sentences to be assigned in the event of a trial conviction for all cases. While
it is true that a case’s potential trial sentence is determined by a conjunction of factors, mandatory
minimums are likely to serve as a reference for the determination of sentences by the judges, and
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incarceration conviction, either by plea bargain or at trial. The results indicate that

shorter potential trial sentences increase the probability of a settlement, which raises

the total probability of conviction. The latter probability increases by 1.89 percent

for group one and 0.64 percent for group two.

The bottom half of the table shows the impact on the expected length of the as-

signed sentences. For both covariate groups, the elasticity of the expected sentence

with respect to the potential trial sentence is roughly one, indicating that this in-

tervention may be highly effective in reducing the total incarceration time assigned

by the courts. This magnitude is not surprising, considering the results in figure 2,

which show that the prosecutor’s offer functions are quite steep. Since most cases are

resolved by plea bargain, the main effect of a reduction in the potential trial sentences

is a decrease in the settlement sentences. Thus, a reduction in the length of potential

trial sentences is likely to increase incarceration rates slightly in the short run. But

in the long run, the same intervention may lead to a major decrease in these rates.

7.2. Assigning alternative punishments for mild cases. Now I replace the ten

percent of cases with the lowest positive potential trial sentence with cases in which

the potential trial sentence is zero.50 Table 7 shows the results. The impact of the

intervention on the probability of conviction is high. A ten percent decrease in the

number of cases with positive trial sentence reduces the total probability of conviction

by roughly ten percent for all covariate groups. This effect is due to the types of cases

affected by the intervention. Cases with short potential trial sentences are very likely

to be settled before trial, which results in a guaranteed conviction. The elimination

of such cases, therefore, has a direct impact on the probability of conviction.

Nevertheless, the impact of the intervention on the expected sentence is relatively

low. A ten percent decrease in the number of cases with positive potential trial

sentence reduces the expected sentence by less than one percent for both covariate

groups. The policy intervention considered here is rather extreme, and it is surprising

that its effect on the expected sentence is so modest. An explanation for such a low

magnitude is that the current expected sentences are largely influenced by the length

even be a binding constraint in a considerable number of cases. The results presented here can
be interpreted as the effects of changes in mandatory minimum sentences insofar as such changes
actually affect the punishments to be assigned at trial.
50The 20th percentiles in the distribution of positive potential trial sentences for groups one and two
are 48.23 and 21.75 months, respectively. It is arguably more plausible that an actual reform would
affect all cases below a specific threshold (say one year) statewide. Still, the results presented here
serve as an illustration of the potential effects of a broader use of alternative sentences.
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Table 7. Counterfactual results – Sentencing reform

Group
Conviction probability

Any Settlement Trial

1
Current 36.59% 34.86% 1.73%
-20% trial sentence length 37.28% 35.91% 1.37%
-10% incarceration cases 32.74% 31.04% 1.70%

2
Current 42.22% 37.50% 4.71%
-20% trial sentence length 42.49% 37.94% 4.55%
-10% incarceration cases 37.94% 33.38% 4.56%

Group
Expected sentence†

Ψ ∈ {1, 2} Unconditional on Ψ

1
Current 57.12 20.90
-20% trial sentence length 41.23 15.37
-10% incarceration cases 63.64 20.84

2
Current 45.08 19.03
-20% trial sentence length 35.63 15.14
-10% incarceration cases 49.95 18.95

† : Measured in months.
See table 4 for a description of the covariate groups.

of the most severe sentences. Even the complete elimination of the mildest cases has

a small effect on the average outcome.

The results of the two policy simulations undertaken so far suggest that the broader

use of alternative sentences and the reduction of mandatory minimum sentences com-

plement each other. Assigning alternative sentences more often reduces the total

probability of conviction, which immediately affects incarceration rates. Lowering

the mandatory minimum sentences, particularly for severe offenses, greatly reduces

the total incarceration time assigned. However, the latter policy is not likely to

decrease incarceration rates in the short run.

7.3. Eliminating asymmetric information. With complete information, given a

trial sentence t, defendant’s trial costs cd and a defendant of type θ, the prosecutor

offers to settle for θt + cd. This offer leaves the defendant just indifferent between

accepting it and facing a trial. As a consequence, every case is settled. A natural

outcome of eliminating informational asymmetries is thus an increase in the conviction

rate. Such an increase can be easily measured using the estimated model.
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Table 8. Counterfactual results – No asymmetric information

Group
Outcome

Probability of Expected sentence† Expected sentence†

conviction (given Ψ ∈ {1, 2}) (unconditional)

1
Current 36.59% 57.12 20.90
No asym. info. 43.61% [84.41 , 100.57] [36.81 , 43.86]

2
Current 42.22% 45.08 19.03
No asym. info. 50.26% [48.47 , 58.15] [24.36 , 29.22]

† : Measured in months
See table 4 for a description of the covariate groups.

A more difficult computation is that of the distribution of sentences. The challenge

here is that I only identify the distribution of defendant’s types for values within

the interval [θ̃(t), θ̃(t̄)]. Recovering the full distribution of settlement offers in the

complete information scenario would require me to know the distribution of types

outside of this range. Nevertheless, I am able to compute bounds for the mean

settlement offer. To do so, I consider two extreme cases. In the first one, which leads

to a lower bound for the mean settlement offer, I assume that all defendants with

type θ lesser than θ̃(t) have type equal to zero, and all defendants with type greater

or equal to θ̃(t̄) have type exactly equal to θ̃(t̄). In the second extreme case, I obtain

an upper bound for the mean settlement offer by assuming that all defendants with

type lesser or equal to θ̃(t) have type exactly equal to θ̃(t), and all defendants with

type above θ̃(t̄) have type equal to one.

Table 8 shows the results of this analysis. The probability of a conviction to

incarceration increases by roughly 19 percent for both groups. The lower bounds for

the expected sentence, conditional on an incarceration conviction, are estimated to

be longer than the current level for both covariate groups. My findings indicate that

eliminating the asymmetric information between the prosecutor and the defendant

would lead to more incarceration convictions and, conditional on such a conviction,

longer assigned sentences. Therefore, it is not a surprise that the unconditional

expected sentence increases considerably. The lower bounds for this increase are

76.17 and 28.01 percent for groups one and two, respectively. The upper bounds are

109.86 and 53.55 percent. These results suggest that, on average, defendants greatly

benefit from informational rents in the process of plea bargaining.
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Table 9. Counterfactual results – No plea bargaining

Group
Outcome

Probability of conviction

1
Current 36.59%
No plea bargaining [25.31% , 30.21%]

2
Current 42.22%
No plea bargaining [33.09% , 39.69%]

See table 4 for a description of the covariate groups.

7.4. Eliminating plea bargaining. If no plea bargaining is allowed and every case

reaches the trial stage, each defendant is convicted with a probability equal to her

type. Given a trial sentence t and a defendant of type θ, the expected sentence is

θt. Here, both the computation of the overall probability of incarceration conviction

and that of the expected sentence are complicated by the lack of identification of

the distribution of types F (·) over its whole support. I can only calculate bounds

for these values. To obtain the bounds, I follow the same criteria as in the previous

counterfactual exercise.

Table 9 presents the results. Relative to current levels, the probability of an in-

carceration conviction falls substantially for both covariate groups. The differences

between the current probabilities and the estimated lower bounds are 11.28 p.p. for

group one and 9.13 p.p. for group two. When, instead, the upper bounds are consid-

ered, the differences are 6.38 p.p. and 2.53 p.p., respectively. These magnitudes are

large, especially considering that the current rates of incarceration convictions are

roughly 40 percent. For group one, eliminating plea bargaining leads to a decrease

of 17.44 to 30.83 percent in the incarceration conviction rate. For group two, the

decrease is between 5.99 and 21.62 percent. The explanation for these large effects

is that the estimated distributions of defendants’ types, depicted in figure 3, place

a considerable portion of their probability mass at relatively low values. These esti-

mates indicate that, despite facing low probabilities of being convicted at trial, many

defendants currently accept to settle their cases for short incarceration sentences.

Notice that, for each defendant, the expected sentences in the scenarios without

plea bargaining and without asymmetric information are given by θt and θt + cd,

respectively. That is, the difference between the sentences in each scenario consists of

the defendants’ trial costs. As shown in table 5, I estimate such costs to be essentially

zero for all covariate groups. Thus, for each group, the expected sentence without
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plea bargaining is the same as the one reported in the third column of table 8, for the

case of no asymmetric information. These values are considerably longer than the

current expected sentences. Therefore, a large proportion of the defendants would

be acquitted at trial after a ban on plea bargains. But my results suggest that, in

expectation, defendants would be considerably worse off in such a scenario.

8. Conclusion

I develop a framework for the empirical analysis of plea bargaining, which allows

me to evaluate how sentences to be assigned at trial affect the result of criminal cases.

I adapt a model of bargaining with asymmetric information due to Bebchuk (1984),

and I present conditions for it to be non-parametrically identified. I then propose a

consistent estimator for the model, which I apply to data on criminal cases prosecuted

in the North Carolina. My findings suggest that, while the opportunity costs of going

to trial are high for prosecutors, defendants behave as if trials were costless.

Using the estimated model, I evaluate the impact of different sentencing reforms

on the outcome of prosecuted cases. My experiments suggest that lowering manda-

tory minimum sentences may greatly reduce the total amount of incarceration time

assigned by the courts. However, the same intervention would increase the propor-

tion of cases resulting in incarceration convictions, which, in the short run, may have

unintended effects on the incarceration statistics. A different reform, the wider use of

alternative sentences in less serious cases, leads to a decrease in conviction rates but

has little effect on the total incarceration time assigned. Hence, these two interven-

tions have the potential to complement each other. I also evaluate the impact of two

other policy experiments: Eliminating the asymmetric information between the pros-

ecutor and the defendant and prohibiting cases from being settled. The results from

these analysis suggest that a large proportion of defendants who presently receive

incarceration convictions by plea bargaining would be acquitted if their cases reached

the trial stage. Nevertheless, in expectation, defendants are considerably worse off in

the scenario without plea bargaining than in the current one.
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Appendix A

A.1. Proofs.

A.1.1. Proof of Lemma 1: By condition B, I can divide [t, t̄] into N sub-intervals

of the form IT1 = [t, t1) , IT2 = [t1, t2) , · · · , ITN−1 = [tN−2, tN−1) , ITN = [tN−1, t̄ ],

and, for each n = 1, · · · , N , choose elements z′n, z
′′
n of ∆ρ such that the function

φ(t, z′n, z
′′
n) ≡ g(t|Z = z′n)/g(t|Z = z′′n) is strictly monotonic on ITn . Without loss of

generality, I assume that, for all n, if φ(t, z′n, z
′′
n) is strictly increasing on ITn , then

φ(t, z′n+1, z
′′
n+1) is strictly decreasing on ITn+1; and, if φ(t, z′n, z

′′
n) is strictly decreasing

on ITn , then φ(t, z′n+1, z
′′
n+1) is strictly increasing on ITn+1.

That, together with equation (5.2) and the strict monotonicity of s̃(·, z̆), implies

that the interval [s̃(t, z̆), s̃(t̄, z̆)] can be divided into sub-intervals IS1 , · · · , ISN with

the following property: for all n = 1, · · · , N , I have that (i) if φ(t, z′n, z
′′
n) is strictly

increasing on ITn , then the function φb(s, z
′
n, z
′′
n) ≡ b(s|Z = z′n)/b(s|Z = z′′n) is strictly

increasing on ISn ; and (ii) if φ(t, z′n, z
′′
n) is strictly decreasing on ITn , then φb(s, z

′
n, z
′′
n)

is strictly decreasing on ISn . Notice that IS1 = [s̃(t, z̆), s̃(t1, z̆)) , IS2 = [s̃(t1, z̆), s̃(t2, z̆))

, · · · ,ISN−1 = [s̃(tN−2, z̆), s̃(tN−1, z̆)) and ISN = [s̃(tN−1, z̆), s̃(t̄, z̆)].

Finally, for all n = 1, · · · , N , I identify the function s̃(·, z̆) on the interval ITn by

the following equation

s̃(t, z̆) = φ−1
b (φ(t, z′n, z

′′
n), z′n, z

′′
n)

for all t ∈ ITn . �

A.1.2. Proof of Proposition 2. Using the defendant’s cutoff point in equation (4.1), I

have that

θ̃(t, z) =
s̃(t, z)− cd(z)

t
(A.1)

for all t ∈ [t, t̄], so that θ̃(·, z) is identified up to the constant cd(z). I later discuss

how to recover such a constant.

I can now rewrite the prosecutor’s first-order condition in equation (4.2) as

t

cp(z) + cd(z)
=

f
[
θ̃(t, z)|Z = z

]
{

1− F
[
[θ̃(t, z)|Z = z

]} .
Denote by λ(θ, z) the hazard function of F (·|Z = z) evaluated at θ. The right-hand

side of the expression above is λ(θ̃(t, z), z). Since θ̃(·, z) is strictly increasing, I have
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that

λ(θ, z) =
θ̃−1(θ, z)

cp(z) + cd(z)
(A.2)

for every θ in the interval [θ̃(t, z), θ̃(t̄, z)]. I can then write

F (θ|Z = z) = 1− µ(z) exp

(
−
∫ θ

θ̃(t,z)

λ(x, z) dx

)
(A.3)

for all θ ∈ [θ̃(t, z), θ̃(t̄, z)], where

µ(z) = exp

(
−
∫ θ̃(t,z)

θ

λ(x, z) dx

)
.

Together, (A.1), (A.2), (A.2) and (A.3) identify F (·|Z = z) for the whole image of

θ̃(·, z), up to the constants cp(z), cd(z) and µ(z).51

The full density of potential trial sentences, g(t|Z = z), can then be recovered,

up to cp(z), cd(z) and µ(z), using the functions s̃(·, z) and F (·|Z = z)—as well

as equations (5.1), (5.3) and (5.4). To complete the identification of the model’s

primitives, I must show how to recover the scalars cp(z), cd(z) and µ(z). But first

I need to introduce a new parameter. Given z and a potential trial sentence t, the

equilibrium probability that a defendant is convicted at trial is∫ θ̃(t,z)

θ

x f(x|Z = z) dx.

Thus,

P [Ψ = 2|Z = z] =

∫
[t,t̄]

∫ θ̃(t,z)

θ

x f(x|Z = z)g(t|Z = z) dx dt

= π(z) +

∫
[t,t̄]

∫ θ̃(t,z)

θ̃(t,z)

x f(x|Z = z)g(t|Z = z) dx dt. (A.4)

where π(z) =
∫ θ̃(t,z)
θ

x f(x|Z = z) dx.52 Like µ(z), the parameter π(z) captures the

behavior of the distribution F (·|Z = z) for θ lower than θ̃(t, z).

The identification of cp(z), cd(z), µ(z) and π(z) may proceed as follows. Using

equations (5.3), (5.4) and (A.1) to (A.3), I write the density b(·|Z = z) in terms of

cp(z), cd(z), µ(z) and the conditional density b(·|Ψ = 1, Z = z). Integrating both sides

over [s̃(t), s̃(t̄)], I recover µ(z) as a function of cp(z) and cd(z). As a consequence, I

51The term µ(z) depends on the behavior of F (·|Z = z) for values of θ lower than θ̃(t, z). It can be

rewritten as µ(z) = 1− F (θ̃(t, z)|Z = z).
52Notice that π(z) must belong to the interval [0, (1− µ(z))θ̃(t, z)].
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can recover the densities b(·|Z = z) and f(·|Z = z), up to cp(z) and cd(z) only. Using

equation (A.4), I am then able to recover π(z), up to cp(z) and cd(z). Finally, using

equations (5.4) and (5.7), I have that

b(s̃(t, z)|Ψ = 1, Z = z)

g(t|Ψ = 2, Z = z)
= (A.5)(

1
ds̃(t,z)
dt

)
P [Ψ = 1|S = s̃(t, z), Z = z]

P [Ψ = 1|Z = z]

P [Ψ = 2|Z = z]

P [Ψ = 2|T = t, Z = z]

for all t ∈ [t, t̄]. Notice that the left-hand side of the equation above depends only

on cd(z) and cp(z), since µ(z) and π(z) are known, up to the trial costs. The right-

hand side is observable. Since the equation holds for all t in the support, it implies a

system of infinitely many equations. In such a system, the variables cd(z) and cp(z)

are independent from each other, since only the former affects θ̃(·, z). Intuitively, cd(z)

and cp(z) jointly determine the distribution of the defendant’s type—and, thus, the

probability of bargaining failure. Given this probability, cd(z) is separately identified

by the probability of a conviction at trial. Hence, evaluating equation (A.5) at two

different values of t (say t and t̄), I can solve for cd(z) and cp(z).53 �

A.1.3. Proof of Proposition 3. The estimator of s̃(·, z) proposed in Section 5 has two

stages. First, I estimate conditional densities of trial sentences and settlement offers.

Then I use such sentences for constructing a functional equation whose solution is

53As mentioned above, I estimate an extended version of the model, in which I allow the trial costs to
vary linearly with the trial sentence. More precisely, I assume that the trial costs for the defendant
and the prosecutor are given, respectively, by cd(t, z) ≡ αd(z) +βd(z)t and cp(t, z) ≡ αp(z) +βp(z)t,
where αd(z), βd(z), αp(z) and βp(z) are constants and t is the realization of T . The identification of
these four parameters follows the argument above—except that equation (A.5) must be evaluated
at four different values of t, in order to form a system of four equations and four unknowns. Notice
that the model imposes bounds for αd(z) and βd(z). Indeed, since the support of Θ is (θ, θ̄) ⊆ (0, 1),

it must be the case that θ̃(t, z) ∈ (0, 1) for all t. From equation A.1, I conclude that, for all [t, t̄],

αd(z) + βd(z)t < s̃(t, z)

and αd(z) + βd(z)t > s̃(t, z)− t.

Also, as shown in Section 4, the function θ̃(·, z) is strictly increasing in t. Therefore, the following
inequality must hold:

αd(z) > s̃(t, z)− s̃′(t, z) t,
where s̃t(·, z) is the partial derivative of s̃(·, z) w.r.t. t. Some algebra shows that the following
conditions are sufficient for the three inequalities above to hold: (i) s̃(t, z) is convex in t, (ii) s̃(t, z) < t
for all t ∈ [t, t̄], (iii) αd(z) ∈ [Max {0, s̃(t, z)− s̃′(t, z)t} , s̃(t, z)] and (iv) βd(z) ∈ [0, s̃′(t, z)]. As
argued in Section 4, condition (i) is true. Condition (ii) is strongly supported by the estimates of
s̃(·, z) reported later in the paper. Conditions (iii) and (iv) are then enough to guarantee that the

function θ̃(·, z) behaves as predicted by the theory. These conditions will be useful for the estimation
of the model.

49



the estimate for s̃(·, z). In order to show the consistency of this estimator, I now

state and prove a lemma, offering sufficient conditions for the consistency of two-

steps estimators in which the second step employs sieve methods. The lemma is

adapted from the well known results on consistency of two-steps estimators by Newey

and McFadden (1994), and from the results on the consistency of sieve estimators by

Chen (2007). After that, I show that its conditions are satisfied by the estimator of

s̃(·, z) from Section 5.

Lemma 2. Let Ξ and Γ be two (possibly infinite-dimensional) parameter spaces en-

dowed with metrics dξ and dγ, respectively. Consider a data-generating process that

can be described by the true parameters ξ0 ∈ Ξ and γ0 ∈ Γ. An estimate γ̂n of γ0 is

available from a previous estimation procedure. Let Q̂n : Ξ× Γ→ < be an empirical

criterion, and Ξk be a sequence of approximating spaces to Ξ. Also, let

ξ̂n = argmax
ξ∈Ξk

Qn(ξ, γ̂n).

Assume that the following conditions are true:

(a) (i) Under the metric dξ: Ξ is compact; and Q(ξ, γ0) is continuous on ξ0 and

upper semi-continuous on Ξ

(ii) ξ0 = argmax
ξ∈Ξ

Q(ξ, γ0) and Q(ξ0, γ0) > −∞

(b) (i) For any ξ ∈ Ξ there exists πkξ ∈ Ξk such that dξ(ξ, πkξ)→ 0 as k →∞

(ii) Under dξ, and for all k ≥ 1: Ξk is compact and Qn(ξ, γ0) is upper semi-

continuous on Ξk

(c) For all k ≥ 1, plim
n→∞

sup
(ξ,γ)∈Ξk×Γ

|Qn(ξ, γ)−Q(ξ, γ)| = 0

(d) (i) γ̂n →P γ0 under dγ

(ii) sup
ξ∈Ξ
|Q(ξ, γ)−Q(ξ, γ′)| → 0 as γ → γ′ under dγ

Then ξ̂ →P ξ0 under dξ.
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Proof. Consider any ε > 0, and notice that, by assumption (a), dξ(ξ̂n, ξ0) > ε implies

Q(ξ̂n, γ0)−Q(ξ0, γ0) < −2η for some η > 0. By assumptions (a.i) and (b), for k high

enough, there is πkξ0 ∈ Ξk such that Q(ξ0, γ0)−Q(πkξ0, γ0) < η.

dξ(ξ̂n, ξ0) > ε ⇒ Q(ξ̂n, γ0)−Q(πkξ0, γ0) +Q(πkξ0, γ0)−Q(ξ0, γ0) < −2η

⇔ Q(ξ̂n, γ0)−Q(πkξ0, γ0) < −2η +Q(ξ0, γ0)−Q(πkξ0, γ0)

⇒ Q(ξ̂n, γ0)−Q(πkξ0, γ0) < −η.

Define An ≡
{
Q(ξ̂n, γ0)−Q(πkξ0, γ0) < −η

}
. Clearly, P

[
dξ(ξ̂n, ξ0)

]
≤ P [An]. To

complete the proof, I just need to show that An = op(1). Define

Bn ≡ {|Q(πkξ0, γ̂n)−Qn(πkξ0, γ̂n)| > η/5}

Cn ≡ {|Q(πkξ0, γ0)−Q(πkξ0, γ̂n)| > η/5}

Dn ≡
{
|Q(ξ̂n, γ̂n)−Qn(ξ̂n, γ̂n)| > η/5

}
En ≡

{
|Q(ξ̂n, γ0)−Q(ξ̂n, γ̂n)| > η/5

}
.

Notice that Bn = op(1) and Dn = op(1) (by assumption (c)). Similarly, Cn = op(1)

and En = op(1) (by assumption (d.ii)).

Now I argue that An ∩BC
n ∩ CC

n ∩DC
n ∩ EC

n = ∅. Indeed,

DC
n ⇒ Qn(ξ̂n, γ̂n) ≤ Q(ξ̂n, γ̂n) + η/5

EC
n ⇒ Q(ξ̂n, γ̂n) ≤ Q(ξ̂n, γ0) + η/5

An ⇒ Q(ξ̂n, γ0) < Q(πkξ0, γ0)− η

CC
n ⇒ Q(πkξ0, γ0) ≤ Q(πkξ0, γ̂n) + η/5

BC
n ⇒ Q(πkξ0, γ̂n) ≤ Qn(πkξ0, γ̂n) + η/5.

Hence, An ∩BC
n ∩ CC

n ∩DC
n ∩ EC

n implies

Qn(ξ̂n, γ̂n) ≤ Q(ξ̂n, γ0) + 2(η/5) < Q(πkξ0, γ0) + 2(η/5)− η

≤ Q(πkξ0, γ̂n) + 3(η/5)− η ≤ Qn(πkξ0, γ̂n) + 4(η/5)− η

= Qn(πkξ0, γ̂n)− η/5.

That contradicts ξ̂n = argmax
ξ∈Ξk

Qn(ξ, γ̂n).
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Finally, notice that

P [An] ≤ P [An ∪ (Bn ∪ Cn ∪Dn ∪ En)]

= P
[
An ∩ (Bn ∪ Cn ∪Dn ∪ En)C

]
+ P [Bn ∪ Cn ∪Dn ∪ En]

= P [∅] + P [Bn] + P [Cn] + P [Dn] + P [En] .

Therefore, An = op(1). �

I can now show that the estimator for s̃(·, z) proposed in Section 5 is consistent.

A feature of the second estimation stage is that, given the first-stage estimates for

the conditional distribution of Ψ and the censored densities of trial sentences and

settlement offers, the objective function is not random. In the notation of Proposition

3, Qn(·, ·) = Q(·, ·). As a consequence, in order to apply Lemma 2, I do not need to

verify condition (c).

The estimator is defined for a set ∆ρ ⊆ ∆. Remember that C is the set of all

pairwise combinations of elements in ∆ρ. In the notation of Lemma 2, the true

parameter ξ0 is the function s̃(·, z), for z ∈ ∆ρ. The true parameter γ0 consists of the

two finite sequences of functions
{
b̃r(·, z′, z′′)

}
(z′,z′′)∈C

and {g̃r(·, z′, z′′)}(z′,z′′)∈C. In

order to avoid burdensome notation, I’ll present the proof for the case where ∆ρ has

only two elements, so that C = (z′, z′′). I denote s̃(·, z′) and s̃(·, z′′) by s̃(·); b̃r(·, z′, z′′)
by b̃r(·); and g̃r(·, z′, z′′) by g̃r(·). The generalization for any finite ∆ρ is conceptually

trivial.

Remember that, by the assumptions in the statement of Proposition 2: (i) the

function br(·) is differentiable and the absolute value of its derivative is bounded by

b̊r; and (ii) the functions br(·) and gr(·) are positive and bounded by B̄r and Ḡr,

respectively. Also, from equation 4.1 and the boundedness of [t, t̄] , I can assume

without loss of generality that the function s̃(·) is bounded from above by s̄, and its

derivative is bounded from above by a constant s̊.

Using the boundary correction discussed in Section 5, the kernel density estimators

of b [s|Ψ = 1, Z] and g (t|Ψ = 2, Z) are uniformly consistent. The estimators of P [Ψ =

1|Z] and P [Ψ = 2|Z] are consistent, as well. From Slutsky’s theorem, therefore, the

first stage of the estimation procedure returns uniformly consistent estimates of b̃r(s)

and g̃r(t).

The objective function in the second stage of estimation is given by

Q (s(·), br(·), gr(·)) = E
{

[br(s(t))− gr(t)]2
}
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where s(·) is an element from the space of increasing and convex functions on [t, t̄],

and gr(·) and br(·) are positive valued functions.

In order to show that the estimator in the second step is consistent, I need to prove

that Q (s(·), br(·), gr(·)) satisfies conditions (a) and (d) from Lemma 2. That is what

I do in the following lemmas.

Lemma 3. Under the assumptions in the statement of Proposition 3, the estimator

described in Section 5 satisfies condition (a) from Lemma 2, where dξ is the sup norm

Proof. Using equation (5.2), it is easy to verify that

Q
(
s̃(·), b̃r(s), g̃r(t)

)
= 0

and that the objective function is strictly positive for any other continuous function

s(·). Condition (a.ii) is then trivially verified.

Let Ξ be the space of functions defined on [t, t̄] that are increasing and convex,

uniformly bounded by zero and s̄, and whose derivative is uniformly bounded by zero

and b̊r. To verify condition (a.i), notice first that, by the Arzela-Ascoli theorem,

the space of differentiable functions on [t, t̄] that are uniformly bounded and have a

uniformly bounded derivative is compact under the sup norm. The space Ξ is the

intersection of that space and the space of increasing and convex functions on [t, t̄],

which is closed. Hence, Ξ is compact.

It remains to verify the upper semi-continuity of the objective function on Ξ and

the continuity at s̃(·, z). Here, I show that the objective function is continuous on Ξ

under the sup norm. Let s(·) and s̆(·) be two functions in Ξ such that

sup
t∈[t,t̄]

|s(t)− s̆(t)| ≤ η.

I can write∣∣∣∣E {[b̃r(s(t))− g̃r(t)]2
}
− E

{[
b̃r(s̆(t))− g̃r(t)

]2
}∣∣∣∣

=
∣∣E [br(s(t))2 − br(s̆(t))2

]
+ 2E {gr(t) [br(s(t))− br(s̆(t))]}

∣∣
≤ |E {[br(s(t))− br(s̆(t))] [2 gr(t) + br(s(t)) + br(s̆(t))]}| .

Some algebra shows that the right-hand side of the last inequality is lower than

2 b̊r
[
B̄r + Ḡr

]
η, so that the objective function is continuous on the whole space

Ξ. �

Lemma 4. Under the assumptions in the statement of Proposition 3, the estimator

described in Section 5 satisfies condition (d) from Lemma 2, where dγ is the sup norm.
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Proof. Since I have uniformly consistent estimates from the first stage, condition (d.i)

holds under the sup norm. To verify condition (d.ii), assume that br(·), b̆r(·), gr(·)
and ğr(·) are such that

sup
s

∣∣∣br(s)− b̆r(s)∣∣∣ ≤ η

and sup
t
|gr(t)− ğr(t)| ≤ η (A.6)

for some η > 0. I can write∣∣∣∣E {[br(s(t))− gr(t)]2
}
− E

{[
b̆r(s(t))− ğr(t)

]2
}∣∣∣∣

=
∣∣∣E [br(s(t))2 − b̆r(s(t))2

]
+ E

[
gr(t)

2 − ğr(t)2
]

+ 2E
[
b̆(s(t))ğ(t)− (

¯
s(t))g(t)

]∣∣∣
≤ E1(t) + E2(t) + E3(t),

where

E1(t) ≡
∣∣∣E [br(s(t))2 − b̆r(s(t))2

]∣∣∣
E2(t) ≡

∣∣E [gr(t)2 − ğr(t)2
]∣∣

and E3(t) ≡
∣∣∣2E [b̆(s(t))ğ(t)− b(s(t))g(t)

]∣∣∣ .
Some algebra shows that, for all functions s(·), the following inequalities hold

E1(t) ≤ max

{
sup

t∈t∈[t,t̄]

2 η br(s(t)) + η2 ; sup
t∈t∈[t,t̄]

2 η b̆r(s(t)) + η2

}
≤ η2 + 2 η B̄r,

E2(t) ≤ max

{
sup

t∈t∈[t,t̄]

2 η gr(t) + η2 ; sup
t∈t∈[t,t̄]

2 η ğr(t) + η2

}
≤ η2 + 2 η Ḡr,

E3(t) ≤ 2 max

{
sup

t∈t∈[t,t̄]

η [br(s(t)) + gr(t)] + η2 ; sup
t∈t∈[t,t̄]

η
[
b̆r(s(t)) + ğr(t)

]
+ η2

}
≤ 2 η2 + 2 η

[
B̄r + Ḡr

]
.

Since neither B̄r nor Ḡr depends on s(·), condition (d) is satisfied. �

That concludes the proof of Proposition 3. �
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A.2. Estimation appendix.

A.2.1. Estimation of the model primitives. The primitives to be estimated are the

cost parameters αd(z), βd(z), αp(z) and βp(z), the distribution of defendant’s types

F (·|Z = z) and the distribution of trial sentences, characterized by ν(z) and g(·|Z =

z).

Notice that, for all z ∈ ∆ρ, I can trivially estimate ν(z) by using the empirical

probabilities that Ψ = 0, conditional on Z = z. To recover the other primitives, I

follow the steps outlined in the proof of proposition 2 (appendix A), which show that

F (·|Z = z) and g(·|Z = z) can be written in terms of the cost parameters αd(z),

βd(z), αp(z) and βp(z), as well as the auxiliary parameters µ(z) and π(z). Since

equation (A.5) holds for all t ∈ [t, t̄], the model is overidentified. In order to recover

the primitives, therefore, I estimate αd(z), βd(z), αp(z), βp(z) and µ(z) by maximum

likelihood.54

More precisely, consider guesses α̈p, β̈p, α̈d, β̈p and µ̈ for αp(z), βp(z), αd(z),

βd(z) and µ(z), respectively. From ŝ(·, z) and equation (A.1), I numerically obtain

θ̈(·, z, α̈d, β̈d), the function θ̃(·, z) consistent with the guesses α̈d and β̈d. Using equa-

tions (A.2) and (A.3), I then obtain f̈(·|Z = z, α̈d, β̈d, α̈p, β̈p, µ̈), the density function

f(·|Z = z) consistent with α̈d, β̈d, α̈p, β̈p and µ̈. Employing ŝ(·, z), the estimated

conditional density b̂(·|Ψ = 1, Z = z), and equations (5.3), (5.4) and (A.1) to (A.3), I

can numerically compute g̈(·|Z = z, α̈d, β̈d, α̈p, β̈p, µ̈), the density g(·|Z = z) consistent

with α̈d, β̈d, α̈p, β̈p and µ̈. From equation (A.4), I calculate π̈(z, α̈d, β̈d, α̈p, β̈d, µ̈), the

value of π(z) consistent with α̈d, β̈d, α̈p, β̈p and µ̈. Using g̈(·|Z = z, α̈d, β̈d, α̈p, β̈p, µ̈),

f̈(·|Z = z, α̈d, β̈d, α̈p, β̈p, µ̈) and π̈(z, α̈d, β̈d, α̈p, β̈p, µ̈), I can numerically compute the

likelihood that Ψ = 3, given Z, and consistently with α̈d, β̈d, α̈p, β̈p and µ̈. Such

likelihood is

P̈ [Ψ = 3|Z = z, α̈d, β̈d, α̈p, β̈p, µ̈]

=

∫
[̂t,ˆ̄t]

∫ θ̈(t,z,α̈d,β̈d)

θ

(1− x) f̈(x|Z = z, α̈d, β̈d, α̈p, β̈p, µ̈)g̈(t|Z = z, α̈d, β̈d, α̈p, β̈p, µ̈) dx dt.

54In principle, I could also allow π(z) to be a free parameter. But doing so, in practice, would have
a negligible effect on the fit of the model if the bounds on π(z) discussed in footnote 52 were to be
respected.
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From equation (5.3), I can numerically compute the likelihood that Ψ = 1, given Z,

and consistently with α̈d, β̈d, α̈p, β̈p and µ̈. This likelihood is given by

P̈ [Ψ = 1|Z = z, α̈d, β̈d, α̈p, β̈p, µ̈]

=

∫
[̂t,ˆ̄t]

1− F̈
[
θ̈(t, z, α̈d, β̈d)|Z = z

]
g̈(t|Z = z, α̈d, β̈d, α̈p, β̈p, µ̈) dt,

where F̈ [·|Z = z] is a CDF obtained from f̈(·|Z = z, α̈d, β̈d, α̈p, β̈p, µ̈). From equations

(5.6) and (5.7), the likelihood that T = t and Ψ = 2, given Z, and consistently with

α̈d, β̈d, α̈p, β̈p and µ̈, is

P̈ [Ψ = 2|Z = z, α̈d, β̈d, α̈p, β̈p, µ̈] g̈(t|Ψ = 2, Z = z, α̈d, β̈d, α̈p, β̈p, µ̈)

=

∫ θ̈(t,z,α̈d,β̈d)

0

x f̈(x|Z = z, α̈d, β̈d, α̈p, β̈p, µ̈) dx g̈(·|Z = z, α̈d, β̈d, α̈p, β̈p, µ̈).

I am now ready to define the likelihood contribution of an observation i. I consider

the likelihood conditional on Ψ 6= 0.55 Let Wi be the data corresponding to observa-

tion i.56 Given α̈d, β̈d, α̈p, β̈p and µ̈, the likelihood contribution of an observation i,

conditional on Ψi 6= 0, is

l(α̈d, β̈d, α̈p, β̈p, µ̈,Wi) = P̈ [Ψ = 1|Z = z, α̈d, β̈d, α̈p, β̈p, µ̈]1{Ψi=1}

×
{
P̈ [Ψ = 2|Z = z, α̈d, β̈d, α̈p, β̈p, µ̈] g̈(ti|Ψ = 2, Z = z, α̈d, β̈d, α̈p, β̈p, µ̈)

}
1{Ψi=2}

× P̈ [Ψ = 3|Z = z, α̈d, β̈d, α̈p, β̈p, µ̈]1{Ψi=3}.

Estimates α̂d(z), β̂d(z), α̂p(z), β̂p(z) and µ̂(z) for αd(z), βd(z), αp(z), βp(z) and µ(z)

can then be obtained by performing a numerical search to find the parameters that

maximize the sum of the logarithms of l(α̈d, β̈d, α̈p, β̈p, µ̈,Wi) over all observations for

which ψ 6= 0. I constrain α̈d, β̈d, α̈p and β̈p to be positive, and µ̈ to belong to the unit

interval.57 Finally, estimates for g(·|Z = z) and f(·|Z = z) are defined by g̈(·|Z =

55I do so because the empirical probability that Ψ = 0 is useful only for identifying ν(z).
56That is, if Ψi ∈ {1, 3}, Wi consists of zi and ψi, the realizations of Zi and Ψi. If Ψi = 2, Wi also
consists of ti, the realization of Ti. Notice that I do not take into account the realization si of Si,
which is observed when Ψi = 1. That is because the likelihood of S = s, given Ψ = 1 and Z = z is

simply b̂(z|Ψ = 1, Z = z), which does not depend on c̈p, c̈d or µ̈.
57I further constrain α̈d and β̈d to satisfy conditions (iii) and (iv) described in footnote 53, where
s̃(·, z) is replaced by the estimate ŝ(·, z). Restricting the trial cost coefficients to be positive is
consistent with the notion that it is is more costly to bring relatively serious cases to trial. Notice
that assuming αd(z) > 0 and αp(z) > 0 also ensures that the hazard rate of the distribution of
defendant’s type is strictly increasing, as can be shown by applying the implicit function theorem
on equation (4.2).
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z, α̂d(z), β̂d(z), α̂p(z), β̂p(z), µ̂(z)) and f̈(·|Z = z, α̂d(z), β̂d(z), α̂p(z), β̂p(z), µ̂(z)), re-

spectively.

A.2.2. Observed heterogeneity. I incorporate observed heterogeneity across cases to

my estimation procedure by dividing the observations in the data into a finite number

of covariate groups and implementing the estimator described in Section 5 separately

for each one of them. The first step of the estimator consists of computing two types of

conditional densities: that of trial sentences, conditional on a conviction at trial, and

that of settlement offers, conditional on a successful plea bargain. These two types

of conditional densities must be estimated both for cases under the responsibility of

lenient judges and for those under the responsibility of harsh ones. Therefore, for each

one of the 12 covariate groups under consideration in my analysis, I must estimate

four conditional densities. I estimate these conditional densities using the smoothing

method developed by Li and Racine (2007), which I briefly describe below. Notice

that the notation employed in this part of the Appendix differs from that of the rest

of the paper.

Let Y be an univariate continuous random variable and X an r-dimensional discrete

random variable. Denote by f(·), g(·) and µ(·) the joint density of (X, Y ) and the

marginal densities of Y and X, respectively. For each dimension s of X, let cs be

the number of values in the support of Xs and λs be a real number between zero and

(cs − 1)/cs. Define the vector λ = (λ1, . . . , λr) and consider the following estimates

of f(·) and µ(·):

f̂(x, y) = n−1

n∑
i=1

L(x,Xi, λ)kh0(y − Yi)

and µ̂(x) = n−1

n∑
i=1

L(x,Xiλ),

where n is the sample size, kh0(·) is a kernel function with bandwidth h0 and

L(x,Xiλ) =
r∏
s=1

[λs/(cs − 1)]1(Xis 6=xs) (1− λs)1(Xis=xs).

Finally, define the the estimate of the conditional density g(y|x) as

ĝ(y|x) = f̂(x, y)/µ̂(x).

Notice that ĝ(y|x) is obtained using all observations in the data—i.e., even those in

which X 6= x. These observations, however, are weighted down, relative to the ones
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satisfying X = x. The weights are given by the vector λ = (λ1, . . . , λr). In one

extreme case, λs is zero for all s, and ĝ(y|x) is calculated employing only observations

such that the realization of X is x. In the other extreme case, λs = (cs− 1)/cs for all

s, and ĝ(y|x) becomes the estimate of g(·), the unconditional density of Y . The vector

λ can be regarded as a collection of smoothing parameters—one for each dimension of

X. Together, λ and h0 determine the extent to which points away from (y, x) affect

ĝ(y|x). As argued by Li and Racine (2007), positive values of λ increase the finite

sample bias of ĝ(y|x) but also reduce its variance. Depending on the magnitudes of

these two effects, the net result of increasing λ can be a decrease in the mean squared

error associated with ĝ(y|x).

The greatest challenge in implementing this estimator, therefore, is the choice of the

smoothing parameters λ and h0. In my application, I follow Li and Racine (2007) and

select λ by cross-validation.58 For any given sample size and any covariate dimension

c, this method aims to select relatively large values of λc if the distribution of Y is

not largely affected by variations in Xc, and small values of λc if the distribution of

Y varies considerably with Xc. Moreover, the selected values of λc tend to decrease

as the sample size increases.

For each covariate group in my analysis, I estimate four conditional densities. Using

the notation of Li and Racine’s estimator presented above, Y may represent four

random variables: Trial sentences assigned by lenient judges, trial sentences assigned

by harsh judges, settlement offers made under lenient judges and settlement offers

made under harsh judges. The discrete random variable X refers to the covariates

used to divide the data into groups.59 This random variable has the following five

dimensions: (i) defendant’s gender (male or female), (ii) defendant’s race (African

American or non-African American), (iii) the type of defense counsel (public defender,

court-assigned attorney or privately-held attorney), (iv) the length of the defendant’s

criminal record (short or long, as defined in Section 5) and (v) Superior Court division

(numbers one to eight). The function kh0(·) is the Epanechnikov kernel.

58Li and Racine (2007) propose two basic approaches for the selection of smoothing parameters:
least squares cross-validation and maximum likelihood cross-validation. The former method is too
computationally costly for me to employ it, given the sample sizes that I deal with in my application.
I therefore use maximum likelihood cross-validation in the present paper.
59To be sure, I estimate four conditional densities. The densities of trial sentences are conditional
on a conviction at trial, and those of settlement offers are conditional on a plea bargain. Besides
conditioning on the case outcome, I estimate these densities conditioning on five covariates. In the
notation of this Appendix, X refers only to these covariates.
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Table 10. Smoothing parameters

Conditional density estimator†

Covariate
Trial sentences Trial sentences Offers Offers Upper

(lenient) (harsh) (lenient) (harsh) endpoint

Gender 0.39 0.11 0.03 0.03 0.50
Race 0.12 0.05 0.09 0.09 0.50
Counsel 0.23 0.18 0.20 0.25 0.67
Record 0.02 0.03 0.01 0.00 0.50
Division 0.41 0.33 0.44 0.41 0.88

† : Trial sentence densities, conditional on a conviction at trial and on covariates.
Settlement offer densities, conditional on a plea bargain and on covariates.

Table 10 contains the smoothing parameters λ obtained by maximum-likelihood

cross-validation for each of the four conditional densities of my analysis. Notice that,

for every covariate c, lambda must belong to the interval [0, (cs − 1)/cs], where cs

is the covariate’s support. The upper endpoints of this interval are shown in the

last column of the table. All the selected smoothing parameters are far away from

these endpoints, suggesting that the covariates under consideration are important in

explaining the distributions of trial sentences and settlement offers. In particular,

the smoothing parameters associated with the defendant’s previous criminal record

are very close to zero. The parameters associated with race are also relatively low—

ranging from 0.05 to 0.12. The gender parameters are larger for the densities of trial

sentences than for those of settlement offers, which can be explained by the larger

sample sizes used to compute the latter.

As explained in Section 5, the supports of trial sentences and settlement offers

are bounded, which complicates the estimation of the conditional densities described

above. To deal with this problem, I use a boundary correction proposed by Karuna-

muni and Zhang (2008). Using the notation of this Appendix, the approach consists

of reflecting a transformation of the data near the boundary of Y . The reflected data

points have the same x as the corresponding observations in the original data set, but

y is modified. The estimator uses separate bandwidths h0 for points near the bound-

ary and away from it. Differently from the naive reflection of the untransformed data,

this method allows the partial derivative of g(y|x) with respect to y to be different

from zero at the boundary of the support. See Karunamuni and Zhang (2008) for

details.
59



Table 11. Kernel bandwidths for trial sentences and settlement offers†

Trial sentences Trial sentences Settlement offers Settlement offers
(lenient) (harsh) (lenient) (harsh)

Bandwidth 21.83 25.31 6.59 7.37

†: Measured in months

Table 11 reports the bandwidths h0 for points away from the boundary, which are

computed using Silverman’s “rule-of-thumb” (Silverman, 1986). The bandwidths for

trial sentences are 21.83 months (lenient judges) and 25.31 months (harsh judges).

Those for settlement offers are 6.59 months (lenient judges) and 7.37 months (harsh

judges). The larger bandwidths for trial sentences reflect the relative scarcity of cases

that result in an incarceration conviction at trial.

A.2.3. Standard errors. I use bootstrap methods to compute standard errors for the

parameters reported in table 5. Specifically, I consider 1200 bootstrap samples for

each covariate group. For each of these samples, I estimate the densities of trial

sentences and settlement offers using the same bandwidths an smoothing parameters

employed in the main data. I then estimate the offer function and, finally, the model

parameters.

There are two main issues with this procedure. The first one is that I do not offer a

proof of the validity of the bootstrap for my estimator. Subsampling methods (Politis,

Romano and Wolf, 1999) are more robust than the bootstrap, but, to apply these

methods, the convergence rate of the estimator must be known. The development

of suitable inference methods in the context of my estimator is an interesting topic

for further research. The second issue is that, for part of the bootstrap samples, the

last step of the estimation procedure—i.e., obtaining maximum likelihood estimates

for αd, βd, αp, βp and µ—becomes computationally too costly. This is the case

whenever the estimated settlement offer function is too convex. I do not implement

the last estimation step for these samples.60 As a consequence, the standard deviations

60More precisely, I drop from my analysis every bootstrap sample in which the coefficient associated
with the last C-spline basis is greater than four. As a reference, using the main data, I estimate this
coefficient to be 2.43 for covariate group one, 1.27 for group two, 2.04 for group three and 0.00 for
group four. This procedure eliminates 13.83% of the 1200 bootstrap samples for group one, 32.50%
for group two, 12.58% for group three, 37.00% for group four, 3,33% for group five, 4.83% for group
six, 20.25% for group seven, 14.50% for group eight, 11.25% for group nine, 10.83% for group ten,
36.08% for group 11 and 14.75% for group 12.
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reported in table 5 may underestimate the actual standard deviation of the model

parameters.

A.3. Comparison with Sieg (2000). The model estimated by Sieg (2000), which

is based on an earlier contribution due to Nalebuff (1987), is closely related to the

one studied here. There are, however, important differences between Sieg’s paper

and mine. First, I identify and estimate my model without assuming any parametric

specification, whereas Sieg’s analysis is totally parametric. Also, I analyze data on

criminal cases, whereas Sieg uses data on medical malpractice disputes. Not sur-

prisingly, the different applications lead to distinctions between the models used in

the two papers, which turn out to have substantial implications. I now discuss these

differences.

In Sieg’s model, the defendant is privately informed about the merit of the case,

and the damages suffered by the plaintiff are commonly known by the two parties.

If the case reaches the trial stage, the plaintiff is, with probability one, awarded the

product of the damages and the merit. In such a setup, the defendant is found not

liable if and only if the case has no merit at all. A direct implication is that changes

in the distribution of damages across cases have no impact on the proportion of cases

won by the plaintiff. That is not a shortcoming in Sieg’s application since, in the

context of medical malpractice disputes, the plaintiff win rate is not an outcome of

major interest to policy makers. But the same setup in the context of criminal cases

would imply that changes in the distribution of potential trial sentences do not affect

the probability that the defendant is found guilty. That would prevent the evaluation

of how changes in sentencing guidelines influence conviction rates, a topic of great

interest in the discussion on sentencing reform. In the model estimated in my paper,

the defendant is privately informed—not about the merit of the case, but about the

probability of being found guilty at trial. Changes in the distribution of potential

trial sentences affect conviction rates by altering the types of defendants who, in

equilibrium, choose to go to trial.

Another difference between the model used by Sieg and the one analyzed here

concerns the prosecutor’s outside option. There, the plaintiff cannot bring a case to

trial if doing so implies a negative expected payoff. In other words, the prosecutor’s

outside option is set to zero, which makes perfect sense in the context of tort cases.

Here, in contrast, I assume that, for cases with positive potential trial sentence, the

prosecutor’s outside option is low enough that such cases are never withdrawn. This

assumption is arbitrary. However, as argued in previous sections, prosecutors often
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face career-concern incentives to not withdraw even cases that are very difficult.

Although it is theoretically appealing to consider the prosecutor’s outside option,

setting it to zero in the analysis of criminal cases is at least as arbitrary as setting

it to any negative number. Future research can incorporate the estimation of the

prosecutor’s outside option into the empirical analysis of criminal proceedings.
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Appendix B. Online Appendix

B.1. Reduced form analysis. In this appendix I present the results of a reduced-

form analysis that has two main objectives: The fist one is to verify whether the data

are consistent with basic predictions of the model. I do so by presenting evidence

that the settlement of a case becomes less likely as the sentence to be assigned in the

event of a trial conviction increases. The second objective is to validate the division

of the judges in the data into lenient and harsh as a valid source of heterogeneity in

the distribution of trial sentences, given the identifying assumptions of the structural

model. Specifically, I show evidence that the distribution of cases assigned to lenient

and harsh judges are indistinguishable from from each other.

B.1.1. Reduced-form evidence for the model. An important prediction of the bargain-

ing model discussed in Section 4 is that the probability of a successful settlement is

decreasing in the length of the trial sentence. It is useful to present evidence sup-

porting this prediction. A simple way of doing so is by comparing the likelihoods of

settlement across cases in which the main offenses differ in nature. Table 12 presents

settlement rates and average incarceration sentences for several categories of crimes in

the data. The table separately reports the average sentence lengths for cases resolved

at trial and by plea bargain. The offense categories considered are homicide, non-

homicide violent crimes, property crimes, drug-related crimes and other offenses.61

Here, I consider as settled all cases decided by plea bargain—independent of whether

the sentence includes incarceration time. That is because, otherwise, the settlement

rates would largely capture differences in the the probabilities of incarceration across

crime categories. The table shows that, as expected, sentences assigned to defendants

convicted of homicide are very long.62 Among the categories displayed in the table,

non-homicide violent crimes have the second longest average sentences, followed by

drug-related crimes and property crimes. More interestingly, the table suggests a neg-

ative relationship between average sentences and the likelihood of settlement. The

settlement ratios for homicides, non-homicide violent crimes, drug-related crimes and

property crimes are, respectively, 81.83 percent, 89.94 percent, 96.95 percent and

98.26 percent. It is also worth noticing that cases in which the average trial sentences

61Property crimes include burglary, larceny and arson. Drug-related crimes comprise both trafficking
and possession.
62The numbers in table 12 underestimate the average homicide sentence since death sentences are
not accounted for in the computation.
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Table 12. Settlement rates and sentences by type of offense

Distribution of cases by outcome

Nature of the offense Obs. % Settled
Average sentence Average sentence

(settled)† (trial)†

Violent (non-homicide) 118948 89.94% 38.98 100.73
Homicide 6611 81.83% 134.71 236.76
Property 215505 98.26% 13.36 49.68
Drugs 199692 96.95% 18.63 51.44
Other 313622 96.09% 18.47 37.03
Total 854378 95.86% 25.05 81.30

† : Measured in months.

are long tend to settle for relatively long sentences. This observation provides further

evidence that settlement negotiations take place in the shadow of the trial.

Another method of testing whether cases with long potential trial sentences are

settled less often is to explore the correlation between settlement ratios and the sen-

tencing patterns of different judges. There are several reasons why some judges can

be harsher than others. North Carolina Superior Court judges are elected, and the

electorate’s preferences can vary across districts. Also, judges in different stages in

their careers may have distinct incentives to pander to voters. For example, it is

possible that young judges want to establish a reputation as tough on crime and,

thus, tend to assign harsher punishments than their senior counterparts. Moreover,

since electoral accountability is unlikely to be perfect, judges’ personal preferences

probably explain much of the heterogeneity in their sentencing behavior.

As previously mentioned, an important feature of the North Carolina justice system

is the rotation of judges across districts within the same Superior Court divisions. The

rotation schedule is centrally determined by the state administration, which makes

it plausible to assume that cases are randomly assigned to judges.63 That allows me

to treat the caseloads of different judges as identical and to attribute any variation

in the sentencing patterns to judges’ characteristics. I can then verify whether the

settlement ratios of cases decided by harsher judges are smaller than those of cases

decided by more lenient ones.

63Later in this section I present empirical evidence supporting the random assignment hypothesis.
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Table 13. Regression Outcomes

(1) (2) (3)

Dependent Variable

sentence† settled harsh

settled -39.67
– –

(1.31)
age -0.05 -0.01 0.00

(0.20) (0.00) (0.00)
age2 0.00 -0.00 0.00

(0.00) (0.00) (0.00)
female -4.31 - 0.06 -0.01

(0.76) (0.00) (0.01)
black 0.93 0.00 -0.01

(0.68) (0.00) (0.01)
hispanic -1.42 0.19 -0.01

(1.26) (0.01) (0.01)
private attorney -3.78 -0.09 0.00

(0.75) (0.00) (0.01)
public defender -3.54 -0.02 -0.03

(0.74) (0.01) 0.03
Judge dummies Yes Yes No
County dummies Yes Yes No
Superior Court division dummies No No Yes
Observations 36644 97942 97942
R2 0.51 0.27 0.28

Other controls: Year of disposition, offense severity and defendant’s
criminal record.
Reference category for counsel type: Court-assigned attorney.
Standard errors (robust to clustering at the judge level) in
parenthesis.

†: Measured in months.

More precisely, consider the following regression model:64

sentencei = ϑ1Xi + ζ1 Judgei + ε1i, (B.1)

64For an analogous exercise using data on federal criminal cases, see Boylan (2012). Waldfogel (1998)
undertakes a similar analysis using data on civil cases. The results of both papers are similar to the
ones presented in this section.
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where sentencei is the length of the incarceration sentence assigned in case i, Judgei

is a vector of dummies identifying the judge responsible for case i, Xi is a vector of

control variables and ε1i is an error term. Consider, also, the following model

settledi = ϑ2Xi + ζ2 Judgei + ε2i, (B.2)

where settledi is a dummy indicating whether case i is resolved by plea bargain,

Judgei and Xi are defined as before, and ε2i is another error term.65 I estimate

the two equations above by OLS, using only cases in which the main offense is a

non-homicide violent crime. In both specifications, the vector of control variables Xi

includes the defendant’s gender, racial / ethnic group, previous criminal record, age

and squared age, as well as dummies indicating the type of attorney representing the

defendant.66 I also include as controls dummies indicating the county where the case

is prosecuted, the year of disposition and the severity of the main charged offense,

as defined by the North Carolina sentencing guidelines. Finally, I add the dummy

settled as a control variable in specification B.1. The results of each regression are

presented in columns (1) and (2) of table 13. Here, I am directly interested in the

relation between ζ̂1 and ζ̂2, the vectors of estimated coefficients for the judge-specific

dummies in equations (B.1) and (B.2), respectively. A negative correlation between

such two vectors suggests that cases decided by harsh judges are less likely to be

resolved by a plea bargain, as predicted by the model in Section 4. I find the Pearson’s

correlation coefficient to be -0.23 and significant at the ten percent level.67

There are evident problems with the OLS estimation of equation (B.1). Indeed,

the regression includes only cases in which the defendant receives a incarceration

sentence, which may generate sample selection. Also, it is not plausible to assume that

E(ε1ε2) = 0, so that the variable settledi is endogenous in (B.1). Unfortunately, there

is no clear instrument available for that variable. Therefore, one should be careful in

interpreting the above results. Still, together with the variation in settlement ratios

65Here, and in all the empirical analysis in the remainder of this paper, I define a case as settled
only if the prosecutor and the defendant agree on a incarceration sentence.
66The defendant’s previous criminal record is incorporated as follows in specifications (B.1) and
(B.2): Based on the criminal record points reported for each defendant and on the criteria employed
by the North Carolina justice system for the determination of sentencing guidelines, I divide the
cases in the data into six criminal record levels. I then add to the specifications dummies indicating
the level to which the case belongs.
67The standard deviation of the correlation coefficient, calculated from 1000 bootstrap samples, is
0.1242. The associated p-value is 0.067. Replicating the exercise with the entire data set (i.e., not
only non-homicide violent crimes), I find a correlation coefficient of -0.18 that is significant at all
conventional levels.
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from table 12, the negative correlation between ζ̂1 and ζ̂2 provides support for the

model discussed in Section 4.

B.1.2. Comparing cases of lenient and harsh judges. One of the main identifying as-

sumptions of the model, condition A, implies that the variation in the distribution of

trial sentences arising from differences in sentencing behavior across judges must be

uncorrelated with other variables that may affect the outcome of the case. This is an

assumption that, unfortunately, cannot be tested. Notice, however, that the assump-

tion holds if the cases in the data are indeed randomly assigned to the judges. It is

possible to provide some support for the random assignment hypothesis by verifying

whether the distribution of observable case characteristics varies substantially across

lenient and harsh judges. I consider the following specification:

harshi = ϑ3Xi + ε3i, (B.3)

where harshi is a dummy indicating whether the judge responsible for case i is a harsh

one, Xi is a vector of case characteristics and ε3i is an error term. The variables in-

cluded in Xi are the defense attorney type and the defendant’s gender, race/ethnicity,

previous criminal record, age and age squared. I also include, as controls, dummies

indicating the year of disposition of the case, the severity of the offense and the Su-

perior Court division where the case is prosecuted. All these variables are arguably

out of the judge’s control. Column (3) in table 13 contains OLS estimates of this

specification. All of the point estimates are very close to zero and only the coefficient

associated with the defendant’s gender is significant at the ten precent level. These

results suggest that the cases in the data do not differ considerably across the two

judge categories.

B.2. Extensions.

B.2.1. Relaxing the independence between T and Θ. In the empirical model described

in Section 5, I assume that the potential trial sentences and the defendants’ types are

independently distributed, conditional on the case characteristics Z. Below, I relax

this assumption and show that it is still possible to obtain partial identification of

the model. In fact, the optimal settlement offer function is exactly identified and

can be estimated by the procedure proposed in Section 5. Therefore, the estimates

of settlement offer functions presented in this paper are robust to the dependence

between defendants’ types and potential trial sentences, in the way defined below.
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Let F (·|Z, T ) be the distribution function of defendants’ types, conditional on the

potential trial sentence T and on case characteristics Z. Assume that, for all t ∈ [t, t̄]

and z ∈ ∆, the function F (·|Z, T ) satisfies the technical assumptions outlined in

section 4. Denote the density and the hazard functions associated with F (·|Z, T ) by

f(·|Z, T ) and λ(θ, t, z), respectively. Assume that λ(θ, t) is differentiable in both its

arguments, and that

∂

∂θ
λ(θ, t, z) > 0 and

∂

∂t
λ(θ, t, z) <

1

cp(z) + cd(z)
(B.4)

for all t ∈ [t, t̄], θ ∈ (θ, θ̄) and z ∈ ∆. The first inequality ensures that the hazard func-

tion associated with F (·|Z, T ) is increasing in θ. The second one limits the amount of

mass F (·|Z, T ) can redistribute towards low defendants’ types as the potential trial

sentence increases.

Given realizations t of T , z of Z, the equilibrium of the bargaining game can be

found in the same way as in Section 4. It is characterized by equation (4.1) and by

the first-order condition for the prosecutor, which is given by

t

cp + cd
=

f [θ(s∗)|T = t, Z = z]

1− F [θ∗|T = t, Z = z]
. (B.5)

As before, I define the equilibrium settlement offer and defendant’s threshold type as

functions of t, and denote them by s̃(·, s) and θ̃(·, s), respectively. Using condition

(B.4), and applying the implicit function theorem to equation (B.5), I have that s̃(·, s)
and θ̃(·, s) are strictly increasing in t, and s̃(·, z) is strictly convex. The argument

in Section 5 can then be easily adapted to show that, under condition B and an

analogue to condition A, the function s̃(·, z) is identified. Notice that the estimator

of s̃(·, z) proposed in the same section does not make direct use of the distribution

of defendants’ types. That means that it can be applied under the more general

conditions described here, and the estimates of s̃(·, z) presented in Section 6 are still

valid.

Although I am able to recover the optimal offer function after relaxing the indepen-

dence assumption between T and Θ, the exact identification of the model’s primitives

does not hold. I now outline a strategy for the partial identification of such primitives.

I begin by noticing that I can still recover θ̃(t, z) and the hazard function λ(θ̃(t), t, z)

for all t ∈ [t, t̄], up to the scalars cd(z) and cp(z). I now strengthen condition (B.4),

by assuming that

∂

∂θ
λ(θ, t, z) > 0 and

∂

∂t
λ(θ, t, z) < 0. (B.6)
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The second inequality in this condition implies that F (·|Z, T ) places more mass on

high defendants’ types as the potential trial sentence increases. A consequence of this

inequality is that λ(θ, t, z) ≤ λ(θ, θ̃−1(θ), z) for all θ̃(t) ≤ θ ≤ θ̃(t). Therefore, I have

that

F (θ|Z, T ) = 1− exp

(
−
∫ θ

0

λ(x, t, z) dx

)
≤ 1− µ(z) exp

(
−
∫ θ

θ̃(t)

λ(x, θ̃−1(x), z) dx

)
for all θ̃(t) ≤ θ ≤ θ̃(t) and z ∈ ∆, where µ(z) = exp

(
−
∫ θ̃(t)

0
λ(x, t, z) dx

)
. Define the

function

F̈ (t, z) = 1− µ(z) exp

(
−
∫ θ̃(t)

θ̃(t)

λ(x, θ̃−1(x), z) dx

)
.

I then have that F̈ (t, z) ≥ F (θ̃(t)|Z = z, T = t) for all t ∈ [t, t̄]. Now consider the

function

g̈(t, z) =
[
1− F̈ (t, z)

]−1
[
∂

∂t
s̃(t, z)

]
b (s̃(t)|Ψ = 1, Z = z)P [Ψ = 1|Z = z].

Notice that

g̈(t, z) ≥ [1− F (t|Z = z)]−1

[
∂

∂t
s̃(t, z)

]
b (s̃(t)|Ψ = 1, Z = z)P [Ψ = 1|Z = z] = gj(t)

for all t ∈ [t, t̄] and z ∈ ∆, where the equality comes from (5.1), (5.3) and (5.4). That

allows me to write

1−
∫

[t,t̄]

F̈ (t, z)g̈(t, z) dt ≥ 1−
∫

[t,t̄]

F (θ̃(t)|Z = z, T = t)g(t|Z = z) dt (B.7)

for all t ∈ [t, t̄] and z ∈ ∆.

The expression on the right-hand side of (B.7) is the probability that a case is

settled, conditional on Z = z and Ψ 6= 0 (i.e., on it not being withdrawn by the

prosecutor). That probability is observed by the econometrician. The expression on

the left-hand side is known only up to the scalars cd(z), cp(z) and µ(z). Thus, equation

(B.7) establishes a non-linear bound for such scalars. If a subset ∆ρ ⊂ ∆ satisfies

condition A, then cd(z
′) = cd(z

′′), cp(z
′) = cp(z

′′) and µ(z′) = µ(z′′) for all z′ and z′′

in ∆ρ. Therefore, (B.7) establishes multiple bounds on the model’s parameters—one

for each z ∈ ∆ρ. Those can be combined with the bounds for cd described in footnote

53, in order to partially identify the model’s primitives. Implementing such a strategy

is an interesting topic for future research.
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B.2.2. Allowing for multiple outcomes following bargaining failure. My identification

and estimation strategies can be adapted to the analysis of settings other than the

resolution of criminal cases. However, in the model presented above, a disagreement

between the bargaining parties may lead to only two possible outcomes: A trial

conviction or an acquittal. That assumption may be unrealistic in some applications.

I now extend my identification strategy to allow for multiple possible outcomes in

the event of a disagreement. Unfortunately, to do that, I must impose a parametric

relationship between the private information received by one of the bargaining parties

and the distribution of outcomes, conditional on a bargaining failure.

Assume that there are two agents, which I denote by p and d. The game has

two stages. Bargaining takes place in the first stage, and, if both parties reach an

agreement, the game ends. Otherwise, the game proceeds to a second stage. Payoffs

in the second stage depend on a random variable O, distributed over the finite support

{1, · · · , N}. Specifically, the second stage payoffs are given by

− cp +
∑

n∈{1,··· ,N}

1{o = n}κp,nt , for agent p

and − cd +
∑

n∈{1,··· ,N}

1{o = n}κd,nt , for agent p,

where o ∈ {1, · · · , N} is the realization of O, and cd and cp are strictly positive real

numbers. The value t, which is assumed to be strictly positive, measures the stake of

the game and is common knowledge to both agents at the moment of bargaining.

Before bargaining begins, agent d receives a signal about O. That signal is repre-

sented by a random variable Θ, which is distributed according to the CDF F over the

support [θ, θ̄]. The distribution of O, conditional on the signal Θ, is characterized by

the functions {Yn(·)}i∈{1,··· ,N}, so that

P [O = n|Θ = θ] = Yn(θ)

for all n ∈ {1, · · · , N} and θ ∈ [θ, θ̄]. My identification strategy assumes that the

functions {Yn(·)}i∈{1,··· ,N} are known by the econometrician. For example, such func-

tions may be implied by assuming that Θ follows a parametric distribution over

{1, · · · , N}, such as a binomial or a truncated Poisson distribution with parameter θ.

Assume that Yn(θ) is twice differentiable for every n ∈ {1, · · · , N}. Assume, also,

that the technical conditions on F listed in Section 4 also hold here—i.e., F is twice

8



differentiable and has an associated density function f ; the density f is strictly posi-

tive on an interval (θ, θ̄), and is zero outside of such interval; f is non-increasing in a

neighborhood of θ̄; and the hazard rate f/ [1− F ] is strictly increasing in θ.

Bargaining follows a take-it-or-leave-it protocol. At stage one, agent p makes a

proposal s to agent d. If the proposal is rejected, the game reaches the second stage

described above. Conversely, if the proposal is accepted, the game ends, and the

payoffs are

κp,1t+ (κp,N − κp,1)s , for agent p

and κd,1t+ (κd,N − κd,1)s , for agent d.

Assume that the payoffs are symmetric, in the following sense: Let κp,1 < · · · <
κp,N , and κd,1 > · · · > κd,N , so that, if bargaining fails, high realizations of O benefit

agent p at the expense of agent d. Assume, also, that

κ̃n ≡
κp,n − κp,1
κp,N − κp,1

=
κd,1 − κd,n
κd,1 − κd,N

for all n ∈ {1, · · · , N}. Lastly, assume that∑
n∈{1,··· ,N}

κ̃nY ′n(θ) > 0

and
∑

n∈{1,··· ,N}

κ̃nY ′′n(θ) <
c̃p + c̃d
t̄

λ′(θ)

for all θ ∈ [(θ, θ̄], where λ(·) is the hazard fuction associated with the distribution

F . The two last conditions ensure the uniqueness of the equilibrium. They hold,

for example, if (θ, θ̄) ∈ [0, 1]; Y1(θ) = 1 −
∑

n∈{2,··· ,N} anθ; and Yn(θ) = anθ for

n ∈ {2, · · · , N}; where
∑

n∈{2,··· ,N} an ≤ 1, and an ≥ 0 for all n ∈ {2, · · · , N}.
The payoffs may be conveniently normalized, so that the second-stage payoffs are

now given by

− c̃p +
∑

n∈{1,··· ,N}

1{o = n}κ̃nt , for agent p

and − c̃d −
∑

n∈{1,··· ,N}

1{o = n}κ̃nt , for agent p,

and the payoffs in the event of an agreement in the first stage are

s , for agent p

and − s , for agent d,

9



where c̃p = cp/(κp,N − κp,1), and c̃d = cd/(κd,1 − κd,N).

I solve for the subgame perfect equilibria of this game. Agent d, after receiving the

signal θ, accepts an offer s made by agent p if and only if

s ≤ c̃d +
∑

n∈{1,··· ,N}

κ̃nYn(θ)t.

Thus, an offer s is accepted if and only if the signal θ received by agent d is greater

than or equal to the cutoff

θ(s) = T−1

(
s− c̃d
t

)
, (B.8)

where T (x) ≡
∑

n∈{1,··· ,N} κ̃nY ′n(x).

Agent p then chooses s in order to solve

max
s
{1− F [θ(s)]} s+ F [θ(s)]

−c̃p + t

∫ θ(s)
θ

∑
n∈{1,··· ,N} κ̃nYn(θ)f(x)dx

F [θ(s)]

 .

Under the assumptions above, the optimal offer s∗ satisfies θ(s∗) ∈ (θ, θ̄). The first-

order condition for agent p’s problem is then given by

t
∑

n∈{1,··· ,N} κ̃nY ′n(θ)

c̃p + c̃d
=

f [θ(s∗)]

{1− F [θ(s∗)]}
. (B.9)

The equilibrium is characterized by equations B.8 and B.9. From the assumptions

above, it follows that the equilibrium is unique. Holding c̃p and c̃d constant, I can

define the equilibrium offer s∗ and cutoff point θ(s∗) as functions of t, and denote

such functions by s̃(·) and θ̃(·), respectively.

Given a data-generating process similar to the one in Section 5, the identification

of the model’s primitives would proceed exactly as described in that section. As

before, it is necessary to observe s whenever bargaining is successful. Also, notice

that, to achieve identification, it is necessary only to observe t in the event of a single

realization o of O.

B.3. Data appendix.

B.3.1. Reducing multiple-counts cases to a single count. My unit of analysis is a case.

Some cases in the data are associated with multiple counts. To reduce such cases to

a single count, I employ the following procedure: If sentences are assigned to more

than one count of the same case, I consider only the count with the longest sentence.
10



68 If no sentence is assigned to any count in a case, I classify the charged offenses for

each count according to their severity (using the same classification adopted by the

structured sentencing guidelines in North Carolina) and consider only the count with

the most severe charged offense.

B.3.2. Classification of offenses. Each count in the data is associated with an offense

code assigned by the North Carolina Justice System. The offense codes employed

in North Carolina are based on the Uniform Offense Classifications, organized by

the National Crime Information Center (NCIC). Like in the NCIC code system, the

first two digits of the North Carolina codes classify the offenses into relatively broad

categories (e.g., robbery, fraud, vehicle theft, etc). Based on these two digits, I

determine whether each count in my data qualifies as a robbery, an assault or a

sexual assault—the offense categories that I use in my structural analysis.

B.3.3. Identification of judges. In the main data, judges are identified only by their

initials. In most cases, three initials are used. I match the initials to the full names

of the judges as reported annually in the North Carolina Manual. In the period

comprised by the sentencing data, only two pairs of judges have the same three

initials. Cases decided by these judges were excluded from the data. I also excluded

all the cases in which the judge was either identified by fewer than three initials or

not identified at all.

B.3.4. Life sentences. To convert life sentences into a length of incarceration time,

I consider the life expectancy in North Carolina for individuals of age 29.04, which

is the average defendant’s age in my sample. This life expectancy is 77.14 years

(Buescher and Gizlice, 2002). I want to make sure that any life sentence is at least

as long as the longest non-life sentence, which, in North Carolina, is forty years. I

then define the length of a life sentence as Max {defendant’s age - 77.14 ; 40}. Cases

resulting in a death sentence are excluded from the analysis.69 Cases whose sentence

68I observe in the data set whether a sentence consists of incarceration time, intermediate punishment
(such as probation) or community service. In order to classify the sentences, I use a lexicographic
order, so that any time in incarceration is considered a higher sentence than any intermediate
punishment. Similarly, any intermediate sentence is considered higher than any type of community
service. Notice that I only take intermediate or community punishments into consideration in order
to organize the data set by case. As discussed in the main text,the empirical analysis in this paper
only accounts for incarceration sentences, and treats cases where only alternative punishments are
assigned as cases with no sentence whatsoever.
69Cases of non-homicide crimes against the person, which constitute the subsample considered in
the structural analysis, never result in a capital sentence.
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length is missing in the data are treated as cases in which only an alternative sentence

is assigned.
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B.4. Extra empirical results. This section contains estimation and counterfactual

results for covariates groups three to 12. In the interest of space, I do not report these

results in the main text.

Table 14. Parameter Estimates by Covariate Group

Group

Parameters

α̂d β̂d α̂p β̂p µ̂

3
0.01 0.00 0.00 0.64 1.00

(0.01) (0.00) (0.00) (0.22) (0.00)

4
0.03 0.00 0.00 1.43 1.00

(0.00) (0.00) (8.77) (0.73) (0.00)

5
0.02 0.00 0.00 0.67 1.00

(0.00) (0.00) (0.00) (0.11) (0.00)

6
0.00 0.00 0.00 1.06 1.00

(0.01) (0.00) (0.00) (0.31) (0.00)

7
0.01 0.00 0.00 2.43 1.00

(0.01) (0.00) (0.00) (0.83) (0.00)

8
0.02 0.00 0.00 0.71 1.00

(0.01) (0.00) (0.00) (0.25) (0.00)

9
0.03 0.00 0.00 1.25 0.92

(0.01) (0.00) (0.00) (0.28) (0.04)

10
0.01 0.00 0.00 1.16 1.00

(0.01) (0.00) (0.00) (0.38) (0.00)

11
0.03 0.00 0.00 0.48 1.00

(0.00) (0.00) (0.00) (0.08) (0.00)

12
0.01 0.00 0.00 0.91 1.00

(0.01) (0.00) (0.00) (0.39) (0.00)

Bootstrap standard errors in parenthesis.

See table 4 for a description of the covariate.

groups
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Figure 4. Conditional trial sentence densities – lenient and harsh judges
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See table 4 for a description of the covariate groups.
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Figure 5. Conditional trial sentence densities – lenient and harsh
judges (cont.)
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See table 4 for a description of the covariate groups.
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Figure 6. Settlement offer – covariate groups 3 to 7
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Figure 7. Settlement offer – covariate groups 8 to 12
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Figure 8. Distribution of defendants’ types – density and CDF
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See table 4 for a description of the covariate groups.
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Figure 9. Distribution of defendants’ types – density and CDF (cont.)
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See table 4 for a description of the covariate groups.
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Figure 10. Full distribution of trial sentences
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See table 4 for a description of the covariate groups.
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Figure 11. Full distribution of trial sentences (cont.)
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See table 4 for a description of the covariate groups.
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Table 15. Fitted values versus data – Distribution of outcomes

Group
Conviction

Any (Ψ ∈ {1, 2}) Settlement (Ψ = 1) Trial (Ψ = 2)

3
Data 38.35% 34.60% 3.75%
Model 36.66% 34.59% 2.08%

4
Data 44.11% 36.66% 7.45%
Model 40.68% 36.64% 4.04%

5
Data 38.16% 35.11% 3.05%
Model 35.55% 34.44% 1.10%

6
Data 40.32% 37.53% 2.79%
Model 39.68% 37.64% 2.04%

7
Data 38.16% 35.11% 3.05%
Model 37.53% 36.10% 1.43%

8
Data 40.32% 37.53% 2.79%
Model 38.62% 37.60% 1.01%

9
Data 21.65% 19.37% 2.28%
Model 21.59% 19.51% 2.08%

10
Data 29.43% 25.51% 3.92%
Model 29.09% 25.83% 3.26%

11
Data 21.65% 19.37% 2.28%
Model 20.91% 19.33% 1.58%

12
Data 29.43% 25.51% 3.92%
Model 28.61% 25.02% 3.59%

See table 4 for a description of the covariate groups.
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Table 16. Fitted values versus data – Sentences

Group
Average sentence, conditional on method of resolution†

All (Ψ ∈ {1, 2}) Settlement (Ψ = 1) Trial (Ψ = 2)

3
Data 52.43 46.79 104.45
Model 54.29 45.64 198.33

4
Data 60.48 50.51 109.54
Model 51.98 45.96 106.46

5
Data 53.53 47.65 121.25
Model 52.76 45.55 277.60

6
Data 41.27 38.92 72.95
Model 42.93 39.13 113.04

7
Data 47.35 42.96 98.01
Model 43.43 41.21 99.55

8
Data 44.81 38.49 129.96
Model 47.07 40.66 284.73

9
Data 47.76 41.13 104.00
Model 46.15 42.25 82.86

10
Data 42.67 37.19 78.36
Model 43.55 38.83 80.99

11
Data 44.68 41.35 72.95
Model 55.21 41.45 223.86

12
Data 54.54 47.64 99.47
Model 50.59 43.56 99.63

† : Measured in months
See table 4 for a description of the covariate groups.
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Table 17. Counterfactual results – Sentencing reform (distribution of
outcomes)

Group
Conviction

Any Settlement Trial

3
Current 36.66% 34.59% 2.08%
-20% trial sentence length 37.08% 35.49% 1.59%
-10% incarceration cases 32.86% 31.02% 1.84%

4
Current 40.68% 36.64% 4.04%
-20% trial sentence length 41.58% 38.21% 3.37%
-10% incarceration cases 36.40% 32.56% 3.84%

5
Current 35.55% 34.44% 1.10%
-20% trial sentence length 36.08% 35.43% 0.65%
-10% incarceration cases 32.02% 31.23% 0.79%

6
Current 39.68% 37.64% 2.04%
-20% trial sentence length 40.00% 37.95% 2.05%
-10% incarceration cases 35.76% 33.70% 2.06%

7
Current 37.53% 36.10% 1.43%
-20% trial sentence length 37.44% 36.18% 1.26%
-10% incarceration cases 33.58% 32.36% 1.22%

8
Current 38.62% 37.60% 1.01%
-20% trial sentence length 39.46% 38.81% 0.65%
-10% incarceration cases 34.91% 34.07% 0.84%

9
Current 21.59% 19.51% 2.08%
-20% trial sentence length 21.57% 19.56% 2.01%
-10% incarceration cases 19.24% 17.36% 1.88%

10
Current 29.09% 25.83% 3.26%
-20% trial sentence length 29.44% 26.64% 2.80%
-10% incarceration cases 26.07% 23.09% 2.98%

11
Current 20.91% 19.33% 1.58%
-20% trial sentence length 21.52% 20.55% 0.97%
-10% incarceration cases 18.23% 17.07% 1.16%

12
Current 28.61% 25.02% 3.59%
-20% trial sentence length 28.98% 25.92% 3.06%
-10% incarceration cases 25.69% 22.53% 3.16%

See table 4 for a description of the covariate groups.
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Table 18. Counterfactual results – Sentencing reform (sentences)

Group
Expected sentence†

Given Ψ ∈ {1, 2} Unconditional

3
Current 54.29 19.91
-20% trial sentence length 38.83 14.40
-10% incarceration cases 59.38 19.51

4
Current 51.98 21.14
-20% trial sentence length 38.79 16.13
-10% incarceration cases 57.77 21.03

5
Current 52.76 18.75
-20% trial sentence length 34.47 12.44
-10% incarceration cases 56.46 18.08

6
Current 42.93 17.03
-20% trial sentence length 33.85 13.54
-10% incarceration cases 47.69 17.05

7
Current 43.43 16.30
-20% trial sentence length 33.71 12.62
-10% incarceration cases 47.80 16.05

8
Current 47.07 18.18
-20% trial sentence length 31.42 12.40
-10% incarceration cases 51.09 17.84

9
Current 46.15 9.96
-20% trial sentence length 36.41 7.85
-10% incarceration cases 51.18 9.85

10
Current 43.55 12.67
-20% trial sentence length 33.45 9.85
-10% incarceration cases 48.06 12.53

11
Current 55.21 11.54
-20% trial sentence length 36.73 7.90
-10% incarceration cases 58.95 10.75

12
Current 50.59 14.47
-20% trial sentence length 38.57 11.18
-10% incarceration cases 55.52 14.26

† : Measured in months
See table 4 for a description of the covariate groups.
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Table 19. Counterfactual results – No asymmetric information

Group
Outcome

Probability of Expected sentence† Expected sentence†

conviction (given Ψ ∈ {1, 2}) (unconditional)

3
Current 36.66% 54.29 19.91
No asym, info. 43.61% [78.07 , 90.09] [34.05 , 39.29]

4
Current 40.68% 51.98 21.14
No asym. info. 50.26% [49.70 , 60.40] [24.98 , 30.36]

5
Current 35.55% 52.76 18.75
No asym. info. 40.50% [[99.78 , 115.60] [40.41 , 46.82]

6
Current 39.68% 42.93 17.03
No asym. info. 44.36% [62.82 , 75.40] [27.87 , 33.45]

7
Current 37.53% 43.43 16.30
No asym. info. 40.50% [58.37 , 72.62] [23.64 , 29.41]

8
Current 38.62% 47.07 18.18
No asym. info. 44.36% [96.11 , 111.54] [42.63 , 49.48]

9
Current 21.59% 46.15 9.96
No asym. info. 30.19% [45.86 , 55.44] [13.84 , 16.74]

10
Current 29.09% 43.55 12.67
No asym. info. 35.48% [44.26 , 53.28] [15.70 , 18.90]

11
Current 20.91% 55.21 11.54
No asym. info. 30.19% [64.39 , 71.70] [19.44 , 21.65]

12
Current 28.61% 50.59 14.47
No asym. info. 35.48% [51.40 , 61.19] [18.24 , 21.71]

† : Measured in months
See table 4 for a description of the covariate groups.
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Table 20. Counterfactual results – No plea bargaining

Group
Outcome

Probability of conviction

3
Current 36.66%
No plea bargaining [24.03% , 27.81%]

4
Current 40.68%
No plea bargaining [31.53% , 38.32%]

5
Current 35.55%
No plea bargaining [21.62% , 25.25%]

6
Current 39.68%
No plea bargaining [29.35% , 35.19%]

7
Current 37.53%
No plea bargaining [28.68% , 35.91%]

8
Current 38.62%
No plea bargaining [23.44% , 27.29%]

9
Current 21.59%
No plea bargaining [16.22% , 19.91%]

10
Current 29.09%
No plea bargaining [22.39% , 27.71%]

11
Current 20.91%
No plea bargaining [12.04% , 13.61%]

12
Current 28.61%
No plea bargaining [21.84% , 26.21%]

See table 4 for a description of the covariate groups.

26


