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Abstract

We investigate whether credit constraints facilitate the international propagation of

financial shocks that originate from the United States. The US economy is modeled

jointly with global macro and financial variables using a threshold vector autoregres-

sion. This model captures regime-dependent dynamics conditional on the tightness

of credit market conditions, gauged by a risk premium on US corporate bonds. The

economy switches from a regime of unconstrained access to credit to one character-

ized by tight credit whenever the bond risk premium exceeds a critical threshold.

Our results reveal that US financial shocks lead to a tightening of global financial

conditions and to a decline in global trade, which trigger a significant worldwide

output contraction in periods when borrowers face stringent credit constraints.
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1 Introduction

The 2007-08 turmoil in US financial markets gave rise to a credit crunch with widespread

effects on the global economy. However, the link between credit market conditions and

global spillovers is not yet fully understood. We provide new insights into the international

transmission of financial shocks by studying the amplification mechanisms arising from

credit constraints that bind in times of crisis. Our empirical results reveal that US

financial shocks propagate across the globe predominantly in times when credit is scarce.

A consensus seems to emerge from structural models that “occasionally binding” finan-

cial constraints are central to understanding the nonlinearities observed during financial

crisis episodes; see e.g. Mendoza (2010), Bianchi (2011), Brunnermeier and Sannikov

(2014), and Perri and Quadrini (2014). Specifically, this strand of the literature predicts

that economies are resilient to shocks as long as the flow of credit is unconstrained, how-

ever, binding credit constraints can give rise to aggregate economic contraction. Moreover,

recent studies have shown that financial frictions lead to an amplification of cross-border

shocks, and structural models featuring such frictions provide a more realistic picture

of international macroeconomic fluctuations; see e.g. Krugman (2008), Devereux and

Yetman (2010, 2011), Olivero (2010), Kollmann et al. (2011), and Dedola and Lombardo

(2012). Empirical models that ignore nonlinear amplification mechanisms may therefore

deliver inaccurate estimates of cross-country spillovers.

The novelty of this paper is to incorporate nonlinear features into an empirical model

of international financial spillovers. To that end, we depart from the existing literature

in two directions. First, we trace the regime-specific effects of financial shocks using

a threshold vector autoregression (TVAR) that distinguishes between normal and tight

credit regimes. Second, we model the US economy jointly with global macroeconomic

and financial variables in the TVAR. In contrast to models in which regime switching is

governed by a latent Markov-process, transition across regimes in the TVAR is determined

directly by the degree of credit market frictions in the US economy. Specifically, whenever

the tightness of credit exceeds an endogenously estimated threshold level, the economy

shifts from a state characterized by unconstrained access to credit to a regime in which

borrowers face stringent credit constraints. The VAR dynamics as well as the volatility of

shocks varies across these two regimes, which enables us to study regime-specific financial

spillovers.

Credit market conditions are measured by the excess bond premium (EBP) in the US

corporate bond market proposed by Gilchrist and Zakrajsek (2012). The EBP reflects

a premium demanded by investors for bearing exposure to credit risk across the entire

maturity spectrum (from 1- to 30-years) and the range of credit quality (from D to AAA)
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in the corporate bond market, beyond the compensation for the usual counter-cyclical

movements in expected corporate default.1 The EBP thus provides a useful gauge of credit

supply conditions in the US economy. In particular, Gilchrist and Zakrajsek (2011, 2012)

argue that fluctuations in the EBP give an adequate description of the disruptions in the

financial intermediation process. Using a DSGE model, they show that an increase in the

EBP reflects a reduction in the risk-bearing capacity of the financial sector, which raises

the cost of external finance for non-financial borrowers, leading to a decline in spending

and production.

We study the nonlinear propagation of EBP shocks in a baseline model for the US

economy comprised of output, prices, credit, the federal funds rate, and the excess bond

premium. The baseline model is subsequently augmented with US and global variables

to study a multitude of different transmission channels. EBP shocks are recovered via

the recursive identification scheme proposed by Gilchrist and Zakrajsek (2011), which

assumes that the EBP reacts without delay to all shocks hitting the economy. Our

results continue to hold when the EBP shock is identified via sign restrictions on the

estimated impulse responses. The restrictions imposed interpret an unexpected rise in

the EBP as an adverse shock to the supply of credit, in line with Gilchrist and Zakrajsek

(2011) and Peersman (2012).

Our empirical findings reveal a strong asymmetry in the macroeconomic responses to

an EBP shock upon distinguishing between normal and tight credit regimes. There is

no significant response of output and prices to a rise in the EBP when borrowers have

unconstrained access to credit, even though real credit and the fed funds rate decline.

On the contrary, an unexpected rise in the EBP is detrimental for the macroeconomy

when credit is scarce. In the tight credit regime, a 10 basis points (bp) rise in the

EBP acts as a negative credit supply shock accompanied by a decline in real credit by

about 1-2 percentage points (pp) – depending on our identifying assumptions – within

two years after the shock. The federal funds rate falls by about 10 bp, which suggests

that monetary policy takes an accommodative stance in the face of tightening financial

conditions. The EBP shock also induces an 0.1 pp decline in consumer prices and an 0.5

pp contraction of industrial output. Finally, upon adding several credit spreads to the

1Gilchrist and Zakrajsek (2012) construct a composite credit spread index as an arithmetic average of
credit spreads on senior unsecured corporate bonds issued by 1,112 nonfinancial firms. For each firm, the
credit spread for a corporate bond of a given maturity is obtained as the difference between the corporate
bond yield and the yield of a corresponding synthetic risk-free security from the Treasury yield curve.
Gilchrist and Zakrajsek (2012) decompose the credit spread index using a Black-Scholes-Merton option-
pricing model estimated under a risk-neutrality assumption. This model removes (i.) the systematic
counter-cyclical movements in firm-specific distance-to-default, (ii.) the level, slope and curvature of
the Treasury yield curve, and (iii.) the realized volatility of ten-year Treasury bonds. The EBP is the
residual component unexplained by these factors, it thus reflects systematic deviations in the pricing of
US corporate bonds relative to the expected default risk of the underlying issuers.
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baseline model, we find that these rise significantly in response to an EBP shock. These

outcomes suggest that a tightening of credit market conditions prompts banks to ration

lending, which forces firms and households to postpone investment and consumption plans

under binding credit constraints. A range of global variables is added one-at-a-time to

the baseline model to capture the international effects of an EBP shock. Remarkably, an

unexpected rise in the EBP leads to a significant worldwide output contraction in the

tight credit regime, while global output reacts insignificantly to the US financial shock

in the normal credit regime. Deteriorating global financial conditions and a decline in

global trade serve as conduits for the US financial shock in the tight credit regime, while

all transmission channels remain muted in normal times.

We contribute to three strands of the literature. First, our econometric approach

provides an empirical counterpart of the recently developed macroeconomic models that

feature occasionally binding financial constraints; see e.g. Mendoza (2010), Bianchi and

Mendoza (2010), Bianchi (2011), and Brunnermeier and Sannikov (2014). In particular,

our paper is closely related to Perri and Quadrini (2014), who study the international

propagation of financial shocks in a two-country model with occasionally binding con-

straints that give rise to multiple equilibria. Our results complement this theoretical

literature with empirical evidence on regime-specific spillover effects that arise from fi-

nancial frictions. Second, our paper contributes to a growing literature on macro-financial

linkages; see e.g. Gilchrist and Zakrajsek (2012) and Meeks (2012). Macro-financial mod-

els often fail to capture nonlinear amplification effects and feedback loops. Balke (2000)

constitutes an exception, however, his paper focuses on credit frictions solely in a closed

economy setup. Our paper departs from existing studies by accounting for nonlinearities

in an empirical model of international spillovers. Finally, our work is also related to a

battery of papers on the international transmission of financial shocks; see e.g. Helbling

et al. (2011), Bagliano and Morana (2012), and Cettorelli and Goldberg (2012). The

paper by Helbling et al. (2011) on the global transmission of US credit market shocks

is closest to ours, albeit they use a constant-parameter VAR model that lacks nonlinear

features.

The remainder of the paper is organized as follows. We present our econometric

approach in section 2. Section 3 offers a brief description of the data, and it outlines our

empirical results. Finally, section 4 summarizes our findings, and it concludes the paper.
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2 Methodology

2.1 The threshold vector autoregressive model

Our point of departure is a 5-variate system for the US economy, Yt = (qt, πt, ct, it, ebpt),

that comprises the growth rate of industrial production (qt), consumer price inflation

(πt), the growth rate of real credit (ct), the federal funds rate (it), and the excess bond

premium (ebpt). Yt is subsequently augmented with a range of global macro and financial

variables in order to capture global spillovers. We assume that Yt follows a threshold

vector autoregressive process given in structural form by:

Yt =

{

A1Yt + Θ1(L)Yt + ε1

t if ebpt−d < γ,

A2Yt + Θ2(L)Yt + ε2

t if ebpt−d ≥ γ,
(1)

for t ∈ {1, ..., T}, where ebpt−d acts as a threshold variable with delay d. The parameter

matrices A1 and A2 reflect the contemporaneous relationships between the endogenous

variables contained in Yt, while the lag polynomial matrices Θ1(L) = Θ1

1
L1 + ... + Θ1

p1
Lp1

and Θ2(L) = Θ2

1
L1 + ... + Θ2

p2
Lp2 describe their dynamic interaction. The vectors of

orthogonal, regime-specific shocks ε1

t and ε2

t are normally distributed with zero mean and

regime-dependent positive definite covariance matrices Σ1

ε = E(ε1

tε
1
′

t ) and Σ2

ε = E(ε2

tε
2
′

t ).

The model is estimated using the maximum likelihood estimator (MLE) described in

Appendix A.

Whenever the EBP crosses a threshold level γ, the economy shifts from a state in

which access to credit is unconstrained (“normal credit regime”) into one where borrowers

face stringent credit constraints (“tight credit regime”). The VAR dynamics as well as

the volatility of shocks can vary across these two regimes. We estimate the threshold

γ̂US endogenously from the above described model for the US economy. Subsequently,

we augment Yt with variables representing the global economy, and the TVAR is re-

estimated with γ̂US. This approach ensures that the identified regimes reflect distressed

credit conditions in the US economy.

We investigate the effects of an unexpected rise in the US excess bond premium.

Conditional on the threshold γ, the TVAR model reduces to a piecewise linear VAR.

Therefore, we can obtain impulse response functions (IRFs) which describe the dynamic

effects of EBP shocks within each regime, under the assumption that the economy resides

in the same regime for the duration of the response (see e.g. Ehrmann et al., 2003;

Candelon and Lieb, 2013).2 Identification of regime-specific shocks can be achieved by

2Even though this approach may have the limitation that switches from one regime to another are not
explicitly modeled, it has the important advantage that, in contrast to the generalized IRF occasionally
used in the literature, it enables structural identification of EBP shocks.
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imposing orthogonality restrictions on the contemporaneous relationships A1 and A2.

We employ two alternative identification schemes to recover EBP shocks from the

data.3 In the baseline, EBP shocks are identified via the recursive scheme proposed by

Gilchrist and Zakrajsek (2011, 2012), which is implemented by performing a Cholesky

decomposition of the regime-specific reduced-form covariance matrices Σs
u, where s =

1, 2.4 The identifying assumption entails that the EBP responds without delay to all

macroeconomic and policy shocks hitting the economy, while the macroeconomy reacts

with a slack to EBP shocks. This identification scheme delivers a lower bound on the

estimated effects of EBP shocks. Moreover, it acknowledges the high-frequency nature of

financial markets, which constitutes a standard approach in the VAR literature.

Our second identification approach exploits the fact that the EBP captures credit

supply conditions in the US economy, as argued by Gilchrist and Zakrajsek (2011, 2012).

Hence, an unexpected rise in the EBP can be thought of as a tightening in the supply

of credit. This shock is isolated from other macro and financial shocks, and in particular

from monetary policy induced changes in credit supply by imposing a combination of

zero and sign restrictions on the estimated impulse responses. Specifically, in line with

Peersman (2012), this shock is assumed to have only a lagged impact on output and prices,

i.e. the contemporaneous impact on both variables is restricted to be zero. Moreover,

a tightening of credit supply (ebpt ≥ 0) is accompanied by a decline in the real volume

of loans (ct ≤ 0) and by a drop in the federal funds rate (it ≤ 0). Table 1 summarizes

the identifying assumptions. All restrictions are assumed to hold for at least 6 months

following the shock, and all other shocks hitting the economy are assumed to display a

different pattern.

[Table 1 about here.]

The identifying restrictions are implemented using the method by Rubio-Ramirez

et al. (2010). It is well known that sign restrictions do not allow us to achieve unique

identification of shocks. Hence, we draw rotation matrices until 500 of them yield shocks

consistent with our sign restrictions. We adopt the median target approach to pick among

all models the one which yields impulse responses closest to the median response (Fry

and Pagan, 2011).

3We attach an economic interpretation solely to the EBP shock, while we do not interpret the re-
maining orthogonal shocks from a structural perspective, i.e., these may reflect a mixture of the true
underlying structural disturbances.

4In particular, the reduced form covariance matrices can be decomposed as Σ1

u = (A1)−1Σ1

ε(A
1)−1

′

and Σ2

u = (A2)−1Σ2

ε(A
2)−1

′

, from which the shocks can be recovered as ε1

t = A1u1

t and ε2

t = A2u2

t .
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3 Empirical results

3.1 Data

We use monthly data between January 1984 and December 2012. Thus, our sample ranges

from the ascent of the Great Moderation until the recovery from the global financial

crisis. The effective federal funds rate and the excess bond premium enter in levels, and

the baseline model also contains the logarithmic difference of the industrial production

index, the consumer price index (CPI), and the volume of commercial and industrial loans

issued by all US commercial banks, deflated by the CPI to obtain real credit. Time series

for the US are obtained from the Federal Reserve Bank of St. Louis and from Gilchrist

and Zakrajsek (2012).5

We augment the baseline 5-variate VAR one-at-a-time with six variables that capture

transmission channels of EBP shocks within the US economy. In particular, we add non-

financial leverage calculated by the Federal Reserve Bank of Chicago as a (standardized)

weighted average of the ratio of non-financial business debt outstanding to GDP and the

ratio of household mortgage and consumer debt outstanding to the sum of residential

investment and personal consumption expenditures on durable goods. Furthermore, we

gauge US credit market conditions by the high-yield bond spread (the difference between

Moody’s Baa rated long-term corporate bonds and 10-year Treasuries), by the Gilchrist-

Zakrajsek spread, and by an index of broader credit conditions which is a subindex of

the Chicago Fed’s National Financial Conditions Index (NFCI). In addition we add the

S&P 500 stock price index.

Next, we add aggregate global output to the baseline 5-variate VAR in order to

study the international dimensions of EBP shocks. Subsequently, the 6-variate VAR is

augmented one-at-a-time with seven global macro and financial variables to shed light

on international transmission channels. These include global consumer prices, the global

short-term nominal interest rate, global financial uncertainty, the global corporate credit

spread, the nominal exchange rate, global trade, and the oil price. Global variables

are proxied by weighted averages of time series for 18 major economies. The countries

included are Argentina, Australia, Austria, Belgium, Canada, Denmark, Finland, France,

Germany, India, Italy, Japan, Korea, Mexico, the Netherlands, Spain, Sweden, and the

United Kingdom. The weights reflect the average overall size of the economy over the

estimation period, and they are based on the time mean of PPP-adjusted annual real

GDP from the Penn World Tables.

5The data of Gilchrist and Zakrajsek (2012) was retrieved from the American Economic Associa-

tion webpage at: http://www.aeaweb.org/articles.php?doi=10.1257/aer.102.4.1692, and we are
grateful to Simon Gilchrist and Egon Zakrajsek for kindly supplying the extended time series that span
until December 2012.
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Global output is measured by industrial production data obtained from the OECD.

Global financial uncertainty is captured by the weighted average realized stock market

volatility, obtained as the sum of squared daily stock market returns within the month.

We use the MSCI price index of the total national stock market, retrieved from Datas-

tream. The global interest rate is computed as the weighted average of monetary policy

rates. We use the nominal effective exchange rate index of the US with respect to its 15

main trading partners reported by the Bank for International Settlements. We take the

spread between long-term corporate and government bonds from the IMF Stress Index

data set. Finally, we proxy US trade by the total sum of bilateral imports and exports

between the US and its 18 counterparts (deflated by US CPI), obtained from the IMF

Direction of Trade statistics.

3.2 Model selection

We employ three statistics in order to choose between a linear and a threshold VAR

model (the analytical details are presented in Appendix B). First, we test the null hy-

pothesis of a constant-parameter linear VAR model against the threshold-VAR alterna-

tive using the heteroskedasticity-robust SupLM statistic proposed by Hansen and Seo

(2002). The threshold γ is not identified and constitutes a nuisance parameter under the

null. Hence, the asymptotic distribution of the test statistic must be approximated via a

bootstrap simulation method (see Hansen, 1996). We obtain a SupLM value of 126.457

(p-value=0.042) which implies a rejection of the null hypothesis of linearity in favor of

the TVAR alternative. Rejection of the null suggests that financial frictions give rise to

significant nonlinearities.

In addition, following Altissimo and Corradi (2002), Galvao (2006), and Artis et al.

(2007), we use the bounded supWald (BW) and bounded supLM (BLM) statistics, which

constitute consistent model selection criteria when a nuisance parameter is present only

under the nonlinear alternative. The TVAR model is preferred over the linear VAR if

the statistics exceed unity (BW > 1 and, similarly, BLM > 1). This model selection rule

ensures that type I and type II errors are asymptotically zero. Table 2 shows the BW

and BLM statistics that guide our model selection between a constant-parameter linear

VAR against the threshold-VAR alternative. The table shows the test statistics for each

individual equation in the model. Again, the equation-wise supremum statistics speak

unequivocally in favor of the nonlinear model.

[Table 2 about here.]
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3.3 Credit regimes

We estimate the TVAR with p1 = 5 lags in the normal credit regime and p2 = 3 lags in

the tight credit regime, selected using the Akaike information criterion (AIC) proposed by

Tsay (1998) and the bias-corrected AIC proposed by Wong and Li (1998). The estimated

threshold value equals γ̂ = 0.1004 percentage points with a delay of d̂ = 1 month. Figure 1

illustrates the lagged EBP (solid line) together with the estimated threshold (dashed line).

The shaded areas correspond to periods when the EBP resides above the threshold. At a

first glance, three major episodes of distress in US banking and credit markets stand out.

The first wave of tight credit coincides with the savings and loan crisis of the 1980s and

early 1990s. An exhaustive historical account of the banking crises of that era is presented

in Federal Deposit Insurance Corporation (1997). Following a period of relative financial

stability during the 1990s, the US economy was again characterized by stringent credit

supply conditions at the wake of the new millennium, around the Enron, Y2K, and 9/11

debacles, and the burst of the dotcom bubble. Finally, credit constraints were binding

throughout the recent global financial crisis. The credit crunch associated with the global

financial crisis constitutes the last major tight credit regime.

[Figure 1 about here.]

3.4 Structural analysis

We trace the effects of an EBP shock on the US and the global economy, conditional

on whether the US credit market resides in a normal or tight credit regime. To capture

asymmetries across regimes, we report regime-specific median impulse responses to a 10

bp rise in the EBP together with 68% bootstrapped confidence bands obtained from 1000

draws. All IRFs are shown for 36 months.

3.5 Regime-specific effects of EBP shocks on the US economy

Figure 2 shows the regime-specific IRFs to a 10 basis point rise in the EBP from the

baseline TVAR identified via Cholesky decomposition. The black solid lines are the

median impulse responses from the TVAR model in the unconstrained credit regime with

shaded areas representing 68% confidence bands. The red dotted lines are the median

impulse responses from the TVAR model in the tight credit regime with dashed lines

representing 68% confidence bands.

An unexpected rise in the EBP dies out after about one year in both regimes. The

federal funds rate falls significantly by about 5 bp in the normal regime and by about 10

bp in the tight regime within a year after the shock, which suggests that monetary policy

8



typically takes an accommodative stance in the face of tightening financial conditions.

However, we find a strong asymmetry in the strength of the macroeconomic responses

across regimes. In periods when borrowers have unconstrained access to credit, an EBP

shock barely exerts an effect on output, prices or real credit. Hence, the monetary

expansion seems to contain the financial shock in times when the financial system is in

good health. On the contrary, the EBP shock is detrimental for the real economy if

credit is scarce. Commercial and industrial lending declines by nearly 1 pp, while output

undergoes an 0.5 pp contraction within a year after the shock. Consumer prices decline

persistently by approximately 1 percentage point.

Our empirical results remain qualitatively unchanged when the EBP shock is identified

via a combination of zero and sign restrictions, as illustrated in Figure 3. Remarkably,

both credit and the fed funds rate decline upon impact and their drop is more accentuated

when the contemporaneous zero restrictions imposed by the recursive Cholesky scheme

are removed.

The macroeconomic downturn observed in the tight credit regime suggests that a rise

in the EBP induces banks to ration lending, which forces firms and households to postpone

investment and consumption plans under binding credit constraints. In support of these

arguments, Figure 4 shows the IRFs from TVAR models augmented one-at-a-time with

variables that capture credit market conditions in the US economy. In the tight credit

regime, an adverse EBP shock is associated with tighter financial conditions in high-yield

and broader credit markets. In response to this credit crunch, the non-financial sector

embarks on a protracted de-leveraging process and stock prices decline.

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

3.6 Regime-specific effects of EBP shocks on the global economy

Figure 5 shows the regime-specific IRFs to a 10 basis point rise in the EBP from the

TVAR augmented with global output identified via Cholesky decomposition, while Figure

6 depicts the IRFs from the 6-variate TVAR identified through sign restrictions. Again,

the same picture emerges across different identification schemes. A rise in the EBP

facilitates a significant international output contraction, and there is a twofold global

output decline in the tight credit regime (amounting to about 0.4 pp) compared to normal

times.
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[Figure 5 about here.]

[Figure 6 about here.]

Figure 7 depicts the impulse responses to an EBP shock of seven global variables added

to the 6-variate TVAR one-at-a-time.6 Again, we find a clear asymmetry across US credit

regimes. Tightening credit market conditions in the US generate worldwide repercussions

under binding credit constraints due to trade and financial links with the rest of the world,

while all transmission channels remain muted in normal times. Remarkably, exchange

rates do not seem to be an important transmission channel for EBP shocks. However,

prices fall, global financial volatility rises, and corporate credit spreads widen significantly

after an EBP shock in the tight regime. Thus, deteriorating global financial conditions

serve as a conduit for the US financial shock in the spirit of an international finance

multiplier described by Krugman (2008), Devereux and Yetman (2010, 2011), Olivero

(2010), Kollmann et al. (2011), and Dedola and Lombardo (2012). Furthermore, US

trade with the rest of the world shrinks for about 2.5 years after the shock, and the

oil price drops by 1.5 pp under binding credit constraints. Finally, the global economic

downturn is accompanied by a worldwide monetary expansion, amounting to a 5 basis

point decrease in the global interest rate. On balance, these findings highlight that credit

constraints amplify the effects of US financial shocks on the global economy.

[Figure 7 about here.]

4 Conclusion

Financial frictions are often embedded in macroeconomic models, however, most empir-

ical studies on macro-financial linkages resort to linear models that fail to account for

the amplification mechanisms implied by the theoretical literature. There is an equally

limited empirical literature that investigates the relation between financial frictions and

global spillovers. This paper aims to fill these gaps.

We model economic activity in the US jointly with global macro and financial variables

using a threshold vector autoregressive model. This model captures regime-dependent

dynamics conditional on the tightness of credit market conditions Transition from a state

of unconstrained financial intermediation to a regime characterized by binding financial

constraints arises endogenously in this framework. We capture US credit market condi-

tions by an excess bond risk premium proposed by Gilchrist and Zakrajsek (2012). This

6We only show the responses of the additional global variables, as the remaining IRFs from the TVAR
are largely robust to variations of the model.
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premium reflects systematic deviations in the pricing of US corporate bonds relative to

the expected default risk of the underlying issuers, it thus provides a useful gauge of

credit supply conditions in the US economy.

Using the excess bond premium as a threshold variable, we identify three prolonged

periods of distress in US banking and credit markets. The first tight credit episode

coincides with the savings and loan crisis of the 1980s and early 1990s. The second episode

occurs in the early 2000s, around the Enron, Y2K, and 9/11 debacles and following

the burst of the dotcom bubble. Finally, our results suggest that the 2007-09 crisis is

associated with a severe credit crunch.

We find that financial frictions amplify business cycle fluctuations within as well as

across economies. The effects of US risk premium shocks on the global economy are

measured by regime-specific impulse response functions. Upon distinguishing between

normal and tight credit regimes, we uncover a strong asymmetry in the strength of the

structural impulse responses. The US financial sector absorbs the risk premium shock

when borrowers have unconstrained access to credit, and there are no aggregate economic

consequences. In contrast, an unexpected rise in the US risk premium triggers a signifi-

cant contraction in the global economy when borrowing constraints are binding. Hence,

our empirical results reveal an international dimension of the US financial accelerator

mechanism, which draws attention to the negative externalities imposed on the global

economy via frictions in financial intermediation in the United States.

Appendix A: MLE estimation of the TVAR

The reduced form of the TVAR model is given by:

Yt =

{

Φ1(L)Yt + u1

t if rpt−d < γ,

Φ2(L)Yt + u2

t if rpt−d ≥ γ,
(2)

where Φ1(L) = (I − A1)−1Θ1(L) and Φ2(L) = (I − A2)−1Θ2(L) are p1-order (resp. p2-

order) lag-polynomial matrices of the reduced form coefficients (where p1; p2 ∈ N), and

where u1

t ∼ (0, Σ1

u) and u2

t ∼ (0, Σ2

u) are vectors of reduced form Gaussian white noise

forecast errors, with Σ1

u = E(u1

tu
1
′

t ) and Σ2

u = E(u2

tu
2
′

t ) positive definite. The reduced

form parameters are estimated using the maximum likelihood estimator (MLE) described

in Galvao (2006). This entails computing the constrained MLE for Φ1(L), Φ2(L), Σ1

u,

and Σ2

u, holding d and γ fixed. For a given delay d and threshold value γ, the MLE are
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the OLS estimators given by:
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where D1

t = I(rpt−d < γ) and D2

t = I(rpt−d ≥ γ) are indicator functions. The estimated

residuals are obtained as: û1

t = YtD
1

t − ([Y
′

t−1
, Y

′

t−2
, ..., Y

′

t−p1
]D1

t )[Φ̂
1
1, Φ̂1

2, ..., Φ̂1
p1

] and

û2

t = YtD
2

t −([Y
′

t−1
, Y

′

t−2
, ..., Y

′

t−p2
]D2

t )[Φ̂
2
1, Φ̂2

2, ..., Φ̂2
p2

]. Finally, the MLEs for the covari-

ance matrices are Σ̂1

u = 1/T 1
∑T 1

t=1
û1

t û
1
′

t and Σ̂2

u = 1/T 2
∑T 2

t=1
û2

t û
2
′

t , where T 1 + T 2 = T .

The model is estimated for all possible values of d and γ on an equally spaced grid

of rpt−d. The MLE for d̂ and γ̂ are then obtained by solving the following optimization

problem:

(γ̂, d̂) = min
γL≤γ≤γU

1≤d≤dmax

(

T 1

2
log(|Σ1

u|) +
T 2

2
log(|Σ2

u|),

)

.

where γL is the 15%th percentile and γU is the 85%th percentile of the empirical distri-

bution of rpt−d. Hence, following Balke (2000), we restrict the search region such that at

least 15% of the observations (plus the number of parameters) are in each regime.

Appendix B: Model selection criteria

The heteroskedasticity-robust SupLM statistic for the null hypothesis of a linear VAR

against the TVAR alternative can be obtained as follows (see Hansen and Seo, 2002).

Let Y 1 and Y 2 be the matrices of the stacked rows (Yt−1, Yt−2, . . . , Yt−p1
)D1

t and (Yt−1,

Yt−2, . . . , Yt−p2
)D2

t , respectively, let ξ1 and ξ2 be the matrices of the stacked rows ũt

⊗ (Yt−1, Yt−2, . . . , Yt−p1
)D1

t and ũt ⊗ (Yt−1, Yt−2, . . . , Yt−p2
)D2

t , respectively, with ũt

the reduced form residual vector from the restricted (linear) VAR model. Furthermore,

define the outer product matrices M1 = Im ⊗ Y 1
′

Y 1, M2 = Im ⊗ Y 2
′

Y 2, Ω1 = ξ1
′

ξ1,
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and Ω2 = ξ2
′

ξ2. The Eicker-White covariance matrix estimators for vec(Φ̂1) and vec(Φ̂1)

can be defined as V̂ 1 = (M1)−1Ω1(M1)−1 and V̂ 2 = (M2)−1Ω2(M2)−1, respectively, from

which the heteroskedasticity-robust LM statistic is given by:

LM = vec(Φ̂1 − Φ̂2)
′

(V̂ 1 + V̂ 2)−1vec(Φ̂1 − Φ̂2), (3)

which is the test statistic for a given value of γ. The model is estimated by OLS for each

possible γ as described above, and the SupLM statistic is given by the supremum of the

LM statistics over the search region γL ≤ γ ≤ γU :

SupLM = sup
γL≤γ≤γU

LM. (4)

Following Altissimo and Corradi (2002), Galvao (2006), and Artis et al. (2007), we use

the bounded supWald (BW) and bounded supLM (BLM) statistics as additional model

selection criteria. The BW statistic is given by:

BW =
1

2 log(log(T ))

(

sup
γL≤γ≤γU

T

(

SSRlin − SSRnlin(γ)

SSRnlin(γ)

))
1

2

,

and the BLM is given by:

BLM =
1

2 log(log(T ))

(

sup
γL≤γ≤γU

T

(

SSRlin − SSRnlin(γ)

SSRlin

))
1

2

.

SSRlin is the the sum of squared residuals under the linear VAR null, and SSRnlin(.)

is the sum of squared residuals under the TVAR alternative hypothesis. The statistics

BW and BLM provide the asymptotic bounds on the supremum of the Wald and LM

statistics computed over a grid γL ≤ γ ≤ γU of possible values for the threshold γ. The

TVAR model is chosen over the linear VAR if BW > 1 and, similarly, if BLM > 1. This

model selection rule ensures that type I and type II errors are asymptotically zero.
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Figure 1: Excess bond premium and financial regimes
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Note: The solid line depicts the lagged excess bond premium and the dashed line corresponds to the
estimated threshold value (γ̂US = 0.1004). Tight credit regimes are shaded in grey. Sample: January
1984 - December 2012.
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Figure 2: Effects of an EBP shock identified via Cholesky decomposition
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Note: Impulse responses to a 10 basis point rise in the EBP from the baseline TVAR identified via
Cholesky decomposition. The black solid lines are the median impulse responses from the TVAR
model in the unconstrained credit regime with shaded areas representing 68% confidence bands based
on 1000 draws. The red dotted lines are the median impulse responses from the TVAR model in the
tight credit regime with dashed lines representing 68% confidence bands.
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Figure 3: Effects of an EBP shock identified via sign restrictions
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Note: Impulse responses to a 10 basis point rise in the EBP from the baseline TVAR identified via
sign restrictions. The black solid lines are the median impulse responses from the TVAR model in
the unconstrained credit regime with shaded areas representing 68% confidence bands based on 1000
draws. The red dotted lines are the median impulse responses from the TVAR model in the tight
credit regime with dashed lines representing 68% confidence bands.
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Figure 4: Impulse responses of US credit markets to an EBP shock
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Note: Impulse responses to a 10 basis point rise in the EBP identified via Cholesky decomposition.
The black solid lines are the median impulse responses from the TVAR model in the unconstrained
credit regime with shaded areas representing 68% confidence bands based on 1000 draws. The red
dotted lines are the median impulse responses from the TVAR model in the tight credit regime with
dashed lines representing 68% confidence bands.
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Figure 5: Effects of an EBP shock identified via Cholesky decomposition
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Note: Impulse responses to a 10 basis point rise in the EBP from the 6-variate TVAR identified
via Cholesky decomposition. The black solid lines are the median impulse responses from the TVAR
model in the unconstrained credit regime with shaded areas representing 68% confidence bands based
on 1000 draws. The red dotted lines are the median impulse responses from the TVAR model in the
tight credit regime with dashed lines representing 68% confidence bands.
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Figure 6: Effects of an EBP shock identified via sign restrictions
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Note: Impulse responses to a 10 basis point rise in the EBP from the 6-variate TVAR identified via
sign restrictions. The black solid lines are the median impulse responses from the TVAR model in
the unconstrained credit regime with shaded areas representing 68% confidence bands based on 1000
draws. The red dotted lines are the median impulse responses from the TVAR model in the tight
credit regime with dashed lines representing 68% confidence bands.
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Figure 7: Impulse responses of global variables to an EBP shock

0 6 12 18 24 30 36

−0.1

0

0.1

Global Prices

0 6 12 18 24 30 36

−0.1

0

Global Interest Rate

0 6 12 18 24 30 36

0

Global Financial Volatility

0 6 12 18 24 30 36

0

Global Credit Spread

0 6 12 18 24 30 36

−0.5

−0.1
0

0.1

Nominal Effective Exchange Rate

0 6 12 18 24 30 36

Global Trade

0 6 12 18 24 30 36
−4

−3.5
−3

−2.5
−2

−1.5
−1

−0.5
−0.1−0.0100.1

0.5
1

Oil Price

Note: Impulse responses to a 10 basis point rise in the EBP identified via Cholesky decomposition.
The black solid lines are the median impulse responses from the TVAR model in the unconstrained
credit regime with shaded areas representing 68% confidence bands based on 1000 draws. The red
dotted lines are the median impulse responses from the TVAR model in the tight credit regime with
dashed lines representing 68% confidence bands.
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Table 1: Identification of EBP shocks via zero and sign restrictions

Response of qt πt ct it ebpt

0 0 ≤ 0 ≤ 0 ≥0

Horizons Contemp. Contemp. 0-6 M 0-6 M 0-6 M

Note: qt: output, πt: prices, ct: credit volume, it: fed funds rate, ebpt: excess bond premium.
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Table 2: Model selection criteria

Selection criterion qt πt ct it ebpt

BW 4.174 3.837 4.429 4.898 4.738

BLM 3.878 3.603 4.080 4.437 4.317

Note: The table shows the BW and BLM statistics for each equation of
the estimated models. The nonlinear TVAR model is chosen over the linear
VAR if BW > 1 and, similarly, if BLM > 1.
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