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1 Introduction

Suppose a researcher wants to predict the causal effect of a new policy or treatment,
based on a data set containing information on some characteristics and outcomes for a

large set of units. The researcher might specify a statistical model relating the outcomes,
treatments, and characteristics, estimate that model, and use the results to predict the
effect of the policy or treatment. The researcher would typically then report the point
estimate of the policy effect as well as a measure of the uncertainty surrounding that point

estimate. For example, if the model was estimated by maximum likelihood methods, the
uncertainty might be based on the information matrix, measuring the curvature of the
likelihood function at its maximum. Such measures of uncertainty are conditional on the
model specification. Often, however, there is also substantial uncertainty regarding the

model specification. There are typically multiple decisions going into the specification of
the model that are relatively arbitrary. Different choices for those specification decisions
would have left to different point estimates of the effect of the policy. Previously Leamer
(1982, 1983) and White (2000) have raised concerns about the fact that the uncertainty

in the estimates due to such decisions is not reflected in the standard errors. In practice
researchers might attempt to address this issue by reporting estimates for a handful of
different specifications to assess the sensitivity of the estimates to the specification of the

model. In this paper we propose a more systematic approach to assessing the sensitivity
of point estimates to model specification. We propose a way of defining a finite set of
models that includes the original model as a special case. Each member of the set allows
for estimation of the effect of the policy. We then calculate the variance of the point

estimate of the effect of the policy over this class of models. The hope is to provide the
reader of an empirical study with a sense of the robustness of the policy predictions,
beyond the information contained in the point estimate and the asymptotic standard
error.

2 A Simple Example

We use two data sets originally constructed by Lalonde (1986), and subsequently widely

used in the evaluation literature (e.g., Dehejia and Wahba, 1999), to illustrate the basic
ideas. The versions of these data sets we use are posted on the the website of Rajeev
Dehejia. The first data set, which we call the “experimental Lalonde data,” contains
information on men participating in an experimental job training program. The focus is

on estimating the average effect of the program on subsequent earnings. In this data set
there are 185 individuals in the treatment group and 260 in the control group. The second
data set, which we call the “non-experimental Lalonde data”, replaces the individuals in

the control group of the experimental Lalonde data set with observations on men from a
non-experimental comparison group drawn from the Current Population Survey (CPS).
The individuals in the CPS are substantially different from those in the experiment,
which creates severe challenges for comparisons between the two groups. The interest is
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in the causal effect of the training program on earnings in 1978, measured in thousands

of earnings. In this data set there are 15,992 individuals in the control group, and again
185 individuals in the treatment group.

As the base model consider a linear regression with outcome Yi (earnings in 1978), an
indicator for participation in the training program, Xi, an intercept, and ten characteris-

tics of the individual, denoted by Zi, including age, indicators for being African-American,
or Hispanic, an indicator for being married, years of education, having a degree, earnings
in 1974 and 1975, and indicators for earnings in 1974 and 1975 being zero:

E[Yi|Xi, Zi] = α + θB · Xi + γ′Zi. (2.1)

the coefficient on the program, θB (where the subscript “B” stands for base model), is

the object of interest. Let θ̂B be the least squares estimator for θB, and similarly for α̂

and γ̂. Table 1 reports the results for the two data sets.

Table 1: Experimental and Non-experimental Lalonde Data: The Base

Model

Exper Non-exper
Variable est. (s.e.) est. (s.e.)

treatment 1.67 (0.67) 1.07 (0.63)

intercept 0.26 (3.65) 5.78 (0.44)
age 0.05 (0.04) -0.09 (0.01)
black -2.04 (1.02) -0.81 (0.20)
hispanic 0.40 (0.20) 0.17 (0.03)
married 0.43 (1.40) -0.23 (0.22)
education -0.15 (0.85) 0.15 (0.14)
nodegree -0.02 (1.04) 0.34 (0.18)
re74/1000 0.12 (0.13) 0.29 (0.02)
re75/1000 0.02 (0.14) 0.44 (0.02)
u74 1.38 (1.55) 0.35 (0.23)
u75 -1.07 (1.41) -1.62 (0.25)

For the experimental data set the estimate of the effect of the program is 1.67 (s.e.
0.67) and for the non-experimental data set the estimate is 1.07 (s.e. 0.63). These
estimates are fairly similar, both in terms of the point estimate and in terms of the
precision. Clearly, however, the experimental estimate is more credible. Part of this

is because we know a priori that, because of the actual randomization, there are no
unobserved confounders, whereas with the non-experimental data we cannot be sure
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of that. This knowledge about the superior credibility of the experimental estimates

cannot be inferred from the data, it is a reflection on substantive information. There is
information in the data, however, that is informative about the relative credibility of the
two estimates, and that is not summarized in the combination of the point estimate and
the standard error. What we are proposing in this paper is that researchers report an

additional statistic, beyond the point estimate and the standard error, that conveys at
least part of the evidence from the data that the point estimate from the non-experimental
data concerning the efficacy of the training program is not as compelling as that from

the experimental data.
The basic idea is that in addition to the base model we systematically explore a

range of alternative specifications. The question is how to choose the set of alternative
specifications to consider. Let us start by considering a single additional specification. For

example, we can split the sample into two subsamples by the value of u75, the indicator
for being unemployed in 1975. In the experimental sample there are 156 individuals
employed in 1975 (82 in the control group and 74 in the treatment group), and 289
individuals unemployed in 1975 (178 in the control group and 156 in the treatment group).

We estimate separately the same linear regression as in (2.1) for the two subsamples, with
the only difference that we leave out the regressor corresponding to the the indicator for
the individual being unemployed in 1975 because it is constant within the two subsamples.
This leaves us with two estimates for the effect of the training program. We then combine

them using the relative size of the two subpopulations (0.35 for the u75=0 subsample and
0.65 for the u75=1), leading to a point estimate of 1.71 for the more general model, very
close to the estimate from the base model, which is 1.67. We can do the same for the

non-experimental sample. In that case we obtain an estimate of -0.83 for the general
model that allows for a full set of interactions with u75, substantially different from
the original estimate of 1.07. It is the fact that the estimate of the same substantive
parameter, the average causal effect of the program on the outcome, is more sensitive to

this change in the specification for the non-experimental data than for the experimental
data that we focus on. Note that this sensitivity is distinct from, although related to,
the question whether the based model is correctly specified. It may well be that the
additional parameters in the more general model are different from zero, and found to

be so in terms of statistical significance, without the estimate of the average causal effect
being different according to the two specifications. The questions are related though
in the sense that if the model is correctly specified, the parameter estimates should be
similar. In this case if we perform an F-test to test the more general model against the

base model, we find an chi-squared statistic equal to 7.0 for the experimental data, and
81.9 for the non-experimental data, which under the null hypothesis of zero parameters
for the general model should have a chi-squared distribution with degrees of freedom

equal to ten.
Of course exploring alternative specifications is common in empirical work. Typically

researchers report estimates based on a preferred specification and in addition results
for some alternative specifications that they consider particularly salient. Here we fo-
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cus on a more systematic approach to reporting robustness to alternative specifications.

Rather than focusing on the actual point estimates for a small number of alternative
specifications, we focus on the variation over a larger number of alternative specifica-
tions. Although there will remain arbitrary decisions in this process, the aim is to reduce
the arbitrariness in exploring a very small number of alternative specifications.

First let us illustrate this in the context of this linear model for the Lalonde data. To
do so we re-interpret the model and the estimand. We can think of the statistical model
as providing a parametric approximation to the conditional mean

µ(x, w) = E[Yi|Xi = x, Zi = z].

The estimand θ, can be thought of as the average effect of the treatment. In terms of the
conditional expectation function, assuming selection on observables or unconfoundedness,
we can express the estimand as

θ = E [µ(1, Zi) − µ(0, Zi)] .

Given an estimate of the conditional expectation function, µ̂(x, z), we can estimate the
target θ as

θ̂ =
1

N

N
∑

i=1

(

µ̂(1, Zi) − µ̂(0, Zi)
)

.

The base model assumes the parametric structure

µ(x, z) = α + θ · x + γ′z,

and estimates the parameters of this specification by least squares, leading to a base-
model estimate θ̂B. Now consider splitting the sample into two subsamples, based on

the values of Xi and Zi. Let W be the support of (Xi, Zi), and let WL and WH denote
the partition of W that generates the two subsamples, so that W = WL ∪ WH and let
Ii ∈ {L, H} be an indicator for the subsample,

Ii =

{

L if (Xi, Zi) ∈ WL,

H if (Xi, Zi) ∈ WH.

Now we estimate the two regression models, one for each subsample,

Yi = αL + θL · Xi + γ′
LZi,

for the Ii = L subsample, and

Yi = αH + θH ·Xi + γ′
HZi,

for the Ii = H subsample, using least squares. Note that not all the parameters in these

regressions are necessarily identified, but that does not generate any problems because we
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are primarily interested in the predictions which are identified. The estimated parameters

define a new estimate for the conditional expectation,

µ̂(x, z) = 1(x,z)∈WL
·
(

α̂L + θ̂L · x + γ̂′
Lz

)

+ 1(x,z)∈WH
·
(

α̂H + θ̂H · x + γ̂′
Hz

)

,

and thus an estimate for θ:

θ̂s =
1

N

N
∑

i=1

(

µ̂(1, Zi) − µ̂(0, Zi)
)

= I · θ̂H + (1 − I) · θ̂L,

where s indexes the split of W into (WL, WH). It is the magnitude of the difference
between the original base-model estimate θ̂B and the estimate based on the split sample,
θ̂s, that we focus on. If for a typical split this difference θ̂s− θ̂B is small in magnitude, we

consider the base-model estimate θ̂B robust to alternative specifications, and if not, we
consider it sensitive to the specification. The final question is how to split the sample.
We propose to split the sample by every covariate, that is, every element of Xi (one in
our application) and every element of Zi (ten in our application). In each case if the

covariate takes on more than two values we split at the value that generates the biggest
increase in the model fit (the biggest decrease in the sum of squared residuals), following
the literature on regression trees (Breiman, Friedman, and Stone, 1983).

The case where we split on the value of Xi is somewhat special. In that case there is no

estimate of θ for each of the two subsamples, because the treatment does not vary within
the subsamples. Rather, the more general model implies a model for the conditional
expectation, which then lets us infer the value for the average treatment effect.

Given the estimates θ̂s for the eleven choices of the sample splits, we calculate the
standard deviation as

σ̂θ =

√

√

√

√

1

S

S
∑

s=1

(

θ̂s − θ̂B

)2

, (2.2)

and it is this measure of robustness we focus on. In Table 2 we report the estimates θ̂s for
each of the sample splits, and the resulting standard deviation, for both the experimental

and non-experimental Lalonde data. We find that for the experimental data σ̂θ = 0.13,
about 20% of the standard error of θ̂B, whereas for the non-experimental data it is 2.13,
338% of the standard error of θ̂B for the non-experimental data. It is clear that the results
for the experimental data are far more robust than those for the non-experimental data.

3 The General Case

Suppose we have a random sample from a large population of a pair of variables (Yi, Xi),

where both Yi and Xi may be vectors. The object of interest is a functional of the
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Table 2: Variation of θ̂ over Model Specifications for the Lalonde Data

Exper Non-exper

Variable θ̂B s.e. θ̂B s.e.

Base Model 1.67 (0.67) 1.07 (0.63)
σ̂θ [0.13] [2.13]

Split on est. X 2(10) est. X 2(10)
treatment 1.58 22.8 -4.26 45.0
age 1.55 10.1 1.97 144.5
black 1.71 11.4 1.38 26.2
hispanic 1.61 7.2 1.54 59.7
married 1.87 11.0 1.06 10.4
education 1.77 14.7 1.25 74.5
nodegree 1.33 18.6 1.77 46.1
re74 1.64 11.2 0.58 71.0
re75 1.63 8.9 -0.88 94.1
u74 1.64 11.2 -2.44 88.6
u75 1.71 7.0 -0.83 81.9

conditional distribution of Yi given Xi and the sample values of Xi:

θ = g(fY |X(·|·), X1, . . . , XN ). (3.1)

Consider a parametric model for the conditional distribution of Yi given Xi:

fY |X(y, x) = fY,X(y|x; β),

with β an unknown parameter. Given the maximum likelihood estimate β̂ for β,

β̂ = arg max
β

L(β|Y,X),

we can estimate we can estimate θ for this base model as

θ̂B = g(fY |X(·|·; β̂), X1, . . . , XN ).

Now we propose evaluating θ̂ for a discrete set of models that generalizes the base model.
A key feature is that the estimand is well defined for each member of the larger set

of models. The larger class of models is based on splits of the basic sample in terms of
the covariates. Let the number of covariates be KX . Given a threshold c, and given the
kth covariate, define the subsample indicators,

Iikc =

{

L ifXik ≤ c

H ifXik > c.
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Denote the values of the outcomes in the subsample with Iikc = L by Ykc,L, and the

covariates in this subsample by Xkc,L. Denote the values of the outcomes and covariates
in the subsample with Iikc = H by Ykc,H and Xkc,H . We estimate the values of the
parameters in the two subsamples

β̂k,L(c) = arg max
β

L(β|Ykc,L,Xkc,L) and β̂k,H(c) = arg max
β

L(β|Ykc,H,Xkc,H)

We choose the threshold to maximize the overall fit in a tree-type fashion:

ĉk = arg max
(

L(β̂k,L(c)|Ykc,L,Xkc,L) + L(β̂k,H(c)|Ykc,H ,Xkc,H)
)

.

The conditional distribution of Y given X is now

f̂Y |X(y|x) = fY |X(y|x; βk,L(ĉk)) · 1{xk≤ĉk} + fY |X(y|x; βk,H(ĉk)) · 1{xk>ĉk}.

This leads to the estimated effect of the policy:

θ̂k = g
(

fY |X(·|·; β̂k,L(ĉk)) · 1{xk≤ĉk} + fY |X(·|·; β̂k,H(ĉk)) · 1{xk>ĉk}, X1, . . . , XN

)

. (3.2)

Rather than reporting the full set of estimates θ̂k, we then calculate and report the
variation of these estimates around the base-model estimate:

σ̂θ =

√

√

√

√

1

K

K
∑

k=1

(

θ̂k − θ̂B

)2

. (3.3)

4 Four Applications

Let us consider the measure of sensitivity in four empirical examples. The first two were
introduced already, the experimental and non-experimental Lalonde data. In addition
we consider lottery data analyzed in Imbens, Rubin and Sacerdote (2001). In that case

the authors are interested in the marginal propensity to earn out of unearned income.
They estimate this propensity using a linear model relating average yearly earnings to
the annual lottery payment, using eighteen additional covariates, twelve of them related
to prior earnings and the remaining six characteristics of the lottery players including

education, age and sex. In the final illustration we focus on a regression relating the
logarithm of weekly earnings to years of education, using data from the National Lon-
gitudinal Study of Youth. We include in the regression experience, experience-squard,

mother’s education, father’s education, and two ability measures, iq and a test score
referred to as kww (knowledge of the world of work).

In each case we estimate the estimand using the basic model, its standard error, and
also calculate the standard deviation of the estimates based on the alternative models.

Table 3 presents the results, including also the ratio of the standard deviation and the
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standard error. We find that for all studies the variation in estimates due to changes

in the specification is substantial. More important, however, is the finding that there is
substantial variation in this ratio, from 0.20 to 3.38, suggesting that some studies are
much more sensitive to alternative specifications than others. Reporting this sensitivity
may be useful for assessing the credibility of empirical studies.

Table 3: Variation of θ̂ over Model Specifications

Exper Non-exp IRS NLS

Est 1.67 1.07 -0.44 0.059
(s.e.) (0.67) (0.63) 0.012) (0.010)
σθ [0.13] [2.13] [0.10] [0.004]
ratio 0.20 3.38 0.83 0.40

5 Discussion

In most empirical work researchers present estimates based on a preferred specification,
sometimes in combination with a handful alternative specifications. Such practices have

long been critized as leading to estimates that may be sensitive to assumptions in a
way that is not captured by the reported measures of precision. For example, Leamer
(1983) in his celebrated paper “Let’s Take the Con out of Econometrics,” argues that the
credibility of much empirical work is very low partly because of specification searches that

underly the estimates for the reported models. He proposes reporting estimates based on
a larger class of models for a range of prior distributions. White () proposes codifying the
model searching process and reporting standard errors that take into account this process.
Our proposals are complementary to those by Leamer (1982, 1986) 0and White (200).

We propose considering a much larger class of models, for which choosing an appropriate
class of prior distributions in the spirit of Leamer’s work would be challenging. Rather
than fully specifying the process of model selection as White (2000) suggests, we are
comfortable with reporting conventional standard errors for the preferred model, but we

suggest combining this with a simple scalar measure of the sensitivity of the estimates
to a range of alternative models that nest this preferred specification.

Our measure of sensitivity to model specification is the standard deviation of the

estimates over a range of alternative models. These alternative models are generated by
splitting the sample based on values of all the exogenous variables in the original model,
one or more at a time, with the splitting threshold determined by the fit.

Although our proposed measure of sensitivity does not capture all aspects of sensi-

tivity that one might wish to capture, we argue, partly based on four applications, that
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this measure does shed light on the credibility of empirical evidence.

The main limitation of our approach is the manner in which the set of alternative
models is selected.
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