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Abstract. Companies have exposure to many different features that might plausibly af-
fect their stock returns, like whether they’re involved in a crowded trade, whether they’re
mentioned in an M&A rumor, or whether their supplier missed an earnings forecast. Yet, at
any point in time, only a handful of these features actually matter. As a result, real-world
traders have to simultaneously infer both the identity and the value of the few relevant
features. This paper shows that, because they face this joint inference problem, the risk of
selecting the wrong subset of features can spill over and warp traders’ perceived asset values.
The high-dimensional nature of modern financial markets can act as a limit to arbitrage.

JEL Classification. D83, G02, G12, G14

Keywords. Feature-Selection Risk, Limits to Arbitrage, Sparsity, Behavioral Finance

Date: November 28, 2014.
University of Illinois at Urbana-Champaign. alexchinco@gmail.com. (916) 709-9934.
I am extremely indebted to Xavier Gabaix for many extremely enlightening conversations about this topic.

I have also received many helpful comments and suggestions from Adam Clark-Joseph, Aurel Hizmo, Ron
Kaniel, Vuk Talijan, and Jeff Wurgler as well as seminar participants at the Academy of Behavioral Finance
Conference, UIUC (Finance), and Rochester (Simon).

Current Version: http://www.alexchinco.com/feature-selection-risk.pdf.
1

HTTP://WWW.ALEXCHINCO.COM/FEATURE-SELECTION-RISK.PDF
HTTP://WWW.ALEXCHINCO.COM
mailto:alexchinco@gmail.com
http://pages.stern.nyu.edu/~xgabaix/
http://business.illinois.edu/facultyprofile/faculty_profile.aspx?ID=15088
http://people.stern.nyu.edu/ahizmo/
http://rkaniel.simon.rochester.edu/
http://rkaniel.simon.rochester.edu/
http://www.marshall.usc.edu/faculty/directory/vuktalijan2017
http://people.stern.nyu.edu/jwurgler/
http://aobf.org/2014Conference.htm
http://aobf.org/2014Conference.htm
http://www.business.illinois.edu/finance/
http://www.simon.rochester.edu/index.aspx
http://www.alexchinco.com/feature-selection-risk.pdf


2 ALEX CHINCO

1. Introduction

Real-world traders have to simultaneously figure out both which asset features matter
and also how much they matter. You can find evidence of this joint inference problem
throughout modern financial markets. To begin with, quant-fund pitch books are studded
with phrases like, “our model allows us to identify and interpret events faster than more
traditional methods used by other investors.”1 Alternatively, notice how trading floors are
covered in row after row of multi-monitor displays. These hi-tech orchards wouldn’t exist
in a world where traders already knew which features to analyze. You can even hear the
problem echoed back in traders’ war stories. “Before the 1998 financial crisis began, I didn’t
even know who LTCM was,” recalls Colm O’Shea, founder of COMAC Capital.2 “At the
start of the crisis, there was nothing about LTCM in the press. . . All I knew was that T-bond
futures were going up limit every day. That told me there was something going on.”

This paper develops the asset-pricing implications of traders’ joint inference problem.
Because traders have to simultaneously answer both ‘Which features?’ and ‘How much do
they matter?’, the risk of selecting the wrong subset of features can spill over, warp their
perception of asset values, and distort prices. Thus, feature-selection risk can act like a limit
to arbitrage even though it stems from the inherent high-dimensional nature of modern asset
markets and not some cognitive constraint or trading friction.

Illustrative Example. Let’s take a look at a short example illustrating exactly why feature-
selection risk is a consequence of a market’s dimensions and exactly how it limits arbitrage.
Imagine you’re a trader in a market where each company’s stock returns can have exposure to
any combination of 7 features: 1) whether it’s involved in a crowded trade (Khandani and Lo
(2007)), 2) whether it’s been mentioned in a news article about M&A activity (D’Aspremont
and Luss (2012)), 3) whether there’s been an announcement about its major supplier (Cohen
and Frazzini (2008)), 4) whether its labor force has unionized (Klasa, Maxwell, and Ortiz-
Molina (2009)), 5) whether it belongs to the alcohol, tobacco, and gaming industry (Hong and
Kacperczyk (2009)), 6) whether it’s been referenced in a scientific journal article (Huberman
and Regev (2001)), and 7) whether it’s been included in the S&P 500 (Barberis, Shleifer,
and Wurgler (2005)).

Moreover, suppose you know that companies with 1 of these 7 features might have realized
a shock, but you don’t initially know which one. All you know is that the market hasn’t
fully appreciated the shock. Stocks with this mystery feature will realize abnormal returns of
α > 0 percent which for the next few trading periods. Here is the question. How many stock
returns do you need to see in order to figure out which, if any, of the shocks has occurred?

Answer: 3.

1Actual quote from pitch book of quantitative trading desk at fund with more than $1 trillion AUM.
2Schwager, J. (1992) Market Wizards (1 ed.) John Wiley & Sons.
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Three observations give just enough information to answer 7 yes-or-no questions and rule
out the possibility of no change, 7 = 23−1. Let’s construct the solution to see why. Suppose
the first company’s returns have exposure to features {1,3,5,7}—that is, it’s involved in a
crowded trade, there’s been an announcement about its major supplier, it belongs to the
alcohol, tobacco, and gaming (ATG) industry, and it’s been recently added to the S&P 500.
Similarly, suppose that the second company’s returns have exposure to features {2,3,6,7}
and the third company’s returns have exposure to features {4,5,6,7}. The abnormal returns
for these three stocks always reveal exactly which feature-specific shock has occurred. If only
the first stock has positive abnormal returns, ar 1 = α while ar 2 = ar 3 = 0, then there must
have been a crowded-trade-specific shock:



ar 1

ar 2

ar 3


 =



α

0

0


 =




1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1







α

0
...
0




(1)

Whereas, if both the first and the third stock have positive abnormal returns, ar 1 = ar 3 = α

while ar 2 = 0, then there must have been a shock to the ATG industry.
Now, let’s rewind the clock a bit and consider the problem you face after seeing only the

first two company’s abnormal returns, ar 1 = α while ar 2 = 0:

[
α

0

]
=

[
1 0 1 0 1 0 1

0 1 1 0 0 1 1

]



?

?
...
?




(2)

In this setting, you know that either a crowded-trade-specific shock has occurred or an ATG-
industry-specific shock has occurred since the first company’s returns have exposure to both
these features while the second company’s returns don’t—that is, both the first and the fifth
columns are [ 1 0 ]>. What’s the right way to value the third company’s stock which has
exposure to features {4,5,6,7}, meaning that it’s in the ATG industry but it’s not involved
in a crowded trade?

There are two possibilities. If the crowded-trade-specific shock has occurred, then you
should leave the third company’s value unchanged; whereas, if the ATG-industry-specific
shock has occurred, then you should revise your valuation of the third company’s stock.
Thus, after seeing only two observations, you have to split the difference. If it was, in
fact, the ATG-industry-specific shock, then you will only update the third company’s value
half-way. So, it will look like you were slow to react to public information. By contrast, if
it was the crowded-trade-specific shock, then, when you revise your valuation of the third
company’s stock half-way, it will look like you were trading on noise. Nevertheless, you
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were doing the best you could in real time. It’s not like you’re making some cognitive error
or fighting against some trading friction. Instead, it’s the dimensionality of your inference
problem that generates the extra risk, that warps your perception of the third company’s
value, that distorts the third company’s stock price.

Feature-Selection Bound. Of course, this is just a stylized example: there are only a
handful of assets, each asset’s feature exposures are hand-picked, and their fundamental
values don’t reflect standard risk factors, like the return on the market portfolio. To address
these concerns, I apply results from the compressed-sensing literature to generalize this
thresholding result. Specifically, I show that prior to seeing N?(Q,K) observations,3

N?(Q,K) � K · log(Q/K) (3)

it is impossible to consistently identify which features have realized a shock in a large market
with an arbitrary number of features, Q, and an arbitrary number of shocks, K. This feature-
selection bound holds even when each company’s feature exposures are randomly assigned
and their fundamental values reflect the standard risk factors. What’s more, in the presence
of noise, some feature-selection risk will remain even after the feature-selection bound has
been reached. Thus, the feature-selection bound is an existence result. It says that, in
any large market, traders will face some feature-selection risk no matter what optimization
program they might use since the risk stems from the dimensionality of the market and not
cognitive constraints or trading frictions.

Asset-Pricing Model. Having shown that feature-selection risk is endemic to any large
market, I next investigate how it warps traders’ perception of asset values, distorts prices,
and delays arbitrage. To do this, I study a portable extension of the static Kyle (1985) model
with N assets whose values are a function of K � Q feature-specific shocks. The equilibrium
concept is completely standard. There are many informed traders who observe private signals
about the value of a single asset and then submit market orders to a common market maker.
And, just like in the original model, competitive pressures force the market maker to set the
price of each asset as close as possible to its fundamental value after observing the combined
demand from informed and noise traders. The model gets interesting when you ask: how
much information about whichK feature-specific shocks have occurred can the market maker
infer from the cross-section of aggregate demand of N stocks?

The feature-selection bound implies that there are two regimes. When there are sufficiently
few stocks relative to how complex the market is—that is, when N < N?(Q,K)—the answer
is: nothing. Recall that, in the earlier example when you’d only seen the first two assets,
you could still tell that the first company had realized a feature-specific shock while the
second company hadn’t. You just couldn’t tell which feature-specific shock. It could’ve

3fN � gN denotes asymptotically bounded above and below, implying both fN = O(gN ) and gN = O(fN ).
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been either the crowded-trade shock or the ATG-industry shock. Similarly, in the model,
when N < N?(Q,K) each asset’s aggregate demand reveals something about that particular
asset’s fundamental value. The market maker just can’t tell which feature-specific shocks are
responsible. In the general case, it could be any combination of the

(
Q
K

)
� N possibilities

with equal probability. Thus, when the market is sufficiently complex relative to the number
of assets, it effectively collapses to the original Kyle (1985) equilibrium with the market
maker setting prices on an asset-by-asset basis.

By contrast, when the number of stocks crosses the feature-selection bound—that is,
when N ≥ N?(Q,K)—the market maker can suddenly learn something about which feature-
specific shocks have occurred from the cross-section of aggregate demand. He can use the
underlying shock structure to form more accurate beliefs about each asset’s fundamental
value. Yet, because he now has to infer both which K features matter and also how much
they matter, the market maker will be less responsive to aggregate demand shocks and prices
will be less accurate relative to the original Kyle (1985) equilibrium. A pair of stocks with
exposure to the same feature-specific shock might have different prices because the market
maker (and any would-be arbitrageur) doesn’t know ahead of time how to interpret the pair
of demand shocks. Was their demand saying something about a shared feature? If so, which
one? Or, did both these stocks just happen to realize positive noise shocks at the same time?

Empirical Predictions. This model makes a pair of novel empirical predictions. First, the
model predicts that assets with more features should have lower pricing-impact coefficients.
A market maker will be more likely to make a feature selection error if he has to sort through
a larger number of potentially relevant features. So, because he’s aware that he’s more error
prone, he will be less responsive to informed trader demand. Consistent with this prediction,
quantitative traders often look for signal which are as obscure as possible. They try to hide
in the strategy space with the largest ambient dimension, Q. For example, the co-CEO
of Renaissance Technologies, Robert Mercer, pointed out that “some signals that make no
intuitive sense do indeed work. . . The signals that we have been trading without interruption
for 15 years make no sense, otherwise someone else would have found them.”4

Second, the model makes a prediction about the portfolio of assets that sophisticated
arbitrageurs should trade, about the kind of assets that are collectively the most informa-
tive about feature-specific shocks. One Arrow security for each risk. This is the textbook
approach to learning about risks. However, compressed-sensing theory says that an astute
trader can identify feature-specific shocks using far fewer assets if the shocks are sparse
and the assets are extremely complicated and heterogeneous. So, to identify feature-specific
shocks using as few assets as possible, sophisticated arbitrageurs should simultaneously trade
a diverse collection of complex derivatives rather than simpler assets like stocks or bonds.

4Mallaby, S. (2010) More Money Than God (1 ed.) Penguin Books.
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2. Baseline Equilibrium Model

I begin by characterizing a baseline equilibrium where traders don’t face any feature-
selection risk. Specifically, I assume that they have access to an oracle that alerts them to
the K features that have realized a shock, but not the size or sign of the shock. We can
then return to this model during the later analysis as a point of comparison to answer the
question, ‘How does feature-selection risk alter the usual predictions?’.

2.1. Market Structure. I study a static market with N assets whose fundamental values,
vn, are governed by their exposure to Q features:

vn =
∑

q

αq · xn,q (4)

where xn,q
iid∼ N(0,1) denotes asset n’s exposure to the qth feature and αq denotes the size

of the shock to feature q. So, for example, if there is a shock of size αATGind = $1 to stocks
in the alcohol, tobacco, and gaming industry, then the share price of a company in that
industry, xn,ATGind = 1, will rise by $1.

Heterogeneous Exposures. Each asset will manifest a feature-specific shock in a slightly
different way. For example, we know that some stocks are more likely to be included in
statistical arbitrage strategies than others, news of M&A activity has opposite affects on
the acquirer and the target, and some companies are more strongly impacted by news about
a particular supplier than others. Let’s consider a short concrete example with only 2

assets. Suppose that asset 1 has exposures to the stat-arb-strategy, M&A activity, and
supplier stock features given by x1 = [ 1.50 0.50 −0.10 ]> while asset 2 has feature exposures
x2 = [−0.50 − 0.75 1.00 ]>. Each stock’s value will then be:

v1 = αStatArb×(+1.50) + αM&A×(+0.50) + αEconLink×(−0.10) + · · · (5a)

v2 = αStatArb×(−0.50) + αM&A×(−0.75) + αEconLink×(+1.00) + · · · (5b)

Thus, a positive M&A activity shock of αM&A = 1 will lead to a $0.50 rise in the fundamental
value of asset 1. By contrast, the same shock will lead to a $0.75 decline in the fundamental
value of asset 2. Same shock. Different feature exposures. Opposite affects on value.

What’s more, I consider a setting where everyone knows each asset’s feature exposures
xn—that is, all agents have a detailed list of whether or not each asset’s been involved in
a crowded trade, mentioned in an article on M&A activity, suffered a setback to one of its
suppliers, etc. . . If there is any uncertainty in later sections, it will be about which elements
in α are non-zero. For instance, traders might be uncertain about whether or not the alcohol,
tobacco, and gaming industry has realized a shock, but they will never be uncertain about
whether a particular company is in the industry.
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Sparse Shocks. Only K of the elements in α are non-zero:

K = ‖α‖0 =
∑

q

1{αq 6=0} with Q� N ≥ K (6)

I assume the vector of feature-specific shocks, α, satisfies:

(1) K ⊂ {1,2, . . . ,Q} is selected uniformly at random.
(2) The signs of α[K] are independent and equally likely to be −1 or +1.
(3) The magnitudes of α[K] are independent and bounded by αmax ≥ |αq| > σz.

These restrictions on α capture the idea that only a few of the many possible features that
might impact a stock’s value each period actually matter. Traders have to figure out which
ones to pay attention to in real time. To be sure, shocks are never really exactly sparse;
they are only approximately sparse meaning that they may be well approximated by sparse
expansions. All of the results in this paper go through if you assume that K features realize
shocks that are much larger than those to the remaining (Q−K) features, K ≤∑q 1{|αq |>δ}.

Feature Selection. This market structure means that it’s possible for a trader to see several
assets behaving wildly without being able to put his finger on whichK feature-specific shocks
are the culprit. For instance, the chairman of Caxton Management, Bruce Kovner, notes
that there are often many plausible reasons why prices might move in either direction at any
point in time. “During the past six months, I had good arguments for the Canadian dollar
going down, and good arguments for the Canadian dollar going up. It was unclear to me
which interpretation was correct.”5 This wasn’t a situation where Kovner had to learn more
about a well-defined trading opportunity; rather, the challenge was to pick which explanation
to trade on in the first place. Kovner faced feature-selection risk.

Of course, sometimes traders aren’t in the business of spotting feature-specific shocks.
For example, a January 2008 Chicago Tribune article about Priceline.com (PCLN) reported
that “a third-quarter earnings surprise sent [the company’s] shares skyward in November,
following an earlier announcement that the online travel agency planned to make permanent
a no-booking-fees promotion on its airline ticket purchases.”6 No one was confused about
why Priceline’s price rose. The only problem facing traders was deciding how much to adjust
the price. Existing information-based asset-pricing models are well suited to this setting.

2.2. Objective Functions. There are two kinds of optimizing agents, asset-specific in-
formed traders and market-wide market makers, along with a collection of asset-specific
noise traders.

Informed Traders’ Problem. Asset-specific informed traders know the fundamental value
of a single asset, vn, and solve the standard static Kyle (1985)-type optimization problem

5Schwager, J. (1989) Market Wizards: Interviews with Top Traders. (1 ed.) New York Institute of Finance.
6DiColo, J. (2008, Jan. 20) Priceline’s Power Looks Promising in Europe, Asia. Chicago Tribune.
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8 ALEX CHINCO

with risk neutral preferences,

max
yn∈R

E [ (vn − pn) · yn | vn ] (7)

where yn denotes the size of asset n’s informed trader’s market order in units of shares.
Crucially, for these traders, the fundamental value of each asset is just a random variable
with no further structure. They cannot observe which K feature-specific shocks govern its
value. It’s productive to think about the asset-specific informed traders as value investors.
For instance, Li Lu, founder of Himalaya Capital and well known value investor, suggests
that in order to gain market insight you should “Pick one business. Any business. And truly
understand it. I tell my interns to work through this exercise—imagine a distant relative
passes away and you find out that you have inherited 100% of a business they owned. What
are you going to do about it?”7 It’s like they have an informative gut instinct.

Market Maker’s Problem. The market-wide market maker observes aggregate order flow,
dn, for each of the N assets,

dn = yn + zn with zn
iid∼ N(0,σ2

z) (8)

which is composed of demand from the asset-specific informed traders, yn, and from asset-
specific noise traders, zn. He then tries to set the price of each asset as close as possible to
its fundamental value given the cross-section of aggregate demand:

min
p∈RN

E

(
1

N
·
∑

n

(pn − vn)2

∣∣∣∣∣d
)

(9)

Put differently, competitive pressures force the market maker to try and minimize the mean
squared error between the price and each asset’s value. Notice that this formulation of
the market maker’s problem is slightly different from the one in the original Kyle (1985)
model. Here, the market maker explicitly minimizes his prediction error; whereas, in the
original setup, the market maker just sets the price equal to his conditional expectation,
which happens to minimize his prediction error since there are as many assets as shocks. In
the current paper, it’s important that the market maker explicitly minimizes his prediction
error because the conditional expectation will no longer be well defined when there are more
possible feature-specific shocks than assets.

Because there are many more features than assets, Q� N ≥ K, the market maker must
use a feature-selection rule φ(d,X) that accepts an (N × 1)-dimensional vector of aggregate
demand as well as an (N × Q)-dimensional matrix of features and spits out a vector of
feature-specific shocks:

φ : RN ×RN×Q 7→ RQ (10)

7Lu, L. (2010) Lecture at Columbia Business School.
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Figure 1. What each agent knows and when they know it in the model where the common
market maker knows which K features have realized a shock.

I use α̂ = φ(d,X) to denote the estimated shocks. Later, I will give bounds on how well the
best possible feature-selection rule can perform in a market with Q features, K shocks, and
N assets. The nature of the equilibrium asset prices will depend on how much information
about the sparse feature-specific shocks, α, the market maker can tease out of the cross-
section of aggregate demand, d. It’s clear that real world traders worry about how much
their market maker can learn from the combination of their orders. For instance, quantitative
hedge funds place the orders for different legs of the same trade with different brokers to
make it difficult for their brokers to do exactly this sort of reverse engineering.

2.3. Oracle Equilibrium. Let’s now explore the equilibrium when the market maker has
an oracle telling him exactly which K features have realized a shock. It turns out that the
coefficients in Proposition 2.3 are identical to the standard Kyle (1985) model coefficients.
This fact highlights how existing information-based asset-pricing models implicitly assume
that all traders know exactly which features to study.

Figure 1 summarizes the timing of the model. First, nature assigns feature exposures to
the N assets and picks a subset of K features to realize shocks. After the exposures and
shocks have been drawn but before any trading takes place, the N asset-specific informed
traders learn the fundamental value of their own asset, vn, and the single market maker
common to all N assets observes which K features have realized a shock (but not the size or
sign of these shocks). Finally, trading takes place. Each of the N informed traders and noise
traders places a market order. Then, the market maker observes each asset’s aggregate order
flow, updates his conditional expectation about their values, and sets prices accordingly.

An equilibrium, E = {θ,λ}, is a linear demand rule for each of theN asset-specific informed
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traders:

yn = θ · vn (11)

and a linear pricing rule for the single market maker common to all N assets:

pn = λ · dn (12)

such that a) the demand rule θ solves Equation (7) given the correct assumption about λ
and b) the pricing rule λ solves Equation (9) given the correct assumption about θ.

Proposition 2.3 (Oracle Equilibrium). If the market maker knows K, then there exists an
equilibrium defined by coefficients:

λ =
1

2 · θ (13a)

θ =

√
K

N
·
(
σz
σv

)
(13b)

Because there are more assets than feature-specific shocks, the market maker can just run
the standard OLS regression, φOLS(d,X):

1/θ · dn = xnα̂OLS + εn (14)

to estimate α̂OLS. Knowing these coefficients then gives him an unbiased signal, Xα̂OLS,
about each asset’s fundamental value. This signal has variance:

E

[
1

N
· ‖v −Xα̂OLS‖2

2

]
=
K

N
· σ

2
z

θ2
(15)

Using his priors on the distribution of each asset’s value, vn
iid∼ N(0,σ2

v), he can then use
DeGroot (1969) updating to form posterior beliefs. The market maker’s signal error is
increasing in the variance of noise trader demand, so he has a harder time figuring out if a
positive demand shock is due to noise traders or a really strong fundamental value realization
noise trading is more erratic. Thus, more noise trader demand volatility means informed
traders have an easier time masking their trades allowing them to trade more intensely.

3. Feature-Selection Bound

We just saw what the equilibrium looks like when traders know exactly which features
to analyze. I now show just how hard it is to recover this information in a large market.
Specifically, I show that, if the traders haven’t seen at least N?(Q,K) observations, then they
will always suffer from feature-selection risk, they will always make some errors in picking
which features to analyze.
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3.1. Theoretical Minimum. Suppose that the market maker was the most sophisticated
trader ever and could choose the best inference strategy possible, φBest. How many observa-
tions does he need to see to be sure that he’s identified which feature-specific shocks have
taken place? He doesn’t need to see Q observations since the vector α is K-sparse. But
what is this bare minimum number?

To answer this question, I consider limiting results for sequences of markets {(QN ,KN)}N≥0

where the number of features, Q = QN , and the sparsity level, K = KN , are allowed to grow
with the number of observations, N :

lim
N→∞

QN ,KN =∞ N≥ KN lim
N→∞

KN/QN = 0 (16)

For example, take K =
√
Q. This asymptotic formulation captures the spirit of traders’ joint

inference problem. For instance, Daniel (2009) notes that during the Quant Meltdown of
August 2007 “markets appeared calm to non-quantitative investors. . . you could not tell that
anything was happening without quant goggles” even though large funds like Highbridge
Capital Management were suffering losses on the order of 16%.8 All stocks with exposure
to the held-in-a-stat-arb-strategy feature realized a massive shock, but this feature was just
one of many plausible feature-specific shocks that might have occurred ex ante. Unless you
knew where to look (had “quant goggles”), the event just looked like noise.

Formally, I am interested in the quantity:

FSE[φ] = E [ ‖S[α̂]− S[α]‖∞ ] (17)

where the operator S[·] identifies the support of a vector:

S[α̂q] =





1 if α̂q 6= 0

0 if α̂q = 0
(18)

The `∞-norm gives a 1 if there is any difference in the support of the vectors and a 0

otherwise. In words, FSE[φ] is the probability that the market maker’s selection rule φ
chooses the wrong subset of features when averaging over not only the measurement noise
but also the choice of the Gaussian exposure matrix, X. Let Φ denote the set of all possible
inference strategies the market maker might use. If there exists some inference strategy
φ ∈ Φ with FSE[φ] = 0, then the market maker can use this approach to always select
which feature-specific shocks have taken place with probability 1. i.e., there exists (at least
in principle) an inference strategy that would be just as good as having an oracle. It may
not be computationally feasible, but it would exist.

The feature-selection bound given in Proposition 3.1 below then says that no such strategy
exists when the market maker has seen fewer than N?(Q,K) observations. When N <

8Zuckerman, G., J. Hagerty, and D. Gauthier-Villars (2007) Mortgage Crisis Spreads. Wall Street Journal.
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N?(Q,K), at least a few feature-selection errors are unavoidable regardless of what approach
φ ∈ Φ the market maker takes.

Proposition 3.1 (Feature-Selection Bound). If there exists some constant C > 0 such that:

N < C ·KN · log(QN/KN) (19)

as N →∞, then there exists some constant c > 0 such that:

min
φ∈Φ

FSE[φ] > c (20)

The threshold value N?(Q,K) � K · log(Q/K) is the feature-selection bound.

Importantly, Proposition 3.1 doesn’t make any assumptions about the market maker’s cog-
nitive abilities. It says that when N < N?(Q,K) the market maker has to be misinterpreting
aggregate demand signals at least some of the time due to the nature of his sparse, high-
dimensional, inference problem. Put another way, this minimum number of observations is
a theoretical bound on how informative market signals can be rather than a consequence
of thinking costs or trading frictions. In some sense, it has nothing to do with the market
maker. He could be Einstein, Friedman, and Kasparov all rolled into one and it wouldn’t
matter. There is simply a lower bound on the amount of data needed to say anything useful
about which market events have taken place using the cross-section of aggregate demand.
This is a very different way of thinking about why rational traders sometimes misinterpret
market signals. This result is derived from Wainwright (2009a).

3.2. Discussion. There are a couple of points about the interpretation of Proposition 3.1
worth discussing in more detail. First, while the asymptotics are helpful for analytical
reasons, they are not critical to the underlying result. There is a qualitative change in the
nature of any inference problem when you move from choosing which feature-specific shocks
have occurred to deciding how large they must have been. To see why, let’s return to the
example in Section 1 where only 1 of the 7 features might have realized a shock, and consider
the more general case where any of the 7 features could have. This gives:

27 = 128 =

(
7

0

)
+

(
7

1

)
+

(
7

2

)
+

(
7

3

)
+

(
7

4

)
+

(
7

5

)
+

(
7

6

)
+

(
7

7

)

= 1 + 7 + 21 + 35 + 35 + 21 + 7 + 1

(21)

different feature combinations. Thus, N?(7,7) = 7 gives a trader just enough differences to
identify which combination of features has realized a shock. More generally, for any number
of features, Q, a trader needs 2Q =

∑Q
k=0

(
Q
k

)
observations to detect shocks if he has no

information about K. This gives an information theoretic interpretation to the meaning of
“just identified” that has nothing to do with linear algebra or matrix invertibility.

Second, these asymptotics do not pose a practical problem when applying the bound. To
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begin with, real world markets are finite but very large, so the asymptotic approximation
is a good one. While it isn’t possible to give a precise formulation of the feature-selection
bound in the finite sample case, practical compressed sensing techniques can make error rate
guarantees in finite samples. What’s more, analysts regularly make this sort of asymptotic-
to-finite leap in mainstream econometric applications. For example, practical application of
GMM involves a 2-step procedure as outlined in Newey and McFadden (1994). The first
step estimates the coefficient vector using the identity weighting matrix on the basis that
any positive semidefinite weighting matrix will give the same point estimates in the large
T limit. The second step then uses the realized point estimates to compute the coefficient
standard errors.

Finally, the result in Proposition 3.1 is likely too optimistic about the ability of the most
sophisticated market maker since it makes no assumptions about the inference strategy being
convex. How much harder could the non-convex approach be? A lot. Consider the motivating
example from Section 1. Suppose that Q = 400, and I told you exactly which K = 5 of the
characteristics were mispriced. For this sub-problem you could easily estimate the values of
each of the coefficients using a standard regression procedure—that is, a convex approach.
You can certainly try to solve the general problem by tackling each of the

(
400
5

)
≈ 8.3× 1010

sub-problems with a regression procedure; however, this is a huge number of cases to check on
par with the number of bits in the human genome. As Rockafellar (1993) writes, “the great
watershed in optimization isn’t between linearity and nonlinearity, but convexity and non-
convexity.” Current research in compressed sensing focuses on how close convex optimization
programs can come to achieving this oracle bound.

4. Feature-Selection Risk

Let’s now introduce feature-selection risk into the baseline asset-pricing model to see how
it warps traders’ perception of asset values, distorts prices, and delays arbitrage. The basic
equilibrium concept will remain completely standard. The key question is ask is: how much
information about which K feature-specific shocks have occurred can the market maker infer
from the cross-section of aggregate demand of N stocks?

4.1. Inference Strategy. If the market maker does not have access to an oracle, then
he must both identify and interpret feature-specific shocks. Since there are many more
potentially relevant features than there are assets, Q � N , he must use a sparse inference
strategy. No matter what sparse inference strategy he chooses, he will be subject to the
feature-selection bound of Section 3. However, in order to compute equilibrium asset prices,
I need to compute the market maker’s posterior beliefs and this involves picking an inference
strategy for him to follow.

I study a market maker who uses the least absolute shrinkage and selection operator
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(LASSO) outlined in Tibshirani (1996):

α̂ = arg min
α̃∈RQ

{
‖Xα̃− (1/θ) · d‖2

2 + γ · ‖α̃‖1
}

(22)

for γ > 0. The `1 norm means that the LASSO sets all coefficient estimates with |αq| < γ

equal to zero. It generates a preference for sparsity. For example, if there were no γ · ‖α̃‖1
term, then the inference strategy would be equivalent to ordinary least squares which isn’t
well-posed for Q� N . The tuning parameter γ controls how likely the estimation procedure
is to get false positives. To screen out spurious variables, you want γ to be large; however,
increasing γ also means that you are more likely to ignore meaningful variables that happen to
look small. Decreasing γ to reduce this problem floods the results with spurious coefficients.

Note that in the current paper, the use of the `1-norm is not a consequence of bounded
rationality as in Gabaix (2011). Rather it is simply a way for the market maker to draw an
inference about the value of each asset given the cross-section of aggregate demand. Since
the market maker doesn’t have access to an oracle, there are now more features than stocks,
Q � N . As a result, his inference procedure needs to have a preference for sparsity. Any
penalty with a norm p ∈ [0,1] will do so. For example, think about the `0 problem:

α̂ = arg min
α̃∈RQ

{
‖Xα̃− (1/θ) · d‖2

2 + γ · ‖α̃‖0
}

(23)

However, any penalty with a norm p ∈ [0,1) generates a non-convex inference problem
which is computationally intractable. Natarajan (1995) explicitly shows that `0 constrained
programming is NP-hard. Thus, the `1 norm which sits right on the boundary of the two
regions is the natural choice for the penalty. What’s more, when feature exposures are drawn
independently from identical Gaussian distributions as they are in the current paper, the
LASSO comes within a logarithmic factor of optimality as shown in Wainwright (2009b).

4.2. Equilibrium Using the LASSO. I now consider the more general setting when the
market maker doesn’t have access to an oracle and must solve a sparse, high-dimensional,
inference problem on his own. The feature-selection bound implies that the market maker
now has to bear some feature-selection risk when N < N?(Q,K). I show that informed
traders in this new model earn higher profits since they can hide behind both noise trader
demand shocks and feature-selection error.

Candes and Plan (2009) prove that if the market maker sees the aggregate demand for
at least N?(Q,K) assets, then the LASSO gives a signal about each asset’s value, v, with a
signal error that satisfies the inequality below:

1

N
· ‖Xα̂LASSO − v‖2

2 ≤ C̃2 · log(Q)× K

N
· σ

2
z

θ2
(24)

with probability approaching unity as N → ∞ for C̃ = 2 ·
√

2 · (1 +
√

2). Where does this
C̃2 · log(Q) factor come from? Because the market maker has to simultaneously decide both
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which asset features have realized a shock and also how large they were, he will sometimes
make errors in identifying which features have realized a shock. When he does so, there
will be additional noise in his posterior beliefs about each asset’s fundamental value. It’s
these feature-selection errors that increase the variance of his posterior beliefs by a factor
C̃2 · log(Q) relative to when he had an oracle.

The equilibrium concept will be the same as before. An equilibrium, Eφ = {θ,λ}, is a
linear demand rule for each of the N asset-specific informed traders:

yn = θ · vn (25)

and a linear pricing rule for the single market maker common to all N assets:

pn = λ · dn (26)

such that a) the demand rule θ solves Equation (7) given the correct assumption about λ and
b) the pricing rule λ solves Equation (9) given the correct assumption about θ and assuming
the market maker uses to the LASSO to solve his sparse, high-dimensional, inference problem.

Proposition 4.2 (Equilibrium Using the LASSO). If the market maker uses the LASSO with
γ = 2 ·(σz/θ) ·

√
2 · log(Q) to identify and interpret feature-specific shocks and N > N?(Q,K),

then there exists an equilibrium defined by coefficients:

λ =
1

2 · θ (27a)

θ = C ·
√

log(Q)×
√
K

N
·
(
σz
σv

)
(27b)

for some positive numerical constant 0 < C < C̃.

Increasing the number of payout-relevant features that a market maker has to sort through,
Q, delays arbitrage. First, it raises the feature-selection bound, N?(Q,K), so that the market
maker has to see more assets before he can correctly identify which features have realized
a shock. When there are fewer than N?(Q,K) assets for the market maker to inspect, the
LASSO doesn’t reveal anything about which feature-specific shocks have occurred. Thus,
in this regime, the common market maker effectively operates in N distinct asset markets.
Each asset’s each demand gives him information about that particular asset’s fundamental
value, but he can’t extrapolate this information from one asset to the next. Second, it makes
the market maker less certain about his inferences. i.e., it imposes a penalty on precision
of the market maker’s posterior beliefs of C2 · log(Q) per unit of fundamental volatility for
market breadth. In short, it takes time to decode market signals.

Proposition 4.2 includes a numerical constant C. The exact value of this numerical con-
stant will depend on the distribution of the sizes of the K feature-specific shocks. The
exact value of the constant can be found numerically by bootstrap procedures—that is, by
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repeatedly estimating the LASSO on sample datasets. For example, when the magnitude
of the K feature-specific shocks is drawn αq ∼iid ±Unif[1,2] · (σz/θ), simulations reveal that
C ≈ 2 ·(1+

√
2) ≈ 4.82. I make no effort to characterize this value further because it depends

on the gritty details of the asset value distribution. Changing C slightly does not alter the
qualitative intuition behind the impact of feature-selection risk.

5. Model Predictions

Let’s now analyze a pair of novel empirical predictions produced by this model with feature
selection risk.

5.1. Substituting Risks. The model outlined above predicts that it should be more prof-
itable for an informed trader to learn a firm-specific piece of news in a markets with a larger
number of payout-relevant features—that is, with a larger value of Q. After all, adding
more payout-relevant features lowers the equilibrium price impact coefficient. Forcing mar-
ket makers to sort through a larger number of potentially relevant features makes them less
responsive to informed trader demand. To make this point precise, I study the unconditional
expectation of an asset-specific value investor when the market maker has to use the LASSO
to both identify and interpret feature-specific shocks:

Π(Q,σz) = E

(
max
yn

E [ (vn − pn) · yn | vn ]

)
(28)

The proposition below shows that this quantity is increasing in the number of payout-relevant
features. Put differently, a bigger haystack means more profit for the informed traders.

Proposition 5.1 (Informed Trader Profit). If the market maker does uses the LASSO to
identify and interpret feature-specific shocks and N > N?(Q,K), then the N informed traders
have expected profits:

Π(Q,σz) = C/2 ·
√

K/N · log(Q)× σv · σz (29)

for some positive numerical constant 0 < C < C̃ defined in Proposition 4.2.

What’s interesting about the functional form of the informed traders’ expected profits
given in Proposition 5.1 is that the number of features, Q, and the volatility of noise trader
demand, σz, enter multiplicatively. Feature-selection risk and noise trader demand risks
are substitutes in a Kyle (1985)-type model. Adding more payout-relevant features for the
market maker to sort through makes him less responsive to aggregate demand shocks in
exactly the same way that increasing the noise trader demand volatility does.

A natural follow up question is: What is the exchange rate between feature-selection risk
and noise trader demand risk? Suppose that you decreased noise trader demand volatility
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by a fraction ∆σz :

Q 7→ Q′ = Q · (1 + ∆Q) (30a)

σz 7→ σ′z = σz · (1 + ∆σz) (30b)

At what rate would you have to add features to the market, ∆Q, to leave the informed
traders with exactly the same profit? It turns out that for small values of ∆σz it is possible
to answer this questions. I do this by expanding the expression for the informed traders’
expected profit around any baseline level of (Q,σz) and solving for ∆Q as a function of ∆σz

so that the first order terms cancel out:

0 =
∂

∂Q′
Π(Q′,σz)|Q′=Q ·∆Q +

∂

∂σ′z
Π(Q,σ′z)|σ′

z=σz
·∆σz (31)

The corollary below characterizes exactly this relationship.

Corollary 6.1 (Substituting Risks). Suppose you decreased the noise trader demand volatil-
ity by a fraction ∆σz > 0, then increasing the number of asset features by a fraction:

∆Q = 2 · log(Q) ·
(
Q

σz

)
×∆σz (32)

would leave informed trader expected profits and the price impact coefficient, λ, unchanged.

5.2. Seemingly Redundant Assets. The model outlined above also predicts that the
market maker can identify feature-specific shocks using fewer assets if he studies a collection
of assets with a more random assortment of feature exposures. The textbook approach to
learning about risks involves studying the prices of simple assets: 1 Arrow security for each
shock. By contrast, compressed sensing theory asserts that an astute trader can identify
feature-specific shocks from the prices of far fewer assets if a) the shocks are sparse and b)
the chosen assets have extremely heterogeneous exposures to a large number of features.

One way to learn about feature-specific shocks is to look at the price and demand of Arrow
securities. For example, if there are Q payout relevant features:




d
(A)
1

d
(A)
2

d
(A)
3
...

d
(A)
Q




=




1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1




︸ ︷︷ ︸
X(A)




α1

α2

α3

...
αq




+
1

θ
·




z
(A)
1

z
(A)
2

z
(A)
3
...

z
(A)
Q




(33)

This market setup is incredibly simple. The aggregate demand for the first Arrow security,
d

(A)
1 , tells the market maker if there has been a feature-specific shock to the first feature;

the aggregate demand for the second Arrow security, d(A)
2 , tells the market maker if there

has been a feature-specific shock to the second feature; the aggregate demand for the third
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Arrow security, d(A)
3 , tells the market maker if there has been a feature-specific shock to the

third feature; and so on. . .
Arrow securities are simple, but they are also wasteful. They don’t exploit the fact that

the market maker knows α is spiky and concentrated in only a few of its coordinates. Arrow
securities are informative because they form an orthonormal basis. As a result, no 2 sets of
feature-specific shocks can manifest themselves to the market maker in aggregate demand in
exactly the same way. Yet, the market maker doesn’t care about all possible collections of
feature-specific shocks. He just cares about K-sparse shocks. Asset complexity gives a way
for the market maker to exploit his knowledge of the sparsity of the feature-specific shocks.

For example, consider a collection of N derivative assets constructed by financial engineers
out of the Q Arrow securities. These derivative assets will have an (N × Q)-dimensional
exposure matrix X:

X
N×Q

=
N×Q
D X(A)

Q×Q
(34)

Obviously, the N derivative assets can’t have completely independent exposure to each of
the Q payout-relevant features since N � Q. Some of the derivatives will have to have
similar exposures to, say, crowded trade risk and S&P 500 inclusion risk. However, the
market maker doesn’t need the derivatives to be a completely linearly independent set of
risk exposures. He just needs them to be sufficiently different.

Specifically, suppose that any (2 · K) columns of the (N × Q)-dimensional derivative
feature-exposure matrix X are linearly independent. Then, any K-sparse signal α ∈ RQ can
be reconstructed uniquely from Xα. If not, then there would have to be a pair of K-sparse
signals α,α′ ∈ RQ with Xα = Xα′; however, this would imply that X(α − α′) = 0 which
is a contradiction. α−α′ is at most (2 ·K)-sparse, and there can’t be a linear dependence
between (2 ·K) columns of X by assumption. Thus, the market maker is happy to tolerate
a little bit of redundancy. So long as traders can replicate the market’s exposure to any
(2 · K) features with fewer than N assets, aggregate demand shocks to the N assets will
reveal which K feature-specific shocks have occurred.

It is possible to generalize this result to random matrices. For an (N × Q)-dimensional
matrix X, the K-restricted isometry constant δK is the smallest number such that:

max
|J |≤K

‖1/N ·X>[J ]X[J ] − I‖2 ≤ δK (35)

For matrices with small restricted isometry constants, every subset of K or fewer columns
is approximately an orthonormal system. Clearly, choosing X(A) = I via Arrow securities
means that δK = 0; however, Candes and Tao (2005) show that matrices with Gaussian
entries, xn,q

iid∼ N(0,1), have small restricted isometry constants and allow for K-sparse
recovery with very high probability whenever the number of measurements N is on the order
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of N?(Q,K) = K ·log(Q/K). Proposition 5.2 characterizes the savings in required observations
from examining complex derivative assets rather than Arrow securities.

Proposition 5.2 (Seemingly Redundant Assets). If N ≥ N?(Q,K), then a market maker
using the LASSO with γ = 2 · (σz/θ) ·

√
2 · log(Q) to study the aggregate demand for complex

derivatives whose feature exposures are drawn xn,q
iid∼ N(0,1) can identify a K-sparse set of

feature-specific shocks with probability greater than 1− C1 · e−C2·K using:

Θ[K/Q · log(Q/K)] (36)

times fewer assets than a market maker studying the aggregate demand for Arrow securities
on each of the Q features where C1,C2 > 0 are numerical constants.

There is an interesting analogy to randomized control trials here. i.e., randomizing which
assets get sold makes price changes and demand schedules more informative about feature-
specific shocks in the same way that randomizing which subjects get treated in a medical
study makes the experimental results more informative about the effectiveness of a drug.
Why does randomization help? Suppose all of the people who got the real drug recovered and
all of the people who got the placebo didn’t. Randomly assigning patients to the treatment
and control groups makes it exceptionally unlikely that the patients who took the real drug
will happen to have some other trait (e.g., a genetic variation) that actually explains their
recovery. Randomizing feature exposures decreases the probability that 2 different K-sparse
vectors α and α′ are observationally equivalent when looking only at public market data.

6. Related Literature

This paper borrows from and brings together several strands of literature. First, the
current paper is closely related to the literature on bounded rationality; yet, there is a
fundamental difference in approaches. Existing theories use cognitive constraints to induce
boundedly rational decision making. e.g., papers like Sims (2006) and Hong, Stein, and Yu
(2007) suggest that cognitive costs force traders to use overly simplified mental models, and
Gabaix (2011) derives the sort of mental models that traders would choose when facing `1

thinking costs. By contrast, I use bandwidth constraints on a market’s signals rather than
on a trader’s processing power to generate similar behavior. Both channels are at work in
asset markets. This paper is the first to articulate the bandwidth constraint on a finite set
of market signals. To do this, I use the results from the compressed sensing literature, which
originated with Candes and Tao (2005) and Donoho (2006).

Second, the model formulation relies on the fact that asset values are governed at least in
part by a constantly changing cast of feature-specific shocks. Chinco (2014) provides evidence
both that assets realize many different kinds of characteristic-specific shocks and also that
it is hard for traders to identify which ones are relevant in real time. This assumption is
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consistent with, but separate from, existing asset-pricing models. On the theoretical side, it
is possible to fit this high-dimensional problem into many popular asset-pricing models since
they contain substantial amounts of theoretical “dark matter” in the language of Chen, Dou,
and Kogan (2014).

On the empirical side, the high-dimensional and ever-changing nature of trader’s problem
has been documented in a series of papers on data-snooping. For a representative sample,
see Lo and MacKinlay (1990), Sullivan, Timmermann, and White (1999), and Kogan and
Tian (2014). e.g., Kogan and Tian (2014) notes that parameter estimates for factor loadings
are “highly sensitive to the sample period choice and the details of the factor construction.
In particular, there is virtually no correlation between the relative model performance in the
first and the second halves of the 1971-2011 sample period. Using a two-way sort on firm
stock market capitalization (size) and characteristics to construct model return factors, an
often used empirical procedure, similarly scrambles the relative model rankings.”

Campbell, Lettau, Malkiel, and Xu (2001) also give evidence that the usual factor mod-
els only account for a fraction of firm-specific return volatility. e.g., if you selected an
NYSE/AMEX/NASDAQ stock at random in 1999, market and industry factors only ac-
counted for 30% of the variation in its daily returns. Recent work by Ang, Hodrick, Xing,
and Zhang (2006), Chen and Petkova (2012), and Herskovic, Kelly, Lustig, and Van Nieuwer-
burgh (2014) gives strong evidence that there is a lot of cross-sectional structure in the re-
maining 70% of so-called idiosyncratic volatility. i.e., patterns in past idiosyncratic volatility
are strong predictors of future returns. Thus, some portion of the 70% remainder appears to
be neither permanent factor exposure nor fully idiosyncratic events.

Finally, this paper also gives a mathematical foundation for F.A. Hayek’s notion of local
knowledge. Indeed, Hayek (1945) gives trader who benefits from specialized experience with
particular assets as a canonical example of a situation requiring local knowledge. One way to
interpret the results is as something of an anti-Harsanyi doctrine and a microfoundation for
the behavioral finance literatures on disagreement (e.g., see Hong and Stein (2007)) and noise
trading (e.g., see Black (1986)). i.e., this paper gives a situation where 2 rational Bayesian
market makers can look at the exact same aggregate demand schedules for N < N?(Q,K)

assets and not have the same posterior beliefs due to the dimensionality of the problem. I
investigate these ideas further in Appendix E.

7. Conclusion

Real-world traders have to simultaneously figure out both which asset features matter and
also how much they matter. This paper develops the asset-pricing implications of traders’
joint inference problem. Because traders have to simultaneously answer both ‘Which fea-
tures?’ and ‘How much do they matter?’, the risk of selecting the wrong subset of features can
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spill over, warp their perception of asset values, and distort prices. Thus, feature-selection
risk can act like a limit to arbitrage even though it stems from the inherent high-dimensional
nature of modern asset markets and not some cognitive constraint or trading friction.
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Appendix A. Proofs

Proof (Proposition 2.3). Each of theN asset-specific informed traders knows his own asset’s
true value, vn, and solves:

max
yn

E [ (vn − pn) · yn | vn ]

giving the demand coefficient, θ(λ), up to the determination of λ:

yn =
1

2 · λ︸︷︷︸
θ(λ)

·vn

I use the notation that X[K] denotes the measurement matrix X restricted to the columns
K and that α[K] denotes the coefficient vector α restricted to the elements K. Since an oracle
has told the market maker which K features have realized a shock, he can use ordinary least
squares to estimate α:

α̂[K],OLS =
{(

X>[K]X[K]

)−1
X>[K]

} d

θ(λ)

Thus, the cross-section of aggregate demand gives the market maker a signal about each
asset’s fundamental value:

v̂OLS = X[K]α̂[K],OLS =
1

θ(λ)
· d

which has signal error:

E

[
1

N
· ‖v − v̂OLS‖2

2

]
=
K

N
· σ2

z

θ(λ)2

Least squares prediction errors are normally distributed. In the limit as N →∞, the asset
values are normally distributed since shocks, αq, are bounded and selected independently
from the same distribution. Using DeGroot (1969) updating to compute the market maker’s
posterior beliefs gives:

Var[vn|d] =




K
N
· σ2

z

θ(λ)2

K
N
· σ2

z

θ(λ)2
+ σ2

v


× σ2

v E[vn|d] =
1

θ(λ)
·
(

σ2
v

K
N
· σ2

z

θ(λ)2
+ σ2

v

)

︸ ︷︷ ︸
λ

·dn

Substituting in θ(λ) = 1/(2 · λ) and simplifying gives the desired result. �

Lemma A.1 (Fano’s Error Inequality, Cover and Thomas (1991)). Suppose x is a random
variable with N outcomes {x1, . . . ,xN}. Let y be a correlated random variable, Cor[x,y] 6= 0,
and let f(y) be the predicted value of x for some deterministic function f(·). Then we have
that:

Pr[x = f(y)] ≥ 1− M[x,y]

log2(N)
− o(1)

where M[x,y] denotes the mutual entropy between the random variables x and y.

Lemma A.2 (Mutual Information Bound, Cover and Thomas (1991)). Suppose p is a ran-
dom variable with N outcomes {p1, . . . ,pN} that represent probability distributions of x ∈ X .
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Let x̂ ∈ X be a realization from 1 of the N probability distributions. Then:

M[p,y] ≤ 1

N2
·

N∑

n,n′=1

KL[pn(x|x̂),pn′(x|x̂)]

where KL[pn,pn′ ] is the Kullback-Leibler divergence between the distributions pn and pn′.

Proof (Proposition 3.1). I show that if there exists some fixed constant C such that:
N < C ·KN · log(QN/KN)

as N →∞, then there does not exist an inference rule φ ∈ Φ such that FSE[φ]→ 0.
The proof proceeds in 7 steps:
(1) Define variables. Let S =

(
Q
K

)
denote the number of feature subsets of size K and

index each of these subsets with Ks for s = 1,2, . . . ,S. It is sufficient to consider
the case where αq = αmin for all q ∈ K? since this is easiest case. i.e., if there is no
selection rule φ that can identify the correct subset K when all of the coefficients are
fixed at αmin, then there can be none when the coefficients are variable. Each subset
is then associated with a distribution, ps, given by:

ps = N(αmin ·X[Ks]1,I) for s = 1,2, . . . ,S

where X[Ks] denotes the observed measurement matrix restricted to the columns Ks,
1 denotes a (K×1)-dimensional vector of 1s, and I denotes the (K×K)-dimensional
identity matrix.

(2) Apply information inequalities. Picking the right subset, s ∈ {1, . . . ,S}, then amounts
to picking the right generating distribution. Fano’s inequality says that:

FSE[φ] = Pr[K = φ(d,X)] ≥ 1− M[p,d|X]

log2(S)
− o(1)

I want to find conditions under which the right-hand side of this inequality is greater
than 0. To do this, I need to characterize M[p,d|X] which can be upper bounded as
follows:

M[p,d|X] ≤ 1

S2
·

S∑

s,s′=1

KL[ps(d
′|d,X),ps′(d

′|d,X)]

(3) Use functional form. The optimal selection rule searches over all S feature subsets
and tries to solve the program:

min
s=1,2,...,S

‖d− αmin ·X[Ks]1‖2
2 = min

s=1,2,...,S
‖αmin · (X[K?]−X[Ks])1 + ε‖2

2

Plugging in the form of the optimization problem to characterize the Kullback-Leibler
divergence and rearranging then gives:

FSE[φ] = Pr[K = φ(d,X)] ≥ 1−
(

1
2·S2 ·

∑S
s,s′=1 ‖αmin · (X[Ks]−X[Ks′ ])1‖2

2

log2(S)

)
− o(1)

In order for FSE[φ] > 0, it has to be the case that as N →∞:

1 >
1

2 · S2
·
∑S

s,s′=1 ‖αmin · (X[Ks]−X[Ks′ ])1‖2
2

log2(S)

(4) Characterize error distribution. For any pair of subsets (Ks,Ks′) define the random
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variable:
hs,s′ = ‖αmin · (X[Ks]−X[Ks′ ]) 1‖2

2

Because each asset has feature exposures, xn,q
iid∼ N(0,1), hs,s′ follows a χ2

N distribu-
tion:

hs,s′ ∼ 2 · α2
min · (K − |Ks ∩ Ks′|) · χ2

N

where |Ks∩Ks′ | denotes the size of the set difference between the subsets Ks and Ks′ .
e.g., if there are K = 4 shocked features and Ks = {1,2,5,9} while Ks′ = {1,3,5,9},
then |Ks ∩ Ks′| = 1.

(5) Bound mass in tail. Using the tail bound for a χ2
N distribution, we see that:

Pr

[
1

S2
·
∑

s6=s′
hs,s′ ≥ 4 · α2

min ·K ·N
]
≤ 1/2

Thus, at least half of the S different subsets obey the bound:

1

2 · S2
·
∑S

s,s′=1 ‖αmin · (X[Ks]−X[Ks′ ])1‖2
2

log(S)
≤ 4 · α2

min ·K ·N
log2(S)

(6) Formulate key inequality. Thus, as long as:

1 >
4 · α2

min ·K ·N
log2(S)

the error rate will remain bounded away from 0 implying that:

N >

(
1

4 · α2
min ·K

)
× log2(S)

is necessary for FSE[φ]→ 0. The multiplier (4 ·α2
min ·K)−1 is where the fixed constant

C comes from in the result, so it is obvious that the constant will depend on the way
that αmin and K scale as the market grows large.

(7) Make cosmetic touch-up. To make the formula above match, simply recall that:

S =

(
Q

K

)
≥
(
Q

K

)K

�

Lemma A.3 (Bound on Signal Error, Candes and Plan (2009)). If N ≥ N?(Q,K), then
the LASSO estimate, α̂LASSO, from the program in equation (22) using the tuning parameter
γ = 2 · (σz/θ) ·

√
2 · log(Q) obeys:

Pr

[
1

N
· ‖Xα−Xα̂‖2

2 ≤ C̃2 ×
(
K · log(Q)

N
· σ

2
z

θ2

)]
≥ 1− 6

Q2·log 2
− 1

Q ·
√

2 · π · log(Q)

with numerical constant C̃ = 4 · (1 +
√

2).

Proof (Proposition 4.2). Just as in Proposition 2.3, each of the N asset-specific informed
traders knows his own asset’s true value, vn, and solves:

max
yn

E [ (vn − pn) · yn | vn ]
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giving the demand coefficient, θ(λ), up to the determination of λ:

yn =
1

2 · λ︸︷︷︸
θ(λ)

·vn

In the limit as N → ∞, the asset values are normally distributed since shocks, αq, are
bounded and selected independently from the same distribution. However, now the cross-
section of aggregate demand gives a signal about each asset’s fundamental value with mean
v and variance given in Lemma A.3.

Using DeGroot (1969) updating to compute the market maker’s posterior beliefs gives:

Var[vn|d] =


 C2 · K·log(Q)

N
· σ2

z

θ(λ)2

σ2
v + C2 · K·log(Q)

N
· σ2

z

θ(λ)2


× σ2

v E[vn|d] =
1

θ
·
(

σ2
v

σ2
v + C2 · K·log(Q)

N
· σ2

z

θ(λ)2

)

︸ ︷︷ ︸
λ

·d

Noting that θ(λ) = 1/(2 · λ) then gives the desired result after simplifying. �

Proof (Proposition 5.1). Plugging the price impact and demand coefficients from Proposi-
tion 4.2 into the informed trader’s optimization program in Equation 7 gives:

Π(Q,σz) = E

(
max
yn

E [ (vn − λ · {yn + zn}) · yn | vn ]

)

= E [ (vn − λ · {θ · vn + zn}) · θ · vn ]

= θ · σ
2
v

2

Setting θ = C ·
√

log(Q)×
√

K/N · (σz/σv) and simplifying gives the desired result. �

Proof (Corollary 6.1). The functional form of the informed trader’s expected profits comes
from Proposition 5.1. Its partial derivative with respect to the number of features is given
by:

∂

∂Q′
Π(Q′,σz)|Q′=Q =

C

2
×


1

2
· 1√

K
N
· log(Q)


×

(
K

N ·Q

)
× σv · σz

Its partial derivative with respect to the amount of noise trader demand volatility is given
by:

∂

∂σ′z
Π(Q,σ′z)|σ′

z=σz
=
C

2
·
√
K

N
· log(Q) · σv

In order for a tiny increase in the number of features, ∆Q, to offset a tiny decrease in the
amount of noise trader demand volatility, ∆σz , the following condition has to hold:

∆Q ×
C

2
×


1

2
· 1√

K
N
· log(Q)


×

(
K

N ·Q

)
× σv · σz = −∆σz ×

C

2
·
√
K

N
· log(Q) · σv

Simplifying then yields the desired result. �

Lemma A.4 (Bound on LASSO Recovery Error, Wainwright (2009b)). If N ≥ N?(Q,K),
then the LASSO estimate, α̂LASSO, from the program in equation (22) using the tuning
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parameter γ = 2 · (σz/θ) ·
√

2 · log(Q) identifies the correct subset of feature-specific shocks
with probability greater than:

1− C1 · exp{−C2 ·K}
for numerical constants C1,C2 > 0.

Proof (Proposition 5.2). First, consider the market maker studying Arrow securities that
each have exposure to exactly 1 feature. The probability that any particular Arrow security
will realize a shock is K/Q. The expected number of securities he needs to investigate before he
sees all K feature-specific shocks is then given by the mean of negative binomial distribution
with K failures:

(1− K/Q) ·K
K/Q

� Q

Second, consider the market maker studying complex derivatives. Lemma A.4 says that
he can identify the correct features with exceedingly high probability using only K · log(Q/K).

The quotient gives the desired result. �
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Figure 2. Number of Wall Street Journal articles about S&P 500 companies per month from
January 2008 to December 2013. Reads: “There were roughly 1800 articles written about
S&P 500 companies in the Wall Street Journal in July 2010.”

Appendix B. Counting Asset Features

A common question people have is: Is it possible to count the number of asset features,
Q, in a market? Yes. I examine Wall Street Journal article keywords. The universe of
keywords ever used is an estimate of the number of features. Even after controlling for the
number of news articles, the number of asset features can vary by 2 orders of magnitude
for S&P 500 stocks. The data are hand-collected from the ProQuest newspaper archive.9
The resulting data set contains 106k articles over 5 years concerning 542 companies. Many
articles reference multiple S&P 500 companies. Figure 2 plots the total number of articles in
the database per month. There is a steady downward trend. The first part of the sample was
the height of the financial crisis, so as markets have calmed down journalists have devoted
fewer articles to corporate news relative to other things such as politics and sports.

9See the online supporting materials at http://www.alexchinco.com/wsj-article-subject-tags/ for
more details.
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Figure 3. Number of Wall Street Journal articles per subject tag in articles about S&P 500
companies from January 2008 to December 2013. x-axis: Number of Wall Street Journal
articles. y-axis: Fraction of all subject tags used in at least that many articles. Both axes
are on a logarithmic scale. The break points on the y-axis define the 1%, 25%, 50%, and 99%

quantiles. Reads: “While 50% of all subject tags are used in 3 or fewer articles, the most
common 1% of the subject tags get used in 466 or more articles.”

Consistent with idea that companies get hit with new and different kinds of feature-specific
shocks, Figure 3 shows that the vast majority of subject tags during the sample are only
used in a couple of articles. While 50% of all subject tags are used in 3 or fewer articles, the
most common 1% of the subject tags get used in 466 or more articles. Traders have to figure
out which aspect of the company matters. This is clearly not an easy problem to solve. Lot’s
of ideas are thrown around. Many of them must be either short lived or wrong. Roughly 1
out of every 4 topics worth discussing is only worth discussing once.

N = 542, Slope = 0.78, R2 = 76.8%
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Article vs. Subject Tag Counts in WSJ Coverage of S&P 500 Companies

Figure 4. Number of Wall Street Journal articles about each S&P 500 company (x-axis)
vs. number of unique subject tags used to describe each S&P 500 company (y-axis) over the
period from January 2008 to December 2013. Both axes are on a logarithmic scale. Reads:
“S&P 500 companies with between 100 and 200 articles in the Wall Street Journal typically
have anywhere between 200 and 1000 distinct subject tags.”

In addition, I find that there is substantial heterogeneity in how many different topics
people write about when discussing a company even after controlling for the number of total
articles as shown in Figure 4. e.g., there were 87 articles in the Wall Street Journal referencing
Garmin (GRMN) and 81 articles referencing Sprint (S); however, while there were only 87
different subject tags used in the articles about Garmin, there were 716 different subject tags
used in the articles about Sprint! This finding is consistent with the idea that some firms
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Evidence of Feature Selection Bound

Figure 5. Mean squared error (MSE) of 3 selection rules in a market where each stock
has Q = 400 features and the market realizes only K = 5 feature-specific shocks as the
number of observations increases from N = 15 to N = 400. Left: Traders run univariate
regressions and keep variables with t-stats exceeding

√
2 · logQ ≈ 3.46. Middle: Traders use

same regression procedure, but keep variables with p-values less than 0.25 · (K̂/Q) where K̂
is the number of data-implied parameters in the model. Right: Traders select features using
LASSO. Reads: “All 3 procedures display a sudden drop in MSE at N?(400,5) ≈ 22.”

face a much wider array of shocks than others. i.e., the width of the market matters.

Appendix C. Standard Inference Problem

Traders in most information-based asset-pricing models solve a Gaussian inference problem
as in DeGroot (1969). e.g., market makers see N signals, dn, which are informative about a
fixed mean, ᾱ, that is contaminated with some noise, εn

iid∼ N(0,σ2
ε ). We might think about

these signals as excess demand telling us about market sentiment à la Baker and Wurgler
(2006):

dn = d̃n − E[d̃n|f ] = ᾱ + εn (37)

where dn denotes asset n’s excess demand and f denotes a vector of factors. This framework
has been extremely popular and productive because it leads to simple, intuitive, closed-form
solutions. e.g., if traders have prior beliefs, ᾱ iid∼ N(0,σ2

ᾱ), then their beliefs about ᾱ after
seeing N signals are given by:

Var[ᾱ|d] = σ2
ᾱ ·
(

σ2
ε

N · σ2
ᾱ + σ2

ε

)
and E[ᾱ|d] =

(
σ2
ᾱ

N · σ2
ᾱ + σ2

ε

)
·
N∑

n=1

dn (38)

See Veldkamp (2011) for an excellent overview of this literature.

Appendix D. Numerical Example

Suppose that stocks have Q = 400 � 7 features and the market realizes K = 5 > 1
feature-specific shocks so that aggregate demand is given by:

dn = d̃n − E[d̃n|f ] =
400∑

q=1

αq · xn,q + εn and 5 = ‖α‖`0 =
400∑

q=1

1{αq 6=0} (39)

Here, xn,q
iid∼ N(0,1) denotes stock n’s exposure to the qth feature, εn

iid∼ N(0,σ2
ε ) denotes

idiosyncratic noise for stock n, and αq = 1/
√
K for all q ∈ {q′ ∈ Q : αq′ 6= 0}. Notice that in
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this extension, I am no longer hand-picking each stocks feature exposures.
There are a number of statistical techniques to identify which 5 of the 400 features have

realized a shock. First, you might try forward stepwise regression as in Weisberg (2005),
dn = α̂q · xn,q + ςn for all q = 1,2, . . . ,Q (40)

keeping only the variables whose t-statistics exceed the Bonferroni threshold of
√

2 · logQ ≈
3.46. The left panel of Figure 5 shows the mean squared error from this approach. As you
would expect, if there are more observations for you to analyze—that is, moving left to right,
then you are better able to identify the 5 shocked features. However, the change doesn’t
happen gradually. Your error rate in interpreting aggregate demand schedules suddenly
plummets once you’ve seen N?(400,5) ≈ 22 observations. This is the feature-selection bound.

Here is the interesting part. This critical number is independent of the statistical procedure
you use. For example, the middle panel shows the results if you were to use the same stepwise-
regression procedure but keep only the variables whose p-values were less than 0.25 · (K̂/Q),
with K̂ denoting the total number of data-implied parameters in the model. This cutoff is
known as the false-discovery-rate (FDR) threshold and comes from Donoho and Jin (2006).
Alternatively, the right panel shows the results if you were to use the least absolute-shrinkage
and selection operator (LASSO) as in Tibshirani (1996). Each panel displays a sudden drop
in the error rate just after the feature-selection bound has been reached. The bound is a
generic property of the high-dimensional inference problem.

Appendix E. Local Knowledge
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Figure 6. Entropy needed to transmit both the choice of K feature-specific shocks, H[K]
(blue, dashed), and the feature-exposure matrix for the N? observations needed to identify
them, H[X] (red, solid), as the number of shocks grows from K = 1 to K = 10 for Q ∈
{10,63,400}. Reads: “H[X] = 18 × 103 bits and H[K] = 36 bits when Q = 400 and K = 5
corresponding to a vertical line through the right panel at K = 5. Thus, it takes 500 times
as much information to measure all of the feature exposures for the N? ≈ 22 assets needed
to identify K as it does to record the actual configuration entropy of K.”

I conclude this paper by examining the role of local knowledge in this analysis. The goal
in this subsection is to shed light on how local knowledge differs from the usual notions of
cognitive costs in the economics and finance literature. e.g., in existing information-based
asset-pricing models, the cost of a signal typically scales with how much smarter it makes you
as measured by an increase in the precision of your posterior beliefs or a reduction in their
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entropy. e.g., see Veldkamp (2006) for a representative example. By contrast, in the current
paper the cost of acquiring knowledge about which K features have realized a shock scales
with the number of measurements necessary to uncover this information. What’s more, the
entropy bound up in these measurements typically exceeds the actual entropy of the signal
by an order of magnitude or more. I call this gap the amount of local knowledge in the
market.

To make these statements more precise, I first calculate how much information it would
take to convey which K feature-specific shocks have occurred in a market with Q character-
istics and K shocks. Let

(
Q
K

)
= W denote the number of ways to select K characteristics

from among Q possibilities. The amount of information in the signal is then given by the
configuration entropy of K in units of bits:

H[K] = −
W∑

w=1

1

W · log(2)
· log

(
1

W

)
(41)

Yet, in order for a market maker to uncover this signal by studying the cross-section of
aggregate demand, he has to observe the feature exposures ofN?(Q,K) assets. This is a (N?×
Q)-dimensional matrix with elements xn,q

iid∼ N(0,1). Each element in this matrix is a single
measurement. Thus amount of information necessary to store all of these measurements in
units of bits is given by:

H[X] = − 1

2 · log(2)
· log

[
1

(2 · π · e)Q·N?

]
(42)

The proposition below characterizes how the value to market-wide arbitrageurs of immedi-
ately discovering the local knowledge scales with the signal recovery bound.

Proposition D (Local Knowledge). The entropy of the measurements needed to discover
which K feature-specific shocks have occurred exceeds the configuration entropy of the shocks:

Local Knowledge = H[X]− H[K] ≥ 0 (43)

Proof. H[K] is maximized with shock probability for each of the Q features is 1/2. The
entropy of Q independent random normal variables is at least as large as that of a binomial
distribution with Q draws and probability 1/2. N?(Q,K) ≥ 1. �

In order to uncover which K feature-specific shocks have occurred, a market maker has
to observe the prices of a bunch of assets with randomly assigned feature exposures so that
it is really unlikely that 2 different sets of K-sparse shocks can produce the same pattern
in aggregate demand by pure chance. This means that the feature-exposure matrix, X, is
a big, random, unstructured matrix. As a result, it takes a lot of entropy to store it. e.g.,
when Q = 400 and K = 5, it takes 500 times as much information to measure all of the
feature exposures for the N? ≈ 22 assets needed to identify K as it does to record the actual
configuration entropy of K as shown in Figure 6.
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