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Policymakers are expressing increasing interest in using data on individuals’ well-being 

to guide policy. Much recent attention has focused on survey-based data. As part of a growing 

effort to collect such data, governmental organizations are including subjective well-being 

(SWB) questions in their national surveys. But how would such well-being data be used to make 

policy? In this paper we hope to contribute to answering this question by building on ideas 

briefly outlined in Benjamin, Heffetz, Kimball, and Szembrot (2013) and—as we recently found 

out—investigated more than thirty years earlier in unpublished work by Hylland and Zeckhauser 

(1980). We develop a mechanism that aggregates estimates of local effects of policy on 

individuals’ utility proxies to yield recommendations of marginal policy changes. 

The output of our mechanism is a proposed policy change relative to the current status 

quo policy vector. The main inputs into our mechanism are estimates, for each different group in 

the population, of the effect of small policy changes on a comprehensive well-being measure 

(formally, an ordinal utility representation of preferences). Each of the groups—also referred to 

below as “types”—consists of individuals with identical policy interests (formally, their ordinal 

utility is affected in the same way by policy). We do not address in this paper how to identify 

such groups, how to construct such a utility proxy, or how to estimate how it is affected by 

policy; we assume the existence of these inputs into our mechanism. This assumption is 

admittedly hopeful: while in principle the growing availability of individuals’ well-being data 

may eventually enable government agencies to provide the inputs we assume, in practice many 

questions will first have to be addressed. These include: how to create a comprehensive measure 

of well-being (for example, one that is based on survey questions); what survey questions (or 

other indicators of well-being) it should be composed of; how its different components should be 

weighted relative to each other to create an overall measure of well-being; and how the effects of 

policy on this measure could be estimated. Recent evidence makes it increasingly accepted 

among researchers that a single SWB question is unlikely to be sufficiently comprehensive: it 

may not single-handedly capture all aspects of well-being that individuals care about (e.g., 

Stiglitz, Sen, and Fitoussi, 2009; for recent evidence from hypothetical and real choices, see 

Benjamin, Heffetz, Kimball, and Rees-Jones, 2012, 2013). Benjamin, Heffetz, Kimball, and 

Szembrot (2014) propose a methodology for identifying a set of SWB questions and their 

relative weights that may provide a better utility proxy, but much work still needs to be done, 
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both on developing a reliable utility proxy for ordinal preferences and on estimating the effects 

of policy on that proxy. 

The question that the present paper addresses is how to aggregate estimates of policy 

effects on different types into an overall policy recommendation. Since for most policy questions 

different individuals’ interests do not fully coincide, aggregation across individuals has long 

been a central problem in economics. However, it has received relatively little attention in the 

SWB literature (for an excellent recent discussion of aggregation across individuals more 

generally, including in the SWB context, see Fleurbaey and Blanchet, 2013). 

Typically, when a researcher estimates the effect of policy on SWB, she regresses a SWB 

measure on policy and other variables using a pooled sample of individuals. Since such a 

regression aims to estimate the effect of the policy on the average SWB survey response, the 

researcher effectively assumes that SWB responses are interpersonally comparable.1 This 

assumption is problematic if survey respondents whose interests are affected differently by the 

policy use the survey-response scale in systematically different ways. Replacing the single-

question SWB measures that are currently widely used with a comprehensive well-being 

measure that captures everything individuals care about would not in itself solve this problem. 

Neither would this problem be entirely solved by random assignment of policy: if different types 

use the response scale in systematically different ways, some types will unjustifiably impact the 

estimated coefficients more than other types. What is needed is:  

a) to use a comprehensive well-being measure—a utility proxy representing ordinal 

preferences—as the dependent variable;  

b) to run regressions that are identified from exogenous variation in policy; and, 

most relevantly for this paper,  

c) to conduct the regressions separately within single-type groups of individuals who 

have the same policy interests. 

But one then faces the aggregation problem: one needs a method for aggregating the estimated 

effects across types.  

                                                 
1 The precise nature of the implicit assumptions depend on which regression specification is run. For example, if the 
SWB question has a 5-point response scale coded 1–5 and ordinary least squares is used, then the assumption is that 
the 1–5 numbers have the same meaning across individuals. If ordered logit is used instead, then the assumption is 
that the latent variable underlying the response has the same meaning across individuals. If fixed effects are also 
included, then changes (but not levels) of the variable are assumed to be interpersonally comparable. See Ferrer-i-
Carbonell and Frijters (2004) for related discussion. 
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There are two main traditions in economics regarding interpersonal (or inter-type) 

aggregation that we believe could be adapted to the context of well-being data. Both treat utility 

as ordinal and interpersonally non-comparable. One tradition is to measure the effect of a policy 

in terms of the amount of money lost or received that would make an individual indifferent; these 

“money-metric” effects of the policy are then aggregated. Much has been written on the 

advantages and disadvantages of such money-metric approaches. Fleurbaey and Blanchet (2013) 

provide a recent, comprehensive discussion and make a strong case for further development of 

such approaches. 

The other tradition, most familiar from voting contexts, is to give each individual’s 

ordinal preference equal weight in an aggregation process that determines policy. In this paper 

we develop and explore such a method, which we call the Normalized Gradient Addition (NGA) 

mechanism. It aggregates preferences that could in principle be estimated from regressions 

similar to typical SWB regressions, but that satisfy the conditions (a), (b), and (c) above. 

The basic idea is straightforward. We assume that a government agency has estimated the 

effects of small changes in a variety of policies on a comprehensive (but not interpersonally 

comparable) well-being measure—a utility proxy—for each type in the population. In terms of 

each type’s implied preferences over policy vectors, the agency has thus estimated each type’s 

gradient (i.e., the vector of local-policy-change effects on the utility proxy for that type). The 

NGA mechanism proceeds in two steps. First, each type’s gradient vector is normalized to have 

the same length. The gradients in their original units are not ordinal objects because the 

magnitude of the effect of policy on the utility proxy depends on the scale used by that type 

when answering well-being surveys. Normalizing the gradients ensures that every individual in 

the population contributes an equal input to the mechanism. The second step is to calculate the 

weighted sum of these normalized gradient vectors, where a type’s weight is its fraction of the 

population. The mechanism then prescribes that the government agency marginally adjusts the 

vector of policy levels proportionally to the vector resulting from the normalized gradient 

addition. 

In sections I, II, and III, we provide three different motivations for the NGA mechanism. 

In section I, we formally describe the mechanism and motivate it as analogous to locally 

climbing a social welfare function (SWF). Maximizing a SWF would require measuring utility in 

interpersonally comparable units—for example, a money metric—and moving policy 
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(immediately) to the levels that globally maximize the SWF. In contrast, the NGA mechanism 

has four properties that collectively explain how the formula describing it differs from the SWF-

maximization formula. First, the NGA mechanism treats each individual symmetrically: any 

individual’s normalized gradient vector carries the same weight in the mechanism as any other 

individual’s (in contrast, SWFs may weight individuals differently depending on their utility 

levels). Second, as already noted, it treats the utility proxy as ordinal and interpersonally non-

comparable across types. Third, it is a local mechanism: its inputs are the slopes of indifference 

surfaces local to the status quo policy vector, and its output is a marginal adjustment of policy. 

While most of the attention in the social choice literature has focused on mechanisms that 

prescribe a particular policy endpoint, as opposed to an adjustment from the status quo, we view 

the localness of the mechanism as attractive from the perspective of practical usefulness because 

the effects of policy can be most credibly estimated locally. Fourth, the NGA mechanism has the 

property of being “first-order strategy-proof (FOSP),” meaning that the mechanism is strategy-

proof when each type’s indifference surface over policies is replaced by a linear approximation. 

Thus if the agency estimates local policy preferences from survey data, answering the survey 

honestly is approximately a dominant strategy. While we are not aware of any evidence of 

strategic misreporting on well-being surveys, we argue that FOSP is nonetheless an attractive 

feature of the mechanism, and that it is a property with low marginal cost once a mechanism 

already has the first three properties. 

In section II, we show that beyond being in the same tradition as preference aggregation 

via voting, the NGA mechanism is in fact equivalent to a particular voting procedure. 

Specifically, each individual allocates across the set of policies a fixed budget of votes in favor 

of increasing or decreasing each policy. The budget constraint is quadratic: the sum across 

policies of the squared votes cannot exceed the fixed budget. For each policy, the change 

prescribed by the mechanism is the sum of the votes across all individuals. To the extent that 

voting is viewed as an attractive way to aggregate preferences, the equivalence of the NGA 

mechanism to this voting procedure may be viewed as a justification for the mechanism. 

However, we emphasize that the mechanism can be implemented by a government agency that 

collects and analyzes well-being data—and thereby simulates how an individual would vote if 

well informed about the consequences of the policies—without any individual in the population 

actually having to vote. 
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In section III, we provide an axiomatic characterization of the NGA mechanism. In 

particular, we show what assumptions are needed, in addition to the four properties listed above, 

for the combined set of assumptions to be necessary and sufficient to pin down the NGA 

mechanism. 

We envision that if the NGA mechanism were used in practice, it would be implemented 

iteratively, with the government agency regularly collecting well-being data (e.g., conducting 

well-being surveys), re-estimating policy effects at the current status quo, and implementing the 

next policy change. For this reason, in Section IV we study the properties of the iterated 

mechanism. Among other results, we prove that a stationary point always exists; provide some 

conditions for there to be a unique stationary point; and show that any stationary point is Pareto 

efficient. In addition to proving several analytic results, we conduct a wide range of simulations 

of the iterated mechanism to assess potential limitations. We find few multiple stationary points 

in our simulations and—in spite of trying hard to generate them—we find no limit cycles. 

One of the biggest limitations of the NGA mechanism is that it is not invariant to the 

units in which policy is measured, and thus the choice of units is potentially subject to 

manipulation by the government. Indeed, in section IV we prove that in some cases, complete 

manipulation is possible: units could be chosen such that one of the types in the population 

achieves its bliss point, even when that type is a relatively small fraction of the population and 

has extreme preferences in all but one policy dimension. In some of our simulations, we assess 

the scope for manipulation by studying the sensitivity of the stationary point of the iterated 

mechanism to the choice of units. In our view, this limitation of the mechanism is not necessarily 

crippling, for two reasons. First, no alternative aggregation mechanism can fully escape 

sensitivity to some parameters that would be subject to potential political manipulation. For 

example, voting is always potentially manipulable via agenda-setting, and, similarly, the output 

of social welfare maximization may depend on the functional form of the social welfare function. 

Second, we believe that there are reasonable criteria for choosing the units, and (in section I) we 

mention some possible procedures for choosing units that satisfy these criteria. 

In section V, we conclude by outlining how we envision that the NGA mechanism might 

someday be applied, as well as by discussing other applications of the mechanism, additional 

limitations, and possible extensions that could overcome those limitations. We also discuss the 

challenge of identifying types in the population, a challenge that can probably only be addressed 
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imperfectly. Appendix A contains all proofs, and Appendix B contains some examples of results 

from our random simulations of the iterated mechanism. 

 The papers most closely related to ours are Benjamin, Heffetz, Kimball, and Szembot 

(BHKS, 2013) and Hylland and Zeckhauser (HZ, 1980)—both mentioned above—and a recent 

working paper by Chung and Duggan (2014). BHKS propose the NGA mechanism but focus 

exclusively on the one-shot mechanism. Section I of the present paper is closely based on BHKS 

(including reproducing BHKS’s numerical example and figures). Many years earlier, HZ had 

essentially proposed the NGA mechanism (BHKS do not cite HZ because they were unaware of 

it). We say “essentially” because HZ focused on what we refer to as stationary points of the 

iterated mechanism. HZ described the NGA mechanism as a voting procedure, and section II of 

the present paper closely matches their set-up. Unlike HZ, in section II we view voting as a 

motivation of the mechanism that we envision would be implemented without the actual need for 

frequent voting—an as-if voting mechanism in which the government uses estimates of policy 

effects on well-being to construct individuals’ would-be votes. Like HZ, Chung and Duggan 

(2014) view the mechanism as a voting procedure and focus on stationary points but (beyond the 

overlap with us and HZ) focus on analytic questions distinct from ours (particularly the 

relationship of stationary points to the core, generic local uniqueness, non-cooperative stability, 

and other stability issues). Our axiomatic characterization of the mechanism in section III as yet 

another motivation of the mechanism is entirely new, as is the simulation-based analysis of the 

iterated mechanism in section IV. Some of our results on properties of the stationary points in 

section IV previously appeared in HZ; we cite HZ when stating those results. 

 

I. The Normalized Gradient Addition (NGA) Mechanism 

 In this section, we describe the NGA mechanism and motivate it by analogy with 

maximizing a social welfare function. The development of the mechanism in this section closely 

parallels BHKS. 

 

I.A. Model Set-Up 

We imagine that there is a government agency that has control over P ≥ 1 policies. The 

level of each policy is a real number that can be adjusted independently of other policies. We 

denote the policy levels by the vector ࢖ ≡ ሺ݌ଵ, … ,  .଴࢖ ௉ሻ and the status quo policy vector by݌
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The natural units of the P policies are in general not comparable (e.g., tax rate vs. limits 

on particulate concentrations in the air). For ease of exposition, we will postpone addressing this 

issue by assuming that each policy is measured in comparable “policy units”; we return in 

section I.D. below to discuss the important issue of how these policy units should be chosen. 

However, we note here that “1 policy unit” will be chosen to be a small enough change in policy 

that individuals’ policy preferences are well approximated as locally linear over this range. As 

explained below, the mechanism will limit the policy change vector ∆࢖ to have a Euclidean 

length of 1 policy unit. 

We partition the population of individuals into Θ > 1 types, where each individual of a 

given type ߠ has identical preferences over policies represented by utility function ݑఏሺ࢖ሻ (a 

reduced-form representation based on policy effects on the arguments of utility). Each ݑఏሺ∙ሻ is 

continuously differentiable, strictly concave, and achieves a maximum at a bliss point ࢖ఏ
bliss. In 

this section and the next, we assume that the status quo ࢖଴ is at a substantial distance from every 

type’s bliss point; in section IV, we discuss how to deal with the more complicated case of being 

near or at the bliss point of one of the types. For each type ߠ, we denote its fraction of the 

population by ߶ఏ. 

We denote the true gradient, or utility gradient, of type ߠ at ࢖଴ by સ࢛ఏሺ࢖଴ሻ ≡

ቀడ௨ഇ
ሺ࢖బሻ

డ௣భ
, … , డ௨ഇ

ሺ࢖బሻ

డ௣ು
ቁ or simply સ࢛ఏ when there is no ambiguity. The utility gradients (and the 

utilities themselves) are not observable. Instead, the government agency tracks an ordinal utility 

proxy ݎఏሺ࢖ሻ constructed from responses to a well-being survey, estimates the effects of each 

policy p on each type ߠ’s utility proxy ݎఏ, and constructs the reported gradient at ࢖଴, સ࢘ఏሺ࢖଴ሻ ≡

ቀడ௥ഇ
ሺ࢖బሻ

డ௣భ
, … , డ௥ഇ

ሺ࢖బሻ

డ௣ು
ቁ, denoted સ࢘ఏ when there is no ambiguity. While the utility proxy may be 

constructed from any well-being data, for concreteness we focus on the case of reported survey 

responses and, below, on the possibility of misreporting them; the possibility of misreporting can 

be generalized to any attempt by individuals to distort their well-being data (for example, 

attempts to distort non-survey-based indicators such as an individual’s medical or economic 

data). We assume that each ݎఏሺ∙ሻ is continuously differentiable and has no inflection points (i.e., 

સ࢘ఏሺ࢖ሻ 	ൌ 0 if and only if ࢖ is an extremum). The agency’s aggregation mechanism is its 

method for choosing a policy adjustment ∆࢖ as a function of the observed સࣂ࢘’s. 
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Since ݎఏሺ࢖ሻ is an ordinal utility proxy, the direction of the gradient સ࢘ఏ is invariant to 

monotonic transformations of ݎఏሺ∙ሻ, but its length is arbitrary. In particular, if individuals of a 

given type tend to use the extreme ends of the well-being survey-response scale, then the policy 

effect estimates will tend to be larger in magnitude, and therefore સ࢘ఏ will tend to be a longer 

vector. In contrast, if individuals of a given type use little of the scale, then સ࢘ఏ will be a shorter 

vector. To eliminate these differences, we define the normalized gradient to be સ࢘ఏ෪ ≡ સ࢘ഇ
‖સ࢘ഇ‖

 if 

‖સ࢘ఏ‖ ൐ 0 and સ࢘ఏ෪ ≡ ૙ if ‖સ࢘ఏ‖ ൌ 0. Thus, every type with a non-zero reported gradient has a 

normalized gradient of the same length (namely, 1 policy unit). 

 

I.B. Motivating the NGA Mechanism 

As noted in the Introduction, the Normalized Gradient Addition (NGA) mechanism that 

we explore in this paper has four key properties. First, it treats all individuals symmetrically. 

Second, it treats the survey-based utility proxy ݎఏሺ࢖ሻ as ordinal and non-comparable across 

individuals. Third, the mechanism is local: its input is the reported gradient at the status quo સ࢘ఏ, 

and its output is an adjustment of policy ∆࢖. This localness contrasts with typical aggregation 

mechanisms in the social choice literature, which take as an input the full preference ordering of 

every type and generate as an output a policy level. A local mechanism has at least two 

advantages: local policy effects can be estimated empirically more credibly than global effects, 

and adjusting policy is often more practical than designing policy de novo (cf. Feldstein, 1976). 

Finally, the mechanism is “first-order strategy-proof” (FOSP), meaning that it makes answering 

the well-being survey honestly approximately a dominant strategy; we postpone further 

explanation and discussion of FOSP until section I.D below. 

To motivate the form of the mechanism, consider the problem of choosing a local policy 

adjustment to maximize a social welfare function. Suppose that the utilities ݑଵ, … ,  ஀ areݑ

interpersonally comparable and directly observed by the social planner. Let ܹሺݑଵ, … ,  ஀ሻ be aݑ

social welfare function, where ܹሺ∙ሻ is strictly increasing, strictly concave, and continuously 

differentiable. We constrain the policy change to be at most 1 policy unit to ensure that it is local. 

The planner’s problem is: 

 

(1) max
࢖∆

ܹ൫ݑଵሺ࢖଴ ൅ …,ሻ࢖∆ , ଴࢖஀ሺݑ ൅ ሻ࢖∆ሻ′ሺ࢖∆ሻ൯ subject to ሺ࢖∆ ൑ 1.  
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Letting ߣ ൐ 0 be the Lagrange multiplier, the vector first-order condition is ∑ డௐ

డ௨ഇ

஀
ఏୀଵ સ࢛ఏ ൌ

 Since every type is far from its bliss point, the optimal policy change satisfies the constraint .࢖∆ߣ

with equality. Hence the optimal policy change has length 1 policy unit and direction 

∑ డௐ

డ௨ഇ

஀
ఏୀଵ સ࢛ఏ: 

 

࢖∆ (2) ൌ
∑ డௐ

డ௨ഇ

஀
ఏୀଵ સ࢛ఏ

ቛ∑ డௐ

డ௨ഇ

஀
ఏୀଵ સ࢛ఏቛ

,  

 

where ‖∙‖ is the Euclidean norm. Equation (2) is not feasible for the government agency to 

implement, however, because the agency does not observe the (true) utility gradients સ࢛ఏ and it 

cannot calculate the 
డௐ൫௨భሺ࢖బሻ,…,௨౸ሺ࢖బሻ൯

డ௨ഇ
’s since it does not observe the (true) utility levels. 

 The Normalized Gradient Addition mechanism, which literally adds up the normalized 

reported utility gradients weighted by the population shares, is: 

 

࢖∆ (3) ൌ෍߶ߠ સߠ࢘෪
Θ

ൌ1ߠ

.  

 

The NGA mechanism will not yield exactly the solution in equation (2) unless it happens to be 

the case that 
డௐ

డ௨ഇ
ൌ థഇ

‖સ࢘ഇ‖
 for each ߠ. However, equation (3) can be viewed as an analog of 

equation (2) that is feasible, given the data available to the government agency. The differences 

are as follows. 

 First, the unobservable weights in equation (2), 
డௐ

డ௨ഇ
, are replaced by ߶ఏ. Weighting each 

type by its population share satisfies the symmetry property of the mechanism. Note that all 

qualitative properties of the mechanism that we discuss in this paper would be the same if 

different weights were used, as long as they are exogenous to the reported gradients. In 

particular, an attractive variant of the NGA mechanism might use available data (such as 

individuals’ wealth levels) that may be informative about the unobserved cardinal utility levels to 
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weight worse-off individuals more highly and better-off individuals less highly than their 

population shares.  

 Second, the unobservable utility gradients in equation (2), સ࢛ఏ, are replaced by the 

normalized (reported) gradients, સ࢘ఏ෪ . Given that the length of the reported gradient સ࢘ఏ has no 

meaning, using the normalized gradients helps ensure that all individuals are treated 

symmetrically. 

 Third, the policy-change vector has length 1 policy unit in equation (2), while the NGA 

mechanism changes policy by less than 1 policy unit unless the સ࢘ఏ෪ ’s are equal across all ߠ, i.e., 

all types’ reported gradients have the same direction. A more closely analogous variant of the 

mechanism could move policy in the same direction but require a policy change of length 1: 

 

࢖∆ (4) ൌ
∑ ߠ߶ સߠ࢘෪
Θ
ൌ1ߠ

ฮ∑ ߠ߶ સߠ࢘෪
Θ
ൌ1ߠ ฮ

.  

 

Equation (3), however—and not equation (4)—satisfies FOSP, and thus the inefficiency of not 

exhausting the social planner’s budget constraint in equation (3) can be viewed as the social cost 

incurred by having FOSP; we defer further discussion until section I.D.  

 

I.C. An Example and Some Intuition 

To build intuition for the NGA mechanism in terms of vector addition, we begin with an 

example. There are two policy dimensions, the federal tax on distilled spirits and spending on 

national parks. A 1-policy-unit change in the tax is $1.25 per proof gallon, and a 1-policy-unit 

change in federal funding for the National Park Service is $125 million. There are two types in 

the population, Young and Old, with population shares ߶Old ൌ	2/5 and ߶Young ൌ	3/5. The 

government agency estimates that: a $1 increase in the tax per proof gallon on distilled spirits 

increases the utility proxy of the Old by 3 units and decreases the utility proxy of the Young by 3 

units; and a $100-million increase in spending on national parks decreases the Old’s utility proxy 

by 2 units and increases the Young’s by 3 units. The reported gradients are therefore સ࢘Old ൌ

ቆ ଷ	utils
$భ

$భ.మఱ
	units

, ିଶ	utils
$భబబ	mil.
$భమఱ	mil.

	units
ቇ and સ࢘Young ൌ ቆ ିଷ	utils

$భ
$భ.మఱ

	units
, ଷ	utils
$భబబ	mil.
$భమఱ	mil.

	units
ቇ. 

The first step in implementing the mechanism is to calculate the normalized gradients:  
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સ࢘Old
෫ ൌ

ۉ

ۈۈ
ۇ

3	utils
$1

$1.25	units

ඩ቎
3	utils
$1

$1.25	units
቏

మ

ା቎
െ2	utils

$100	mil.
$125	mil.

	units
቏

మ
,

െ2	utils
$100	mil.
$125	mil.

	units

ඩ቎
3	utils
$1

$1.25	units
቏

మ

ା቎
െ2	utils

$100	mil.
$125	mil.

	units
቏

మ

ی

ۋۋ
ۊ
ൌ ሺ0.83, െ0.55ሻ  and  

સ࢘Young
෫ ൌ

ۉ

ۈۈ
ۇ

െ3	utils
$1

$1.25	units

ඩ቎
െ3	utils
$1

$1.25	units
቏

మ

ା቎
3	utils

$100	mil.
$125	mil.

	units
቏

మ
,

3	utils
$100	mil.
$125	mil.

	units

ඩ቎
െ3	utils
$1

$1.25	units
቏

మ

ା቎
3	utils

$100	mil.
$125	mil.

	units
቏

మ

ی

ۋۋ
ۊ
ൌ ሺെ0.71,0.71ሻ. 

Figure 1 illustrates these normalized gradients, each of which is a vector of length 1 that points in 

the direction of maximal increase in the utility proxy for that type. 

 The other step of the mechanism is to make the policy change equal to the weighted sum 

of the normalized gradients, with weights equal to population shares: ∆࢖ ൌ ଶ

ହ
ሺ0.83,െ0.55ሻ ൅

ଷ

ହ
ሺെ0.71,0.71ሻ ൌ ሺെ0.09,0.22ሻ. This vector addition, with the resultant policy change from ࢖଴ 

to ࢖ଵ, is illustrated in Figure 2. In natural units, the prescribed policy change is to reduce the tax 

by 0.09 ൈ $1.25	per proof gallon ൌ $0.11	per proof gallon and to increase spending on national 

parks by 0.22 ൈ $125	million ൌ $25.3	million. 

 This vector addition is particularly simple when there is a single policy dimension, P = 1. 

In that case, equation (3) specializes to ∆݌ଵ ൌ ∑ ߶ఏ sign஀
ఏୀଵ ቀௗ௥ഇ

ௗ௣భ
ቁ. In words, the mechanism 

increases the level of the policy by an amount of policy units equal to the fraction of the 

population estimated to be better off with an increase in the policy minus the fraction estimated 

to be better off with a decrease, i.e., the “vote margin” in favor of an increase. Figure 3a 

illustrates an example with three types that have equal population weights. 

 The mechanism does not have access to cardinal “intensity of preference” information, 

but it does incorporate information on relative policy preferences when P > 1. Figure 3b 

illustrates the same three types as in Figure 3a, except that now there are P = 2 policy 

dimensions. As before, types 1 and 2 prefer an increase in policy 1, and type 3 prefers a decrease. 

As indicated by the directions of the normalized gradients, however, type 3 cares exclusively 

about the first policy dimension, while types 1 and 2 care much more about the second policy 

dimension. Consequently, as more policy dimensions are added, the mechanism can prescribe 

different changes—indeed, in the example in the figure, the first policy dimension is changed in 

the opposite direction when the second policy dimension is included. The more policy 
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dimensions that are included, the more information on relative tradeoffs is available to the 

mechanism. Therefore, ideally, it would be used with as many policy dimensions included as 

possible. 

 An attractive feature of the mechanism is that if survey respondents truthfully report their 

well-being to the government agency, the NGA mechanism will find and implement any Pareto 

improvements that are available: for any policy-change vector ࢾ such that ࢾ′ሺસ࢛ఏሻ ൐ 0 for all ߠ, 

it follows that ࢾᇱ ቀ∑ ߶ఏ 	
સ࢛ഇ
‖સ࢛ഇ‖

஀
ఏୀଵ ቁ ൐ 0 and therefore ࢾᇱሺ∆࢖ሻ ൐ 0. We return to this observation 

in section IV.B (where it appears as Proposition 2).  

 

I.D. First-Order Strategy-Proofness 

 As mentioned above, one property of the NGA mechanism is being first-order strategy-

proof (FOSP). To understand FOSP, consider the mechanism-design problem where each type 

reports her gradient સ࢘ఏ to the government agency, and the agency implements a policy change 

 ఏ is ordinal, “truthfully࢘that is a function of all the types’ reported gradients. Since સ ࢖∆

reporting” the utility gradient means that સ࢘ఏ is equal to સ࢛ఏ up to some arbitrary multiplicative 

scalar, i.e., સ࢘ఏ points in the same direction as સ࢛ఏ. Formally, FOSP means that the mechanism 

is strategy proof—that is, it makes truthful reporting a dominant strategy—in the game where 

each type’s indifference surfaces are replaced by a linear approximation at the status quo ࢖଴. 

Since any smooth indifference surface is locally linear, the gains from deviating from truthful 

reporting are second order. Therefore, as long as the policy change is small, truthful reporting is 

approximately a dominant strategy. 

 As applied here—where the government agency estimates સ࢘ఏ from survey data on well-

being—FOSP means that each type has an incentive to make sure that the agency’s estimate, 

સ࢘ఏ, is equal to સ࢛ఏ up to an arbitrary multiplicative scalar. Each type can ensure this by 

answering the survey honestly. Hence FOSP makes answering the well-being survey honestly an 

approximately dominant strategy. 

To see that the NGA mechanism is FOSP, note that the mechanism decentralizes the 

policy change: each type’s contribution to the policy change is a vector of fixed length, and that 

type chooses the direction of the vector. Taking the other types’ contributions as given, each type 

଴࢖ s most-preferred direction is its utility gradient evaluated at’ߠ ൅ ∑ ߶ఏ෡	સࣂ࢘෡෪ఏ෡ஷఏ  (i.e., taking 
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into account the summed contributions of the other types). With linear preferences, type ߠ’s 

utility gradient evaluated there is equal to its utility gradient evaluated at ࢖଴. To ensure that its 

contribution is સ࢛ఏሺ࢖଴ሻ, type ߠ chooses to report some સ࢘ఏሺ࢖଴ሻ that is proportional to 

સ࢛ఏሺ࢖଴ሻ. 

 Relative to BHKS (Benjamin, Heffetz, Kimball and Szembrot, 2013), in this paper we 

de-emphasize FOSP for two reasons. First, we suspect that strategic misreporting on well-being 

surveys would be uncommon even if respondents knew that their responses would be used for 

policy purposes. Strategic misreporting would require incurring the cognitive costs of 

formulating a strategy and incurring the psychic cost of dishonest responding, and the gains to 

any one individual would be small.2 Second, as we discuss in section IV, although one-shot 

application of the NGA mechanism is FOSP, iterated application of it—which we believe is of 

greater interest—is not. 

 Nonetheless, we still view FOSP as a desirable property for three reasons. First, it is 

conceivable that individuals would strategically misreport once they know that their survey 

responses will be used for policy purposes (a concern expressed by and Stutzer, 2012). If 

strategic misreporting occurs, the most likely strategies would be ones that are easy to 

understand and simple to implement. Other ways of using well-being data for policy are subject 

to such strategies. For example, much empirical work estimates the effect of a change in policy 

in monetary units by running a regression of the survey-based utility proxy on the policy and on 

income, and estimating the change in income required to hold constant the utility proxy under the 

policy change. If such estimates were used to guide policy, individuals could magnify their 

weight in policymaking by making their utility proxy less sensitive to changes in income. One 

way to do this might be to answer the well-being survey questions while focusing on non-

income-related aspects of well-being. FOSP rules out such simple manipulation strategies. 

 Second, as we explain and formalize in section III below, FOSP has an attractive 

interpretation even if strategic misreporting is known not to be a problem. Specifically, if 

everyone responds truthfully, FOSP means that the mechanism satisfies a kind of monotonicity 

                                                 
2 We also note that it would be difficult to disseminate information about how to exploit a possibility for 
manipulation to a large number of potential survey respondents without that effort becoming known and backfiring. 
By analogy, if some group encouraged people to respond to employment surveys to skew the unemployment 
numbers in order to get closer to its preferred monetary policy, the effort would almost surely be discovered quickly 
and become a political scandal. 
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property: if type ߠ’s preference is changed, the policy change prescribed by the mechanism 

cannot change to one that is strictly worse for type ߠ, as judged by ߠ’s new preference. 

 Finally, we view FOSP as a feature of the mechanism that has low marginal cost. As 

noted in section I.B., equation (4) is a mechanism satisfying properties (i)-(iii) but not FOSP. 

Figure 4 illustrates that the mechanism in equation (4)—which guarantees the policy change to 

have length 1 policy unit—would in general create an incentive to misreport. Having the 

additional property of FOSP requires having a smaller policy change—but since the direction of 

policy change is the same, we view this cost as relatively low. Indeed, in the continuous-time 

limit of an arbitrarily small policy change, equation (4) and equation (3) become equivalent. And 

in practice, if the amount of disagreement among types is expected to be large, the government 

agency could compensate by having 1 policy unit correspond to a larger change in all policies (as 

long as the size of 1 policy change is exogenous to the gradient reports).  

 

I.E. Choosing the Policy Units 

Until now, we have simply assumed that the policies are measured in comparable “policy 

units.” In practice, however, for each policy j, a distance-metric parameter ௝݉ ൐ 0 that specifies 

the amount of change corresponding to “1 policy unit” will need to be chosen. While the 

qualitative properties of the mechanism do not depend on the specific values of the ௝݉’s, they 

will matter for the output of the mechanism. An extreme example is shown in Figures 3a and 3b: 

as ݉ଶ shrinks to zero, the mechanism’s prescribed change in policy 1 switches direction. 

Because the policy units matter, there may be incentive for agents who have political 

influence to manipulate the government agency’s choice of ௝݉’s. By eliminating degrees of 

freedom, standardized procedures for determining the ௝݉’s can help minimize the potential for 

such manipulation. One possibility would be for the agency to conduct a survey to determine 

what relative ௝݉’s correspond to intuitive judgments of similar-sized changes. Another idea—

which we discuss more formally in section IV.C and explain how it would reduce the potential 

for manipulation—would be to choose relative ௝݉’s such that the types’ indifferences surfaces 

when plotted in policy-unit space are as close to spherical as possible. Doing so would require 

obtaining non-local information on preferences and hence may not be practical, but would be 

helpful even if done only imperfectly. 
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In determining the absolute magnitudes of the ௝݉’s (parameterized in section I.F below 

as the “step size”), there is a tradeoff. On the one hand, FOSP depends on the mechanism’s 

policy change being small enough that the indifference surfaces are well approximated as linear. 

On the other hand, the policy changes need to be large enough that it is possible to estimate their 

effects and that, when the mechanism is iterated, it has a satisfactory speed of progress. 

 

I.F. The General Form of the NGA Mechanism 

 In describing the NGA mechanism by equation (3), we presupposed that the policies were 

measured in policy units and that the maximum distance that the mechanism could move is 1 

policy unit. Here we will generalize both of those assumptions. 

 To translate from policies measured in natural units to policies measured in policy units, 

we define the matrix ࡹ ≡ diagሺ݉ଵ,݉ଶ,… ,݉௉ሻ. Thus, a policy change ∆࢖ in natural units is the 

change ିࡹଵ∆࢖ in policy units. Moreover, if the utility gradient in natural units is સ࢛ఏ, then in 

policy units it is ࡹસ࢛ఏ. Similarly, the normalized gradient, redefined in terms of policy units, is 

સ࢘ఏ෪ ≡ ഇ࢘સࡹ
‖ഇ࢘સࡹ‖

 if ‖ࡹસ࢘ఏ‖ ൐ 0 and સ࢘ఏ෪ ≡ ૙ if ‖ࡹસ࢘ఏ‖ ൌ 0. 

 Given this generalized definition of the normalized gradient, and parameterizing the 

maximum change that the mechanism can prescribe in policy units by the “step size” ߝ ൐ 0, the 

NGA mechanism is: 

 

࢖∆ଵିࡹ (5) ൌ ෍߶ఏߝ સࣂ࢘෪
஀

ఏୀଵ

.  

 

Above and in most of the remainder of the paper, we assume that ࡹ equals the identity matrix, 

which amounts to assuming that policies are already measured in policy units; the exception is 

when we study the potential for manipulation of the ࡹ matrix, which we discuss in terms of a 

change in the coordinate system (equivalently, a transformation of ࡹ). We will also generally 

assume that ࢿ ൌ ૚, except when we study the iterated mechanism in section IV, where it 

becomes useful to state results for ࢿ sufficiently small. 
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II. The Voting Interpretation of the NGA Mechanism 

 In the previous section, we motivated the NGA mechanism as analogous to finding the 

marginal policy adjustment that maximizes a social welfare function, but which uses only ordinal 

information on preferences and weights each individual equally. In this section, we provide an 

alternative motivation: it is a voting mechanism in which each individual allocates a fixed budget 

of policy units across the policy dimensions. 

 Specifically, each type ߠ simultaneously chooses a vector of policy changes, સ࢘ఏ෪ , 

expressed in policy units. We call સ࢘ఏ෪  type ߠ’s vote. The vote is chosen subject to a quadratic 

budget constraint: ൫સ࢘ఏ෪ ൯′൫સ࢘ఏ෪ ൯ ൑ 1. In words, the budget constraint says that the sum (across 

the P policy dimensions) of squared policy-unit changes can be at most 1. The policy change is 

then set equal to a weighted sum of the votes, where each type’s weight is its share of the 

population: ∆࢖ ൌ ∑ ߶ఏસ࢘ఏ෪ 	஀
ఏୀଵ . The solution concept is Nash equilibrium. We assume—as in 

the previous section—that the policy units are chosen so that ∆࢖ is small and that the initial 

policy vector ࢖଴ is not equal to anyone’s bliss point.  

 This mechanism is easily seen to be equivalent to the formulation in the previous section. 

Geometrically, choosing one’s vote subject to a quadratic budget constraint is the same as 

choosing a point on or within the unit circle (see Figure 1). Given everyone else’s vote, each type 

 s optimal vote is to choose the point on or within the unit circle that moves as far as possible in’ߠ

the direction of ߠ’s utility gradient, starting from ࢖଴ ൅ ∑ ߶ఏ෡	સ࢘ఏ෡෪ఏ෡ஷఏ . Because the policy change 

is small, type ߠ’s preferences are approximately linear, and therefore his gradient there is 

approximately equal to his gradient at ࢖଴. Because he wants to move as far as possible, his 

budget constraint binds. Therefore, each type ߠ’s optimal vote is સ࢘ఏ෪ ൌ સ࢛ഇ
‖સ࢛ഇ‖

. An alternative 

way to solve for the Nash equilibrium is algebraically. Each type ߠ solves: 

max
સࣂ࢘෪

ఏݑ ൭࢖଴ ൅෍߶ఏ෡સ࢘ఏ෡෪

ఏ෡ஷఏ

൅ ߶ఏસ࢘ఏ෪ ൱  subject to ൫સ࢘ఏ෪ ൯′൫સ࢘ఏ෪ ൯ ൑ 1. 

The vector first-order condition is ߶ఏસ࢛ఏ ൌ ఏ෪࢘સߣ , where ߣ ൐ 0 is the Lagrange multiplier, and 

thus સ࢘ఏ෪ ≡ સ࢛ഇ
‖સ࢛ഇ‖

 since the budget constraint binds. 

 The equivalence of the NGA mechanism to a voting procedure may be seen as providing 

a justification for the mechanism to the extent that voting is viewed as an attractive way to 
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aggregate preferences. It also implies that the NGA mechanism could be applied by literally 

implementing the voting procedure. 

In our view, however, there are three potentially significant advantages to the 

technocratic implementation of the mechanism that we emphasize in this paper: a government 

agency estimates the effects of policy on a utility proxy for each type, and then calculates the 

policy change prescribed by the mechanism.3 First, actual voting incurs transactions costs, and 

these costs would be substantial if the government literally held a referendum on many policy 

issues on a regular basis. 

Second, in order for voters to vote in accordance with their true interests, they need to be 

well informed and unbiased in their views regarding how the policies will affect them. The 

technocratic implementation sidesteps this requirement, because the government agency uses its 

estimates of the actual effects of policy to take into account how each type would vote if well 

informed. Indeed, the mechanism may be especially well suited for application to policies about 

which citizens have little expertise (such as pollution levels). 

Third, in practice voting procedures often fail to take into account everyone’s interests 

due to low turnout. If survey response rate is higher than voter turnout, and if the government 

agency can adjust statistically for non-response on its well-being survey—admittedly, big “ifs”—

the technocratic implementation can reduce this problem. 

 

III. Axiomatic Characterization of the NGA Mechanism 

 In section I, we summarized the NGA Mechanism and showed that it satisfies four 

properties: it is (i) symmetric, (ii) ordinal, (iii) local, and (iv) first-order strategy-proof (FOSP). 

In this section, we provide an axiomatic characterization of the mechanism. Doing so clarifies 

what assumptions, in addition to properties (i)–(iv), are implicit in the NGA mechanism. It also 

helps to place the mechanism in the context of the social choice literature, since many of the 

axioms are local versions of otherwise-standard axioms. 

                                                 
3 To be clear, we are not suggesting replacing voting by a technocratic procedure—an idea that may sound 
alarmingly Orwellian—but rather, for certain policies, replacing an existing technocratic procedure (e.g., cost-
benefit analysis) with a different technocratic procedure, the NGA mechanism. The discussion below concerns the 
advantages of implementing the NGA mechanism technocratically rather than implementing it by holding referenda 
on the policy adjustments of the kind outlined in this section. 
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 We focus on mechanisms that take as an input the vector of individuals’ preference 

gradients and output a change in the policy vector. In doing so, we restrict attention to 

mechanisms that satisfy (iii), the localness property. Accordingly, for any Θ ∈ ሼ0,1,2, … ሽ, we 

define a Θ-agent  mechanism to be a function ݂: ሺԹ௉ሻ஀ ൈ Թାା
஀ → Թ௉ that assigns, for every 

profile સ࢘ ൌ ሺસ࢘ଵ, … , સ࢘஀ሻ of reported preference gradients and every vector ࣘ ൌ ሺ߶ଵ,… , ߶௵ሻ 

of strictly positive weights, a vector ݂ሺસ࢘;ࣘሻ that will represent the incremental change in 

policy space. (In the case Θ ൌ 0, a 0-agent mechanism is simply a point in Թ௉.) The સ࢘ఏ’s could 

be directly reported by agents (as in the interpretation of a voting procedure from section II) or 

could be estimated by the government agency from individuals’ survey responses (or other well-

being data, as discussed in section I.A. above). The true, unobserved preference gradient profile 

is denoted સ࢛ ൌ ሺસ࢛ଵ,… , સ࢛஀ሻ. Unlike in section I, here the ߶ఏ’s are exogenous weights (not 

necessarily population fractions), and they do not need to sum to 1. 

A mechanism family consists of a Θ-agent mechanism for each Θ ∈ ሼ0,1,2, … ሽ. We 

denote mechanisms with different numbers of agents by the same symbol f; there should be no 

ambiguity. The characterization theorems at the end of this section will show that a mechanism 

family that satisfies the axioms described below must be the NGA mechanism. 

Property (i)—symmetry—is formalized by an anonymity axiom. 

 

Anonymity:  For any Θ, સ࢘ ∈ ሺԹ௉ሻ஀, ࣘ ∈ Թାା
஀ , and permutation ߨ of the set ሼ1,2, … , Θሽ, we 

have ݂ሺસ࢘ଵ, … , સ࢘஀; ߶ଵ, … , ߶஀ሻ ൌ ݂ሺસ࢘గሺଵሻ, … , સ࢘గሺ஀ሻ; ߶గሺଵሻ, … , ߶గሺ஀ሻሻ. 

 

Similar anonymity axioms are common in the social choice literature (except that they usually 

apply to agents’ entire preference profiles rather than just their gradients). 

 To ensure property (ii), we require that the reported gradients that the mechanism takes as 

an input are ordinal. 

 

Ordinality:  For any Θ, સ࢘, ࣘ, and vector of strictly positive constants ሺ݇ଵ, … , ݇஀ሻ, we have 

݂ሺસ࢘ଵ, … , સ࢘஀; ߶ଵ, … , ߶஀ሻ ൌ ݂ሺ݇ଵસ࢘ଵ, … , ݇஀સ࢘஀; ߶ଵ, … , ߶஀ሻ. 

 

The axiom states that the mechanism does not use any information on the length of an agent’s 

reported gradient—and thus only uses information on its direction. (In the social choice 
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literature, an ordinality assumption is generally implicit because the axioms are written in terms 

of preference profiles, rather than utility profiles.) 

 To formalize property (iv), we use a strategy-proofness axiom that is standard except that 

it is applied locally, only to the agents’ reports of their gradients (which are reports of 

preferences only up to a first order approximation at the status-quo policy vector ࢖଴). Since the 

mechanism is ordinal, a false report for agent ߠ is defined as a vector સ࢘ఏ
ᇱ ∈ Թ௉ such that for 

any positive constant ݇, સ࢘ఏ
ᇱ ് ݇સ࢛ఏ. 

 

First-order strategy-proofness (FOSP): For any Θ, સ࢘, ࣘ, agent ߠ, સ࢛ఏ, and false report સ࢘ఏ
ᇱ , 

we have સ࢛ఏ ⋅ ݂ሺસ࢛ఏ, સି࢘ఏ;ࣘሻ 	൒ સ࢛ఏ 	 ⋅ ݂ሺસ࢘ఏ
ᇱ , સି࢘ఏ;ࣘሻ. 

 

FOSP says that an agent cannot get a better outcome by lying about her preference gradient than 

by telling the truth. 

 Policymakers who anticipate that survey respondents will simply respond truthfully to 

well-being surveys may not find the incentive-compatibility property of the mechanism to be a 

compelling motivation in its favor. It is therefore important to note that the FOSP axiom is a 

normatively desirable property even if agents always truthfully report their preference gradients. 

Under that assumption, the axiom can be rewritten as stating: For any Θ, સ࢛, ࣘ, agent ߠ, and 

alternative gradient સ࢛ఏ
ᇱ , we have સ࢛ఏ ⋅ ݂ሺસ࢛ఏ, સି࢛ఏ;ࣘሻ 	൒ સ࢛ఏ 	 ⋅ ݂ሺસ࢛ఏ

ᇱ , સି࢛ఏ;ࣘሻ. This 

property is a kind of “monotonicity” feature of the mechanism: if agent ߠ’s preference is 

changed, the policy change prescribed by the mechanism cannot change to one that is strictly 

worse for agent ߠ, as judged by ߠ’s new preference. This formulation is formally similar to 

monotonicity properties that have appeared elsewhere in the social choice literature, such as 

Maskin monotonicity (1999) or strong positive association (Muller and Satterthwaite, 1977).4 

Beyond properties (i)–(iv) as formalized above, additional assumptions are needed to 

have a complete set of necessary and sufficient conditions for the NGA mechanism. A key 

assumption among them is: 

 

                                                 
4 Those properties are in fact equivalent to strategy-proofness in a voting setting with unrestricted preferences over a 
finite set of alternatives, though they are not equivalent in our setting. 
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Directional Citizen Sovereignty:  For any Θ, સ࢘, and ࣘ, ݂ሺસ࢘;ࣘሻ lies in the linear span of 

સ₁࢘, … , સ࢘஀. (If Θ ൌ 0, then this axiom means the value of ݂ is zero.) 

 

This axiom states that the policy-change vector prescribed by the mechanism must be a linear 

combination of the agents’ reported gradients (though possibly longer or shorter than the 

reported vectors). It rules out moving in any direction that has a component that is orthogonal to 

every agent’s reported gradient. In this sense, it requires the mechanism to respect the agents’ 

reported preferences. It can be understood as an axiom that treats the agents’ reports સ࢘ఏ as 

“votes” that the mechanism respects. We call the axiom “directional citizen sovereignty” because 

it is in the spirit of Arrow’s “citizen sovereignty” axiom—which requires that every possible 

social outcome be achievable by some configuration of individuals’ preferences—but is 

formulated for the context of a mechanism that is local.  

The next two axioms deal with how mechanisms within a given family that have different 

numbers of agents relate to each other. 

 

Merging: For any Θ ൒ 2, સ࢘, and ࣘ, and two distinct agents ߠ, ఏ࢘ᇱ, if સߠ ൌ સ࢘ఏᇲ, then  

 ݂ሺસ࢘ఏ, સ࢘ఏᇲ, સି࢘൫ఏ,ఏᇲ൯; ߶ఏ, ߶ఏᇲ, ߶ି൫ఏ,ఏᇲ൯ሻ ൌ ݂ሺસ࢘ఏ, સି࢘൫ఏ,ఏᇲ൯; ߶ఏ ൅ ߶ఏᇲ, ߶ି൫ఏ,ఏᇲ൯ሻ. 

 

(Note that we have written this axiom in a way that presupposes the anonymity axiom; it could 

be written more generally at the cost of cumbersome notation.) The merging axiom says that two 

agents with weights ߶ఏ and ߶ఏᇲ that report the same gradient can be treated as a single agent 

with weight ߶ఏ ൅ ߶ఏᇲ. This axiom underlies the assumption, maintained throughout, that 

individuals with the same preferences can be treated jointly as a “type” in the population. The 

merging axiom is also crucial in giving meaning to the weights ߶ఏ; indeed, none of the other 

axioms makes any substantive reference to their magnitudes. 

 The cancellation axiom states that if two equal-sized groups have exactly opposite 

preferences, then they cancel each other out. 

 

Cancellation:  For any Θ ൒ 2, સ࢘, ࣘ, and two distinct agents ߠ, ఏᇲ࢘ᇱ, if સߠ ൌ െસ࢘ఏ	and 

߶ఏ ൌ ߶ఏᇲ, then ݂ሺસ࢘ఏ, સ࢘ఏᇲ, સି࢘൫ఏ,ఏᇲ൯; ߶ఏ, ߶ఏᇲ, ߶ି൫ఏ,ఏᇲ൯ሻ 	ൌ 	݂ሺસି࢘൫ఏ,ఏᇲ൯; ߶ି൫ఏ,ఏᇲ൯ሻ. 
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This axiom captures a property of voting mechanisms. Moreover, it seems natural: when two 

equal-sized groups have opposing preferences, it would be strange if the net effect favored a 

direction preferred by one of the groups or a direction preferred by neither group. 

The final axiom, which can be understood as a technical assumption, ensures that the 

mechanism is a smooth function of the agents’ gradients, as long as no agent is at a bliss point: 

 

Smoothness:  For any Θ ൒ 2 and ࣘ, ݂ሺસ࢘;ࣘሻ is twice-continuously differentiable as a function 

of સ࢘ ∈ ሺԹ௉ ∖ ሼ૙ሽሻ஀. 

 

Note that it would not make sense to require the mechanism to be smooth at an agent’s bliss 

point: since the mechanism is ordinal, the length of any agent ߠ’s reported vector સ࢘ఏ has no 

meaning, so agent ߠ’s input to the mechanism is discontinuous as સ࢘ఏ crosses from positive in a 

given direction to negative in that direction through the zero vector.  

Our characterization theorem states that this set of axioms is necessary and sufficient for 

pinning down the NGA mechanism uniquely up to an arbitrary multiplicative constant: 

 

Theorem 1.  A mechanism family satisfies anonymity, ordinality, first-order strategy-proofness, 

directional citizen sovereignty, merging, cancellation, and smoothness if and only if ݂ሺસ࢘;ࣘሻ 	ൌ

ߝ ∑ ߶ఏ 	
સ࢘ഇ
‖સ࢘ഇ‖

	஀
ఏୀଵ  for some positive constant ߝ ൐ 0. 

 

The axioms determine the direction of movement but not the mechanism’s “step size” ߝ—i.e., 

how far the mechanism moves policy if all agents report the same gradient vector—which in 

previous sections we normalized to be 1 policy unit. 

All proofs are relegated to Appendix A, but here we provide some intuition for the role of 

each axiom. It is clear from the discussion in section I that anonymity, ordinality, and strategy-

proofness are necessary conditions for the mechanism. Merging is crucial in giving meaning to 

the weights ߶ఏ. 

Cancellation plays two roles in the analysis. First, in conjunction with merging, it pins 

down what happens when an agent has weight zero. In particular, it allows us to remove any 

agent with zero weight (meaning that an agent at a bliss point contributes the zero vector to the 

policy change). Second, cancellation is the only axiom that connects behavior of the mechanism 
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across different weight profiles ࣘ for which the value of ∑ ߶ఏ	
஀
ఏୀଵ differs; it ensures that the scale 

parameter is the same regardless of how many agents cancel each other out. 

 Smoothness plays an important role in ensuring that the mechanism is additively 

separable across agents; that part of the proof is a mild extension of work by Barberá, 

Bogomolnaia, and van der Stel (1998), who also give an example to show in their context that 

additive separability can fail if smoothness is not imposed. 

 As noted above, the key additional axiom is directional citizen sovereignty. It is needed 

to identify the “shape” from which agents can pick their most-preferred vector (that the 

mechanism adds up across agents). In the NGA mechanism, each agent picks her most-preferred 

vector from the unit sphere. To generalize from the unit sphere, we could let ܵ ⊆ Թ௉ be any 

smoothly convex set containing the origin, and define a mechanism analogous to NGA: for any 

non-zero સ࢛ఏ, let સ࢘ఏሺસ࢛ఏሻ be the element of ܵ that maximizes સ࢛ఏ ⋅ સ࢘ఏ (and define 

સ࢘ఏሺસ࢛ఏሻ ൌ 0 if સ࢛ఏ ൌ 0), and then define ݂ሺસ࢘;ࣘሻ ൌ ∑ ߶ఏ	સ࢘ఏ	
஀
ఏୀଵ . This mechanism in 

general would obey all the axioms, except for directional citizen sovereignty. Figure 5 illustrates 

an example in the simple case where there is a single agent (Θ ൌ 1) and ܵ is an ovoid. In order 

for the mechanism to satisfy first-order strategy-proofness, it must be the case that when the 

agent’s reported gradient સ࢘ఏ is equal to his true gradient સ࢛ఏ, the mechanism moves in the 

agent’s most-preferred direction. As shown in the figure, however, the agent’s most-preferred 

direction is not the same direction as his gradient: by tilting the direction of the vector 

contributed to the mechanism toward the “major axis” of the ovoid, the mechanism moves in 

only a slightly worse direction for that individual, but moves further. But when the agent 

truthfully reports her gradient, moving in the agent’s most-preferred direction violates directional 

citizen sovereignty, which for a single agent requires contributing a scalar multiple of the 

reported gradient સ࢘ఏ to the mechanism.  

 One natural and interesting set of variants of the NGA mechanism that satisfies all the 

axioms except directional citizen sovereignty are motivated by choosing a different norm for 

measuring the amount of policy change. Recall from section II that in the voting interpretation of 

the mechanism, each type ߠ is conceptualized as choosing its contribution to the policy change 

સ࢘ఏ෪  subject to the budget constraint ൫સ࢘ఏ෪ ൯′൫સ࢘ఏ෪ ൯ ൑ 1. This budget constraint can be understood 

as a constraint on the distance of movement, ฮસ࢘ఏ෪ ฮ ൑ 1, where ‖∙‖ is the ܮଶ norm (i.e., 
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Euclidean norm) defined by ‖ܠ‖ ൌ ൫∑ ௝ݔ
ଶ௉

௝ୀଵ ൯
భ
మ. Alternatively, the budget-constraint distance 

could be measured by the ܮ௤ norm, defined by ‖ܠ‖ ൌ ൫∑ หݔ௝ห
௤௉

௝ୀଵ ൯
భ
೜, for any 1 ൏ ݍ ൏ ∞ (at 1 and 

∞, the mechanism would violate the smoothness axiom). As ݍ → ∞, the choice set for સ࢘ఏ෪  

becomes a hypercube. Thus, each type can “vote” on every policy dimension independently, 

without having to trade off between them. This mechanism would therefore not capture any 

information on relative intensity of preference across policy dimensions. As ݍ → 1, the choice 

set for સ࢘ఏ෪  becomes an orthoplex (the higher-dimensional analog of a diamond in two 

dimensions, or an octahedron in three). In this case, each type’s optimum is a corner solution, 

effectively voting on only one policy dimension. This mechanism would capture some relative 

intensity information—specifically, which policy dimension matters most—but for each type 

would incorporate information on preferences for that one dimension. The value of 1 ൏ ݍ ൏ ∞ 

corresponds to a specific tradeoff between how much the mechanism accounts for the relative 

importance of the dimensions and for the amount of preference information in each dimension. 

 An argument in favor of the directional citizen sovereignty axiom (the case ݍ ൌ 2) is that 

it makes the mechanism most transparent: a type’s contribution to the policy change is in 

whatever direction most improves that type’s well being. For other variants of the mechanism, 

the government agency would estimate each type’s reported gradient and then calculate that 

type’s preferred contribution to the mechanism, which would point in a different direction than 

the reported gradient. Transparency is often viewed as a desirable property for policy institutions 

(e.g., Rawls, 1971).  

 

IV. Dynamic Performance of the Iterated NGA Mechanism 

 The previous sections described and characterized the NGA mechanism for a single 

marginal policy-adjustment iteration. It is important, however, to understand the dynamic 

properties of the mechanism because in practice the mechanism would be likely to be applied 

iteratively: the government agency would estimate the effects of policies on well being, adjust 

the policies accordingly, and then repeat the process. It is important to know, for example, if the 

mechanism generates a limit cycle, i.e., at the end of a sequence of iterations one ends up at the 

starting point, and thus a government using the mechanism is doomed to infinite transition 

between the same policies. Since the potential for such circularity is well known in voting 
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systems, and since the NGA mechanism can be interpreted as a voting procedure, cycles are a 

possibility that must be taken seriously.5  

Much of the social choice literature is concerned with social preferences, which specify a 

policymaker’s complete ranking of alternatives as a function of the preference rankings of each 

individual. The NGA mechanism does not directly relate to this literature because it is an 

algorithm that generates an outcome but not a complete ranking of alternatives (except in special 

cases, such as the one analyzed in Proposition 4, in which the iterated mechanism can be 

interpreted as maximizing a particular function). Interpreted as a social ordering, the iterated 

NGA mechanism is only a partial ordering because it only ranks policy vectors along the path 

that the iterated mechanism takes. 

Although the iterated mechanism does not generate a complete social preference, under 

conditions in which it terminates at a stationary point, it does generate a social choice rule: a 

mapping from the profile of individuals’ preference rankings and other parameters to a set of 

specific policies. Specifically, the iterated mechanism picks out a stationary point, or set of 

stationary points, as a function of the status quo and the profile of individuals’ global 

preferences. 

Perhaps the most well-known result about social choice rules is the Gibbard-

Sattherthwaite theorem, which states that any social choice rule satisfying a mild set of 

conditions cannot be strategy-proof. The iterated NGA mechanism is indeed not strategy-proof, 

even though it is first-order strategy-proof at each iteration. Our view is that first-order strategy-

proofness eliminates many straightforward ways to manipulate the mechanism (see section I.D), 

and the subtle calculations required to try to manipulate the dynamic path are less likely to be 

seriously exploited. 

 Below, we characterize the iterated mechanism analytically, and we further study it by 

conducting simulations. If it leads to a terminal stationary point, as the mechanism always does 

in all our simulations, that stationary point is a Pareto optimum. (We show analytically that such 

a stationary point always exists, but not that the mechanism will always get there.) Furthermore, 

in our simulations there is usually only one stationary point, and the simulations give insights 

into what factors make multiple stationary points more likely. We prove that any stationary point 

                                                 
5 There is also the logical possibility of the mechanism wandering endlessly—something that, like limit cycles, we 
did not find in any of our simulations, when all the preferences had bliss points within the policy space.   
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is always within a well-defined sphere surrounding the bliss points of any critical mass of types. 

Finally, we show analytically the need to worry about what effect the choice of coordinate 

system for the policy space has on the stationary point, and study this issue through simulations. 

 

IV.A. Defining the Iterated NGA Mechanism 

 In defining the iterated mechanism, we re-introduce the step-size parameter ߳ ൐ 0 from 

section I.F, which we assume to be very small in order to approximate a differential equation.6 

The iterated mechanism is defined as a sequence of policies, ࢖௧ for ݐ ൌ 0,1,2,…, such that 

௧࢖∆ ൌ ߳෍߶ఏ	સ࢘ఏ෪ ሺ࢖௧ሻ
஀

ఏୀଵ

. 

We also adopt the Nash-equilibrium assumption from section II because we would like to allow 

for the possibility that the current policy is in the neighborhood of the bliss point of one of the 

types. In the context of the one-shot mechanism, we assumed away this possibility as non-

generic. In some of our simulations discussed below, however, the path of the iterated 

mechanism enters the neighborhood of a bliss point, and in some simulations and some analytic 

results, the iterated mechanism converges toward a bliss point. 

 One issue of concern is that type ߠ’s optimal reported gradient direction is especially 

sensitive to everyone else’s reported gradients once current policy ࢖௧ିଵ is sufficiently close to 

her bliss point. More precisely, when the distance is less than ߳, any direction can be optimal, 

depending on everyone else’s report. Figure 6 illustrates that type ߠ’s preferred direction starting 

from the period-ሺݐ െ 1ሻ policy vector, ࢖௧ିଵ, is not the same as that type’s preferred direction 

after everyone else’s report has been contributed, ࢖௧ିଵ ൅ ߳ ∑ ߶ఏ෡	સࣂ࢘෡෪ ሺ࢖௧ሻఏ෡ஷఏ . Another issue 

arises when everyone else’s report puts the resultant policy within ߶ఏ߳ of type ߠ’s bliss point. In 

that case, type ߠ’s preferred vector would bring the mechanism exactly to type ߠ’s bliss point—

and the preferred length of the type’s vector would be the distance to that bliss point, which may 

be shorter than the length ߶ఏ߳ prescribed by the mechanism as it was described in sections I and 

III. 

                                                 
6 While we continue to work in discrete time, a natural alternative approach would be to define the iterated 
mechanism by the differential equation ࢖ሶ ௧ ൌ ∑ ߶ఏ	સࣂ࢛෪ ሺ࢖௧ሻ	

஀
ఏୀଵ and consider its stationary points. We are currently 

exploring this approach. 
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 Therefore, as in the voting interpretation of the mechanism from section II, we allow each 

type ߠ to choose not only its direction but also the length of its vector within the interval ሾ0, 1ሿ 

and assume that the directions and lengths are chosen in accordance with Nash equilibrium. In 

addition, we assume that the agents are assumed to be myopic in the sense that at each iteration 

they play a Nash equilibrium as if the mechanism were one-shot, not taking into account their 

dynamic incentives. We also assume that no two types with different preferences share a 

common bliss point.7 

This set-up has three attractive theoretical features. First, it specializes to the mechanism 

as described in previous sections in the case where the current policy vector ࢖௧ିଵ is not in the 

neighborhood of any bliss point: in that case, each type’s (approximate) dominant strategy is to 

choose its preferred direction from ࢖௧ିଵ and its maximal length of 1. Second, in the case where 

the current policy vector is in the neighborhood of type ߠ’s bliss point, at the “myopic Nash 

equilibrium,” all other types continue to play their dominant strategy (i.e., truthful reporting) as 

in the previous sections, and we only need to adjust the analysis for type ߠ, who chooses her 

optimal contribution to the mechanism starting from ࢖௧ିଵ ൅ ߳ ∑ ߶ఏ෡	સࣂ࢘෡෪ ሺ࢖௧ሻఏ෡ஷఏ . Third and 

relatedly, as ࢖௧ିଵ moves from one side of type ߠ’s bliss point to another, this modification 

avoids a discontinuity in the mechanism’s prescribed policy change ∆࢖௧ that would occur if the 

length of type ߠ’s contribution were held fixed. With our set-up, there is no discontinuity 

because the length of type ߠ’s preferred vector converges to 0 as the result from everyone else’s 

choices on that iteration, ࢖௧ିଵ ൅ ߳ ∑ ߶ఏ෡	સࣂ࢘෡෪ ሺ࢖௧ሻఏ෡ஷఏ , gets closer to his bliss point. 

As a practical matter for a government agency implementing the iterated mechanism, 

dealing with a type near its bliss point could generate potential complications. To maintain 

incentive-compatibility on the well-being survey at each iteration, the agency would need to 

implement the myopic Nash equilibrium. The agency may be able to detect when a type is near 

its bliss point by observing that the type’s preferred policy direction is becoming especially 

variable from one iteration to the next. In order to execute the equilibrium policy-change 

contribution of that type, the agency would need to estimate more than first-order information 

from the well-being data, including for example curvature of the indifference curves. However, 

                                                 
7 Myopic Nash equilibrium would still be defined if the current policy were the bliss point of more than one type, 
but the equilibrium might not be unique. Since multiple types sharing a bliss point is non-generic, we assume away 
the possibility to avoid the complexity of dealing with equilibrium selection. 
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we note that if the type near its bliss point has any concave, cardinal utility function underlying 

its ordinal preferences, then dealing correctly with near-bliss-point situations is relatively 

unimportant, regardless of what smooth social welfare function is used to aggregate it with the 

utility functions of others. Near a type’s bliss point, small changes in policy have only a second-

order effect on the agent’s utility, which implies that the effect on the agent of incorrectly 

accounting for these preferences is second order and that the agent has little incentive to respond 

untruthfully to the well-being survey. 

Returning to the theory, a stationary point of the iterated mechanism is defined as a 

policy vector ࢖∗ such that when ࢖௧ିଵ ൌ  ,∗࢖

௧࢖∆ ൌ ૙. 

We discuss the possibilities of non-existence of a stationary point (e.g., a limit cycle) and non-

uniqueness below in section IV.C.1. 

 

IV.B. Analytic Results 

In this section we provide analytic results. Some of these results describe the one-shot 

behavior of the NGA mechanism (which apply to each step along the policy trajectory), and 

some describe what this behavior implies for the properties of the iterated mechanism’s 

stationary points. Hylland and Zeckhauser (1980) previously proved several of the results about 

stationary points; we credit them with “HZ” in the statement of these results. 

The first result states that a stationary point exists. 

 

Proposition 1 (HZ).  There exists a stationary point of the iterated mechanism. 

 

The proposition follows from application of a standard fixed-point theorem. 

 Proposition 1 does not rule out the existence of multiple stationary points or the 

possibility that some initial policy vectors may lead to limit cycles instead of converging to the 

stationary point. We have not found any general conditions that rule out these possibilities, but 

as we discuss in section IV.C below, in our simulations we find no instances of limit cycles and 

find multiple stationary points only rarely. 

The next result describes an attractive feature of the NGA mechanism at each step: if 

some direction of policy change would make all groups better off, then the mechanism will find 
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and implement change in that direction, in the sense of having a positive dot product with that 

direction. 

 

Proposition 2.  If the current policy vector ࢖௧ is Pareto dominated by any other policy ࢖′, then 

as long as the step size ߳ is sufficiently small, ∆࢖௧ ⋅ ሺ࢖′ െ ௧ሻ࢖ ൐ 0. 

 

This is equivalent to saying that the mechanism delivers Pareto improvements when they are 

available, but these will often be combined with movements in a direction orthogonal to the 

Pareto improvement. (These orthogonal movements typically will not themselves be Pareto 

improvements, and may mean that some types lose out from the overall policy adjustment, which 

is therefore not always a Pareto improvement. For example, the mechanism does not wait until 

after all Pareto improvements have been exhausted to also favor the interests of large majorities 

over the interests of small minorities.)  

 An immediate corollary is that if policies are adjusted by iterated application of the 

mechanism, the policy adjustments will not stop until a Pareto optimal point is reached. 

 

Corollary to Proposition 2 (HZ).  If ࢖∗ is a stationary point, then ࢖∗ is Pareto optimal. 

 

Pareto optimality is generally viewed as an attractive feature of a social choice rule.8 

 If the Corollary to Proposition 2 is viewed as the iterated NGA mechanism’s analog of 

competitive equilibrium’s “first welfare theorem,” then the next result is its analog of the 

“second welfare theorem”: fixing the set of types and their preferences, for any Pareto optimal 

policy vector, there is a profile of population fractions that makes that vector a stationary point. 

 

Proposition 3 (HZ).  Fix the number of types Θ and their utility functions ݑଵሺ⋅ሻ, … ,  ஀ሺ⋅ሻ (butݑ

not their population fractions). For any Pareto optimal policy vector ࢖, there exists a vector 

ࣘ ൌ ሺ߶ଵ,… , ߶௵ሻ of strictly positive population fractions such that as long as the step size ߳ is 

sufficiently small, ࢖ is a stationary point.   

 

                                                 
8 More generally, Proposition 2 implies that no limit cycle is Pareto dominated in the sense of having a point that 
Pareto dominates every point on the limit cycle. 
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An intuition for this result comes from the analogy between the NGA mechanism and social-

welfare maximization from section I. In that analogy, the population fractions are the counterpart 

of the social welfare weights. Just as social-welfare maximization can deliver any Pareto 

optimum if the weights are chosen appropriately, the iterated NGA mechanism can do so if the 

population fractions and starting point are chosen appropriately. 

 A trivial case for the behavior of the mechanism is when one type ߠ comprises more than 

half the population. In that case, the mechanism always moves in the direction of ߠ’s bliss point. 

 

Proposition 4.  If ߶ఏ ൐
ଵ

ଶ
 and the current policy vector ࢖௧ is not a bliss point for type ߠ, then as 

long as the step size ߳ is sufficiently small, ∆࢖௧ ⋅ સ࢛ఏሺ࢖௧ሻ ൐ 0. 

 

To understand this result, note that even if every other type prefers policy to change in the exact 

opposite direction, type ߠ’s contribution to the direction of policy change is big enough to 

outweigh everyone else. It follows that when the mechanism is iterated and always moving in a 

direction preferred by type ߠ, it ends up at type ߠ’s bliss point. 

 

Corollary to Proposition 4.  If ߶ఏ ൐
ଵ

ଶ
, then there is a unique stationary point ࢖∗, and it is equal 

to type ߠ’s bliss point. 

 

The voting interpretation of the mechanism provides a straightforward intuition: a fully unified 

majority with identical preferences gets what it wants.  

 This corollary implies that when there are two types in the population, the generic 

stationary point is the bliss point of the larger group.9 Therefore, settings with only two types in 

the population are not generally useful for illustrating how the iterated mechanism would behave 

in real-world settings, which will typically involve many types. For this reason, our simple 

examples in what follows largely focus on settings with three types. 

Contrary to the assumption of the last result, it would probably be much more common in 

practice that no type comprises a majority of the population. In that case, one might conjecture 

that the iterated mechanism would induce movement toward the types’ bliss points collectively 

                                                 
9 Hylland and Zeckhauser (1980) stated the result for the case of two types. 
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in some sense. This conjecture is not true without some restriction on the types’ preferences; any 

policy vector at an arbitrary distance from the bliss points can be made a stationary point if the 

types’ preferences can be chosen arbitrarily. Figure 7 illustrates an example with four types in 

which the stationary point occurs far from the bliss points. We will discuss this example after 

presenting the next pair of formal results. 

To formalize our restriction on preferences, we define a measure of “maximum 

obliqueness.” The obliqueness of a point ࢖ on an indifference curve is the angle (measured in 

radians) between ࢖ఏ
bliss െ  is defined as the ߙ ሻ. The overall maximum obliqueness࢖ఏሺ࢛and સ ࢖

supremum of this angle over all types and over every point for each type. In words, the overall 

maximum obliqueness ߙ measures how far anyone’s utility gradient can deviate from pointing 

directly toward her bliss point. For example, if all types had spherical preferences that could be 

represented by the Euclidean distance ݑఏሺ࢖ሻ ൌ െฮ࢖ఏ
bliss െ  ฮ (or any monotonic transformation࢖

of that distance) the overall maximum obliqueness ߙ would be zero. In contrast, the example in 

Figure 7 shows a case where the types’ indifference curves have very high maximum 

obliqueness: in some places the gradient is almost orthogonal to the vector pointing to the bliss 

point. What will be needed for the proposition below is that the overall maximum obliqueness 

never reaches orthogonality nor asymptotes to it: ߙ ൏ గ

ଶ
. The most commonly used functional 

forms for preferences with bliss points will satisfy this requirement. For example, it is satisfied 

by any set of preferences that are homothetic around the bliss point, including quadratic 

preferences (defined by ellipsoidal indifference surfaces centered on a bliss point).10 

To further facilitate stating the proposition, we define the bliss-point circumsphere as the 

smallest sphere that circumscribes the bliss points. It has center ࢖஼ ≡ argmin࢖	maxఏฮ࢖ െ

 .blissߠ࢖െܥ࢖ߠmax≡ݎ bliss and radiusߠ࢖

 

Proposition 5.  Suppose that there is some ߙ ൏ గ

ଶ
 such that the overall maximum obliqueness is 

௧࢖‖ If .ߙ െ ‖஼࢖ ൐
௥

ୡ୭ୱఈ
, then as long as the step size ߳ is sufficiently small, ∆࢖௧ ⋅ ሺ࢖஼ െ ௧ሻ࢖ ൐ 0. 

                                                 
10 To see why, note that concavity of ݑఏሺ࢖ሻ implies that for any ࢖, the angle between ࢖ఏ

bliss െ  ሻ is less࢖ఏሺ࢛and સ ࢖
than or equal to 

గ

ଶ
. Note also that there is a maximum angle on the unit sphere around a type’s bliss point (because 

the unit sphere is a compact set), and this maximum is strictly less than 
గ

ଶ
. For a type with homothetic preferences, 

the maximum angle on the unit sphere is also the maximum angle on any sphere around the bliss point, and it is 
therefore the maximum over all ࢖. 
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Proposition 5 states that if the maximum obliqueness over all types is small enough and if the 

current policy vector is outside a sphere that is an expansion of the bliss-point circumsphere by a 

factor of 
ଵ

ୡ୭ୱఈ
	 (out from the center of the bliss-point circumsphere), then the mechanism will 

move toward (in a positive-dot-product sense) the center of the bliss-point sphere. The size of 

this expanded sphere is as small as possible if all types have Euclidean-distance preferences, in 

which case ߙ ൌ 0 and cos ߙ ൌ 1. The radius of the expanded sphere, 
௥

ୡ୭ୱఈ
, is finite as long as 

ߙ ൏ గ

ଶ
. 

 Proposition 5 immediately implies that any stationary point (and any limit cycle) must lie 

within this region. 

 

Corollary to Proposition 5.  If the maximum obliqueness is ߙ ൏ గ

ଶ
, then any stationary point ࢖∗ 

is within a sphere of radius 
௥

ୡ୭ୱఈ
 around the center of the bliss-point sphere, i.e., ‖࢖∗ െ ‖஼࢖ ൑

௥

ୡ୭ୱఈ
. 

 

The example in Figure 7 satisfies the conditions of this corollary because the types’ preferences 

are quadratic, but the stationary point is far from the center of the bliss-point sphere because the 

preferences have high maximum obliqueness. Figure 7 also illustrates, however, that having a 

stationary point that is far from the bliss points in policy space does not necessarily mean that the 

types are on a much lower indifference curve. In fact, by converging to a stationary point that is 

far from everyone’s bliss point in policy space, but close to the major axis of everyone’s 

elliptical indifference curves, the iterated mechanism succeeds in putting everyone on a 

relatively high indifference curve. 

 Proposition 6 extends Proposition 5 to handle the case when there are a few outlying 

types with bliss points far from the other types, giving conditions under which the mechanism 

will move toward the center of the circumsphere of the bliss points of a subset of “inside types.”  

 

Proposition 6.  Let J be a subset of types whose bliss points are all within a circumsphere with 

radius ݎ, and center ݌௖ and let ߱ ≡
∑ థೕೕ∉಻

∑ థೕೕ∈಻
.			Suppose ߙ ൏ గ

ଶ
 is the overall maximum obliqueness 
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for the subset of types J and ߱ ൏ cosሺߙሻ ൏ 1. Then if ‖࢖௧ െ ‖஼࢖ ൐
௥

ሺ√ଵିఠమ	ሻ	ୡ୭ୱሺఈሻିఠ	ୱ୧୬	ሺఈሻ
, and 

the step size ߳ is sufficiently small, ∆࢖௧ ⋅ ሺ࢖஼ െ ௧ሻ࢖ ൐ 0. 

 

A corollary follows immediately: 

 

Corollary to Proposition 6.  Suppose ߙ ൏ గ

ଶ
 is the overall maximum obliqueness for the subset 

of types J and ߱ ൏ cosሺߙሻ ൏ 1. Then any stationary point ࢖∗ is within a sphere of radius 
௥

ሺ√ଵିఠమ	ሻ	ୡ୭ୱሺఈሻିఠ	ୱ୧୬	ሺఈሻ
 around the center of the circumsphere for the bliss points of the subset of 

types J.  

 

Note that ߱ ൏ 1 is only possible if the “inside” group is a strict majority.	The importance of 

Proposition 6 and its corollary is in showing that the mechanism does not allow a small group of 

“holdouts” to prevent a substantial majority from getting what they want. How close the 

mechanism is guaranteed to get to the center of the circumsphere of that majority depends on 

both how big a majority it is and on the degree of disagreement within that majority, where the 

level of disagreement is indicated by both the size of the sphere needed to contain the bliss points 

of everyone in that majority and the overall maximum obliqueness in that majority.11  

 

IV.C. Assessing the Limitations of the Iterated Mechanism 

In this subsection we explore some of the iterated mechanism’s limitations, with a 

combination of analytic results and simulations. We first explore the possibility of limit cycles 

and multiple stationary points, and then the possibility of manipulation of the mechanism’s 

outcome through the choice of policy units. 

 

IV.C.1. The Possibility of Limit Cycles and Multiple Stationary Points 

 As noted above, Proposition 1 proves the existence of a stationary point but does not rule 

out that there may also be additional stationary points or limit cycles. We have not proven that 

                                                 
11 Proposition 2 and its corollary are not special cases of Proposition 6 and its corollary, since with one fully unified 
type, the maximum obliqueness does not matter. The overall maximum obliqueness in the majority matters in 
Proposition 6 because it indicates the degree to which the gradients of different types within that majority might 
cancel each other out, even when their bliss points are very close to one another. By contrast, individuals within a 
single type never cancel each others’ gradients out since their preferences are identical.  
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the iterated mechanism converges to a unique stationary point under general conditions, but the 

next pair of results provides a specific, highly restrictive condition. Specifically, we assume that 

each type has quadratic preferences, ݑఏሺ࢖ሻ ൌ െ൫࢖ െ ఏ࢖
bliss൯ષ൫࢖ െ ఏ࢖

bliss൯, where ષ is a positive 

definite matrix common to all types. 

 

Proposition 7.  Suppose that each type has preferences ݑఏሺ࢖ሻ ൌ െ൫࢖ െ ఏ࢖
bliss൯ષ൫࢖ െ ఏ࢖

bliss൯, 

where ષ is a positive definite matrix common to all types. If ࢖௧ ് ఏ࢖
bliss for all ߠ, then the 

function ܹሺ࢖ሻ ≡ െ∑ ߶ఏฮષ൫࢖ െ ఏ࢖
bliss൯ฮఏ  is strictly concave and differentiable at ࢖௧, and as 

long as the step size ߳ is sufficiently small, ∆࢖௧ ⋅ ௧ሻ࢖ሺܹ׏ ൒ 0, with strict inequality unless ࢖௧ is 

the global maximum of ܹ. 

 

Proposition 7 essentially says that there is a concave function, ܹሺ࢖ሻ, such that the mechanism 

moves policy in a direction that increases its value; in other words, it is a Lyapunov function. 

Proposition 7, together with an argument in the proof of the following corollary to handle cases 

when the iterated mechanism hits bliss points or ends up at a bliss point, implies that the iterated 

mechanism will converge to a unique stationary point. 

 

Corollary to Proposition 7.  If each type has preferences ݑఏሺ࢖ሻ ൌ െ൫࢖ െ ఏ࢖
bliss൯ષ൫࢖ െ ఏ࢖

bliss൯, 

where ષ is a positive definite matrix common to all types, then there is a unique stationary point 

that is the unique maximizer of the function ܹሺ࢖ሻ. 

 

 An interesting special case is when the matrix ષ is the identity matrix—the case where 

each type has Euclidean-distance preferences. In that case, ܹሺ࢖ሻ is simply minus the weighted 

sum of distances to every bliss point: ܹሺ࢖ሻ ≡ െ∑ ߶ఏฮ࢖ െ ఏ࢖
blissฮఏ . In this case when the matrix 

ષ is the identity matrix, ܹሺ࢖ሻ	is in fact a social welfare function in the sense that it can be 

written as a function of the utility functions: ܹሺ࢖ሻ ≡ െ∑ ߶ఏඥെݑఏሺ࢖ሻఏ . This is a well-behaved 

social welfare function except that it is not smooth, since it has kinks at bliss points. In view of 

this lack of smoothness we view this “social welfare function” more as a useful mathematical 

device for describing the behavior of the mechanism than as something with independent 



35 
 

normative significance. In this special case, the iterated mechanism can be understood as hill-

climbing and ultimately maximizing this “social welfare function.”12   

 

Simulation experiments. In order to explore a wider range of cases than quadratic 

preferences that are identical except for their bliss points, we conducted several simulation 

experiments. We allowed types to differ in the shapes of their preferences, but we maintained the 

assumption for all types in all simulations that preferences are quadratic. We did so because 

quadratic preferences are a second-order Taylor approximation to any smooth preferences, are 

among the simplest preferences to study that have a bliss point, and (despite their simplicity) 

generate substantial richness and variety in simulation results. 

 Across simulation cases, we varied the number of policy dimensions (2, 3, 4, or 25), the 

number of types (3, 4, or 10), and their population fractions and preferences, as described next. 

The specific numbers and probability distributions we used are arbitrary, but the different cases 

we explored had particular purposes, as we explain below.13 In each simulation case, we aimed 

to reach 400 simulation runs, but we exceeded this number in a few cases. 

The population fractions were either all equal or randomly chosen. For this and other 

random features of our simulations (described below), all variables are i.i.d., and we usually use 

the exponential distribution with parameter value equal to one defined by the density function 

݂ሺݔሻ ൌ ݁ି௫. We use this “unit-mean exponential distribution” because it has no additional 

parameters, is constrained to be positive, and has substantial variance. To choose the population 

fractions randomly, we drew a unit-mean exponential random variable ݔఏ for each type ߠ, and 

then we normalized the realized values to obtain the population fractions: ߶ఏ ൌ
௫ഇ

∑ ௫ഇᇲ
౸
ഇᇲసభ

. 

Quadratic preferences have homothetic ellipsoidal indifference surfaces that can be fully 

characterized by the location of the bliss point and the directions and lengths of the two axes. For 

each type, the location of the bliss point was random: the direction of the bliss point from the 

                                                 
12 Under what other circumstances could the behavior of the iterated mechanism be consistent with hill-climbing a 
social-welfare function? What is needed is for each group to have preferences with a representation that makes the 
normalized gradient at every point equal to the gradient before normalization. That equality is equivalent to a 
nontrivial partial differential equation that would generate a family of indifference surfaces from a single, initially 
specified, smooth indifference surface. We have not studied this problem in depth, but in our preliminary 
investigations, we have not been able to find any cases where the whole set of indifference surfaces appears 
relatively simple other than the case of spherical indifference surfaces.       
13 Upon publication, we will make our simulation code publicly available via the journal’s website to facilitate 
further simulation experiments. 
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origin was drawn from the uniform distribution on the unit sphere, and the distance of the bliss 

point from the origin was drawn from the unit-mean exponential distribution. The direction of 

the first axis was drawn from the uniform distribution on the unit sphere, and the direction of the 

second axis was drawn from the uniform distribution on the unit sphere in the ሺܲ െ 1ሻ–

dimensional subspace that is orthogonal to the direction of the first axis, and so on for the other 

axes in higher dimensions. 

For the lengths of the axes, we conducted two different types of simulations. In the “non-

extreme” simulations, the length of each axis was drawn from the unit-mean exponential 

distribution. In the “extreme” simulations, the length of each axis was drawn from a mixture 

distribution: the unit-mean exponential distribution with 50% probability and the 
ଵ

ଵ଴
-mean 

exponential distribution (that has probability density ݂ሺݔሻ ൌ 10݁ିଵ଴௫) with 50% probability. 

Preferences in which one axis is much longer than the other are extreme in the sense that the 

agent cares much more strongly about movement that is orthogonal to the shorter axis. 

Some of our simulation-design decisions had particular rationales. We view the 

simulations with random population fractions and “non-extreme” axis lengths as more realistic, 

but we studied equal population fractions and “extreme” axis lengths because we anticipated that 

these cases would make limit cycles or multiple stationary points more likely. Intuitively, equal 

population fractions of types with preferences symmetric to each other would imply that if there 

is one non-centered stationary point, then there must be another stationary point because the 

vector field induced by the mechanism would be symmetric. And “extreme” ellipsoidal 

indifference curves (planes, in the perfectly extreme limit) would correspond to nearly 

lexicographic preferences, implying that a type’ utility gradient shifts direction nearly 

discontinuously whenever its currently highest-ranked policy preference is satisfied. Indeed, 

prior to running simulations, we constructed examples of multiple stationary points by hand 

based on these intuitions.14 In addition, we view the cases with ܲ ൐ 2 policy dimensions as more 

                                                 
14 The key example with extreme preferences that we constructed and analyzed by hand had infinitely elliptical 
ellipses that looked like straight lines forming an isosceles triangle with an obtuse 178 degree angle at the apex, and 
bliss points for the different types at the center of each “side.” In this setting, the lexicographic aspect of the 
preferences means that when it starts below the long base of the triangle, the mechanism with an infinitesimal step 
size goes straight up until it hits one of the upper sides of the triangle, after which it proceeds to the bliss point on 
the upper side it hits first. (Thus, two of the three bliss points are both stationary points.) Note that that example has 
mirror symmetry. Another highly symmetric example that we specified by hand, but analyzed with a simulation, had 
four equal-weighted types with bliss points in a rectangle. The major axes of the elliptical indifference curves had a 
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realistic, but the two-dimensional cases enabled us to graph the simulation output and build 

intuition. 

Examples of the results from our simulations are in Appendix B. 

 Results on limit cycles. Table 1 shows, across the different types of simulation 

experiments, the frequency at which limit cycles were observed. We observed zero instances of 

limit cycles. 

 We conducted roughly 20 additional simulation runs with the specific purpose of trying 

to generate highly spiral policy trajectories that may be most likely to generate limit cycles and 

also found none in these cases. Specifically, we assumed equal population fractions for each type 

and arrayed their bliss points in a radially symmetric manner in a circle. We varied the ratio of 

the length of the major axis to the length of the minor axis. Each type’s elliptical indifference 

curves had a major axis at a given angle relative to the vector from the center of the circle to the 

bliss point. We ran simulations with 15-, 45-, and 75-degree angles. We observed no cycles. 

Figure 8 shows one example from a simulation with 120 types. 

While we caution that our simulations cover only a very small part of the spectrum of 

possible preference profiles, we tentatively conclude from these results that limit cycles may not 

be particularly problematic in practice. 

Results on multiple stationary points. Across our simulations, Table 2 shows the 

frequency at which multiple stationary points were observed. We had anticipated that the “equal 

weight extreme” simulation cases would be the most likely to have multiple stationary points. It 

turned out that the “random weight extreme” cases had a similar likelihood to the “equal weight 

extreme” cases, and these two generally had higher frequencies than the “non-extreme” cases. 

However, multiple stationary points were always reasonably uncommon. In particular, whenever 

there were 10 types or at least 4 policy dimensions, the frequency of multiple stationary points 

was never more than 2%. 

We suspect that multiple stationary points are not a major limitation of the iterated 

mechanism, for two reasons. First, as noted, they are pretty rare in our simulation results. 

Second, even though such path-dependence is theoretically unappealing, we conjecture that 

                                                                                                                                                             
fixed angle with the ray from the center of the rectangle to the relevant bliss point. Varying the angle and the ratio of 
the length of the sides of the rectangle quickly yielded cases with multiple stationary points. 
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people would nonetheless be willing to accept a policy-change sequence that starts at the status 

quo and along which they view each step as an improvement. 

 

IV.C.2. Manipulation of the policy-distance matrix 

As we have emphasized, we believe that the biggest limitation of the NGA mechanism is 

the potential for manipulation via choice of the policy units. In section I, we illustrated how such 

manipulation might work for the one-shot mechanism. For the iterated mechanism, the next 

result provides conditions under which a given type ߠ, if it determines the policy-distance matrix 

ఏ࢖ can manipulate the mechanism to get its bliss point ,ࡹ
bliss to be a stationary point. 

The key condition is that type ߠ is pivotal in at least one direction at its bliss point: there exists 

ࢎ ∈ Թ௉ defining a hyperplane ܪ ൌ ሼ࢖ ∈ Թ௉ ∶ ࢖ ⋅ ࢎ ൌ 0ሽ such that સ࢛ఏ෡൫࢖ఏ
bliss൯ ∉ ෠ߠ for all ܪ ്

 and ,ߠ

ቮ ෍ ߶ఏ෡
ఏ෡∈௵ష

െ ෍ ߶ఏ෡
ఏ෡∈௵శ

ቮ ൏ ߶ఏ 

where ି߆ ൌ ൛ߠ෠ ∈ ߆ ∶ સ࢛ఏ෡൫࢖ఏ
bliss൯ ⋅ ࢎ ൏ 0	and	ߠ෠ ്  and ,ܪ ൟ is the lower half-space defined byߠ

 ା is the analogously defined upper half-space. In words, there is a separating hyperplane߆

between the gradients of the other types at ߠ’s bliss point such that the difference between the 

fraction of the population preferring to move to one side of the hyperplane and the fraction 

preferring to move to the other side is smaller than ߠ’s fraction of the population. Note that type 

 .is pivotal in at least one direction at its bliss point if any such hyperplane can be found ߠ

 

Proposition 8.  If a type ߠ is pivotal in at least one direction at its bliss point, then there is some 

(positive definite) policy-distance matrix ࡹ such that type ߠ’s bliss point is a stationary point.  

 

Intuitively, type ߠ can “divide and conquer”: by shrinking distances in the direction orthogonal 

to the hyperplane, the marginal utilities in that direction can be made extremely big (relative to 

the marginal utilities in other directions), so that the other types expend virtually all of their votes 

fighting over which way to go in that direction, and then type ߠ can cast the deciding vote to 

remain at the status quo. Figures 9a and 9b illustrate the proposition in a situation with three 

equally weighted types, where type 3 is pivotal in at least one direction at its bliss point. In 
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Figure 9a, type 3 cannot reach its bliss point, but Figure 9b shows a transformation of the 

coordinate system such that type 3 reaches its bliss point (and chooses not to overshoot). 

 The intuition underlying the proposition makes clear why, as noted in section I.E., if 

policy units are chosen to make types’ indifference curves closer to spherical, then the scope for 

manipulation is reduced: even if a given type is pivotal in at least one direction at its bliss point, 

exploiting that position requires choosing policy units such that the indifference curves become 

highly oblique. More formally, a criterion such as choosing policy units to minimize the overall 

maximum obliqueness (or some measure of average obliqueness) of the preferences would make 

the mechanism harder to manipulate.  

 While Proposition 8 demonstrates the potential for extreme manipulation, it assumes that 

one type has complete control over the policy units. A more realistic political-economy worry is 

that some type could influence (but not fully control) the policy units. Also, it is unlikely that 

that type would have an equal opportunity to manipulate in any vector direction it chose; the 

opportunity to manipulate in a substantial way might be only along a limited number of 

coordinate axes. To shed some light on how problematic such influence could be, in the 

remainder of this section, we report simulation experiments that examine how variation in one of 

the policy-dimension units affect the stationary points of the iterated mechanism. While it is 

difficult to know how much influence would be realistic, we examine changes (both increases 

and decreases) by factors of  
ଷ

ଶ
 and 3, magnitudes that intuitively appear to us rather large. 

 Simulation experiments. We ran the same simulation cases as described above in section 

IV.C.1, except that we omitted the “extreme” axis cases. The one new feature is that after 

conducting each simulation run, we ran an otherwise-identical simulation except that we changed 

the policy units by multiplying the ܲ ൌ 1 policy-dimension coordinate by 
ଵ

ଷ
, 
ଶ

ଷ
, 
ଷ

ଶ
, or 3 before 

executing the iterated mechanism appropriate to the new coordinate system. (Note that the 

decreases by the first two factors will not necessarily generate the same results as the increases 

by the second two factors because when ܲ ൐ 2, making one dimension longer relative to the 

ܲ െ 1 other dimensions is not the same as making it shorter relative to them.) Then we undid the 

coordinate transformation to make the terminal stationary point chosen by the iterated 

mechanism after the coordinate transformation comparable to the terminal stationary point 
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chosen by the iterated mechanism with the original coordinate system. We then assessed the 

distance ݀ between the two terminal stationary points. 

 In order to report results in units that are comparable across simulation runs, we 

normalized ݀ in two ways. First, we divided all distances by the average distance between bliss 

points in 2-dimensional, 3-type simulations: 1.554. Then, for each simulation run, we divided by 

the ratio of the average distance between bliss points for that run to the mean over all simulations 

we conducted with the same number of types and dimensions of the average (within-run) 

distance between bliss points. Within a given simulation case, this procedure of normalizing the 

distances avoids reporting especially large and small distances merely as a result of a layout in 

which bliss points happened to be especially far apart or especially close together. And using the 

distance between bliss points in the 2-dimensional, 3-type simulations as the numeraire gets 

closer to making the normalized yardstick comparable to the distance between neighboring bliss 

points, as opposed to an average distance between bliss points that are more likely to be far apart 

for at least some pairs of bliss points when there are many types.    

 Results on changes in the policy-distance matrix. Figure 10 shows the distribution of 

normalized distances from these simulations, in each case ordered from largest to smallest across 

the 100 runs. In all simulation cases, it is quite rare for the normalized distance to exceed 1, i.e., 

to move the average distance between one bliss point and the next bliss point over, and in many 

simulation cases, the normalized distance is close to zero in the majority of runs. 

Three patterns are apparent from comparing results across simulation cases. First, as 

expected, the normalized distances are generally larger in the simulation runs with the more 

extreme dimension rescaling factors of 
ଵ

ଷ
 and 3 compared to the less extreme factors of 

ଶ

ଷ
 and 

ଷ

ଶ
. 

Second, as the number of policy dimensions increases from ܲ ൌ 2 to 3 to 4, the normalized 

distances tend to be smaller. Finally, for the simulation cases where the types have equal weight, 

as the number of types increases from Θ ൌ 3 to 4 to 10, the normalized distances tend to be 

smaller. The effect of increasing the number of types is less clear in the random-weight cases, 

but these cases may be expected to generate noisier results because some of the types will end up 

with relatively small weights, and thus the effective number of types will be smaller, and because 

random weights lead to a wider space of parameter values being explored, which increases the 

variance in distance.  
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Given that in practice, we imagine that the numbers of types and policies would both be 

at least as large as those we have examined in our simulations, we view our simulation results 

overall as somewhat reassuring. For example, in the case with ሺܲ, Θሻ ൌ ሺ4,10ሻ and equal 

weights, across all simulation runs the normalized distances are never more than 0.25 and almost 

always smaller than 0.10. 

 

V. Discussion 

In our analysis, we have treated all relevant policies as if they were control variables that 

could be adjusted quickly, with quick results. In practice, for many policies, it will take time to 

assess the extent to which individuals became better or worse off as a result of a policy change. 

In addition, in choosing between more frequently taking a smaller step size vs. less frequently 

taking a larger one, there is a tradeoff between having the gradients be better approximations to 

the indifference surfaces and providing adequate time for the assessment of delayed effects. 

Moreover, step sizes and frequency both need to be large enough to have a reasonable speed of 

progress toward the eventual destination of the iterated mechanism.15 

While the mechanism could in principle be applied to policies with delayed effects, such 

as policies affecting climate change, it would have to proceed somewhat differently than we have 

described throughout the paper. Much like cost-benefit analyses of such policies are conducted 

today, predictions about delayed policy effects on the state of the world would be used in 

conjunction with estimates of how such effects would matter for the utility proxy (here 

interpreted as a measure of instantaneous utility) to generate an estimate of policy effects on 

expected lifetime (discounted) utility. These estimates of effects on expected lifetime utility 

would be the inputs to the mechanism. After the policies are adjusted, the agency would 

formulate new predictions about the effects of further policy adjustments, and these would be 

used in the next iteration. 

Throughout this paper, we have assumed that the policy space is Թ௉, but in practice, 

some policies are bounded (e.g., government spending on parks cannot realistically fall below 

zero). With a bounded policy space, the analysis would carry over without modification as long 

as the policy vector always remains in the interior of the space. An extension of the mechanism 

                                                 
15 While we have emphasized the issue of manipulation of the coordinate system for the policy space, another area 
where there is a danger of manipulation is those who benefit from the status quo lobbying for a slower pace of 
progress toward the terminal stationary point. 
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to the case where the policy vector reaches an edge of the space is yet to be worked out. 

Furthermore, while simple constraints among policies are still consistent with the existence of a 

representation of the policy space by Թ௉, complex constraints among policies would require 

adjustments to how the mechanism is specified that we have not worked out.  

In our analysis, the application of the mechanism is limited to policies that can be varied 

continuously. In rare cases, it might nonetheless be possible to apply the mechanism to discrete 

policies by convexifying the policy space, i.e., making the policy variable the fraction of time at 

each discrete policy level, or the probability of each discrete policy level. In most cases, 

however, such convexification would be impractical. It remains an open question whether the 

mechanism could be extended in some other way to accommodate discrete policies. 

One challenge to implementing the NGA mechanism in practice is identifying the types 

in the population. In theory, different individuals are of the same type if they share the same 

local indifference surface over policies. In practice, sharing exactly the same indifference surface 

is unlikely, and the government agency would need to settle for partitioning the population into 

approximate types. One theoretically unjustified yet practical way to proceed would be to treat 

subgroups defined by a standard, small set of observables (such as sex, age, etc.) as types. But if 

there is heterogeneity in policy effects within these groups, then estimating the policy effects 

requires treating the well-being survey responses as interpersonally comparable within each 

group—i.e., it requires the assumption that within a group, respondents’ use of the well-being 

survey-response scale is uncorrelated with the policy effects. This is precisely the assumption 

that an ordinal approach to aggregation is intended to help avoid. To minimize such 

heterogeneity, the agency would ideally conduct a pilot study, tracking well-being and measuring 

a large set of observables in the sample, estimating policy effects in this sample for different 

groups, and then try to identify a smaller set of observables that could be measured regularly and 

used to characterize types. Alternatively, type membership could be treated as unobservable and 

the agency could use statistical methods to partition the population into types. 

On the other hand, on the theoretically justified extreme of the tradeoff between 

theoretical justification and practicality, every individual could be treated as her own type (with 

random sampling of the individuals surveyed so that the measured preferences are representative 

of the population). In practice, however, it would be impossible to implement the NGA 

mechanism this way using well-being data because, as long as the mechanism adjusts the policy 
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levels at every iteration, local policy effects cannot be estimated at the individual level. Treating 

individuals as types would require constructing reported gradients from contingent-valuation-

type surveys that directly elicit local policy preferences instead of from estimated policy effects 

on well-being data. But such contingent-valuation surveys crucially rely on the assumption that 

the population is well informed regarding the effects of policy—another assumption that our 

approach is intended to avoid. In summary, identifying the types in a practical yet theoretically 

justified manner remains an open challenge. 

There are three ways in which the NGA mechanism could become a reality. The story we 

have carried through this paper—a government agency with comprehensive power that not only 

computes the NGA mechanism but also executes policy changes—is the first and least likely. 

The second is a government agency with limited powers implementing policy changes in 

a few dimensions within its scope. Because the agency would need to have the legal authority to 

adjust policies regularly (without legislative approval) and based on a technocratic procedure, it 

would presumably focus on regulatory policies. In addition to neglecting people’s preferences 

over many other dimensions of policy, as we noted before, such a limited implementation would 

entail loss of the information on preference intensities from measuring marginal rates of 

substitution over many dimensions of policy.  

The third and perhaps most likely way in which the NGA mechanism could be realized is 

through a government agency addressing a broad range of policy dimensions, but with powers 

limited to data collection, statistical analysis, and moral suasion on the rest of the government. In 

the U.S., a model might be the Congressional Budget Office, which strives to be an impartial 

arbiter giving input into a wide range of legislative decisions. Because any power this agency 

had would rest on its credibility, it would have a strong bureaucratic incentive to make a good-

faith effort to do its statistical job carefully. Since the agency would be charged with estimating 

the effects of policy, it could also play a major role in encouraging policies to be adopted in ways 

that enable credible econometric identification of their effects. 

We have described the NGA mechanism as aggregating the effects of policy on a utility 

proxy, for example one derived from well-being survey data. However, the mechanism could be 

applied whenever the government agency has access to estimates of the marginal rates of 

substitution across policies for different types in the population. For example, if the population is 

well-informed about policy and its effects, contingent-valuation surveys that ask respondents to 
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make tradeoffs between alternative policy adjustments could be used to obtain such marginal rate 

of substitution estimates. Estimates of the compensating variation of policies obtained with 

standard revealed-preference methods could also serve as an input into the mechanism. Indeed, 

policy effect estimates obtained through different methods could be used in combination, as long 

as it is possible to calculate a gradient vector for each type. 

 Thus, the program we have discussed in this paper, while still far from addressing all the 

theoretical and practical questions—and hence still far from being ready for immediate 

adoption—provides a broadly applicable procedure based on democratic principles for 

aggregating estimates of the local effects of policy. It may achieve its greatest potential when 

used with a utility proxy derived from well-being measures that track a broad set of aspects of 

well being, including sense of purpose, quality of social relationships, and freedoms. Because 

such data may capture more of what matters to people than standard economic indicators alone 

do, a procedure for guiding policy based on these data may over time lead to lasting 

improvements in well being. 
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Table 1: Frequency of Cycles 
 

3‐Type 
 

4‐Type 
 

10‐Type 

  Random 
Weight 

Equal 
Weight 

Random 
Weight 
Extreme 

Equal 
Weight 
Extreme 

Random 
Weight 

Equal 
Weight 

Random 
Weight 
Extreme 

Equal 
Weight 
Extreme 

Random 
Weight 

Equal 
Weight 

Random 
Weight 
Extreme 

Equal 
Weight 
Extreme 

                         
P=2 Policy 
Dimensions 

0.00%* 
(0/400) 

0.00% 
(0/416) 

0.00% 
(0/412) 

0.00% 
(0/400) 

0.00% 
(0/400) 

0.00% 
(0/405) 

0.00% 
(0/402) 

0.00% 
(0/145) 

0.00%
(0/410) 

0.00% 
(0/450) 

0.00%
(0/402) 

0.00% 
(0/400) 

       

P=3  0.00% 
(0/400) 

0.00% 
(0/410) 

0.00% 
(0/480) 

0.00% 
(0/400) 

0.00%
(0/463) 

0.00%
(0/405) 

0.00% 
(0/420) 

0.00%
(0/416) 

0.00%
(0/450) 

0.00%
(0/407) 

0.00% 
(0/400) 

0.00% 
(0/400) 

       

P=4  0.00% 
(0/400) 

0.00% 
(0/430) 

0.00% 
(0/400) 

0.00% 
(0/400) 

0.00% 
(0/400) 

0.00%
(0/410) 

0.00% 
(0/400) 

0.00% 
(0/400) 

0.00%
(0/400) 

0.00%
(0/400) 

0.00%
(0/430) 

0.00%
(0/420) 
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Table 2: Frequency of Multiple Stationary Points 
 

3‐Type 
 

4‐Type 
 

10‐Type 

  Random 
Weight 

Equal 
Weight 

Random 
Weight 
Extreme 

Equal 
Weight 
Extreme 

Random 
Weight 

Equal 
Weight 

Random 
Weight 
Extreme 

Equal 
Weight 
Extreme 

Random 
Weight 

Equal 
Weight 

Random 
Weight 
Extreme 

Equal 
Weight 
Extreme 

                         
P=2 Policy 
Dimensions 

0.75% 
(3/400) 

0.24% 
(1/416) 

0.97% 
(4/412) 

2.25% 
(9/400) 

1.00%
(4/400) 

5.43% 
(22/405) 

2.49% 
(10/402) 

7.95% 
(33/145) 

0.24%
(1/410) 

0.00% 
(0/450) 

2.00%
(8/402) 

1.75% 
(7/400) 

       

P=3  0.75% 
(3/400) 

1.46% 
(6/410) 

1.25% 
(6/480) 

1.25%
(5/400) 

0.43%
(2/463) 

1.23% 
(5/405) 

1.43% 
(6/420) 

2.64%
(11/416) 

0.00%
(0/450) 

0.25%
(1/407) 

0.50%
(2/400) 

0.75%
(3/400) 

       

P=4  0.75% 
(3/400) 

0.23% 
(1/430) 

1.50% 
(6/400) 

1.00%
(4/400) 

0.75%
(3/400) 

073% 
(3/410) 

0.75% 
(3/400) 

1.25%
(5/400) 

0.00%
(0/400) 

0.00%
(0/400) 

0.70%
(4/430) 

0.24%
(1/420) 

       
 

 


