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1 Introduction

Assumptions about the structure of preferences and demand matter enormously for compar-

ative statics in trade, industrial organization, and many other applied fields. Consider just

a few examples of classic questions, and the answers to them, which have attracted recent

attention:

1. Competition Effects: Does globalization reduce firms’ markups? Yes, if and only if the

elasticity of demand falls with sales.1

2. Pass-Through: Do firms pass on cost increases by more than dollar-for-dollar? Yes, if

and only if the demand function is more than log-convex.2

3. Selection Effects: Do more productive firms select into FDI rather than exports? Yes,

if and only if the elasticity and convexity of demand sum to more than three.3

4. Price Discrimination: Does it raise welfare? Yes, if demand convexity falls as price

rises.4

5. Welfare: Is monopolistic competition efficient? Yes, if and only if preferences are CES.5

In each case, the answer to an important real-world question hinges on a feature of preferences

or demand which seems at best arbitrary and in some cases esoteric. All bar specialists may

have difficulty remembering these results, far less explicating them and relating them to each

other.

There is an apparent paradox here. These applied questions are all supply-side puzzles:

they concern the behavior of firms or the performance of industries. Why then should

the answers to them hinge on the shape of demand functions, and in all but the last case

1See Krugman (1979) and Zhelobodko, Kokovin, Parenti, and Thisse (2012).
2See Bulow and Pfleiderer (1983), Fabinger and Weyl (2012), and Weyl and Fabinger (2013).
3See Helpman, Melitz, and Yeaple (2004) and Mrázová and Neary (2011). The result holds when exports

incur iceberg trade costs. See Section 2.4 below.
4See Schmalensee (1981) and Aguirre, Cowan, and Vickers (2010), especially Proposition 2.
5See Dixit and Stiglitz (1977) and Dhingra and Morrow (2011).



on their second or even third derivatives? The paradox is only apparent, however. In

perfectly competitive models, shifts in supply curves lead to movements along the demand

curve, and so their effects hinge on the slope or elasticity of demand. When firms are

monopolists or monopolistic competitors, as in this paper, they do not have a supply function

as such; instead, exogenous supply-side shocks or differences between firms lead to more

subtle differences in behavior, whose implications depend on the curvature as well as the

slope of the demand function.

Different authors and even different sub-fields have adopted a variety of approaches to

these issues. Weyl and Fabinger (2013) show that many results can be understood by

taking the degree of pass-through of costs to prices as a unifying principle. Macroeconomists

frequently work with the “superelasticity” of demand, due to Kimball (1995), to model more

realistic patterns of price adjustment than allowed by CES preferences. In our previous

work (Mrázová and Neary (2011)), we showed that, since monopoly firms adjust along their

marginal revenue curve rather than the demand curve, the elasticity of marginal revenue itself

pins down some results. Each of these approaches focuses on a single demand measure which

is a sufficient statistic for particular results. This paper complements these by showing how

the different measures are related and by providing a new perspective on how assumptions

about the functional form of demand determine conclusions about comparative statics.

The key idea we explore is the value of taking a “firm’s eye view” of demand functions.

To understand a monopoly firm’s responses to infinitesimal shocks it is enough to focus

on the local properties of the demand function it faces, since these determine its choice of

output: the slope of demand determines the firm’s level of marginal revenue, which it wishes

to equate to marginal cost, while the curvature of demand determines the slope of marginal

revenue, which must be decreasing if the second-order condition for profit maximization is to

be met. Measuring slope and curvature in unit-free ways leads us to focus on the elasticity

and convexity of demand, following Seade (1980), and our major innovation is to show that

for a given demand function these two parameters are related to each other. We call the
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implied relationship the “Demand Manifold”, and show that it is a sufficient statistic linking

the functional form of demand to many comparative statics properties. It thus allows us

to illustrate existing results and develop new ones in a simple and compact way; and it

accommodates a wide range of demand behavior, including some new demand functions

which provide a parsimonious way of nesting better-known ones.

A “firm’s-eye view” is partial-equilibrium by construction, of course. Nevertheless, it can

provide the basis for understanding general-equilibrium behavior. To demonstrate this, we

show how our approach allows us to characterize the responses of outputs, prices and firm

numbers in the canonical model of international trade under monopolistic competition due to

Krugman (1979). In addition, we are able to throw light on the welfare effects of globalization

in this model by introducing a second illustrative device, the “Utility Manifold”. Analogously

to the demand manifold, this links the elasticity and the convexity of an arbitrary utility

function, and is a key determinant of the efficiency properties of an imperfectly competitive

equilibrium and the welfare effects of exogenous shocks. This is of interest both in itself, and

in the light of Arkolakis, Costinot, Donaldson, and Rodŕıguez-Clare (2012), who provide a

rare exception to the rule that the functional form of demand matters for comparative statics

results. Extending earlier work by Arkolakis, Costinot, and Rodŕıguez-Clare (2012), they

show that the gains from trade in a wide class of monopolistically competitive models are

affected little by departing from CES assumptions. Our results do not contradict theirs, but

they suggest some notes of caution when we wish to quantify the gains from trade in models

that allow for a wide range of demand behavior.

The plan of the paper follows this route map. Section 2 introduces our new perspective on

demand, showing how the elasticity and convexity of demand condition comparative statics

results. Section 3 shows how the demand manifold can be located in the space of elasticity

and convexity, and explores how a wide range of demand functions, both old and new, can be

represented by their manifold in a parsimonious way. Section 4 illustrates the usefulness of

our approach by applying it to a canonical general-equilibrium model of international trade
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under monopolistic competition, and characterizing the implications of assumptions about

functional form for the quantitative effects of exogenous shocks. Section 5 concludes, while

the Appendix gives proofs of all propositions and notes some more technical extensions.

2 Demand Functions and Comparative Statics

2.1 A Firm’s-Eye View of Demand

Almost by definition, a perfectly competitive firm takes the price it faces as given. Our

starting point is the fact that a monopolistic or monopolistically firm takes the demand

function it faces as given. Observing economists will often wish to solve for the full general

equilibrium of the economy, or to consider the implications of alternative assumptions about

the structure of preferences (such as discrete choice, representative agent, homotheticity,

separability, etc.). By contrast, the firm takes all these as given and is concerned only

with maximizing profits subject to the demand function it perceives. For the most part

we write this demand function in inverse form, p = p(x), with the only restrictions that

consumers’ willingness to pay is continuous, twice differentiable, and strictly decreasing in

sales: p′(x) < 0. It is sometimes convenient to switch to the corresponding direct demand

function, x = x(p), with x′(p) < 0, the inverse of p(x).

Because we want to highlight the implications of alternative assumptions about demand,

we assume throughout that marginal cost is constant.6 Maximizing profits therefore requires

that marginal revenue should equal marginal cost and should be decreasing with output.

These conditions can be expressed in terms of the slope and curvature of demand, measured

by two unit-free parameters, the elasticity ε and convexity ρ of the demand function:

ε(x) ≡ − p(x)

xp′(x)
> 0 and ρ(x) ≡ −xp

′′(x)

p′(x)
(1)

6Zhelobodko, Kokovin, Parenti, and Thisse (2012) show that variable marginal costs make little difference
to the properties of models with homogeneous firms. In models of heterogeneous firms it is standard to assume
that marginal costs are constant.
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These are not unique measures of slope and curvature, and our results could alternatively be

presented in terms of other parameters, such as the convexity of the direct demand function,

or the Kimball (1995) superelasticity of demand. (See Appendix A for more details and

references.) If the first-order condition holds for a zero marginal cost, it implies that the

elasticity cannot be less than one:

p+ xp′ = c ≥ 0 ⇒ ε ≥ 1 (2)

As for the second-order condition, if marginal revenue decreases with output, then our mea-

sure of convexity must be less then two:

2p′ + xp′′ < 0 ⇒ ρ < 2 (3)

These restrictions can be visualized in terms of an admissible region in {ε, ρ} space, as shown

by the shaded region in Figure 1.7

4.0

 
4.0

3.0

2.0

1 01.0


0.0
-2.0 -1.0 0.0 1.0 2.0 3.0 

Figure 1: The Admissible Region

7The admissible region is {ε, ρ} ∈ {1 ≤ ε ≤ ∞,−∞ ≤ ρ < 2}. We focus on the case where ε ≤ 4.5
and ρ ≥ −2.0, since this is where most interesting issues arise. Note that the admissible region is larger in
oligopolistic markets, since both boundary conditions are less stringent than (2) and (3). See Appendix B
for details.
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2.2 Superconvexity

In general, both ε and ρ vary with sales. The only exception is the case of CES preferences

or iso-elastic demands:8

p(x) = βx−1/σ ⇒ ε = σ, ρ = ρCES ≡ σ + 1

σ
> 1 (4)

Clearly this case is very special: both elasticity and convexity are determined by a single

parameter. The curve labeled “SC” in Figure 2 illustrates the implied relationship between

ε and ρ for all members of the CES family: ε = 1
ρ−1

, or ρ = ε+1
ε

. Every point on this curve

corresponds to a different demand function: firms always operate at that point irrespective

of the values of exogenous variables. In this respect too the CES is very special, as we will

see. The Cobb-Douglas special case corresponds to the point {ε, ρ} = {1, 2}, and so has

the dubious distinction of being just on the boundary of both the first- and second-order

conditions.

0.0

1.0

2.0

3.0

4.0

-2.0 -1.0 0.0 1.0 2.0 3.0





SC

Cobb-Douglas

Sub-Convex Super-
Convex

Figure 2: The Super- and Sub-Convex Regions

The CES case is important in itself but also because it is an important boundary for

comparative statics results. Following Mrázová and Neary (2011), we can define a local

8It is convenient to follow the widespread practice of applying the “CES” label to the demand function in
(4), though strictly speaking this only follows from CES preferences in the case of monopolistic competition,
when firms assume they cannot affect the aggregate price index. The fact that CES demands are sufficient

for constant elasticity is obvious. The fact that they are necessary follows from setting − p(x)
xp′(x) equal to a

constant σ and integrating.
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property of any point on an arbitrary demand function as follows:

Definition 1. A demand function p(x) is superconvex at a point (p0, x0) if and only if

log p(x) is convex in log x at (p0, x0).

As we show in Appendix C, superconvexity of a demand function at an arbitrary point is

equivalent to the function being more convex at that point than a CES demand function

with the same elasticity:

d2 log p

d(log x)2
=

1

ε

(
ρ− ε+ 1

ε

)
=

1

ε

(
ρ− ρCES

)
≥ 0 (5)

Hence the SC curve in Figure 2 divides the admissible region in two: points to the right

of the curve are strictly superconvex, points to the left are strictly subconvex, while all

CES demand functions are both weakly superconvex and weakly subconvex. We also show

in Appendix C that superconvexity determines the relationship between demand elasticity

and sales: the elasticity of demand increases in sales (or, equivalently, decreases in price),

εx ≥ 0, if and only if the demand function p(x) is superconvex. So, ε is independent of sales

only along the SC locus, it increases with sales in the superconvex region to the right, and

decreases with sales in the subconvex region to the left. These properties imply something

like the comparative-statics analogue of a phase diagram: the arrows in Figure 2 indicate

the direction of movement as sales rise.

Superconvexity also matters for competition effects and for relative pass-through: the

effects of globalization and of cost changes respectively on firms’ proportional profit margins.9

From the first-order condition, the relative markup p−c
p

equals −xp′

p
, which is just the inverse

of the elasticity ε. Hence, if globalization reduces incumbent firms’ sales in their home

markets, it is associated with a higher elasticity and so a lower markup if and only if demand

is subconvex. Similarly, an increase in marginal cost c, which other things equal must lower

sales, is associated with a higher elasticity and so a lower proportional profit margin, implying

9This is the sense in which the term “pass-through” is used in international macroeconomics. See for
example Gopinath and Itskhoki (2010).
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less than 100% pass-through, if and only if demands are subconvex:10

d log p

d log c
=
ε− 1

ε

1

2− ρ
> 0 ⇒ d log p

d log c
− 1 = −ε+ 1− ερ

ε(2− ρ)
> 0 (6)

However, for absolute pass-through, a different criterion applies, to which we turn next.

2.3 Super-Pass-Through

The criterion for absolute pass-through from cost to price has been known since Bulow and

Pfleiderer (1983). Differentiating the first-order condition p+xp′ = c, we see that an increase

in cost must raise price provided only that the second-order condition holds, which implies

a different expression for the effect of an increase in marginal cost on the absolute profit

margin:

dp

dc
=

1

2− ρ
> 0 ⇒ dp

dc
− 1 =

ρ− 1

2− ρ
R 0 (7)

Hence we have what we call “Super-Pass-Through”, whereby the equilibrium price rises by

more than the increase in marginal cost, if and only if ρ is greater than one. Figure 3 shows

how the admissible region in {ε, ρ} space is divided into sub-regions corresponding to super-

and sub-pass-through. The boundary between the sub-regions corresponds to a log-convex

direct demand function, which is less convex than the CES.11 It is immediately obvious that

superconvexity implies super-pass-through, but not the converse.

We have already seen in the introduction that some comparative statics results hinge on

whether convexity increases with sales, or, equivalently, decreases with price. It is clear from

(7) that pass-through and convexity must increase together, so this is equivalent to asking

whether absolute pass-through increases with sales, as highlighted by Weyl and Fabinger

10More generally, loci corresponding to 100k% pass-through are defined by ρ = 2k−1
k + 1

kε : a family of

rectangular hyperbolas, all asymptotic to ρ = 2k−1
k and ε = 0, and all passing through the Cobb-Douglas

point {ε, ρ} = {1, 2}.
11Setting ρ = 1 implies a second-order ordinary differential equation xp′′(x) + p′(x) = 0. Integrating this

yields p(x) = c1 + c2 log x, where c1 and c2 are constants of integration, which is equivalent to a log-convex
direct demand function, log x(p) = γ + δp.
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Figure 3: The Super- and Sub-Pass-Through Regions

(2013). As we show in Appendix C, a necessary and sufficient condition for this is the

following:

Lemma 1. Pass-through and convexity increase with sales if and only if ρ(1 + ρ − χ) > 0,

where χ ≡ −xp′′′

p′′
.

The parameter χ is a unit-free measure of the third derivative of the demand function,

which, following Kimball (1992) and Eeckhoudt, Gollier, and Schneider (1995), we call the

“Coefficient of Relative Temperance,” or simply “temperance.” The result in Lemma 1

that the change in convexity as sales rise depends only on temperance and convexity itself

parallels that in the previous section that the change in elasticity as sales rise depends only

on convexity and elasticity itself: see Appendix C.

Our diagram in {ε, ρ} space provides a convenient way of checking how pass-through

varies with sales for a given demand function. Except for CES demand functions, both

elasticity and convexity vary with sales; and we have already seen that the variation of

elasticity with sales depends on whether demand is sub- or super-convex. From this it is

easy to infer how convexity must vary with sales using the fact that:

dε

dρ
= εx

dx

dρ
=
εx
ρx

(8)

Recalling that the direction of change of pass-through depends only on the sign of ρx, we
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can conclude that pass-through increases with sales if and only if dε
dρ

and εx have the same

sign. Since, as we have seen in Section 2.2, εx is positive if and only if the demand function

is superconvex, we can conclude the following:

Lemma 2. Pass-through increases with sales if and only if either: elasticity and convexity

move together in the subconvex region; or elasticity and convexity move in opposite directions

in the superconvex region.

0.0

1.0

2.0

3.0

4.0

-2.0 -1.0 0.0 1.0 2.0 3.0





SPT SC

(3) DPT

(2) DPT(1) IPT

(4) IPT

Figure 4: Increasing and Decreasing Pass-Through

This result is illustrated in Figure 4, where cases (1) and (4) represent the two configurations

that are consistent with increasing pass-through, while cases (2) and (3) imply decreasing

pass-through.12

2.4 Supermodularity

The third criterion for comparative statics responses that we can locate in our diagram

arises in models with heterogeneous firms. Consider a choice between two ways of serving

a market, one of which incurs lower variable costs but higher fixed costs than the other.13

Let π (c, t) denote the maximum operating profits which a firm with marginal production

12For an alternative approach to variable pass-through, see Appendix H.2.
13Mrázová and Neary (2011) call the resulting selection effects “second-order,” contrasting them with

“first-order selection effects” which arise from the decision whether to serve a market or not, as in Melitz
(2003). First-order selection effects depend only on the first derivative of the profit function with respect to
marginal cost, and are much more robust than second-order selection effects.
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costs c can earn facing a marginal cost of accessing the market equal to t. Mrázová and

Neary (2011) show that a sufficient (and, with additional restrictions, necessary) condition

for more efficient firms (i.e., firms with lower c) to select into the activity with lower relative

marginal cost (i.e., lower t) is that the firm’s ex post profit function is supermodular in c

and t. This criterion is very general, but in an important class of models it takes a relatively

simple form. This class is where the profit function is twice differentiable, and depends on c

and t multiplicatively:

π(c, t) ≡ max
x

π̃(x, c, t) π̃(x, c, t) = [p(x)− tc]x (9)

This specification encompasses a number of important models. Interpreting t as an iceberg

transport cost, it represents the canonical model of horizontal foreign direct investment (FDI)

as in Helpman, Melitz, and Yeaple (2004): firms have to choose between proximity to foreign

consumers - FDI incurs zero access costs - or “concentration”, exporting from their home

plant; the latter saves on fixed costs but requires that they produce tx units in order to sell

x in the foreign market. Alternatively, interpreting t as the wage that must be paid to c

workers to produce a unit of output, it represents the canonical model of vertical FDI, as in

Antràs and Helpman (2004): firms in the high-income “North” wishing to serve their home

market face a choice between producing at home and paying a high wage, or building a new

plant in the low-wage “South.” Finally, interpreting t as the premium over the marginal cost

c which a firm will incur if it fails to invest in superior technology, equation (9) represents a

model of choice of technique as in Bustos (2011).

When the profit function is twice differentiable in c and t, supermodularity is equivalent

to a positive value of πct over the relevant range. Moreover, when the profit function is given

by (9), Mrázová and Neary (2011) show that πct is positive if and only if the elasticity of

marginal revenue with respect to sales is less than one.14 When this condition holds, a 10%

14By the envelope theorem, πc = π̃c = −tx. Hence, πct = −x− tdxdt = −x− tc
2p′+xp′′ = −x+ ε−1

2−ρx. Writing

revenue as R(x) = xp(x), so marginal revenue is R′ = p+xp′, the elasticity of marginal revenue (in absolute

12
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Figure 5: The Super- and Sub-Modularity Regions

reduction in the marginal cost of serving a market raises sales by more than 10%, so more

productive firms have a bigger incentive to engage in FDI than in exports. The elasticity of

marginal revenue depends on turn on the elasticity and convexity of demand:

πct =
ε+ ρ− 3

2− ρ
x (10)

It follows that supermodularity holds in models described by (9) if and only if ε+ρ > 3. This

criterion defines a third locus in {ε, ρ} space, as shown in Figure 5. Once again it divides the

admissible region into two sub-regions, one where either the elasticity or convexity or both

are high, so supermodularity prevails, and the other where the profit function is submodular.

The locus lies everywhere below the superconvex locus, and is tangential to it at the Cobb-

Douglas point. Hence, supermodularity always holds with CES demands, the case assumed

in Helpman, Melitz, and Yeaple (2004), Antràs and Helpman (2004) and Bustos (2011),

among many others. However, when demands are subconvex and firms are large (operating

at a point on their demand curve with relatively low elasticity), submodularity prevails, and

so the standard comparative statics results may be reversed.

value) is seen to be: −xR
′′

R′ = 2−ρ
ε−1 . Combining these results gives (10).
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2.5 Summary

Figure 6 summarizes the implications of this section. The three loci, corresponding to con-

stant elasticity (SC), unit convexity (SPT), and unit elasticity of marginal revenue (SM),

place bounds on the combinations of elasticity and convexity consistent with particular

comparative statics outcomes. Of eight logically possible sub-regions within the admissible

region, three can be ruled out because superconvexity implies both super-pass-through and

supermodularity. From the figure it is clear that knowing the values of the elasticity and con-

vexity of demand which a firm faces is sufficient to predict its responses to a very wide range

of exogenous shocks, including four of the five classic questions posed in the introduction.

Region SC SPT SM

1
2 X
3 X
4 X X
5 X X X

4.0

 SM SPT SC

4.0

2 5

3.0

4
2.0

1 4

1 0

3
1.0

0.0
-2.0 -1.0 0.0 1.0 2.0 3.0 

Figure 6: Regions of Comparative Statics

3 The Demand Manifold

3.1 Introduction

So far, we have shown how a very wide range of comparative statics responses can be signed

just by knowing the values of ε and ρ which a firm faces. Next we want to see how different

assumptions about the form of demand determine these responses. Formally, we seek to

characterize the set of ε and ρ consistent with a given demand function p = p0(x), which is
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defined over a range X̃ ({p0}) ⊆ R+
1 :

Ω [{p0}] ≡
[
ε, ρ : ε = − p0 (x)

xp′0 (x)
, ρ = −xp

′′
0 (x)

p′0 (x)
, ∀x ∈ X̃ ({p0})

]
(11)

We have already seen that this set and hence the comparative statics responses implied by

particular demand functions are pinned down in two special cases: with CES demands the

firm is always at a single point in {ε, ρ} space, while with linear demands it must lie along

the ρ = 0 locus. Can anything be said more generally? The answer is “yes”, as the following

result shows:

Proposition 1. For every continuous, three-times differentiable, strictly-decreasing demand

function, p0(x), other than the CES, the set Ω [{p0}] corresponds to a smooth curve in {ε, ρ}

space.

The proof is in Appendix D. It proceeds by showing that, at any point on every demand

function other than the CES, at least one of the functions ε = ε(x) and ρ = ρ(x) can be

inverted to solve for x, and the resulting expression, denoted Xε(ε) and Xρ(ρ) respectively,

substituted into the other function to give a relationship between ε and ρ:

ε = ε̄(ρ) ≡ ε [Xρ(ρ)] or ρ = ρ̄(ε) ≡ ρ [Xε(ε)] (12)

We write this in two alternative ways, since at any given point only one may be well-defined,

and, even when both are well-defined, one or the other may be more convenient depending

on the context. The relationship between ε and ρ defined implicitly by (11) is not in general

a function, since it need not be globally single-valued; but neither is it a correspondence,

since it is locally single-valued. So we call it the “Demand Manifold” corresponding to the

demand function p0(x).15 In the CES case, not covered by Proposition 1, we follow the

convention that, corresponding to each value of the elasticity of substitution σ, there is a

one-dimensional point-manifold lying along the SC or CES locus.

15We are grateful to Kevin Roberts for pointing out that it is indeed a manifold.

15



The first advantage of working with the demand manifold rather than the demand func-

tion itself is that it is located in {ε, ρ} space, and so it immediately reveals the implications

of assumptions made about demand for comparative statics. A second advantage, departing

from the “firm’s-eye-view” that we have adopted so far, is that the manifold is often inde-

pendent of exogenous parameters even though the demand function itself is typically not.

Expressing this in the language of Chamberlin (1933), exogenous shocks typically shift the

perceived demand curve, but they need not shift the corresponding demand manifold. When

this property of “manifold invariance” holds, exogenous shocks lead only to movements along

the manifold, not to shifts in it. As a result, it is particularly easy to make comparative

statics predictions. Clearly, the manifold cannot in most cases be invariant to changes in all

parameters: even in the CES case, the point-manifold is not independent of the value of σ.16

However, it is invariant to changes in any parameter φ which affects the level term only; for

ease of comparison with later functions, we write this in terms of both the direct and inverse

CES demand functions:

x (p, φ) = δ (φ) p−σ ⇔ p (x, φ) = β(φ)x−1/σ (13)

In the same way, for many demand functions, including some of the most widely-used, the

manifold turns out to be invariant with respect to some of their parameters, so it provides a

parsimonious summary of their implications for comparative statics.17 In the remainder of

this section, we show that manifold invariance provides a fruitful organizing principle for a

wide range of demand functions. Section 3.2 extends (13) in a non-parametric way, whereas

Sections 3.3 and 3.4 extend it parametrically by adding an additional power-law term to the

inverse and direct CES demand functions respectively.

16The manifold corresponding to the linear demand function is a relatively rare example which is invariant
with respect to all demand parameters.

17Formally, the manifold can be written in full as either ε̄(ρ, φ) = ε [Xρ(ρ, φ), φ] or ρ̄(ε, φ) ≡ ρ [Xε(ε, φ), φ].
Manifold invariance requires that either ε̄φ = εxX

ρ
φ+εφ = −εx ρφρx +εφ = 0 or ρ̄φ = ρxX

ε
φ+ρφ = −ρx εφεx +ρφ =

0.
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3.2 Multiplicatively Separable Demand Functions

Our first result is that manifold invariance holds when the demand function is multiplicatively

separable in φ:

Proposition 2. The Demand Manifold is invariant to shocks in a parameter φ if either the

direct or inverse demand function is multiplicatively separable in φ:

(a) x (p, φ) = δ (φ) x̃ (p) ; or (b) p (x, φ) = β(φ)p̃(x) (14)

The proof is in Appendix E, and relies on the convenient property that, with separability of

this kind, both the elasticity and convexity are themselves invariant with respect to φ. This

result has some important corollaries. First, when utility is additively separable, the inverse

demand function for any good equals the marginal utility of that good times the inverse

of the marginal utility of income. The latter is a sufficient statistic for all economy-wide

variables which affect the demand in an individual market, such as aggregate income or the

price index. A similar property holds for the direct demand function if the indirect utility

function is additively separable (a case recently explored by Bertoletti and Etro (2013)), with

the qualification that the indirect sub-utility functions depend on prices relative to income.

(See Appendix E for details.) Summarizing:18

Corollary 1. If preferences are additively separable, whether directly or indirectly, the de-

mand manifold for any good is invariant to changes in aggregate variables (except for income,

in the case of indirect additivity).

Given the pervasiveness of additive separability in theoretical models of monopolistic com-

petition, this is an important result, which implies that in many models the manifold is

invariant to economy-wide shocks. We will see a specific application in Section 4, where we

18Direct and indirect additivity are important special cases of a class of demand functions recently in-
troduced by Arkolakis, Costinot, Donaldson, and Rodŕıguez-Clare (2012), all of which are nested by (14).
Another special case is the QMOR family: see Section G.3 below.
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apply our approach to the Krugman (1979) model of international trade with monopolistic

competition.

A second corollary of Proposition 2 comes by noting that, setting δ (φ) in (14)(a) equal

to market size s, yields the following:

Corollary 2. The Demand Manifold is invariant to neutral changes in market size: x(p, s) =

sx̃(p).

This corollary is particularly useful since it does not depend on the functional form of the

individual demand function. An example which illustrates this is the logistic direct demand

function, equivalent to a logit inverse demand function (see Cowan (2012)):

x(p, s) =
(
1 + ep−a

)−1
s ⇔ p(x, s) = a− log

x

s− x
(15)

Here x/s is the share of the market served: x ∈ [0, s]; and a is the price which induces a

50% market share: p = a implies x = s
2
. The elasticity equals ε = p s−x

s
, while the convexity

equals ρ = s−2x
s−x , which must be less than one. Eliminating x and p yields a closed-form

expression for the manifold:

ε̄(ρ) =
a− log(1− ρ)

2− ρ
(16)

which is invariant with respect to market size s though not with respect to a. Figure 7

illustrates this for values of a equal to 2 and 5.19

The logistic is just one example of a whole family of demand functions, many of which

can be derived from log-concave distribution functions: Bergstrom and Bagnoli (2005) give

a comprehensive review of these. The power of the approach introduced in the last section

is that we can immediately state the properties of all these functions: they imply sub-pass-

through and, a fortiori, subconvexity, while they are typically supermodular for low values

of output and submodular for high values. Any shock, such as a partial-equilibrium increase

19The value of ρ determines market share and the level of price relative to a: x = 1−ρ
2−ρs and p = a−log(1−ρ).

In particular, when the function switches from convex to concave (i.e., ρ is zero), the elasticity equals a
2 ,

market share is 50%, and p = a.
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Figure 7: The Demand Manifold for the Logistic Demand Function

in market size, which raises the output of a monopoly firm, implies an adjustment as shown

by the arrow in the figure. Finally, a third corollary of Proposition 2 is the dual of Corollary

2, and comes from setting β(φ) in (14)(b) equal to quality q:

Corollary 3. The Demand Manifold is invariant to neutral changes in quality: p(x, q) =

qp̃(x).

Baldwin and Harrigan (2011) call this assumption “box-size quality”: the consumer’s will-

ingness to pay for a single box of a good with quality level q is the same as their willingness

to pay for q boxes of the same good with unit quality. Though special, it is a very convenient

assumption, widely used in international trade theory, so it is useful that the comparative

statics predictions of any such demand function are independent of the level of quality.

3.3 Bipower Inverse Demand Functions

A different approach to exploring the relationship between demand functions and the cor-

responding demand manifolds is to ask which demand functions correspond to particular

forms of the manifold itself. The first result of this kind characterizes the demand functions

that are consistent with a linear manifold:

Proposition 3. The Demand Manifold is linear in ε and ρ if and only if the inverse demand
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function takes a bipower form:

p (x) = αx−η + βx−θ ⇔ ρ̄ (ε) = η + θ + 1− ηθε (17)

Sufficiency follows by differentiating p(x) and calculating the manifold directly. Necessity

follows by setting ρ(x) = a + bε(x), where a and b are constants, and solving the resulting

Euler-Cauchy differential equation. Details are in Appendix F.1. Clearly, this manifold is

invariant with respect to the parameters α and β, so changes in exogenous variables such

as income or market size which only affect α or β do not shift the manifold. Putting this

differently, we need four parameters to characterize the demand function, but only two to

characterize the manifold, and therefore to place bounds on the comparative statics responses

reviewed in Section 2. However, the other parameters in (17), α and β, are also qualitatively

important, as the following proposition shows:

Proposition 4. The bipower inverse demand functions in (17) are superconvex if and only

if both α and β are positive.

The two sets of parameters thus play very different roles. η and θ determine the location

of the manifold, whereas α and β determine which “branch” of a particular manifold is

relevant: the superconvex branch if they are both positive, the subconvex one if either of

them is negative. (They cannot both be negative since the price is nonnegative.) How this

works is best understood by considering some special cases.

The first sub-case of the demand functions in (17) we consider comes from setting η equal

to one.20 This gives the “inverse PIGL” (“price-independent generalized linear”) system,

which is dual to the direct PIGL system of Muellbauer (1975), to be considered in the

next sub-section. Setting η equal to one expresses expenditure p(x)x as a “translated-CES”

function of sales: p(x) = 1
x
(α + βx1−θ). This system implies that the elasticity of marginal

revenue defined in footnote 14 is constant and equal to θ: η = 1 implies from (17) that

20Because η and θ enter symmetrically into (17), it is arbitrary which we set equal to one. For concreteness
and without loss of generality we assume β 6= 0 and θ 6= 0 throughout.
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−xR′′

R′
= 2−ρ

ε−1
= θ. The limiting case as θ → 1 is the inverse “PIGLOG” (“price-independent

generalized logarithmic”) or inverse translog, p(x) = 1
x
(α′ + β′ log x).21 This implies that

the elasticity of marginal revenue is unity, and so, as noted in Mrázová and Neary (2011),

it coincides with the supermodularity locus: η = θ = 1 implies from (17) that ρ̄ (ε) = 3− ε.

Figure 8(a) shows the demand manifolds for some members of this family. Manifolds with

θ less than one have two branches, one each in the sub- and superconvex regions, implying

different directions of adjustment with sales, as indicated by the arrows. Details are given

in Appendix F.3.
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Figure 8: Demand Manifolds for Bipower Inverse Demand Functions

A second important special case of (17) comes from setting η = 0, giving the demand

function p(x) = α+βx−θ. This is the iso-convex or “constant pass-through” family of Bulow

and Pfleiderer (1983): from (17) with η = 0, convexity ρ equals a constant θ + 1, so from

(7) 1
1−θ measures the degree of absolute pass-through for this system. Pass-through can be

more than 100%, as in the CES case (α = 0, θ = 1
σ
> 0); equal to 100%, as in the log-linear

direct demand case (θ → 0, so p(x) = α′ + β′ log x, implying that log x(p) = γ + δp); or less

than 100%, as in the case of linear demand (θ = −1 so pass-through is 50%). This family

has many other attractive properties. It is necessary and sufficient for marginal revenue to

21To show this, rewrite the constants as α = α′ − β′

1−θ and β = β′

1−θ , and apply l’Hôpital’s Rule.
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be affine in price.22 It can be given a discrete choice interpretation: it equals the cumulative

demand that would be generated by a population of consumers if their preferences followed

a Generalized Pareto Distribution.23 Finally, as shown by Weyl and Fabinger (2013) and

empirically implemented by Atkin and Donaldson (2012), it allows the division of surplus

between consumers and producers to be calculated without knowledge of quantities. Figure

8(b) shows the demand manifolds for some members of this family; see Appendix F.4 for

details.

3.4 Bipower Direct Demand Functions

A second characterization result linking a family of demand functions to a particular func-

tional form for the manifold is where the direct demand functions have the same form as the

inverse demand functions in Proposition 3:

Proposition 5. The Demand Manifold is such that ρ is linear in the inverse and squared

inverse of ε if and only if the direct demand function takes a bipower form:

x (p) = γp−ν + δp−σ ⇔ ρ̄(ε) =
ν + σ + 1

ε
− νσ

ε2
(18)

Formally, this proposition follows immediately from Proposition 3 by exploiting the duality

between direct and inverse demand functions: see Appendix G.1 for details. The condition

for superconvexity of these demand functions is also directly analogous to Proposition 4:

Proposition 6. The bipower direct demand functions in (18) are superconvex if and only if

both γ and δ are positive.

The proof is in Appendix G.2. Substantively, the demand functions in (18) nest some of the

most widely-used demand functions in applied economics.

22See Appendix F.4 for more details.
23See Bulow and Klemperer (2012).
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Two special cases of (18), dual to the special cases of (17) already considered, are of

particular interest.24 The first, where ν = 1, is the direct PIGL system of Muellbauer (1975):

x (p) = 1
p

[γ + δp1−σ], which implies that expenditure px(p) is a translated-CES function of

price. From (18), the manifold is given by: ρ̄(ε) = (σ+2)ε−σ
ε2

. The translog is the limiting case

as σ approaches 1 so ρ̄(ε) = 3ε−1
ε2

.25 From the firm’s perspective, this is consistent with both

the AIDS model of Deaton and Muellbauer (1980), which is not in general homothetic, and

with the homothetic translog of Feenstra (2003). In both cases, expenditure px(p) is affine

and decreasing in log p: x (p) = 1
p

(γ′ + δ′ log p), δ′ < 0.
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Figure 9: Demand Manifolds for Bipower Direct Demand Functions

Figure 9(a) illustrates some members of the PIGL family. Details are given in Appendix

G.4. A notable feature of the translog is that it is both subconcave and supermodular

throughout the admissible region: see the curve labeled σ = 1. No other bipower demand

function exhibits this property:26

Lemma 3. The translog demand function is the only member of the bipower inverse or direct

families which is always both strictly subconvex and strictly supermodular in the interior of

24A third special case is the family of demand functions implied by the quadratic mean of order r expen-
diture function introduced by Diewert (1976) and extended to monopolistic competition by Feenstra (2014).
See Appendix G.3 for details.

25To see this, take the limit as in footnote 21.
26The proof is in Appendix G.5.
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the admissible region.

This is an attractive feature: it implies that the translog is the only demand function from

these two broad families which allows for competition effects (so mark-ups fall with global-

ization) but also implies that larger firms always serve foreign markets via FDI rather than

exports.

A second important special case of (18) comes from setting ν = 0. This gives the

family of demand functions due to Pollak (1971): x(p) = γ + δp−σ. This family includes

many widely-used demand functions, including the CES (γ = 0), quadratic (σ = −1),

Stone-Geary (or “LES” for “Linear Expenditure System”: σ = 1), and “CARA” (“constant

absolute risk aversion”: σ = 0). Pollak showed that these are the only demand functions that

are consistent with both additive separability and quasi-homotheticity (so the expenditure

function exhibits the “Gorman Polar Form”). Just as (18) is dual to (17), so the Pollak

family of direct demand functions is dual to the Bulow-Pfleiderer family of inverse demand

functions. An implication of this is that, corresponding to the property of Bulow-Pfleiderer

demands that marginal revenue is linear in price, Pollak demands exhibit the property that

the marginal loss in revenue from a small increase in price is linear in sales.27 This implies

that the coefficient of absolute risk aversion for these demands is hyperbolic in sales, which

is why, in the theory of choice under uncertainty, they are known as “HARA” (“hyperbolic

absolute risk aversion”) demands following Merton (1971).28 Not surprisingly, the demand

manifold is also a rectangular hyperbola: when ν = 0, the left-hand side of (18) becomes

ρ̄(ε) = σ+1
ε

. Figure 9(b) illustrates some members of the Pollak family. The CARA and LES

cases correspond to σ equal to zero and one respectively. Further details are in Appendix

G.6.29

27Recall from footnote 22 that Bulow-Pfleiderer demands p(x) = α+βx−θ satisfy the property: p+xp′ =
θα+(1−θ)p. Switching variables, we can conclude that Pollak demands x(p) = γ+δp−σ satisfy the property:
x+ px′ = σγ + (1− σ)x.

28The Arrow-Pratt coefficient of absolute risk aversion is A(x) ≡ −u
′′(x)
u′(x) . With additive separability this

becomes A(x) = −p
′(x)
p(x) = − 1

px′(p) . Using the result from footnote 27, this implies: A(x) = 1
σ(x−γ) , which is

hyperbolic in x.
29Note how these differ from the Bulow-Pfleiderer case in Figure 8, especially in the super-pass-through
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3.5 Demand Functions that are Not Manifold-Invariant

In the rest of the paper we concentrate on the demand functions introduced here which

have invariant manifolds. Appendix H presents two examples of demand functions which

have non-invariant manifolds, and which nest some important cases, such as the “Adjustable

Pass-Through” (APT) demand function of Fabinger and Weyl (2012). These have manifolds

with the same number of parameters as the demand function, four or more, which implies

a clear trade-off. On the one hand, they are more flexible and so have greater potential to

match any desired relationship between ε and ρ. On the other hand, they are more difficult

to work with theoretically or to estimate empirically.

4 Monopolistic Competition in General Equilibrium

4.1 The Positive Effects of Globalization

To illustrate the power of the approach we have developed in previous sections, we turn in

the remainder of the paper to apply it to a canonical model of international trade, a one-

sector, one-factor, multi-country, general-equilibrium model of monopolistic competition. To

highlight the new features of our approach, we focus on the case considered by Krugman

(1979), where countries are symmetric, trade is unrestricted, and firms are homogeneous.

Following Krugman (1979) and a large subsequent literature, we model globalization as an

increase in the number of countries in the world economy.30 For the present we assume

only that preferences are symmetric, and that the elasticity of demand depends only on

consumption levels, which in symmetric equilibrium means on the amount consumed of a

typical variety, denoted by x. We do not need to make explicit our assumptions about

preferences until we consider welfare in Section 4.2.

region. With Bulow-Pfleiderer demands, firms diverge from the CES benchmark along the SC locus as sales
increase, whereas with Pollak demands they converge towards it; and both these statements hold whether
demands are super- or subconvex.

30As shown in Mrázová and Neary (2014), the aggregate welfare effect of this shock is similar to that of a
reduction in trade costs in the neighborhood of free trade.
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Symmetric demands and homogeneous firms imply that we can dispense with firm sub-

scripts from the outset. Industry equilibrium requires that firms maximize profits by setting

marginal revenue MR equal to marginal cost MC, and that profits are driven to zero by free

entry (so average revenue AR equals average cost AC):

Profit Maximization (MR=MC): p =
ε (x)

ε (x)− 1
c (19)

Free Entry (AR=AC): p =
f

y
+ c (20)

The model is completed by market-clearing conditions for the goods and labor markets:

Goods-Market Equilibrium (GME): y = kLx (21)

Labor-Market Equilibrium (LME): L = n (f + cy) (22)

Here L is the number of worker/consumers in each country, each of whom supplies one unit

of labor and consumes an amount x of every variety; k is the number of identical countries;

and n is the number of identical firms in each, all with total output y, so N = kn is the

total number of firms in the world. Since all firms are single-product by assumption, N is

also the total number of varieties available to all consumers.

Equations (19) to (22) comprise a system of four equations in four endogenous variables,

p, x, y and n, with the wage rate set equal to one by choice of numéraire. To solve for the

effects of globalization, an increase in the number of countries k, we totally differentiate the

equations, using “hats” to denote logarithmic derivatives, so x̂ ≡ d log x, x 6= 0:

MR=MC: p̂ =
ε+ 1− ερ
ε (ε− 1)

x̂ (23)

AR=AC: p̂ = −(1− ω)ŷ (24)

GME: ŷ = k̂ + x̂ (25)
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LME: 0 = n̂+ ωŷ (26)

Consider first the MR=MC equilibrium condition, equation (23). Clearly p and x move

together if and only if ε+ 1− ερ > 0, i.e., if and only if demand is subconvex. This reflects

the property noted in Section 2.2: higher sales are associated with a higher mark-up if and

only if they imply a lower elasticity of demand. As for the free-entry condition, equation

(24), it shows that the fall in price required to maintain zero profits following an increase in

firm output is greater the smaller is ω ≡ cy
f+cy

, the share of variable in total costs, which is

an inverse measure of returns to scale. This looks like a new parameter but in equilibrium it

is not. It equals the ratio of marginal cost to price, c
p
, which because of profit maximization

equals the ratio of marginal revenue to price p+xp′

p
, which in turn is a monotonically increasing

transformation of the elasticity of demand ε: ω = c
p

= p+xp′

p
= ε−1

ε
. Similarly, equation (26)

shows that the fall in the number of firms required to maintain full employment following

an increase in firm output is greater the larger is ω. It follows by inspection that all four

equations depend only on two parameters, which implies:

Lemma 4. The local comparative statics properties of the symmetric monopolistic competi-

tion model with respect to a globalization shock depend only on ε and ρ.

Solving for the effects of globalization on outputs, prices and the number of firms in each

country gives:

ŷ =
ε+ 1− ερ
ε (2− ρ)

k̂, p̂ = −1

ε
ŷ, n̂ = −ε− 1

ε
ŷ (27)

(Details of the solution are given in Appendix I.) The signs of these depend solely on

whether demands are sub- or superconvex, i.e., whether ε + 1 − ερ is positive or negative.

With subconvexity we get what Krugman (1979) called “sensible” results: globalization

prompts a shift from the extensive to the intensive margin, with fewer but larger firms in

each country, as firms move down their average cost curves and prices of all varieties fall.

With superconvexity, as noted by Zhelobodko, Kokovin, Parenti, and Thisse (2012), all these

results are reversed. (See also Neary (2009).) The CES case, where ε + 1 − ερ = 0, is the
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boundary one, with firm outputs, prices, and the number of firms per country unchanged.

The only effects which hold irrespective of the form of demand are that consumption per head

of each variety falls and the total number of varieties produced in the world and consumed

in each country rises:

x̂ = − 1

2− ρ
ε− 1

ε
k̂ < 0, N̂ =

(ε− 1)2 + (2− ρ) ε

ε2 (2− ρ)
k̂ > 0 (28)

In qualitative terms these results are not new. The new feature that our approach highlights

is that their quantitative magnitudes depend only on two parameters, ε and ρ, the same

ones on which we have focused throughout.

(a) Changes in Prices (b) Changes in the Number of Varieties

Figure 10: The Effects of Globalization

Figure 10 gives the quantitative magnitudes of changes in the two variables that matter

most for welfare, prices and the number of varieties. In each panel, the vertical axis measures

the proportional change in either p or N relative to k as a function of the elasticity and

convexity of demand. These three-dimensional surfaces are independent of the functional

form of demand, so we can combine them with the results on demand manifolds from Section

3 to read off the quantitative effects of globalization implied by different assumptions about
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demand. We know already from equations (27) and (28) that prices fall if and only if demand

is subconvex and that product variety always rises. The figures show in addition that lower

values of the elasticity of demand are usually associated with greater falls in prices and larger

increases in variety;31 while more convex demand is always associated with greater increases

(in absolute value) in both prices and the number of varieties.

To summarize this sub-section, Lemma 4 implies that the demand manifold is a sufficient

statistic for the positive effects of globalization in the Krugman (1979) model, just as it is

for the comparative statics results discussed in Section 2. However, to make quantitative

predictions about how welfare is affected we need to know how consumers trade off the

changes in prices and product variety illustrated in Figure 10. We turn to this next.

4.2 Welfare: Additive Separability and the Utility Manifold

To quantify the welfare effects of globalization, we follow Dixit and Stiglitz (1977) and assume

that preferences are additively separable. Hence the overall utility function, denoted by U , is

a monotonically increasing function of an integral of sub-utility functions, denoted by u, each

defined over the consumption of a single variety: U = F
[∫ N

0
u{x(ω)} dω

]
, F ′ > 0. Marginal

utility must be positive and decreasing in the consumption of each variety: u′(x) > 0 and

u′′(x) < 0. With symmetric preferences and no trade costs the overall utility function

becomes: U = F [Nu(x)]. So, welfare depends on the extensive margin of consumption N

times the utility of the intensive margin x.

Using the budget constraint to eliminate x, we write the change in utility in terms of its

income equivalent Ŷ , which is independent of the function F (see Appendix J for details):

Ŷ =
1− ξ
ξ

N̂ − p̂ (29)

Here ξ(x) ≡ xu′(x)
u(x)

is the elasticity of utility with respect to consumption. We thus have a

31Though these properties are reversed if demands are highly convex: p̂/k̂ is increasing in ε if and only if

ρ < 1 + 2
ε , and N̂/k̂ is decreasing in ε if and only if ρ < 2

ε .
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clear division of labor between three preference parameters: ε and ρ determine the positive

effects of globalization as we have just seen, whereas ξ determines their implications for

welfare. It is clear from (29) that ξ must lie between zero and one if preferences exhibit a

taste for variety. (See also Vives (1999).) Moreover, since welfare rises more slowly with N

the higher is ξ, it is an inverse measure of preference for variety. This parameter plays the key

role of trading off changes in prices and number of varieties from a consumer’s perspective.

To understand this role, we relate ξ(x) to the elasticity of demand, ε(x) ≡ − p(x)
xp′(x)

, which

is an inverse measure of the concavity of the sub-utility function: ε(x) = − u′(x)
xu′′(x)

.32 Given

these two parameters that are unit-free measures of the slope and curvature of u, we can

proceed in a similar manner to Sections 2 and 3: we first show how different configurations of

ξ and ε determine the properties of the model, and in particular the efficiency of equilibrium;

we then solve for the relationship between the two parameters, which we call the “utility

manifold”, that is implied by specific assumptions about the form of u.
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Figure 11: The Sub- and Superconcave Regions in {ε, ξ} Space

Figure 11 illustrates part of the admissible region in {ε, ξ} space. As in previous sections,

the CES case is an important threshold. Corresponding to the CES inverse demand function

32A utility function u1(x) is more concave than a different utility function u2(x) at a common point if
xu′′

1

u′
1
<

xu′′
2

u′
2

. Switching both from negative to positive and inverting, we can conclude that u1(x) is more

concave than u2(x) if ε1(x) < ε2(x).
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from (4), p(x) = βx−1/σ, is the sub-utility function:

u (x) =
σ

σ − 1
βx

σ−1
σ ⇒ ξ(x) = ξCES ≡ σ − 1

σ
, ε(x) = εCES ≡ σ (30)

Both ε and ξ depend only on σ, so we can solve for the locus of {ε, ξ} combinations, i.e., the

locus of utility point-manifolds, consistent with CES preferences: ε = 1
1−ξ , or ξ = ε−1

ε
. This

locus is labeled SC in Figure 11. By analogy with our treatment of demand in Section 2.2,

it defines a threshold degree of concavity of the sub-utility function, and we call a utility or

sub-utility function “superconcave” if it is more concave than that threshold:

Definition 2. A utility function u(x) is superconcave at a point (u0, x0) if and only if log u(x)

is concave in log x at (u0, x0).

Analogously to Section 2.2, a utility function is superconcave at a point if and only if it is

more concave than a CES function with the same elasticity of utility at that point:

d2 log u

d(log x)2
= ξ

(
ε− 1

ε
− ξ
)

= ξ

(
1

εCES
− 1

ε

)
≤ 0 (31)

Recalling that ε is an inverse measure of the concavity of utility (1
ε

= −xu′′

u′
), the region below

and to the right of the SC locus in Figure 11 corresponds to superconcavity of utility. In

addition, as we show in Appendix C, superconcavity of utility is equivalent to the elasticity

of utility decreasing in consumption: ξx = ξ
x

(
ε−1
ε
− ξ
)
. It follows that the elasticity of utility

is associated with higher levels of consumption as indicated by the arrows in Figure 11: rising

in the subconcave region and falling in the superconcave region, in a similar manner to how

the elasticity of demand varies with consumption in Figure 2.33

33Vives (1999), pages 170-1, argues that the latter case, preference for variety that is increasing in con-
sumption, or superconcavity of utility, is intuitively plausible, though, as he notes, this is not the view of
Dixit and Stiglitz (1977).
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4.3 Superconcavity, Efficiency and Welfare

To relate superconcavity of utility to the efficiency of equilibrium, we return to the expression

for welfare change in (29). The change in the extensive margin can be decomposed into

two components, one exogenous and international, the other endogenous and intranational:

N̂ = k̂+ n̂. We can eliminate the latter using the full-employment and zero-profit conditions,

equations (24) and (26): n̂ = −ωŷ = ω
1−ω p̂. This allows us to decompose the change in real

income into a direct and an indirect effect of globalization:

Ŷ =
1− ξ
ξ

k̂ +
ω − ξ
ξ(1− ω)

p̂ (32)

The direct effect given by the first term is always positive, so we focus on the indirect effect,

which works through the induced change in prices. A non-zero coefficient of p̂ implies that

there is scope for increasing real income even in the absence of globalization, in other words,

that the initial equilibrium is inefficient. Hence the condition for efficiency in this model

is that ω and ξ should be equal. To see why, note that the social optimum requires that ξ

should equal one in a competitive economy: with no fixed costs (so f = 0 and ω = 1), it

is optimal to produce as many varieties as needed to indulge consumers’ taste for variety.

By contrast, when fixed costs are strictly positive (f > 0 so ω < 1), efficiency requires

that ξ be strictly less than one. Recalling that ω is an inverse measure of returns to scale,

the intuition for this is that more strongly increasing returns to scale mandate substitution

away from the extensive towards the intensive margin. The social optimum occurs when

the gain to consumers from an additional variety, of which ξ is an inverse measure, exactly

matches the cost to society of setting up an additional firm, of which ω is an inverse measure.

Absent efficiency, we can say that varieties are under-supplied if and only if ξ is less than ω.

Recalling Definition 2 and the fact that ω equals ε−1
ε

in equilibrium, we can conclude:

Corollary 4. Relative to the efficient benchmark where ξ = ω, varieties are under-supplied

if and only if utility is subconcave, i.e., ξ ≤ ω.
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The intuition underlying this is that subconcavity of utility, ξ ≤ ε−1
ε

, which is a partial-

equilibrium property of preferences, turns out in general equilibrium to imply that varieties

are under-supplied: ξ ≤ ω. Note that there is not a unique efficient equilibrium in general:

any equilibrium which lies along the SC locus in Figure 11 is efficient.

Quantifying the gains from globalization in this model is straightforward when the initial

equilibrium is efficient, but this will occur in only two cases. The first is when preferences

are CES. In that case, as we have already seen, both ω and ξ equal σ−1
σ

. Quantitatively, the

gains from globalization, Ŷ /k̂, reduce to 1
σ−1

, exactly the expression found for the gains from

trade in a range of CES-based models by Arkolakis, Costinot, and Rodŕıguez-Clare (2012).

Qualitatively, this result is familiar from Dixit and Stiglitz (1977): only CES preferences

ensure that the gains from greater variety are exactly matched by the losses from reducing

the scale of production of existing varieties. A second case in which efficiency occurs is when

it is brought about by government intervention: for given k, optimal competition policy

chooses the welfare-maximizing level of n (which in turn determines p and x). This case

requires strong assumptions: benevolent and cooperative governments, plus an institutional

framework for anti-trust policy which does not impose any further inefficiencies of its own.

We abstract from policy issues from now on, and focus on the implications of non-CES

preferences.

Absent efficiency, we can assess the sign and magnitude of the gains from globalization

with reference to the CES benchmark, which is also the efficient or “first-best” benchmark.

Consider first the direct gain in (32), given by the coefficient of k̂. It exceeds the CES

benchmark 1
ε−1

if and only if ξ ≤ ε−1
ε

, which gives our first result:

Proposition 7. The direct gain from globalization exceeds the CES benchmark if and only

if utility is subconcave.

This makes sense: consumers always gain directly from more varieties, and gain by more

when varieties are initially under-supplied.

Consider next the indirect effect, which will be positive if the exogenous shock brings the
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world economy closer to efficiency. Recalling from (27) that prices rise if and only if demand

is superconvex, we can sign this as follows:

Proposition 8. The indirect gain from globalization is positive if and only if either: (a)

demand is superconvex and utility is subconcave; or (b) demand is subconvex and utility is

superconcave.

In case (a), prices rise, but varieties are under-supplied, so the loss at the intensive margin

is offset by the gain to consumers of increased variety. This reasoning is reversed in case (b):

now varieties are over-supplied, but efficiency is increased as consumers gain from the fall in

prices.

Improving efficiency is sufficient for a globalization shock to raise welfare but it is not

necessary. To assess the full effect, we have to combine the indirect or induced-efficiency

effect with the direct effect. First we obtain two alternative sufficient conditions for the

overall gains to be positive from the two equations for the change in real income, (29) and

(32):

Proposition 9. Gains from globalization are guaranteed if either: (a) demand is subconvex;

or (b) utility is subconcave.

Putting this differently, losses from globalization are possible only if demand is superconvex

and utility is superconcave. The intuition for this proposition combines that from previous

results. In case (a), demand is subconvex, i.e., ε+1
ε

is greater than ρ, so prices fall. As a

result, from (29), consumers reap a double dividend: welfare rises at both the intensive and

extensive margins. In this case, the elasticity of utility is irrelevant for the sign of welfare

change. In case (b), utility is subconcave, i.e., ε−1
ε

is greater than ξ, so varieties are under-

supplied in the initial equilibrium. Even if prices rise, consumers value variety sufficiently

that the gain at the extensive margin from the increase in the number of varieties offsets the

losses at the intensive margin due to higher prices.
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Second, we can calculate a necessary and sufficient condition for gains from globalization.

Substitute for ω = ε−1
ε

and p̂ into (32) to obtain an explicit expression for the gain in welfare:

Ŷ =
1

ξε

[
1−

(
ξ − ε− 1

ε

)
ε− 1

2− ρ

]
k̂ (33)

Now there are three sufficient statistics for the change in welfare, only one of which has an

unambiguous effect. The gains from globalization are always decreasing in ξ: unsurprisingly,

consumers gain more from a proliferation of countries and hence of products, the greater

their taste for variety. By contrast, the gains from globalization depend ambiguously on

both ε and ρ. Of course, the values of the three key parameters do not in general vary

independently of each other, which suggests how we should proceed. Equation (33) gives

the change in real income as a function of ξ, ε, and ρ only. These in turn are related

to each other and to φ, the vector of non-invariant parameters, via the demand manifold,

ε = ε̄(ρ, φ), and the utility manifold, ξ = ξ̄(ε, φ). To get an explicit solution for the gains

from globalization we thus have to solve three equations in 4 +m unknowns, where m is the

dimension of φ. The solution can be visualized in three dimensions when m equals one, so

we turn next to consider how ξ varies in two of the families of demand functions with only

a single non-invariant parameter discussed in Section 3.

4.4 Globalization and Welfare with Bipower Preferences

The first example we consider is that of bipower demands, given by the demand function

(17) in Section 3.3. Integrating that function yields the corresponding utility function, which

also takes a bipower form:34

u(x) =
1

1− η
αx1−η +

1

1− θ
βx1−θ (34)

34It is natural to set the constant of integration to zero, which implies that u (0) = 0. A non-zero value of
u(0) could be interpreted to imply that consumers gain or lose from the introduction of new varieties even if
they do not consume them, though Dixit and Stiglitz (1979) argue to the contrary. We return to this issue
in the next sub-section.
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Proceeding as in Proposition 3, we can derive a closed-form expression for the utility manifold

in this case:35

Proposition 10. If and only if the utility function is as in (34), the utility manifold is:

ξ̄(ε) =
(1− η) (1− θ) ε
(1− η − θ) ε+ 1

(35)

Direct calculations now yield:

Proposition 11. With bipower utility as in (34), demand is subconvex if and only if (ηε−

1)(θε− 1) ≥ 0; utility is superconcave if and only if (ηε−1)(θε−1)
(1−η−θ)ε+1

≥ 0.

Recalling the sufficient conditions for gains from globalization given in Proposition 9, this

implies:

Corollary 5. With bipower utility as in (34), gains from globalization are guaranteed if

(1− η − θ)ε+ 1 > 0.

If this condition holds, Proposition 11 implies that the only possible combinations allowed

by the utility function (34) are either subconvex demand and superconcave utility or super-

convex demand and subconcave utility; either prices fall, or consumers don’t lose too much

when they rise because varieties are initially under-supplied. It follows from Proposition 9

that welfare must increase as the world economy expands.

In the Bulow-Pfleiderer special case, when η is zero and β and θ have the same sign, the

sufficient condition from Corollary 5 holds, and we can characterize the possible outcomes

as follows:

Corollary 6. With Bulow-Pfleiderer preferences, so utility is given by (34) with η = 0,

demand is superconvex and utility is subconcave if θ > 0 and α > 0; otherwise demand is

subconvex and utility is superconcave. In both cases, globalization must raise welfare.

35Proofs of all results in this sub-section are in Appendix K.
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Figure 12: Globalization and Welfare: Bulow-Pfleiderer Preferences

Figure 12(a) illustrates, showing three utility manifolds from the Bulow-Pfleiderer family.

We follow the convention that the arrows represent the direction of movement as sales in-

crease. Hence, recalling from (28) that globalization reduces consumption of each variety,

the equilibrium moves in the opposite direction to the arrows. To the right of the SC locus,

utility is superconcave and so, from Proposition 6, demand is subconvex. Globalization leads

to a rightward movement, and so always moves the economy closer to efficiency, though the

elasticity of utility changes in a paradoxical way. From Corollary 4, varieties are initially

over-supplied, as the “efficiency gap” ξ−ω is positive. Globalization reduces this gap, though

at the same time it raises ξ: consumers’ preference for variety falls. A similar outcome fol-

lows, mutatis mutandis, to the left of the SC locus. Here too globalization raises efficiency,

though by moving the efficiency gap, initially negative, closer to zero, while at the same time

lowering ξ. In both cases, the global economy converges asymptotically towards efficiency,

though in different ways depending on whether θ is greater or less than zero. From Figure

8 in Section 3.3, if θ is greater than zero, so demands are strictly log-convex, the equilib-

rium converges towards a CES equilibrium with positive profit margins. By contrast, if θ is

equal to or less than zero, so demands are log-concave, the equilibrium converges towards a

quasi-perfectly-competitive outcome in which price equals marginal cost and the elasticity

of utility equals one. Products are still differentiated, but consumers no longer care about

variety.
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The remaining panels of Figure 12 illustrate how the initial value of ξ and the change

in welfare vary with ε and ρ. As panel (b) shows, the elasticity of utility is always between

zero and one, is increasing in the elasticity of demand, and decreasing in convexity: there

is a greater taste for variety at high ρ. Recalling from equation (29) that ξ is an inverse

measure of the weight that consumers attach to the variety changes shown in Figure 10,

we find the implications for the gains from globalization shown in Panel (c). The gains are

always positive, are decreasing in ε and increasing in ρ.

4.5 Globalization and Welfare with Pollak Preferences

The second example we consider is the Pollak demand function from Section 3.4. The welfare

implications of this specification are sensitive to how we normalize the sub-utility function.

To highlight the contrast with the Bulow-Pfleiderer case in the previous sub-section, we

focus in the text on the case considered by Pollak (1971) and Dixit and Stiglitz (1977). (In

Appendix L.4 we consider an alternative specification, due to Pettengill (1979), which yields

different results.) This gives the following sub-utility function:

u(x) =
β

σ − 1
(σx+ ζ)

σ−1
σ (36)

Relative to the Pollak demand function in Section 3.4, it is convenient to redefine the con-

stants as ζ ≡ −γσ and β ≡ (δ/σ)1/σ. (See Appendix L.1 for details.)

Solving for the elasticity of utility, the utility manifold is:

ξ̄(ε;σ) =
σ − 1

ε
(37)

Combining this with the demand manifold from Section 3.4, we can express the elasticity of

utility as a function of ε and ρ only:

ξ(ε, ρ) =
ερ− 2

ε
(38)
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Since only values of ξ between zero and one are consistent with a preference for variety, we

restrict attention to the range 2
ε
< ρ < 1 + 2

ε
.36 Within this range, the behavior of the

elasticity of utility is the opposite to that in the Bulow-Pfleiderer case:37

Proposition 12. With Pollak preferences as in (36) and 0 < ξ < 1, demand is superconvex

and utility is superconcave if and only if ζ is negative.

Figure 13(a) illustrates. To the left of the SC locus, utility is subconcave and so, from

Proposition 12, demand is subconvex. Hence globalization lowers prices and raises welfare,

even though it reduces efficiency: the “efficiency gap” is initially negative, and is reduced

further as the elasticity of utility falls: varieties are increasingly under-supplied. Efficiency

also falls to the right of the locus, and now this indirect effect can dominate the direct effect,

leading to a net loss in welfare, as prices rise and varieties are increasingly over-supplied. In

both cases, the global economy converges asymptotically towards an inefficient equilibrium:

in the former case profit margins are driven to zero and varieties are under-supplied, whereas

in the latter case either the elasticity of demand or of utility converges to unity.
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Figure 13: Globalization and Welfare: Pollak Preferences

The remaining panels of Figure 13 illustrate how the elasticity of utility and the gains

from globalization vary with ε and ρ in this case. The contrast with the Bulow-Pfleiderer

36See Pettengill (1979) and Dixit and Stiglitz (1979). The restricted range excludes the Linear Expenditure
System (ρ = 2

ε ) but includes demand functions that are both more and less convex than the CES (ρ = ε+1
ε ).

37This extends a result of Vives (1999), p. 371, who shows (in our terminology) that, with Pollak prefer-
ences, utility is subconcave when demand is subconvex.
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case in Figure 12 could hardly be more striking. Panel (b) shows that the elasticity of utility

is now increasing in both ε and ρ: consumers have a lower taste for variety at high ρ, which

we know from Figure 10(a) is when prices increase most. As a result, welfare can fall with

globalization. As panel (c) shows, the gains from globalization are decreasing in both ε and

ρ, and are negative for sufficiently convex demand: as shown in Appendix L.3, the exact

condition for this is ρ > ε2+2ε−1
ε2

. This provides, to our knowledge, the first concrete example

of the “folk theorem” that globalization in the presence of monopolistic competition can

be immiserizing if preferences are (in our terminology) sufficiently superconvex. Perhaps

equally striking is that welfare rises by more for lower values of ε and ρ: estimates based on

CES preferences grossly underestimate the gains from globalization in much of the subconvex

region, just as they fail to predict losses from globalization in the superconvex region.

5 Conclusion

In this paper we have presented a new way of relating the structure of demand and utility

functions to the positive and normative properties of monopolistic and monopolistically

competitive markets. By adopting a “firms’-eye view” of demand, we have shown how

the elasticity and convexity of demand determine many comparative statics responses. In

turn, we have shown how the relationship between these two parameters, which we call the

“demand manifold,” provides a parsimonious representation of an arbitrary demand function,

and a sufficient statistic for many comparative statics results. The manifold is particularly

useful when it is unaffected by changes in exogenous variables, a property which we call

“manifold invariance.” We have introduced some new families of demand systems which

exhibit manifold invariance, and have shown that they nest many of the most widely used

functions in applied theory. For example, our “bipower direct” family provides a natural

way of nesting translog, CES and linear demand functions.38

38Alternative ways of nesting translog and CES demands, though with considerably more complicated
demand manifolds, appear in Novy (2013) and in Pollak, Sickles, and Wales (1984).
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To illustrate the usefulness of our approach, we have shown how it allows a parsimonious

way of understanding how monopolistically competitive economies adjust to external shocks,

as well as a framework for quantifying the effects of globalization. The demand manifold

turns out to be a sufficient statistic for the positive implications of globalization in general

equilibrium. As for the normative implications, we have shown that the same approach

can be applied to any additively separable utility function. The relationship between the

elasticity and concavity of such a function, which we call the “utility manifold,” plays a

similar role to the demand manifold. We have shown how to compute the gains from trade

for any such utility function, and have illustrated how sensitive are estimates of these gains

to alternative specifications of preferences. Our approach suggest that the CES case is an

unreliable reference point for calibrating the effects of exogenous shocks. It has been known

since Dixit and Stiglitz (1977) that CES preferences ensure efficiency, but the implications

of this observation for calibration have not been brought out. When the initial equilibrium

is not efficient, any shock has both a direct effect and an indirect effect whose implications

hinge on whether it brings the economy closer to or further away from efficiency. As a result,

while positive gains are guaranteed with CES preferences, losses from trade (“immiserizing

globalization”) are possible with demands that are more convex than CES, and gains from

trade can be greater than in the CES case when demands are less convex. Quantifying the

gains from trade assuming CES preferences is going to miss some important effects.

Many extensions of our approach naturally suggest themselves. There are many other

topics where functional form plays a key role in determining the implications of a given set of

assumptions: applications to choice under uncertainty and to oligopoly immediately come to

mind. As for our application to the gains from globalization in monopolistic competition, the

framework we have presented can be extended to allow for trade costs and heterogeneous

firms.39 Finally, the families of demand functions we have introduced provide a natural

39Models combining trade costs and general non-CES preferences, with or without heterogeneous firms,
have been considered by Bertoletti and Epifani (2014), Arkolakis, Costinot, Donaldson, and Rodŕıguez-Clare
(2012), and Mrázová and Neary (2014).
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setting for estimating relatively flexible functional forms, and direct attention towards the

parameters which matter for comparative statics predictions.
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Appendices

A Alternative Measures of Slope and Curvature

As our measure of demand slope, we work throughout with the price elasticity of demand,

which can be expressed in terms of the derivatives of either the inverse or the direct demand

functions p(x) and x(p): ε ≡ − p
xp′

= −px′

x
. Many authors have used the inverse of this

elasticity, e ≡ − x
px′

= 1
ε
, under a variety of names: the elasticity of marginal utility: e =

−d log u′(x)
d log x

; the “relative love for variety” as in Zhelobodko, Kokovin, Parenti, and Thisse

(2012); or (in monopoly equilibrium) the profit margin or Lerner Index of monopoly power:

e = p−c
p

. This has the advantage that its definition is symmetric with that of curvature ρ

(and also with those of the elasticity and “temperance” of utility, ξ and χ, to be discussed

below). Offsetting advantages of using ε include its greater intuitive appeal, and the fact

that it focuses attention on the region of parameter space where comparative statics results

are ambiguous.

Turning to measures of curvature, the convexity of inverse demand which we use through-

out equals the elasticity of the slope of inverse demand, ρ ≡ −xp′′

p′
= −d log p′(x)

d log x
. Its impor-

tance for comparative statics results was highlighted by Seade (1980), and it is widely used

in industrial organization, for example by Bulow, Geanakoplos, and Klemperer (1985) and

Shapiro (1989). An alternative measure is the convexity of the direct demand function x(p):

r(p) ≡ −px′′(p)
x′(p)

. A convenient property is that e and r are dual to ε and ρ:

e ≡ − x

px′
=

1

ε
r ≡ −px

′′

x′
=

pp′′

(p′)2 = ερ (39)

ε ≡ − p

xp′
=

1

e
ρ ≡ −xp

′′

p′
=

xx′′

(x′)2
= er (40)

We use these properties in the proof of Proposition 5 below.

Yet another measure of demand curvature, widely used in macroeconomics, is the supere-
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lasticity of Kimball (1995), defined as the elasticity with respect to price of the elasticity of

demand, S ≡ d log ε
d log p

. Positive values of S allow for asymmetric price setting in monopolistic

competition. It is related to our measures as follows: S = d log ε
d log x

d log x
d log p

=
(
xεx
ε

)
(−ε) = ε+1−ερ

(using (42)), so it is positive if and only if demand is subconvex. Figure 14(a) illustrates loci

of constant superelasticity, ρ = ε+1−S
ε

. Formally, they correspond to the family of Pollak

manifolds, ρ̄ (ε) = σ+1
ε

, displaced rightwards to be symmetric around the log-linear (ρ = 1)

rather than the linear (ρ = 0) demand manifold.
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Figure 14: Kimball Superelasticity

Kimball himself did not present a parametric family of demand functions. Klenow and

Willis (2006) introduce a parametric family which has the property that the superelasticity

is a linear function of the elasticity: S = bε. Substituting for S leads to the family of demand

manifolds ρ̄ (ε) = (1−b)ε+1
ε

, which are lateral displacements of the CES locus. Figure 14(b)

illustrates some members of this family.

We note in footnotes some implications of these alternative measures. The choice between

them is largely a matter of convenience. We express all our results in terms of ε and ρ,

partly because this is standard in industrial organization, partly because (unlike e and r)

the inverse demand functions are easily integrated to obtain the direct utility function, and

partly because (unlike ε and S) they lead to simple restrictions on the shape of the demand
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manifold as shown in Proposition 3. However, our results could just as well be expressed

in terms of e and r or of ε and S. Details of these alternative ways of presenting them are

available on request.

B Oligopoly

We consider only monopoly and monopolistic competition in the text, but our approach can

also be applied to oligopolistic markets. Even in the simplest case of Cournot competition

between n firms producing an identical good, this leads to extra complications. Now we need

to distinguish market demand X from the sales of a typical firm i, xi, with the elasticity

and convexity of the demand function p(X) defined in terms of the former: ε ≡ − p
Xp′

and

ρ ≡ −Xp′′

p′
. The first-order condition is now p + xip

′ = ci ≥ 0. Since this differs between

firms, the restriction it implies for the admissible region must be expressed in terms of market

shares
(
ωi ≡ xi

X

)
: ε ≥ maxi(ωi), which attains its lower bound of 1

n
when firms are identical.40

As for the second-order condition, it becomes 2p′+ xip
′′ < 0, implying that ρ < 2 mini

(
1
ωi

)
,

which attains its upper bound of 2n when firms are identical. A different restriction on

convexity comes from the stability condition: ρ < n+ 1. This imposes a tighter bound than

the second-order condition provided the largest firm is not “too” large: maxi(ωi) <
2

n+1
.

Relative to the monopoly case, the admissible region expands unambiguously, except in the

boundary case of a dominant firm, where maxi(ωi) = 1. Equally important in oligopoly, as

we know from Bulow, Geanakoplos, and Klemperer (1985), is that many comparative statics

results hinge on strategic substitutability: the marginal revenue of firm i is decreasing in the

output of every other firm. This is equivalent to p′ + xip
′′ < 0, ∀i, which in our notation

implies a restriction on convexity that lies within the admissible region: ρ < mini

(
1
ωi

)
≥ 1,

which attains its upper bound of n when firms are identical.

40See Mathiesen (2014) for further discussion.
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C Preliminaries: A Key Lemma

We make repeated use of the following result:

Lemma 5. Consider a twice-differentiable function g(x). Both the double-log convexity of

g(x) and the rate of change of its elasticity can be expressed in terms of its first and second

derivatives as follows:

d2 log g

d(log x)2
= x

d

dx

(
xg′

g

)
=
xg′

g

(
1− xg′

g
+
xg′′

g′

)
(41)

In most of Sections 2 and 3, g(x) is the inverse demand function p(x), and the result can be

expressed in terms of the demand elasticity and convexity:

d2 log p

d(log x)2
=
xεx
ε2

= −1

ε

(
1 +

1

ε
− ρ
)

(42)

Qualitatively the same outcome comes from applying Lemma 5 to the direct demand func-

tion, replacing g(x) by x(p), and making use of (39) and (40):

d2 log x

d(log p)2
= −pdε

dp
= −ε (1 + ε− ερ) (43)

In Section 2.3, g(x) is the absolute value of the demand slope −p′(x), and the result can be

expressed in terms of demand convexity and temperance:

d2 log(−p′)
d(log x)2

= −xρx = −ρ (1 + ρ− χ) (44)

Finally, in Section 4.2 onwards, g(x) is the sub-utility function u(x), and the result can be

expressed in terms of the utility and demand elasticities:

d2 log u

d(log x)2
= xξx = ξ

(
1− ξ − 1

ε

)
(45)
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All these expressions are zero in the CES case given by (4) and (30), when all four parameters

depend only on the elasticity σ: {ξ, ε, ρ, χ}CES =
{

1− 1
σ
, σ, 1 + 1

σ
, 2 + 1

σ

}
.

D Proof of Proposition 1

We wish to prove that, except in the CES case, only one of εx and ρx can be zero at any

x. Recall from equations (42) and (44) that εx = ε
x

[
ρ− ε+1

ε

]
and ρx = ρ

x
(1 + ρ− χ), where

χ ≡ −xp′′′

p′′
. We have already seen that εx can be zero only along the CES locus. As for

ρx = 0, there are two cases where it can equal zero. The first is where ρ = 0. From (44), this

implies that εx equals − ε+1
x

, which is non-zero. The second is where 1 + ρ − χ = 0. As we

show in Section 3.3 below, this implies that the demand function takes the Bulow-Pfleiderer

form: p(x) = α + βx−θ. The intersection of this with εx = 0 is the CES limiting case of

Bulow-Pfleiderer as sales tend towards zero. Hence we can conclude that the only cases

where both εx and ρx equal zero at a given x lie on a CES demand function.

E Proof of Proposition 2

If demands are multiplicatively separable in φ, both the elasticity and convexity are inde-

pendent of φ. In the case of inverse demands, p (x, φ) = β(φ)p̃(x) implies:

ε = − p(x, φ)

xpx(x, φ)
= − p̃(x)

xp̃′(x)
and ρ = −xpxx(x, φ)

px(x, φ)
= −xp̃

′′(x)

p̃′(x)
(46)

A special case of this is additive preferences:
∫
ω∈Ω

u [x(ω)] dω. The first-order condition

is u′ [x(ω)] = λ−1p(ω), which implies that the perceived indirect demand function can be

written in multiplicative form: p(x, φ) = λ(φ)p̃(x).

Similar derivations hold for direct demands. If x (p, φ) = δ (φ) x̃ (p) then:

ε = −pxp(p, φ)

x(p, φ)
= −px̃

′(p)

x̃(p)
and ρ =

x(p, φ)xpp(p, φ)

[xp(p, φ)]2
=
x̃(p)x̃′′(p)

[x̃′(p)]2
(47)
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We also have a similar corollary, the case of indirect additivity, where the indirect utility

function can be written as:
∫
ω∈Ω

v [p(ω)/I] dω. Roy’s Identity implies that: v′ [p(ω)/I] =

−λx(ω), where λ is the marginal utility of income, from which the direct demand function

facing a firm can be written in multiplicative form: x(p/I, φ) = −λ−1(φ)x̃(p/I).

F Bipower Inverse Demands

F.1 Proof of Proposition 3

To prove sufficiency, we first define A ≡ αx−η and B ≡ βx−θ, so the demand function can be

written as p(x) = A+B. Calculating the first and second derivatives yields: xp′ = −ηA−θB

and x2p′′ = η (η + 1)A+ θ (θ + 1)B. Adding x2p′′ to ηθp yields:

x2p′′ + ηθp = (η + θ + 1) (ηA+ θB). (48)

Using the expression for xp′, this implies:

x2p′′ + (η + θ + 1)xp′ + ηθp = 0. (49)

Dividing by xp′ gives the desired result: ρ̄ (ε) = η + θ + 1− ηθε.

To prove necessity, assume the manifold is linear, so ρ(x) = a+ bε(x) where a and b are

constants. Substituting for ρ(x) and ε(x) and collecting terms yields:

x2p′′(x) + axp′(x)− bp(x) = 0 (50)

To solve this second-order Euler-Cauchy differential equation, we change variables as follows:

t = log x and p(x) = g(log x) = g(t). Substituting for p(x) = g(t), p′(x) = 1
x
g′(t) and
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p′′(x) = 1
x2

[g′′(t)− g′(t)] into (50) gives a linear differential equation:

g′′(t) + (a− 1)g′(t)− bg(t) = 0 (51)

Assuming a trial solution g(t) = eλt gives the characteristic polynomial: λ2 +(a−1)λ−b = 0,

whose roots are λ = 1
2

[
−(a− 1)±

√
(a− 1)2 + 4b

]
. Only real roots make sense, so we

assume (a − 1)2 + 4b ≥ 0. If the inequality is strict, the roots are distinct and the general

solution is given by g(t) = αeλ1t + βeλ2t, where α and β are constants of integration. If

(a− 1)2 = −4b, the roots are equal and the general solution is given by g(t) = (α + βt)eλt.

In both cases, the solution may be found by switching back from t and g(t) to log x and

p(x), recalling that eλ log x = xλ. Hence, in the first case, p(x) = αxλ1 + βxλ2 , and in the

second case, p(x) = (α + β log x)xλ.41 The final step is to note that the sum of the roots

is λ1 + λ2 = 1 − a and their product is λ1λ2 = b, which implies the relationship between

the coefficients of the manifold and those of the implied demand function stated in the

proposition. This completes the proof.

F.2 Proof of Proposition 4

Substituting from the bipower inverse demand manifold, ρ = η + θ + 1 − ηθε, into the

condition for superconvexity, ρ ≥ ε+1
ε

, and using the fact that the elasticity of demand

equals ε = αx−η+βx−θ

ηαx−η+θβx−θ
, yields:

ρ− ε+ 1

ε
= −1

ε
(ηε− 1) (θε− 1) = αβH (52)

where H ≡ 1
ε

(η−θ)2x−η−θ

(ηαx−η+θβx−θ)
2 , which is strictly positive. Hence, superconvexity requires that α

and β must have the same sign, which implies (since at least one of them must be positive)

that they must both be positive, which proves the Proposition.

41We do not present the case of equal roots separately in the statement of Proposition 3 in the text: the
economic interpretation is more convenient if we view it as the limiting case of the general expression as η
approaches zero.
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F.3 Properties of Inverse PIGL Demands

With η = 1, so the elasticity of demand becomes ε = αx−1+βx−θ

αx−1+θβx−θ
, its value less one can be

written in two alternative ways: ε− 1 = (1−θ)βx1−θ
α+θβx1−θ

= (1− θ) px−α
θpx+(1−θ)α . It follows that 1− θ,

β and px − α must have the same sign. (Recall that θ itself equals 2−ρ
ε−1

and so must be

positive in the admissible region.) The value of 1 − θ also determines whether the demand

function is supermodular or not: substituting from the demand manifold ρ̄ (ε) = 2 + (1− ε)θ

into the condition for supermodularity gives ε + ρ > 3 ⇔ (ε− 1) (1− θ) > 0 ⇔ θ < 1.

Combining these results with Proposition 4 shows that there are three possible cases of this

demand function:

α > 0 α < 0

θ < 1, β > 0 1. Superconvex; supermodular: px > α > 0 2. Subconvex; supermodular

θ > 1, β < 0 3. Subconvex; submodular: α > px > 0 n/a

F.4 Properties of Bulow-Pfleiderer Demands

With η = 0, the elasticity of demand becomes: ε = α+βx−θ

θβx−θ
= p

θβx−θ
= p

θ(p−α)
. It follows that

θ, β and p − α must have the same sign. The sign of θ also determines whether the direct

demand function is logconvex (i.e., whether it exhibits super-pass-through) or not: recall

that ρ− 1 = θ. There are therefore three possible cases of this demand function:

α > 0 α < 0

θ > 0, β > 0 1. Superconvex; logconvex: p > α > 0 2. Subconvex; logconvex

θ < 0, β < 0 3. Subconvex; logconcave: α > p > 0 n/a

Next, we wish to show that Bulow-Pfleiderer demands are necessary and sufficient for

marginal revenue to be affine in price. Sufficiency is immediate: marginal revenue is p+xp′ =

θα+(1−θ)p. Necessity follows by solving the differential equation p(x)+xp′(x) = a+bp(x),

which yields p(x) = a
1−b + c1x

b−1, where c1 is a constant of integration.
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G Bipower Direct Demands

G.1 Proof of Proposition 5

The proof follows immediately by noting that the direct demand function in Proposition 5,

x(p) = γp−ν + δp−σ, is the dual of the inverse demand function in Proposition 3, p(x) =

αx−η+βx−θ. Hence Proposition 3 with appropriate relabeling implies that the direct demand

function x(p) = γp−ν + δp−σ is necessary and sufficient for a linear dual manifold, that is

to say, an equation linking the dual parameters r and e: r̄(e) = ν + σ + 1− νσe. Recalling

from (39) that e = 1
ε

and r = ερ gives the desired result.

G.2 Proof of Proposition 6

The proof follows the same steps as that of Proposition 4. The bipower direct demand

manifold is given in equation (18), while the elasticity of demand ε equals νγp−ν+σδp−σ

γp−ν+δp−σ
.

Substituting into the condition for superconvexity yields:

ρ− ε+ 1

ε
= − 1

ε2
(ε− ν) (ε− σ) = γδH ′ (53)

where H ′ ≡ 1
ε2

(σ−ν)2p−σ

(γp−ν+δp−σ)2
, which is positive. It follows that both γ and δ must be positive

for superconvexity, which proves the Proposition.

G.3 QMOR Demand Functions

Diewert (1976) introduced the quadratic mean of order r expenditure function, which implies

a general functional form for homothetic demand functions. Feenstra (2014) considers a

symmetric special case and shows how it can be extended to allow for entry and exit of

goods, so making it applicable to models of monopolistic competition. In our notation, the
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resulting family of demand functions, taking a “firm’s eye view”, is:

x (p) = γp−(1−r) + δp−
2−r
2 (54)

This is clearly a member of the bipower direct family, with ν = 1− r and σ = 2−r
2

. Hence,

from Proposition 5, its demand manifold is:

ρ̄ (ε) =
(2− r) (3ε− 1 + r)

2ε2
(55)

In the limit as r → 0, this becomes ρ̄ (ε) = 3ε−1
ε2

, which is the translog manifold discussed

in the text. Figure 15 illustrates this demand manifold for a range of values of r. For

r = 2.0 it coincides with the ρ = 0 vertical line: i.e., a linear demand function from the

firm’s perspective. For negative values of r (i.e., more convex than the translog), the man-

ifolds extend into the superconvex region. However, this is for arbitrary values of γ and δ.

Feenstra (2014) shows that these parameters, which depend on real income and on prices of

other goods, must be of opposite sign when the demand function (54) is derived from expen-

diture minimization. Hence, from Proposition 6, QMOR demands are not consistent with

superconvexity, though in other respects they allow for considerable flexibility in modeling

homothetic demands.
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Figure 15: Demand Manifolds for QMOR Demand Functions
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G.4 Properties of PIGL Demands

With ν = 1, the elasticity of demand becomes ε = γp−1+σδp−σ

γp−1+δp−σ
. Subtracting one gives:

ε−1 = (σ−1)δp−σ

γp−1+δp−σ
= (σ − 1) px−γ

px
. It follows that σ−1, δ and px−γ must have the same sign.

In addition, the demand manifold is ρ = (σ+2)ε−σ
ε2

, so convexity is increasing in σ. Combining

these results with Proposition 6, there are three possible cases of this demand function. For

σ less than one, the demand function is less convex than the translog (i.e., PIGLOG) case,

δ is negative and γ is positive. For σ greater than one, δ is positive, the demand function

is more convex than the translog case, and it is subconvex if γ is negative, otherwise it is

superconvex. These properties are dual to those of the inverse PIGL demand functions in

Appendix F.3, and, like the latter, they can be related to whether the elasticity of marginal

revenue with respect to price is greater or less than one (the value of one corresponding to

the PIGLOG case). Note finally that the limiting case of PIGL demand function when σ

approaches zero is the LES, the only demand function which is a subset of both PIGL and

Pollak. The LES case is special in another respect: as can be seen in Figure 9(a), it is the

only member of the PIGL family for which ε is monotonic in ρ along the manifold. In all

other cases the manifold is vertical at {ε, ρ} = { 2σ
σ+2

, (σ+2)2

4σ
}. For σ < 0 it is not defined for

ρ < (σ+2)2

4σ
, while for σ > 0 it is not defined for ρ > (σ+2)2

4σ
.

G.5 Proof of Lemma 3: Uniqueness of the Translog

It is obvious by inspection that no member of the inverse bipower family can be always both

strictly subconvex and strictly supermodular. Consider next the direct bipower family. The

slope of its demand manifold is:

dε

dρ
= − ε3

(ν + σ + 1)ε− 2νσ
(56)

This cannot be zero, since ε is greater than one in the admissible region. Consider the

behavior of the demand manifold as ε approaches one from above. If it lies between the
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superconvexity and supermodularity loci, it must approach the Cobb-Douglas point (ε, ρ) =

(1, 2). In addition, since both loci have slopes equal to −1 at that point, equation (56) must

also equal −1 at that point. Evaluating the demand manifold and its slope at (1, 2) gives

two restrictions which the parameters must exhibit:

1 = ν + σ − νσ and
1

ν + σ + 1− 2νσ
= 1 (57)

Both of these can hold only if νσ = 1. This in turn implies from (57) that ν + σ = 2.

Combining these two conditions implies that (ν − 1)2 = 0, so both ν and σ must equal one.

Only the translog is consistent with this, which proves the result.

G.6 Properties of Pollak Demands

With ν = 0, the elasticity of demand becomes ε = σδp−σ

γ+δp−σ
= σ σδp

−σ

x
= σ x−γ

x
. It follows

that σ, δ and x − γ must have the same sign. The sign of σ also determines whether the

inverse demand function is logconvex or not. The CARA demand function is the limiting

case when σ → 0: the direct demand function becomes x = γ′ + δ′ log p, δ′ < 0, which

implies that the inverse demand function is log-linear: log p = α+ βx, β < 0.42 The CARA

manifold is ρ̄(ε) = 1
ε
, which is a rectangular hyperbola through the point {1.0, 1.0}. Hence

the CARA function is the dividing line between two sub-groups of demand functions and

their corresponding manifolds, with σ either negative or positive. For negative values of σ,

γ is an upper bound to consumption: the best-known example of this class is the linear

demand function, corresponding to σ = −1. By contrast, for strictly positive values of σ,

γ is the lower bound to consumption and there is no upper bound. Especially in the LES

case, it is common to interpret γ as a “subsistence” level of consumption, but this requires

42As noted by Pollak, this demand function was first proposed by Chipman (1965), who showed that it
is implied by an additive exponential utility function. Later independent developments include Bertoletti
(2006) and Behrens and Murata (2007). Differentiating the Arrow-Pratt coefficient of absolute risk aversion

defined in footnote 28 gives ∂A(x)
∂x = −u

′u′′′−(u′′)2

(u′′)2 = −pp
′′−(p′)2
(p′)2 = 1−ερ, so absolute risk aversion is constant

if and only if ε = 1
ρ .
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that it be positive and not greater than x, which only holds if demand is superconvex. All

members of the Pollak family with positive σ are translated-CES functions, and, as the

arrows in Figure 9(b) indicate, they asymptote towards the corresponding “untranslated-

CES” function as sales rise without bound; for example, the LES demand function, with σ

equal to one, asymptotes towards the Cobb-Douglas. Summarizing, there are three possible

cases of this demand function:

γ > 0 γ < 0

σ > 0, δ > 0 1. Superconvex; logconvex: x > γ > 0 2. Subconvex; logconvex

σ < 0, δ < 0 3. Subconvex; logconcave: γ > x > 0 n/a

H Demand Functions that are not Manifold-Invariant

In this section we introduce two new demand systems whose demand manifolds can be

written in closed form, though they depend on all the parameters, and so are not manifold

invariant. We consider in turn: the “Doubly-Translated CES” super-family, which nests both

the Pollak and Bulow-Pfleiderer families; and the “Translated Bipower-Inverse” super-family,

which nests both the “APT” (Adjustable pass-through) system of Fabinger and Weyl (2012)

and a new family which we call the inverse “iso-temperance” system.43 We also introduce a

demand function, the inverse exponential, which is partly manifold-invariant, and which is

an example of a demand function that can be both sub- and superconvex.

43A third super-family is the dual of the second, the “Translated Bipower-Direct” super-family. Reversing
the roles of p and x in equation (60) below leads to a “dual” manifold giving the inverse elasticity e as a
function of the direct convexity r with the same form as (62). Special cases of this include the dual of the
APT system and the direct “iso-temperance” system (i.e., the demand system necessary and sufficient for
−px′′′/x′′ to be constant). It does not seem possible to express the manifold ε̄(ρ) in closed form for this
family.
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H.1 The “Doubly-Translated CES” Super-Family

We can nest the Pollak and Bulow-Pfleiderer families as follows: p(x) = α + β (x− γ)−θ.44

The elasticity and convexity of this function are:

ε(x) =
1

θ

p

p− α
x− γ
x

ρ(x) = (θ + 1)
x

x− γ
(58)

When γ is zero this reduces to the Bulow-Pfleiderer case. Assuming γ 6= 0, we have ρ 6= θ+1,

and so the expression for ρ in (58) can be solved for x: x = ρ
ρ−(θ+1)

γ. Substituting into the

expression for ε yields:45

ε̄(ρ) =

[
1 + a1

(
1

ρ− a2

)a3] a4

ρ
(59)

where: a1 = α
β
{(θ + 1)γ}θ, a2 = θ+1, a3 = θ, and a4 = θ+1

θ
. This is a closed-form expression

for the manifold but it depends on all four parameters, except in special cases such as the

Pollak family, when, with α = 0, it reduces to ε̄(ρ) = θ+1
θ

1
ρ
. Nevertheless, the general demand

manifold (59) allows for some economy of information: three of its four parameters depend

only on the exponent θ in the demand function, and the fourth parameter, a1, is invariant

to rescalings of the demand function parameters which keep α
β
γθ constant.

H.2 The “Translated Bipower-Inverse” Super-Family

This demand function adds an intercept α0 to the bipower-inverse family of Section 3.3:

p (x) = α0 + αx−η + βx−θ (60)

44Only after we developed this family, we realized that it had already been considered in the working paper
version of Zhelobodko, Kokovin, Parenti, and Thisse (2012), who call it the “Augmented-HARA” system.

45Here and elsewhere, the parameters must be such that, when the exponent (here θ) is not an integer,
the expression which is raised to the power of that exponent is positive.
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Differentiating gives the elasticity and convexity:

ε(x) =
α0x

η + α + βxη−θ

ηα + θβxη−θ
ρ(x) =

η (η + 1)α + θ (θ + 1) βxη−θ

ηα + θβxη−θ
(61)

Assuming as before that ρ 6= θ + 1, and also that η 6= θ, we can invert ρ(x) to solve for

x: x(ρ) =
[
ηα
θβ

(η+1)−ρ
ρ−(θ+1)

] 1
η−θ

. Substituting into ε (x) gives a closed-form expression for the

manifold:

ε̄(ρ) =
ρ− a1

a2

+ (a3 − ρ)a4(ρ− a5)a6a7 (62)

where: a1 = η + θ + 1, a2 = −ηθ, a3 = η + 1, a4 = η
η−θ , a5 = θ + 1, a6 = − θ

η−θ , and

a7 =
(
η
β

) η
η−θ
(
θ
α

)− θ
η−θ α0

ηθ(η−θ) . In general, this depends on the same five parameters as the

demand function (60), though once again it allows for some economy of information: all but

a7 depend only on the two exponents η and θ, and a7 itself is unaffected by changes in the

other three demand-function parameters which keep α
θ

η−θβ
−η
η−θα0 constant. Equation (62) is

best understood by considering some special cases:

(1) Bipower Inverse: The cost in additional complexity of the “translation” parameter α0

is apparent. Setting this equal to zero, the expression simplifies to give the bipower inverse

manifold as in Proposition 3: ρ̄(ε) = 1 + η + θ − ηθε.

(2) APT Demands: Fabinger and Weyl (2012) show that the pass-through rate (in our

notation, dp
dc

= 1
2−ρ) is quadratic in the square root of price if and only if the inverse demand

function has the form of (60) with η = 2θ. This reduces the number of parameters by one,

so the demand manifold simplifies to: ε̄(ρ) = 1+3θ−ρ
2θ2

− [(2θ+1)−ρ]2

ρ−(θ+1)
2α
β2θ2

α0.

(3) Iso-Temperance Demands: Setting η = −1 is sufficient to ensure that temperance,

χ ≡ −xp′′′

p′′
, is constant, equal to θ + 2. It is also necessary. To see this, write xp′′′ = −χp′′,

where χ is a constant, and integrate three times, which yields p(x) = c0+c1x+ c2
(1−χ)(2−χ)

x2−χ,

where c0, c1 and c2 are constants of integration. This is identical to (60) with η = −1 and

θ = χ− 2. Note that iso-convexity implies iso-temperance, but the converse does not hold;

just as CES implies iso-convexity, but the converse does not hold.
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It should be apparent that the demand manifold in (62) is not particularly convenient

to work with. However, if we are mainly interested in pass-through, then we do not need

to work with the demand manifold at all, since the key conditions in (7) and (44) do not

depend on the elasticity of demand (a point stressed by Weyl and Fabinger (2013)). In such

cases, our approach can be applied to the slope rather than the level of demand. By relating

the elasticity and convexity of this slope to each other, we can construct a “Demand Slope

Manifold” corresponding to any given demand function, and the properties of this manifold

are very informative about when pass-through is increasing or decreasing with sales. It can

be shown that the demand slope manifolds of the APT and iso-temperance demand functions

are particularly convenient in this respect.

H.3 Exponential Inverse Demand

Our last example is a demand function which, for the same parameter values, is sometimes

sub- and sometimes superconvex:46

p(x) = α + β exp(−γxδ) (63)

where γ > 0 and δ > 0. The elasticity and convexity of demand are found to be:

ε(x) =
p

p− α
1

δγxδ
and ρ(x) = δγxδ − δ + 1 (64)

Solving the latter for γxδ as a function of ρ and substituting into the former yields a closed-

form expression for the demand manifold:

ε̄(ρ) =
1

ρ+ δ − 1

α
β

+ exp
(
−ρ+δ−1

δ

)
exp

(
−ρ+δ−1

δ

) (65)

46Mrázová and Neary (2011) consider the properties of R&D cost functions of this form.

58



This is invariant with respect to γ and also depends only on the ratio of α and β, not on

their levels. Differentiating with respect to ρ shows that, provided α
β

is strictly positive, the

demand function is subconcave for low values of ρ, which from (64) implies low values of x,

but superconcave for high ρ and x:

ε̄ρ =
−δ + α

β
(ρ− 1) exp

(
ρ+δ−1
δ

)
δ(ρ+ δ − 1)2

(66)

Figure 16 illustrates some demand functions and the corresponding manifolds from this class

for a range of values of α, assuming β = γ = 1 and δ = 2. A superconvex range in the

admissible region is possible only for parameter values such that the minimum point of the

manifold lies above the Cobb-Douglas point, {ε, ρ} = {1, 2}, i.e., only for α > βδ exp
(
− δ+1

δ

)
,

which for the assumed values of β and δ is approximately α > 0.446.
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Figure 16: Inverse Exponential Demand Functions and Manifolds

I Calculating the Effects of Globalization

To solve for the results in (27), use (25) to eliminate x̂ from (23) and then solve (23) and

(24) for p̂ and ŷ, with n̂ determined residually by (26). The results in (28) are obtained by

using x̂ = ŷ − k̂ and N̂ = k̂ + n̂.
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J Change in Real Income: Details

With symmetric preferences and identical prices for all goods, the budget constraint becomes:

I =
∫ N

0
p(ω)x(ω) dω = Npx. So consumption of each good is: x = I

Np
. Substituting into the

direct utility function yields its indirect counterpart:

V (N, p, I) = F

[
Nu

(
I

Np

)]
(67)

We can now define equivalent income Y (N, p) as the income that preserves the initial level

of utility U0 following a shock:

V

(
N, p,

I

Y

)
= U0 (68)

For small changes (so equivalent and compensating variations coincide), we logarithmically

differentiate, with I fixed (since it equals exogenous labor income), to obtain: N̂ − ξ(N̂ +

p̂+ Ŷ ) = 0. Rearranging gives the change in real income in (29).

K Welfare with Bipower Inverse Preferences

K.1 Proof of Proposition 10

The proof of Proposition 10 follows by adapting that of Proposition 3. Consider sufficiency

first. Just as the bipower inverse demand function in (17) implies equation (49), so the

bipower utility function in (34) leads with appropriate relabeling to:

x2u′′ + [(η − 1) + (θ − 1) + 1] xu′ + (η − 1)(θ − 1)u = 0. (69)

Dividing by xu′ and replacing xu′′

u′
by −1

ε
and u

xu′
by 1

ξ
yields equation (35) as required. The

proof of necessity also proceeds as in Proposition 3, mutatis mutandis.
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K.2 Proof of Proposition 11

From the proof of Proposition 4 in Section F.2, we have already seen that superconvexity

of demand for the bipower inverse family is equivalent to (ηε − 1)(θε − 1) ≤ 0. Similarly,

superconcavity of utility is equivalent from (31) to ξ ≥ ε−1
ε

. Substituting for ξ from the

bipower utility manifold (35) implies that superconcavity of utility holds for this family if

and only if: (ηε−1)(θε−1)
(1−η−θ)ε+1

≥ 0.

K.3 Welfare with Bulow-Pfleiderer Preferences

In the special case of Bulow-Pfleiderer preferences as in Corollary 6, the sufficient condition

for gains from globalization from Corollary 5 simplifies to (1− θ) ε+ 1 > 0. Since θ = ρ− 1,

this is equivalent to (2− ρ) ε+1 > 0, which must hold from the firm’s second-order condition.

Hence the conditions for subconcavity of utility are the same as those for superconvexity of

demand derived in Section F.4 above: θ > 0 and p > α > 0. Finally, the utility manifold (35)

simplifies to: ξ̄(ε) = (1−θ)ε
(1−θ)ε+1

. Expressing this as a function of ε and ρ: ξ(ε, ρ) = (2−ρ)ε
(2−ρ)ε+1

.

Hence ξ always lies between zero and one.

L Welfare with Pollak Preferences

L.1 From Demands to Preferences

Recall from Section 3.4 that the Pollak demand function is x(p) = γ + δp−σ, where δ, σ

and x − γ have the same sign, and γ has the same sign as δ and σ if and only if demand

is superconvex. To derive the sub-utility function we must first invert to obtain the inverse

demand function. This yields: p(x) =
(
x−γ
δ

)− 1
σ . It is convenient to redefine the constants

as ζ ≡ −γσ and β ≡ (δ/σ)1/σ (i.e., we replace γ by −ζ/σ, and δ by βδ/σ), which yields:

p(x) = β(σx + ζ)−
1
σ . Both β and σx + ζ are positive. Integrating and setting the constant

of integration equal to zero yields the sub-utility function (36).
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L.2 Proof of Proposition 12

We have already seen in Proposition 6 that all bipower direct demand functions are su-

perconvex if and only if both γ and δ are positive, and in Section G.6 that with Pollak

demands σ and δ must have the same sign. Hence a negative value of ζ ≡ −γσ is necessary

and sufficient for demand to be superconvex. Exactly the same condition arises when we

substitute from the Pollak utility manifold ξ̄(ε) = σ−1
ε

into the condition for superconcavity

of utility, ξ ≥ ε−1
ε

, which implies that superconcavity requires σ ≥ ε. Since the elasticity ε

equals σ x−γ
x

= σ + ζ
x
, it follows that ζ ≤ 0 is also necessary and sufficient for utility to be

superconcave.

L.3 Gains from Globalization with Pollak Preferences

Substituting for ξ = ερ−2
ε

into the general expression for welfare change in equation (33)

gives in this case:

Ŷ =
ε

ερ− 2

[
1− (ε− 1)2

ε2 (2− ρ)

]
k̂ (70)

This is negative when ρ > ρY ≡ ε2+2ε−1
ε2

. To confirm that this lies in the admissible range

ρ ∈
[
ρ, ρ
]
≡
[

2
ε
, 1 + 2

ε

]
, note that ρY − ρ = ε2−1

ε2
> 0 and ρ− ρY = 1

ε2
> 0.

L.4 Alternative Normalizations of the Sub-Utility Function

In the text we follow Dixit and Stiglitz (1977) and set the constant of integration in the sub-

utility function equal to zero. As Dixit and Stiglitz (1979) point out, this need not imply that

u(0) is strictly positive: we can define u(x) = max {0, β
σ−1

(σx+ζ)
σ−1
σ }, which is discontinuous

at x = 0, but in all respects is a valid utility index. Nevertheless, it is unsatisfactory that new

goods provide a finite level of utility, even when they are consumed in infinitesimal (though

strictly positive) amounts. An alternative approach, due to Pettengill (1979), is to choose

the constant of integration itself to ensure that u(0) = 0. This implies that the sub-utility
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function takes the following form:

u(x) =
β

σ − 1

[
(σx+ ζ)

σ−1
σ − ζ

σ−1
σ

]
(71)

Note, however, that ζ must be positive, which implies from Proposition 12 that demand

is always subconvex: a zero level of consumption is not in the consumer’s feasible set if

ζ is negative. Hence this normalization of the Pollak utility function implies a different

restriction on the feasible region from that in the text, with the whole of the superconvex

region now inadmissible.
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Figure 17: Globalization and Welfare: Normalized Pollak Preferences

It goes without saying that the elasticity and convexity of demand are unaffected by

this re-normalization of the sub-utility function. However, the elasticity of utility is very

different. It now behaves more like the Bulow-Pfleiderer case, except that it is not consistent

with superconvex demands:

ξN = Hξ, H(ε, σ) =
1

1−
(
ε−σ
ε

)σ−1
σ

, H(ε, ρ) =
1

1−
(
ε−ερ+1

ε

) ερ−2
ερ−1

(72)

where H is a correction factor applied to the unnormalized elasticity of utility given by

equations (37), ξ(ε, σ) = σ−1
ε

, and (38), ξ(ε, ρ) = ερ−2
ε

. The results are shown in Figure

17. Compared with Figure 13 in the text, the main differences are that utility is always
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superconcave and that the elasticity of utility now lies between zero and one for all admissible

values of ε and ρ, i.e., throughout the subconvex region. Both the elasticity of utility and

the change in real income behave qualitatively with respect to ε and ρ in a similar fashion

to the case of Bulow-Pfleiderer preferences in Figure 12. All this confirms that the elasticity

and convexity of demand are not sufficient statistics for the welfare effects of globalization,

and that small changes in the parameterization of utility can have major implications for

the quantitative effects of changes in the size of the world economy.
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Antràs, P., and E. Helpman (2004): “Global Sourcing,” Journal of Political Economy,

112(3), 552–580.

Arkolakis, C., A. Costinot, D. Donaldson, and A. Rodŕıguez-Clare (2012):
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