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ABSTRACT

This paper develops a continuous-time model of the optimal strategies of high-frequency
traders (HFTs) to rationalize their pinging activities. Pinging, or the most aggressive
fleeting orders, is defined as limit orders submitted inside the bid-ask spread that are
cancelled shortly thereafter. The current worry is that HFTs utilize their speed advantage
to ping inside the spread to manipulate the market. In contrast, the HFT in my model uses
pinging to control inventory or to chase short-term price momentum without any learning
or manipulative motives. I use historical message data to reconstruct limit order books,
and characterize the HFT’s optimal strategies under the viscosity solution to my model.
Implications on pinging activities from the model are then gauged against data. The result
confirms that pinging is not necessarily manipulative and is rationalizable as part of the
dynamic trading strategies of HFTs.
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1 Introduction

A recent and ongoing heated debate concerns high-frequency traders and high-frequency trading

activities (HFT stands for high-frequency trader/trading thereafter). The interest in this subject

has grown significantly after the Flash Crash, because HFTs appear as a black-box mystery

to the general public as well as to the academic world.1 One type of HFT activity that has

attracted a great deal of attention due to HFTs’ speed advantage is the so-called pinging activity.

Pinging, or the most aggressive fleeting order activity, is defined as the submission of limit orders

inside the bid-ask spread that are cancelled very shortly.2 These activities occur in the scale

of seconds or milliseconds with extremely low latency, which is “the hallmark of proprietary

trading by HFTs” (Hasbrouck and Saar (2013)).3

Regulators have expressed concerns over such pinging activities, the main one being that

pinging used by HFTs might be manipulative. As pointed out in a concept release of the

Securities and Exchange Commission (SEC), HFTs could use pinging orders to detect and learn

about hidden orders inside the spread. Hidden orders are limit orders completely non-observable

to other market participants. They have become increasingly popular in the past five years or so

and are allowed by many stock exchanges around the world nowadays.4 This learning on hidden

orders through the use of pinging would enable HFTs to ascertain the existence of potential large

trading interest in the market. Consequently, they would be able to trade ahead and capture a

price movement in the direction of the large trading interest.5

1For a comprehensive review of the Flash Crash, see the studies by Kirilenko, Kyle, Samadi, and Tuzun
(2014) and Easley, López de Prado, and O’Hara (2011). For an illustration of the general public’s interest in
high-frequency trading, see Lewis (2014)’s New York Times Best Seller book: Flash Boys: A Wall Street Revolt.

2Existing studies (e.g. Hasbrouck and Saar (2009)) have used the term “fleeting orders” to denote submissions
and subsequent quick cancellations of limit orders in general. Therefore, to be consistent with the literature, I
use the term “pinging” throughout this paper to denote the most aggressive fleeting order activities, i.e. fleeting
orders that take place inside the bid-ask spread.

3To give an illustration of the speed of such pinging activities, Hautsch and Huang (2012a) find that the
median cancellation time is below one second for limit orders submitted inside the spread on NASDAQ.

4According to Hautsch and Huang (2012b), on average over 20% of trades on NASDAQ are executed against
hidden orders in October 2010.

5SEC concept release on equity market structure, January 21, 2010. This type of front-running behavior
and the worries associated with it are also described in Lewis (2014)’s book of Flash Boys.
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This paper aims to rationalize the pinging activity levels observable in the data through a

theoretical setup without manipulative elements. It develops a continuous-time model of the

optimal trading strategies of HFTs absent any learning or strategic feedback effects. The model

exploits two well-known forces in the existing literature: inventory control (e.g. Ho and Stoll

(1981)) and trend chasing (e.g. Hirschey (2013)).

To achieve my purpose, I first incorporate the existence of hidden orders inside the bid-ask

spread into a continuous-time model along the lines of Ho and Stoll (1981). As a result, the

HFT in my model would ping for hidden orders inside the spread as a cheaper way to control

his inventory compared to using market orders. This would produce pinging orders that execute

against hidden orders. However, with inventory control as the sole motive for pinging, it is not

possible to obtain a large number of cancelled pinging orders at the same time. The reason is

that when the HFT uses pinging to control his inventory, he intends to fill his pinging orders

and is not incentivized to cancel many of them.

In order to resolve this problem, I then introduce short-term price momentum into the model

as a channel for cancelled pinging orders to occur. The momentum is modelled through the

predictive power of depth imbalances on the direction of price movements. When the HFT sees

a large depth imbalance and anticipates a likely directional price move, he could use pinging

orders as directional bets to chase the price momentum. Moreover, if there is a subsequent large

change in the depth imbalance, the HFT would cancel his pinging orders and adjust his strategy

according to the variation in momentum. Hence the model will now give rise to both submissions

and cancellations of pinging orders owing to the HFT’s momentum-chasing behaviors.

The model is solved numerically because of the number of state variables, and I use histori-

cal order book message feed data from NASDAQ to reconstruct limit order books and estimate

model parameters.6 The optimal HFT strategies are characterized based on the viscosity solu-
6I am grateful to NASDAQ for providing me with the access to their historical TotalView-ITCH real-time

limit order book message feed database.
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tion to my model and the model parameter estimates.7 There are two main findings. First, for

stocks whose order books have high depths with relatively stable movements and whose spreads

tend to be narrow, approximately 20% of the HFT’s optimal strategies are attributable to ping-

ing. On the other hand, for stocks that tend to have low order-book depths, volatile order-book

movements and wide spreads, pinging accounts for nearly 50% of the HFT’s optimal strategies.

These pinging percentages from the model are proven to match most of the observable pinging

activity levels from the data. Thus it implies that the pinging activities occurred in reality can

be mostly rationalized by my model without any learning or manipulative components. Second,

I demonstrate that the mechanism of momentum chasing plays a much more important role

than that of inventory control in rationalizing pinging activities for low-depth and wide-spread

stocks. In contrast, the two mechanisms carry around similar weights in rationalizing pinging

activities for high-depth and narrow-spread stocks. Furthermore, both mechanisms are shown

to be necessary for the model to rationalize the pinging occurrences found in the data.

Beyond pinging rationalization, my model also generates a couple of additional auxiliary

predictions. They concern about the directions of pinging activities and the frequencies of can-

celled pinging activities with regard to the depth imbalances of order books. These predictions

are also found to be largely consistent with the data, which further suggests that pinging is

rationalizable as part of the dynamic trading strategies of HFTs.

In what follows, I build a continuous-time, partial equilibrium model that captures a wide

range of HFT strategies and explore their empirical contents and implications. I begin in Section

2 by discussing the relations between my model and the existing literature. Section 3 lays out

the structure of my model. The model’s equilibrium and my numerical solution are presented

in Section 4. Section 5 is devoted to parameter estimations. I then discuss the main findings of

this paper in Section 6, and draw out the model’s auxiliary predictions and evaluate them on

empirical data. Finally, Section 7 concludes.
7The concept of viscosity solution is explained in the next Section.
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2 Related Literature

There is a long line of empirical studies (see, e.g., Brogaard, Hagströmer, Nordén, and Rior-

dan (2014), Brogaard, Hendershott, and Riordan (2014), Hagströmer and Nordén (2013), Has-

brouck and Saar (2013), Hendershott and Riordan (2013), Hendershott, Jones, and Menkveld

(2011) and Menkveld (2013)) that have tried to understand the effects of high-frequency and

algorithmic trading activities on market quality. This line of research is economically important

as HFT firms account for over 50% of all US equity trading volume in 2012.8

On one hand, the majority of the empirical studies show that, on balance, HFTs are ben-

eficial for market quality. For instance, Brogaard, Hendershott, and Riordan (2014) find that

HFTs enhance price discovery and market efficiency on NASDAQ, with prices reflecting infor-

mation more quickly. Hasbrouck and Saar (2013) also show that increased HFTs’ low-latency

activities are associated with lower posted and effective spreads, lower short-term volatility and

increased market depth. Additionally, Hendershott, Jones, and Menkveld (2011) illustrate that

algorithmic tradings improve liquidity and make quotes more informative for NYSE stocks.

On the other hand, there are empirical analyses demonstrating that some of the HFT strate-

gies are speculative/anticipatory in nature. For example, Hirschey (2013) finds that HFTs on

NASDAQ tend to anticipate future order flows and trade ahead of them, through aggressively

taking liquidity from the market. Moreover, Kirilenko, Kyle, Samadi, and Tuzun (2014) show

that HFTs exacerbated market volatility during the Flash Crash by trading in the direction of

the downward price spiral. In addition, Baron, Brogaard, and Kirilenko (2014) find that aggres-

sive, liquidity-taking HFTs earn short term profits at the expense of other market participants.

This paper focuses on the optimal trading strategies of HFTs and their pinging activities in

particular. It builds on the work of Ho and Stoll (1981) – HS81, Avellaneda and Stoikov (2008)

– AS08, and Guilbaud and Pham (2013) – GP13. HS81 first introduced, in a continuous-time

partial equilibrium model, a market maker who optimally chooses the bid and ask prices of his
8Times Topics: High-Frequency Trading, The New York Times, December 20, 2012.
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limit orders to maximize his expected utility of (terminal) wealth. The market maker uses limit

orders only, so that his inventory can only be managed through limit orders. AS08 recast HS81

in a modern HFT setting by introducing the trading environment for HFTs not present in HS81

– the limit order book. However, an HFT in AS08 is still a pure market maker, since he uses

only limit orders to maximize his utility and control his inventory.

GP13 brought in market orders to the framework of HS81 and AS08. In their model, an

HFT can trade via both limit orders and market orders. The HFT can post limit orders at

the best quotes or improve the quotes by one tick. Otherwise he can use market orders instead

to change his inventory instantaneously. The purpose of introducing market orders as another

control mechanism is to better address the execution risk and the inventory risk faced by HFTs

when they use limit orders only.

My model extends the continuous-time configuration of GP13 for HFTs and makes two con-

tributions. Firstly, hidden orders are introduced into the limit order book, which are not present

in either AS08 or GP13. Hence the HFT can ping for hidden liquidity when his limit orders

improve the best bid/ask prices and are submitted inside the spread. This captures the idea

of pinging strategies as identified in Hasbrouck and Saar (2009)’s empirical study. Secondly, I

model the order book’s depth imbalance at the best quotes as a stochastic process that has an

effect on the movement of the mid-prices and on the existence of hidden orders. Thus the HFT

can use the depth imbalance as a (imperfect) signal to anticipate the likely price movement.

Therefore, the HFT will utilize pinging or market orders to conduct directional/momentum trad-

ings when necessary. This captures the idea of anticipatory strategies as identified in Hirschey

(2013), which is not modelled explicitly in GP13.

Due to market orders being impulse (jump) controls in continuous time, the value function

of the HFT in my model is not necessarily smooth and differentiable everywhere. Consequently,

I will apply the viscosity solution technique to my model, which is similar to the one used in
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GP13.9 The viscosity solution concept, originally introduced by Crandall and Lions (1983), is a

generalization of the classical solution concept to Hamilton-Jacobi-Bellman equations (or partial

differential equations in general) where value functions might not be everywhere differentiable.

I will discuss the setup of my model and its solution in detail in the next two sections.

3 The Model

The economy is defined in a continuous time, finite horizon T = [0, T ], with a single risky

stock that can be traded in a limit order book (LOB). There is a high-frequency trader (HFT)

who trades this stock using either limit orders or market orders. The LOB has a tick size δ,

so that prices of all orders are in multiples of δ.10 Characteristics of the LOB, such as spread

and mid-price, evolve stochastically and are exogenous to the HFT.11 The formalization of my

model is further specified as follows.

3.1 Processes of Limit Order Book Characteristics

To introduce the main characteristics of the LOB, I will fix a filtered probability space

(Ω,O,O,P), O = (Ot)t≥0 satisfying the usual conditions. Therefore, all stochastic processes

and random variables are defined on (Ω,O,O,P).
9HS81 and AS08 consider only limit orders that are regular (continuous) controls in continuous time. There-

fore, the value functions of HFTs in their models are smooth and differentiable at every point, so that they have
standard Hamilton-Jacobi-Bellman equations and classical solution techniques apply.

10Notice it is only the prices of all (observable) limit and market orders, not all prices, that are in multiples
of δ, since the mid-price can be in multiples of δ/2. As will be seen in Section 3.1, this essentially means that
my model does not allow for hidden orders sitting exactly at the mid-price inside the spread when the mid-price
is a multiple of δ/2 (or when the spread is either δ or 3δ).

11A limit order of size q at price p is an order to buy or sell q units of the asset at the specified price p; its
execution occurs only when it meets a counterpart market order. A market order of size q is an order to buy
or sell q units of the asset being traded at the lowest (for buy) or the highest (for sell) available price in the
market; its execution is immediate. Given an asset, the best bid (resp. ask) price is the highest (resp. lowest)
price among all active buy (resp. to sell) limit orders in the order book. The spread is the difference between
the best ask price and the best bid price, which is strictly positive. The mid-price is the mid-point between the
best bid and the best ask price. For a more detailed explanation of limit order book variables, please refer to
the non-technical survey of Gould, Porter, Williams, McDonald, Fenn, and Howison (2013).
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To start with, the depth imbalance F at the best quotes is defined to be the log of the size

of the depth at the best bid price minus that at the best ask price, so that F > (<)0 means bid

(ask) side imbalance. It evolves according to an Ornstein-Uhlenbeck process with mean zero:

dFt = −αF Ft dt+ σF dWt , (3.1)

where αF measures the speed of mean-reversion and σF is a constant volatility parameter.

Next, let

S = {St}t≥0 (3.2)

denote the bid-ask spread of the LOB. It follows a continuous time Markov chain on the state

space S = {δ, 2δ, 3δ}, with a constant jump intensity λS representing the times when orders of

participants in the market affect the spread. The probability transition matrix of S is denoted

by ρ = (ρij)1≤i,j≤3, with ρii = 0.

Furthermore, the mid-price P of the stock is assumed to follow a pure jump process:

dPt = dJ1t + dJ2t . (3.3)

The first component, J1t, has a constant jump intensity λJ1 , and jump sizes equal to δ/2 with

probability ψ1(Ft) and −δ/2 with probability 1− ψ1(Ft); while the second component, J2t, has

a constant jump intensity λJ2 , and jump sizes equal to δ with probability ψ2(Ft) and −δ with

probability 1− ψ2(Ft).12 The the functions ψi : R 7→ [0, 1] are assumed to have the form

ψi(u) = 1/(1 + exp(−βi u)), for i = 1, 2 ,

with βi being positive constants. In addition, J1 and J2 are independent. I allow the depth

imbalance F to have an impact on the directions of mid-price jumps, since HFTs mostly seek
12The best bid and best ask prices are thus Pt − St/2 and Pt + St/2 respectively. The mid-price P can be

in multiples of δ/2 (as stated in Footnote 10), but when this is so, the spread S will certainly be either δ or 3δ.
And when P is in multiples of δ, S will be 2δ for sure. Thus this consistency ensures that the best bid and ask
prices are always in multiples of δ.
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information from the LOB itself to forecast price movements in the millisecond environment.

Depth imbalances capture liquidity pressures within the LOB. Therefore, it is informative about

at which side of the book the observable depth is likely to become depleted first, resulting in

a change in the mid-price. Hence it is a natural signal (albeit imperfect) for the HFTs to infer

the direction of future price movements, based on the current state of the LOB.

The influence of the depth imbalance F on the directions of the mid-price jumps is interpreted

as the short-term price momentum in the model. If the parameter σF is large so that F is volatile,

it leads to more frequent appearances of stronger momentum (signals). Thus the HFT would

be more likely to engage in trend-chasing actions. This effect is amplified if the jump intensities

λJ1 and λJ2 of the mid-price are higher, i.e. there are more realizations of price momentum.

Besides these standard LOB characteristic variables, orders with limited pre-trade trans-

parency have become increasingly popular on electronic trading platforms recently. Major US

stock exchanges, such as NASDAQ, NYSE and BATS, permit submissions of hidden limit or-

ders into their LOBs.13 The price, size and location of these orders are completely concealed

from other market participants, and they can be placed inside of the observable bid-ask spread

without affecting the visible best bid and ask quotes. This interesting mechanism of hidden

orders has created a vast number of order activities in markets as HFTs try to “ping” for hidden

liquidity inside of the spread by posting aggressive “fleeting orders” that are cancelled a few

instants later if not executed.14

Consequently, to account for this important phenomenon, I will specify the existence of

hidden orders in the following fashion. If the spread St equals 2δ, the probability of hidden

bid orders sitting at the mid-price Pt is ϕ1(Ft) and the probability of hidden ask orders is

π1−ϕ1(Ft). Similarly, if St = 3δ, the probabilities of hidden bid orders at Pt− δ/2 and P + δ/2

13Hautsch and Huang (2012b) give a detailed empirical analysis of hidden orders on NASDAQ stocks. They
find that, during the month of October 2010, on average, 20.1% of all trades are executed against hidden orders.
However, only a small proportion of the hidden depth get executed, which implies that the share of undetected
hidden depth is much greater.

14This pinging phenomenon was first documented in Hasbrouck and Saar (2009).
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are ϕ1(Ft) and ϕ2(Ft) respectively, so that those of hidden ask orders at Pt − δ/2 and Pt + δ/2

are π1 − ϕ1(Ft) and π2 − ϕ2(Ft).15 Since existing literature suggests that the probability of

hidden orders inside the spread is positively correlated with the own-side depth imbalance, I let

the functions ϕi take the form of

ϕi(u) = πi/(1 + exp(−κu)), for i = 1, 2 ,

where κ and πi are positive constant and πi < 1.16 When π1 and π2 are large, hidden orders

are more likely to be found within the spread. Thus the HFT would have more opportunities

to take advantage of these hidden orders through the use of pinging orders.

3.2 The HFT’s Trading Strategy

At any time t, the HFT in my model can submit limit buy and sell orders specifying the

prices that he is willing to pay and receive, but they will be executed only when incoming

market orders fill his limit orders. The quantity of the HFT’s limit orders is fixed at one lot

(100 shares).17 On the other hand, instead of limit orders, the HFT can send out market buy

or sell orders for an immediate execution. The market orders will cross the spread, i.e. trading

at the best ask (resp. best bid) price on the opposite side, and are thus less price-favorable.

3.2.1 Make Strategy

When using limit orders (make strategy) to make the market, HFT can place his quotes at

the best available bid and ask, hence joining the existing queues at these prices.18 This strategy
15This structure of the existence of hidden orders is basically what has been mentioned in Footnote 10, i.e.

hidden orders are not allowed to exist exactly at the mid-price when the spread S is equal to δ or 3δ.
16Buti and Rindi (2013) provide a theoretical model that gives rise to this positive correlation, and Hautsch

and Huang (2012b) offer an empirical confirmation.
17The reason that I fix the quantity of limit orders to be one lot is motivated by a common finding that

appears in a vast number of empirical studies, whether they examine HFT activities (e.g. Hasbrouck and Saar
(2013)) or analyze limit order books (e.g. Hautsch and Huang (2012a)). The finding is that the average size of
limit orders nowadays is just slightly bigger than 100 shares.

18I define market making to be the strategy such that the HFT submit limit orders simultaneously at both
sides of the LOB. Quoting at one side of the book only is not allowed, since it does not satisfy the standard
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simply amounts to traditional market making, which means that the HFT tries to passively

capture the spread by posting limit orders at the best available quotes.

Furthermore, the HFT can also “ping” inside the spread by improving either the best bid

or ask price by one tick whenever the spread St is greater than δ, i.e. submitting a buy (resp.

sell) limit order at Pt − St/2 + δ (resp. Pt + St/2− δ). Such a pinging strategy of putting limit

orders inside the spread is commonly used by HFTs in practice to capture the market order

flow at the best quotes, because of the price-time priority associated with these limit orders.

More importantly, they are used to ping for hidden orders inside the spread, as identified by

Hasbrouck and Saar (2009). Nevertheless, despite being able to obtain faster executions, these

pinging limit orders do receive worse execution prices than their queuing counterpart. Thus this

is a trade-off the HFT faces when he contemplates whether to improve the spread or not.

Because the submission, update or cancellation of limit orders entails no cost, it is natural

to model the make strategy of the HFT as a continuous-time predictable control process:

θmkt = {θmk,bt , θmk,at } , t ≥ 0,

where θmk,bt ∈ {0, 1} and θmk,at ∈ {0, 1}. b, a stand for the bid and the ask side respectively.

The predictable processes θmk,bt and θmk,bt , with values equal to 0 or 1, represent the possible

make regimes: 0 indicates that the limit order is joining the queue at the best price, whereas

1 indicates improving the best price by δ. Note that if the spread is at its minimum δ, θmk,bt

and θmk,bt both can only take the value of 0, since improving the best bid/ask will simply be

considered as posting a market buy/sell order instead.

3.2.2 Take Strategy

Instead of limit orders, the HFT may also employ market orders (take strategy) to obtain

instant execution. However, unlike limit orders, market orders take liquidity from the LOB and

definition of market making.
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are subject to transaction fees. As a result, the costly nature of market orders implies that, if

the take strategy is performed continuously, the HFT will go bankrupt in finite time. Hence I

shall model the HFT’s take strategy as an impulse control in continuous time:

θtk = {τn, ζn}n∈N .

Here, {τn} is an increasing sequence of stopping times denoting the moments that the HFT uses

market orders. ζn ∈ [−ζmax, ζmax]\{0} are Fτn-measurable random variables that represent the

number of shares (in lot size) purchased if ζn > 0 or sold if ζn < 0, at these stopping times.

I confine the size of market orders to be no larger than some small constant ζmax, so that the

HFT remains small relative to the market and his market orders do not eat through the LOB.19

3.3 Order Execution Processes

Limit orders of the HFT, when joining the queue at the best bid and ask, will be executed

only if counterpart market orders arrive in the next instant and their sizes are large enough to

fill the HFT’s limit orders completely. I model the arrivals of exogenous buy and sell market

orders by two independent Poisson processes, M b and Ma, with intensities given by λb and λa

respectively. In addition, when a buy (resp. sell) market order arrives, the HFT’s sell (resp.

buy) limit order in the queue will be filled with a probability given by the fill-rate function h(Ft)

(resp. h(−Ft)), where

h(u) = 1/(1 + exp(ς0 + ς1 u)), ς0, ς1 are positive constants.

This fill-rate function depicts the idea that the probability of execution of a limit order becomes

higher/lower if the own-side queue is relatively shorter/longer, which illustrates the time priority

structure of the LOB.

However, if a limit order jumps the queue instead, it will be executed instantly as long as
19Eating through the book means the size of an market order is larger than and thus exhausts the available

depth at the best price(s), resulting in a price impact and a widening of the spread.
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there is a matching hidden order on the opposite side that resides inside the spread. Otherwise,

the limit order will be fully matched if a counterpart market order arrives at the next moment.

Limit orders placed inside the spread by the HFT are not subject to the fill rate function, since

they have a price priority compared to those limit orders at the prevailing best quotes.

Turning to the HFT’s market orders, they will execute immediately by hitting either inside-

spread hidden orders or limit orders at the best quote on the opposite side. Moreover, there is

a per share fee of ε associated with each market order that is sent by the HFT. The fee is fixed

and paid directly to the market exchange operating the LOB. Thus the HFT cannot claim it

back by any means.

3.4 Comments on the Model

The basic layout of the model resembles Guilbaud and Pham (2013) and is easy to justify

given the goals of the paper. However, there are two important aspects of the model that are

new compared to the current literature on high-frequency trading strategies and are essential for

rationalizing HFTs’ pinging activities without manipulation or learning. First, the opportunity

of using limit orders to grasp hidden liquidity has not been properly addressed in existing

continuous-time models of HFTs, where the limit order strategy only fulfills the role of the

HFT as a traditional market maker or liquidity provider. In my model, limit orders can also

be utilized by the HFT as a “pinging” strategy, because of the existence of inside-spread hidden

orders. Compared to conventional market making, pinging is certainly more aggressive as it

seeks a faster execution at a less favorable price. However, it is not as aggressive as market

taking since it does not cross the spread. Given the large number of pinging activities already

identified in empirical work, for example, Hasbrouck and Saar (2009, 2013), it is essential to

include hidden orders and pinging strategies in a theoretical model of HFT behaviors.

Another aspect that has not been fully dealt with in the continuous-time literature concerns

the prospect of directional or momentum tradings by the HFT. In a standard setup, the HFT
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would only use market orders to reduce his inventory whenever it gets out of control. However, in

my model, the HFT would also implement market orders as a momentum strategy to aggressively

take liquidity from the market and pursue directional trading when the signal of depth imbalance

on price movement is strong enough. There are empirical studies that have identified some most

profitable HFTs as predominantly liquidity takers on the market (e.g. Baron, Brogaard, and

Kirilenko (2014)) and have recognized the anticipatory/directional trading behaviors of HFTs

(e.g. Hirschey (2013)). Therefore, it is crucial to incorporate momentum/directional trading

into any theoretical models on HFT strategies.20

When both hidden orders and price momentum exist in the model, the HFT has two motives

to carry out pinging strategies. One is to control inventory. The HFT could ping inside the

spread to hit hidden orders when he needs to unwind his inventory, which is cheaper than using

market orders. Nonetheless, if hidden orders existed with high probabilities π1 and π2 and

inventory control was the HFT’s only motive for pinging, the model would generate a large

number of pinging orders filled by hidden orders. There would not be many cancelled pinging

orders at the same time, contradicting with the numerous ones observed in reality.

The existence of price momentum, i.e. the predictive power of depth imbalance on mid-price

jumps, is then necessary to bring about cancelled pinging activities. This is because now the

other motive for the HFT to ping is to chase price trends. The HFT could employ pinging orders

to establish directional positions when anticipating likely price movements. However, if the

volatility parameter σF is large so that depth imbalance (momentum signal) varies turbulently,

it would induce the HFT to cancel his pinging orders frequently and change his strategies based

on the swings in momentum. This is escalated if the mid-price jump intensities λJ1 and λJ2 are

also large. Large intensities prompt more trend-chasing pinging activities from the HFT since

his directional bets have higher chances to materialize, yet the HFT often needs to cancel his

pinging orders due to volatile changes in price momentum.
20Since market orders are costly, if they are used solely to control inventory when it is really necessary, it

would be difficult to reconcile this with the findings that market taking can be (very) profitable.
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As a consequence of the possibility of pinging and momentum trading, the HFT in my model

should not be considered exclusively as a turbo-charged market maker in the traditional sense,

whereby it provides liquidity to the market with passive limit orders, and takes liquidity away

through market orders only when there is an inventory-control requirement.

4 Equilibrium and Solution Method

4.1 Objective of the HFT

In order to derive an equilibrium of my model, I begin by stating the cash holding and

the inventory processes of the HFT, and defining his optimization problem under stochastic

evolutions of the LOB as laid out in the previous section.

Let X and Y denote the cash holdings and the inventory held by the HFT respectively. If

a market making strategy θmkt is used at t, the cash holding X and the inventory Y evolve

according to:

dYt = dM̃a
t − dM̃ b

t (4.1)

dXt =−
(
Pt −

St
2

+ δθmk,bt

)
dM̃a

t +
(
Pt +

St
2
− δθmk,at

)
dM̃ b

t , (4.2)

where

dM̃a
t = θmk,bt

(
Ba
t dt+ (1−Ba

t )dMa
t

)
+ (1− θmk,bt )h(Ft)dM

a
t

dM̃ b
t = θmk,at

(
Bb
tdt+ (1−Bb

t )dM
b
t

)
+ (1− θmk,at )h(−Ft)dM b

t .

Here, Ba
t (resp. Bb

t ) is an indicator that equals one if ask (resp. bid) hidden orders exist inside

the spread. Ba
t and Bb

t have respective distributions ηa(Ft, St) and ηb(Ft, St). ηa, ηb match the

existence probabilities of ask/bid hidden orders that sit at the best bid/ask price plus δ, given
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F and S. Therefore, when the HFT’s buy (resp. sell) limit order makes the market at the

prevailing best bid (resp. ask), its inventory increases (resp. decreases) by one lot if sell (resp.

buy) market orders arrive at the next instant and fill the limit order of the HFT. Alternatively,

if the HFT’s buy (resp. sell) limit order is pinging inside the spread, its inventory increases (resp.

decreases) by one lot whenever the limit order hits an opposite-side hidden order. Otherwise,

it rises (resp. falls) by one lot if there is an arrival of sell (resp. buy) market orders within the

next instant. Cash holdings thus increases (resp. decreases) by an amount equal to the quoted

price of the sell (resp. buy) limit order multiplied by the order’s uncertain execution state.

On the other hand, the dynamics of X and Y jump at t if the HFT exercises a take strategy

θtkt instead:

Yt = Yt− + ζt , (4.3)

Xt = Xt− −
[
ζtPt + |ζt|

(St
2
−Ht + ε

) ]
(4.4)

where ε is the fixed fee per share paid to the market exchange, Ht is an integer random variable

with a probability mass function G( · |St, Ft) that takes the value

Ht =



0 if St = δ

δ if St > δ and the market order hits a hidden order at Pt + sign(ζt)(St/2− δ)

2δ if St > 2δ and the market order hits a hidden order at Pt + sign(ζt)(St/2− 2δ) ,

and the probability distribution ofHt matches the existence probabilities of inside-spread hidden

orders given St and Ft. As a result, when the HFT submits a market order, its inventory jumps

up or down at t by the size of the order (since take strategies are impulse control). Moreover,

its cash holdings changes by the value of the order ζtPt plus the cost associated with the market

order. The cost consists of the uncertain part due to crossing the spread (St/2 − Ht) and the
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constant, fixed transaction fee ε.21

Given the processes of cash holdings X and inventory Y , the objective of the HFT is the

following. He wants to maximize over the finite horizon [0, T ] the profit (cash earnings) from

his trades in the LOB, while at the same time keeping his inventory at bay. In addition, the

HFT has to liquidate all his inventory at the terminal date T . Hence the HFT’s optimization

problem is given by

max
{θmk, θtk}

E0

[
XT − γ

∫ T

0

Y 2
t−d[P, P ]t

]
, s.t. YT = 0, (4.5)

where the maximization is taken over all admissible strategies Θ. Here, the integral term

γ
∫ T

0
Y 2
t−d[P, P ]t is a quadratic-variation penalization term for holding a nonzero inventory in

the risky stock, where γ > 0 is a penalization parameter and [P, P ]t denotes the quadratic

variation of the mid-price P .

Let me rewrite the above optimization problem in a more straightforward formulation where

the terminal constraint YT = 0 is removed. To this end, I introduce the function

Q(x, y, p, f, s) = x+ py − |y|
(s

2
−H + ε

)
,

which represents the total cash obtained after an immediate liquidation of the inventory y via a

market order, given the cash holdings x, the mid-price p, the depth imbalance f and the spread

s.22 I can now reformulate the problem (4.5) equivalently as

max
{θmk, θtk}

E0

[
XT + PTYT − |YT |

(ST
2
−HT + ε

)
− γ

∫ T

0

Y 2
t−d[P, P ]t

]
. (4.6)

The proof for the equivalence of the two formulations is shown in the appendix.
21In essence, the term −Ht measures the reduction in the cost of market orders for the HFT given the possible

existence of hidden orders inside the spread when St > δ, i.e. it does not necessarily pay the full spread-crossing
cost of St/2 (relative to the mid-price).

22H is the same integer random variable defined on the previous page.
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Lemma 1. (4.5) and (4.6) are equivalent.

Having defined the objective, the value function of problem (4.6) for the HFT is then:

V (t, x, y, p, f, s) = sup
{θmk, θtk}

Et
[
XT + PTYT − |YT |

(ST
2
−HT + ε

)
− γ

∫ T

t

Y 2
u−d[P, P ]u

]
, (4.7)

for {θmk, θtk} ∈ Θ, t ∈ [0, T ], and (x, y, p, f, s) ∈ R2 × P × R× S. Here, given {θmk, θtk} ∈ Θ,

Et stands for the expectation operator under which the solution (X, Y, P, F, S) to the processes

(3.1)-(3.3) and (4.1)-(4.4), with initial state (Xt−, Yt−, Pt−, Ft−, St−) = (x, y, p, f, s), is taken.

Before giving a definition of the equilibrium, I states the following lemma (with its proof

shown in the appendix), which provides some bounds on the value function (4.7) and demon-

strates that the value function is finite and locally bounded.

Lemma 2. There exists some constant C0 and C1 such that for all (t, x, y, p, f, s) ∈ [0, T ] ×

R2 × P × R× S,

Q(x, y, p, f, s) ≤ V (t, x, y, p, f, s) ≤ x+ py + C1 + C0 .

Both of the lower and the upper bound have a intuitive financial interpretation. The lower

bound indicates the value of the particular strategy that eliminates all the current non-zero

inventory through a market order, and then waits by doing nothing until the time reaches T .

The upper bound is made of three terms. The first term, x + py, is the marked-to-market

value of the portfolio at mid-price; the second constant C1 denotes the upper boundary on

profit from the fictitious market-making strategy that participates in every trade but with zero

cost of controlling inventory; and the constant C0 at last represents a bound on profit for any

directional frictionless market-taking strategy on a virtual asset that is always priced at the

mid-price. This lemma is useful later on when I derive the solution to the model’s equilibrium.
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4.2 Definition of Equilibrium and Dynamic Programming Equations

The problem of (4.7) is a mixed regular/impulse stochastic control problem in a jump-

diffusion continuous time model, to which the methods of dynamic programming naturally

lends itself. In order to characterize the equilibrium and the associated dynamic programming

equations, I need to introduce two mathematical operators as follows. For any admissible

strategy θmk = {θmk,b, θmk,a}, I will define the second-order non-local operator L:

L ◦ V (t, x, y, p, f, s) = (LP + LF + LS) ◦ V (t, x, y, p, f, s)

+ ga(f, s, θmk,bt ) · V
(
t, x− (p− s/2 + δθmk,bt ), y + 1, p, f, s

)
+ gb(f, s, θmk,at ) · V

(
t, x+ (p+ s/2− δθmk,at ), y − 1, p, f, s

)
,

where LP , LF , LS in the first term are the infinitesimal generators of the processes of the mid-

price P , the depth imbalance F and the spread S respectively, and the next two terms denote

the non-local operator induced by the (expected) jumps of the cash process X and inventory

process Y when the HFT applies an instantaneous make strategy θmkt at date t. In addition,

ga(f, s, θmk,bt ) = θmk,bt

(
ηa(f, s) + (1− ηa(f, s))λa

)
+ (1− θmk,bt )λah(f)

gb(f, s, θmk,at ) = θmk,at

(
ηb(f, s) + (1− ηb(f, s))λb

)
+ (1− θmk,at )λbh(−f),

which correspond to the expected rate of execution for the HFT’s bid and ask limit order

respectively.23

Besides the operator L, the impulse control operatorM for an admissible take strategy θtk

shall be given by

23The two terms, ga and gb, are basically the arrival rates of the “modified” market orders M̃a
t and M̃ b

t that
have explained under (4.2).
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M◦V (t, x, y, p, f, s) = sup
ζ∈[−ζmax,ζmax]

∫
H

V
(
t, x−ζp−|ζ|(s/2−H+ε), y+ζ, p, f, s

)
dG(H | s, f) ,

generated by the jumps in X and Y due to θtkt being used at t.

With L andM defined, the dynamic programming equation associated with the value func-

tion (4.7) is the Hamilton-Jacobi-Bellman quasi-variational inequality (HJB-QVI):

max

{
∂V

∂t
+ sup
{θmk}

{L ◦ V } − γy2Etd[P, P ]t
dt

, M◦ V − V

}
= 0, on [0, T ) (4.8)

together with the terminal condition

V (T, x, y, p, f, s) = x+ py − |y|(s/2 + ε) + |y|
∫
H

H dG(H | s, f) . (4.9)

There is an explicit expression for the HJB-QVI (4.8) shown in the appendix. In particular,

it writes out the full expressions for the infinitesimal generators (LP , LF , LS) and the value of

Et[P, P ]t.

Lemma 3. The HJB-QVI (4.8) admits an explicit expression.

Having (4.8) and (4.9) at hand, the equilibrium concept of my model is presented in the

following definition.

Definition 1. In the above continuous-time economy where the HFT trades a risky stock in a

LOB that is governed by the stochastic processes laid out in Section 3.1-3.3, the partial equilib-

rium is defined by a value function v(t; •) and policy functions (strategies) {θmk, θtk}t, t ∈ [0, T ],

such that

(a) The policies solve the HFT’s maximization problem (4.6);

(b) Given the policy functions, the value function v solves the HJB-QVI (4.8) for t ∈ [0, T )

with the terminal condition (4.9) at T .
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The next proposition demonstrates that a solution to the partial equilibrium exists and is

unique. The proof is relegated to the appendix.

Proposition 1. There is a unique solution to the partial equilibrium of the model. In particular,

the value function defined in (4.7) is the unique viscosity solution to (4.8) and (4.9).24

I shall devote the next subsection to providing a numerical solution to the equilibrium of my

model, i.e. the value function (4.7) that solves (4.8) and (4.9) and the corresponding optimal

trading strategies of the HFT. However, prior to proceeding further, I present a lemma (with its

proof in the appendix) that simplifies the value function (4.7) and reduces its dimensionality.

Lemma 4. The value function (4.7) can be decomposed as

V (t, x, y, p, f, s) = x+py+ν(t, y, f, s). Moreover, the reduced-form value function ν satisfies the

quasi-variational inequality and the terminal condition shown below, which are simplified from

(4.8)-(4.9) after decomposing V :

max

[
∂ν

∂t
+ y

EtdPt
dt

+ LF ◦ ν + LS ◦ ν − γy2Etd[P, P ]t
dt

+

sup
θmk

{
ga(f, s, θmk,bt ) ·

(
ν(t, y + 1, f, s)− ν(t, y, f, s) + s/2− δθmk,bt

)
+

gb(f, s, θmk,at ) ·
(
ν(t, y − 1, f, s)− ν(t, y, f, s) + s/2− δθmk,at

)}
,

sup
ζ

{
ν(t, y + ζ, f, s)− |ζ|(s/2 + ε) + |y|

∫
H

H dG(H | s, f)

}
− ν

]
= 0, on [0, T )

(4.10)

with terminal condition:

ν(T, y, f, s) = −|y|(s/2 + ε) + |y|
∫
H

H dG(H | s, f) . (4.11)

24The viscosity solution concept is a generalization of the classical solution concept to a partial differential
equation. For a classic reference on viscosity solutions, see Crandall, Ishii, and Lions (1992) or Fleming and
Soner (2005).
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Before digging into the numerical solution, I would like to provide some economic rationale

behind the functions that the pinging strategy serves in the HFT’s maximization problem. On

one hand, hidden orders exists inside the spread with probability ηa or ηb and the HFT can use

pinging orders (θmk,bt = 1 or θmk,bt = 1) to control his inventory by trying to hit those hidden

orders. This is cheaper than using market orders as market orders cross the spread and pay the

transaction fee, which amounts to a cost of St/2 + ε. However, if inventory control is the only

motive for the HFT to utilize the pinging strategy, the HFT will always try to execute but not

cancel his pinging orders. Thus the model could only produce pinging that executes against

hidden orders without many cancellations.

This is why we need short-term price momentum on the other hand, i.e. the effect of depth

imbalance F on EtdPt through the functions ϕ1 and ϕ2. With the presence of momentum,

the HFT will also employ the pinging strategy to chase the price trend before it is gone. More

importantly, the HFT will cancel his pinging orders when there is an abrupt change in imbalance

F . If the momentum becomes too strong to wait, i.e. F becomes very large in absolute value,

the HFT will cancel the pinging orders and place his directional bets via market orders. And

if the momentum weakens substantially or even reverses, the HFT will also cancel the pinging

orders since he does not want to be adversely hit. Hence such trend-chasing behaviors of the

HFT enable the model to produce pinging activities as well as cancellations at the same time.

4.3 Numerical Solution

In this part, I focus on the numerical solution to the value function V of (4.7), and the

associated policy functions (optimal strategies). In particular, since V (t, x, y, p, f, s) = x+ py+

ν(t, y, f, s), I will provide a backward, finite-difference scheme that solves the quasi-variational

inequality (4.10) and (4.11), which completely characterizes the reduced-form value function ν.

The numerical method is based on the finite-difference scheme developed by Chen and Forsyth

(2008), as well as the scheme used in Guilbaud and Pham (2013).
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To begin with, I consider a time discretization on the interval [0, T ] with time step ∆T =

T/NT and a regular time grid

TNT
= {tk = k∆T , k = 0, . . . , NT} .

Secondly, I need to discretize and localize the state spaces for Y and F on two finite regular

grids, with bounds MY ,MF , and step sizes ∆Y = MY /NY ≡ 1, ∆F = MF/NF respectively,

where NY , NF ∈ N, so that

YNY
= {yi = i∆Y , i = −NY , . . . , NY }, FNF

= {fj = j∆F , j = −NF , . . . , NF} .

Next, I define two finite-difference matrices, D1 and D2, for calculating first and second order

derivatives against F on the F -grid FNF
, where D2 uses central difference and D1 uses forward

difference when fj < 0 and backward difference when fj ≥ 0:25

D2ν(t, y, fj, s) =
ν(t, y, fj+1, s)− 2ν(t, y, fj, s) + ν(t, y, fj−1, s)

(∆F )2

D1ν(t, y, fj, s) =


ν(t,y,fj+1,s)−ν(t,y,fj ,s)

∆F
if fj < 0

ν(t,y,fj ,s)−ν(t,y,fj−1,s)

∆F
if fj ≥ 0

I now state the main part of the numerical scheme. To this end, I introduce the explicit-

implicit operator for the time-space discretization of the quasi-variational inequality (4.10), that

is, for any (t, p, f, s) ∈ [0, T ]×P ×R×S and any real-valued function φ :7→ φ(t, y, f, s), I define

A(t, y, f, s, φ) = max
{
L̃(t, y, f, s, φ) , M̃ ◦ L̃(t, y, f, s, φ)

}
,

25The two matrices D1 and D2 are defined in a similar fashion to the finite difference space derivatives in
Section 5.1 of Cont and Voltchkova (2005). The reason that I switch from forward to backward difference in D1

when fj becomes greater than 0 is detailed over there.
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where26

L̃(t, y, :, s, φ) =
(
INF×NF

−∆Tσ
2
FD2 −∆TαF (FNF

1′NF
)..D1

)−1

×(
φ(t, y, :, s) + ∆Ty

EtdPt
dt

+ ∆TLS
(
φ(t, y, :, s)

)
−∆Tγy

2Etd[P, P ]t
dt

+

∆T sup
θmk

{
ga(:, s, θmk,bt )..

(
φ(t, y + 1, :, s)− φ(t, y, :, s) +

s

2
− δθmk,b

)
+

gb(:, s, θmk,at )..
(
φ(t, y − 1, :, s)− φ(t, y, :, s) +

s

2
− δθmk,a

)})
,

(4.12)

and

M̃ ◦ L̃(t, y, f, s, φ) = sup
|ζ|≤ζmax

{
L̃(t, y + ζ, f, s, φ)− |ζ|(s

2
+ ε) + |y|

∫
H

H dG(H | s, f)
}
. (4.13)

When inventory y is on the boundary of YNY
, i.e. y = −MY or y = MY , make and take strategies

are confined to the buy side or the sell side only, so that y does not go off its grid. Then, I

approximate the solution ν to (4.10)-(4.11) by the numerical solution $ on TNT
×YNY

×FNF
×S

to the backward explicit-implicit finite difference scheme:

$(T, y, f, s) = −|y|(s
2

+ ε) + |y|
∫
H

H dG(H | s, f) (4.14)

$(tk, y, f, s) = A(tk+1, y, f, s,$), k = NT − 1, NT − 2, . . . , 0 , (4.15)

where (4.14) and (4.15) approximate (4.11) and (4.10) respectively.

The complete solution algorithm for the value function and the policy functions is summa-

rized in the backward induction steps below:

26In the operator L̃, : denotes the column vector of FNF
, INF×NF

is an NF by NF identity matrix,
EtdPt

dt , Etd[P,P ]t
dt are vectors evaluated on FNF

, 1′NF
is an NF × 1 vector of 1s, and .. denotes element-by-element

product for vectors and matrices. L̃ is expressed as a vector on the grid FNF
because of the implicit time step

that I used when approximating the generator LF .
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1. At the terminal date tNT
= T : for each combination of (y, f, s), make $(T, y, f, s) =

−|y|( s
2

+ ε) + |y|
∫
H
H dG(H | s, f).

2. (Backward Induction) From time step tk+1 to tk where k runs from NT − 1 back to 0, for

each combination of (y, f, s):

. Calculate L̃(tk+1, y, f, s,$) from (4.12) and obtain θmk,∗.

. Calculate M̃ ◦ L̃(tk+1, y, f, s,$) from (4.13) and obtain θtk,∗.

. If L̃(tk+1, y, f, s,$) ≥ M̃◦ L̃(tk+1, y, f, s,$), set $(tk, y, f, s) = L̃(tk+1, y, f, s,$) and the

policy at tk is thus θmk,∗, given (y, f, s).

. Otherwise, let $(tk, y, f, s) = M̃ ◦ L̃(tk+1, y, f, s,$), and θtk,∗ is taken to be the policy at

tk, given (y, f, s).

Finally, I state the convergence theorem of my numerical solution $ to the reduced-form

value function ν (and hence the convergence of discretized policy functions), with its proof left

to the appendix.

Proposition 2. The solution $ to the numerical scheme (4.14)-(4.15) and the corresponding

discretized policies converge locally uniformly, respectively, to the reduced-form value function ν

and the optimal strategies on [0, T ]×R×R as (∆T ,∆Y ,MY ,∆F ,MF )→ (0, 0,∞, 0,∞), ∀s ∈ S.

5 Estimation

An important aspect of my paper is to examine the optimal trading strategies of the HFT

given exogenous evolutions of the LOB. In order to quantify the implications of my model

based on the numerical solution, I need to obtain values for the parameters that govern the
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stochastic processes of the LOB characteristics, and this section concerns the estimation of

these parameters. Table 1 summarizes the parameters to be estimated.

5.1 Data

I use NASDAQ TotalView-ITCH 4.0 limit order book message feed data on three types of

stocks listed on NASDAQ during the month of June 2012 (21 trading days). The three types

consist of stocks with narrow spreads and high order-book depths, stocks with medium spread

and depth levels, and stocks with wide spreads and low order-book depths. I focus on three

representative stocks, with one from each of the types: INTC (Intel, narrow spread and high

depth), QCOM (Qualcomm, medium spread and medium depth), and AMZN (Amazon, wide

spread and low depth).

The TotalView data include all real-time NASDAQ limit order book messages of these stocks,

stamped to millisecond precision. The complete message feeds allow me to reconstruct the whole

limit order books and their complete evolutions for the three stocks. Since the limit order book

characteristics of my model concern only the first level of the book, I track the evolutions at the

top of the book for estimation purposes. As in common practices, I use data between 9:45am

and 15:45pm to avoid certain erratic market movements.27

5.2 Estimation

I shall employ standard nonparametric estimators for all the intensity parameters as well as

the transition matrix ρ.28 The parameters of the depth imbalance F are then estimated using

maximum likelihood, since the transition density of an Ornstein-Uhlenbeck process is known

in closed form29. In addition, the parameters governing various probabilities are estimated by

logistic regressions, as these distribution functions all have logistic forms. I conduct the estima-
27Please refer to the appendix for a complete description of the limit order book data.
28For a standard reference, see, for example, Karr (1991).
29For a reference, see Aït-Sahalia (1999) and Aït-Sahalia and Mykland (2003).
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tions for all trading days in June 2012, and then calculate the averages of these daily estimates

as my final estimated parameter values to be fed into my numerical solutions. The mean values

of my daily parameter estimates are presented in Table 3, with Newey-West heteroskedasticity

and autocorrelation consistent (HAC) standard errors in parentheses.

There are three aspects of the estimation results that are worth being pointed out. Firstly,

compared to Amazon, Intel and Qualcomm have a less volatile imbalance process F as well as

a higher tendency to stay at lower-spread positions. Secondly, due to its lower book depth,

Amazon’s mid-price jumps are more often, as measured by both λJ1 and λJ2 . Thirdly, the

estimates of hidden order parameters, market order arrival rates and limit order fill rates are

more alike for those three stocks. We will see in the next section that these dissimilarities and

similarities in parameter estimates will lead to a much different optimal HFT strategy profile

for Amazon as opposed to Intel or Qualcomm.

Besides the estimated parameters, the fixed parameters in Table 2 are also used in my

numerical quantification and simulation study of the optimal HFT strategies.

6 Computation and Simulation Results

In this section, I provide numerical results obtained with the optimal HFT strategy computed

via the implementation of my numerical scheme (4.14)-(4.15), for the three stocks – Intel (INTC),

Qualcomm (QCOM) and Amazon (AMZN). I use as inputs the estimated parameter values

shown in Table 3, together with the fixed parameters listed in Table 2.

6.1 Optimal Strategy Profiles

As seen from the reduced-form value function ν, the optimal HFT strategy depends on time

t, inventory Y , depth imbalance F and spread level S. Therefore, I will characterize the strategy

as a function of inventory and depth imbalance, for spread equal to δ and 2δ, near t = 0 and
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t = T . The strategy profiles are mostly time invariant if time t is not very close to the terminal

date T . In addition, the optimal strategy profiles for Qualcomm are not shown since they are

in between the ones for Intel and the ones for Amazon.30

I will start with Figure 1, which illustrates the optimal HFT strategies for Intel at t = 10,

with inventory and depth imbalance level shown on the horizontal and the vertical axis re-

spectively. Consider Figure 1(A) on the left first, where spread equals δ. The orange-colored

central region denotes market making through submitting a limit order at both the best bid

and ask prices. The two blue regions stand for inventory management; buy (resp. sell) indi-

cates using buy (resp. sell) market orders to increase (resp. decrease) inventory towards zero.

Partial inventory control occurs when inventories are only partially unwound, whereas inven-

tory control represents complete liquidation so that inventory jumps precisely back to zero.31

Furthermore, momentum represents utilizing market orders to change inventory and set up a

directional position; (buy) and (sell) denote establishing positive and negative inventory holding

positions respectively.32 Finally, there is no pinging since it is not possible when the spread is

at its minimum δ, and the majority of the graph is represented by traditional market-making /

inventory-control behaviors.

The economic intuition behind Figure 1(A) is explained as follows. The situation where

depth imbalance is less than zero will be focused on, since a similar but symmetrically reversed

exposition can be applied to the opposite case where depth imbalance is greater than zero. To

begin with, when depth imbalance is mildly positive, the probability of a positive mid-price

jump is somewhat higher than that of a negative one. If the HFT has a negative inventory,

he will face a inventory risk as the price would move against his holdings. Thus he will reduce
30The reason is that the key parameter estimates (λS , αF , σF , λ

J
1 , λ

J
2 ) of Qualcomm are between those of Intel

and Amazon, as pointed out in Table 3.
31For instance, if the inventory is −5 lots, the strategy will specify purchasing z lots with z < 5 in the region

of partial inventory control (buy), yet it will specify buying exactly 5 lots in the region of inventory control (buy)
to make inventory become zero.

32For example, under momentum (buy), if the inventory is −5 lots, the strategy will dictate a purchase of z
lots with z > 5, and if the inventory is 1 lot, the strategy will dictate a purchase of z lots with z ≥ 1.
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such risk via a market order. Due to the cost of market-taking, the HFT either partially or

completely disposes his inventory depending on the amount of the risk he has, i.e. how positive

the depth imbalance is.33 On the contrary, if the HFT holds a positive inventory, he would

enjoy a possible gain from a positive mid-price jump and choose to make the market as a result.

Since market taking is expensive and the signal effect from depth imbalance on the mid-price

movement is not strong enough, the HFT would not use market orders to accumulate additional

positive inventory, i.e. the expected return is not large enough.

Furthermore, when depth imbalance becomes considerably more positive, the probability

of a positive mid-price jump is much higher than that of a negative one. If the HFT has a

negative inventory, he faces a substantial inventory risk, yet also a clear opportunity to chase

the upward price momentum. Anticipating the likely price increase, the HFT aggressively takes

the liquidity from the market through buy market orders to establish a directional (positive)

inventory position, which gives rise to the momentum (buy) region in the graph. However, the

HFT stops chasing the price momentum if his inventory is rather positive. As the mid-price

jump intensities of Intel are not very large, being too aggressive and obtaining too much positive

inventory would result in inventory risk on the opposite side if the mid-price does not jump up

soon enough.34

Next, consider Figure 1(B) on the right, where spread equals 2δ. The green and yellow

regions on each side of market making represent pinging strategies, which the majority of the

graph consists of. Here, pinging on the bid (resp. ask) side denotes submitting a buy (resp. sell)

limit order inside spread at the best bid plus δ (resp. best ask minus δ), while letting the sell

(resp. buy) limit order joining the queue at the best ask (resp. best bid). To understand the

intuition behind Figure 1(B) and compare it to the case of Figure 1(A), I will again concentrate
33Note that market-making here would not achieve this risk-reduction purpose, for two reasons. First, market-

making implies that the HFT would still post a sell limit order at the best ask. Second, the effect of a positive
depth imbalance on the fill-rate function means that a buy limit order of the HFT has a smaller chance of being
filled. Consequently, instead of decreasing, the two together exacerbate the inventory risk faced by the HFT.

34The depth imbalance is mean-reverting towards zero. Consequently, the anticipated price jump would
become less likely if it does not occur very soon.
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on the scenario in which the depth imbalance is less than zero. A symmetrically reversed

explanation can be constructed similarly for the opposite scenario.

When depth imbalance is modestly greater than zero, if the HFT’s inventory level is quite

negative, he will remove the inventory risk through market orders. However, the inventory

control is only partial since complete inventory controls are too costly under S = 2δ as opposed

to S = δ. Alternatively, if the HFT’s inventory level is closer to zero, he will instead use

a pinging strategy from the bid side to reduce his inventory risk, for three reasons. Firstly,

despite execution uncertainty, pinging is free and the risk is smaller with inventory level not

far from zero, which decreases the HFT’s desire for immediacy. Secondly, a buy pinging order

might hit a sell hidden order inside the spread. Thirdly, a positive depth imbalance implies a

lower fill rate for normal buy limit orders, so that it is optimal for the HFT to jump the queue.

On the other hand, if the HFT holds a significant level of positive inventory, he is confronted

with the inventory risk due to the possibility of no upward jump in mid-price. Hence he will

ping on the ask side, which has a high chance of hitting a bid-side hidden order inside the spread

(as the depth imbalance is positive) and entails no cost compared to using market orders.

When the positivity of depth imbalance becomes sizable, the HFT would reduce his in-

ventory risk more aggressively through market orders if his inventory is below zero. However,

provided that the inventory is positive but small, the HFT would instead pursue price mo-

mentum by pinging on the bid side, which increases the execution probability of his buy limit

order. Moreover, chasing the momentum via market-taking is suboptimal in this case since the

expected gain is less that the cost of using market orders (S = 2δ). As a result, depending on

the configuration of depth imbalance and inventory, pinging strategies would serve two different

functionalities: unwinding inventory or pursuing price momentum.

After that, let us examine Figure 2, which shows the optimal HFT strategies for Intel at

T − 3. Consider Figure 2(A) on the left first, with spread equal to δ. Since time t is close to the

terminal date, inventory management becomes a large concern for the HFT as he must liquidate
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all positions at T . Consequently, if the HFT is holding negative (resp. positive) inventory and

the mid-price is more likely to jump up (resp. down) because of positive (resp. negative) depth

imbalance, he will aggressively unload his inventory through market orders to reduce the risk

associated with such mismatch of inventory against depth imbalance. This is the reason why

approximately half of the graph is made of inventory controls. Conversely, when the HFT’s

inventory corresponds to the likely price movement, he would still want to seize the expected

gains from carrying a directional position. Hence the HFT would make the market instead if

his inventory is positive (resp. negative) and the depth imbalance is the opposite. In this case,

the HFT will not find it optimal to employ an aggressive momentum strategy to establish more

directional positions in contrast to the situation of t = 10, since inventory control is the primary

worry when time approaches T .

Consider Figure 2(B) next. Similar to Figure 2(A), inventory management accounts for a

large part of the optimal strategy profile, but as in Figure 1(B), the inventory control is partial

due to the costly nature of market orders under S = 2δ. The main difference from Figure

1(B) is that pinging strategies now have one sole objective: reducing inventory risk. The HFT

would only ping on the ask (resp. bid) side if his inventory and the depth imbalance are both

positive (resp. negative). This is because pinging orders are free and have a larger probability

of executing against an opposite-side hidden orders inside the spread compared to queuing limit

orders.

Let us now turn our attention to Figure 3, which compares the optimal strategy for Amazon

(right) to that for Intel (left) in the case of time t = 10 and spread S = δ. It is clear that the

major difference occurred to Amazon is that the HFT takes liquidity a lot more often to carry

out momentum strategies. The HFT is being more aggressive here since Amazon has much

higher mid-price jump intensities as shown in Table 3. Therefore, the HFT is anticipating an

upward (resp. downward) directional price movement with a much larger likelihood if depth

imbalance swings to the positive (resp. negative) region, which leads to the HFT building a
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matching directional position forcefully via market orders. The expected reward of a price jump

in the short term simply outweighs the cost of aggressive market-taking strategies.

Then, let us look at Figure 4 that contrasts the optimal strategy for Amazon (right) to

that for Intel (left) in the case of time t = 10 and spread S = 2δ. There are two main changes

occurred to pinging strategies employed for Amazon. First, there is no pinging on the bid (resp.

ask) side when the HFT’s inventory is negative (resp. positive) and the depth imbalance is

also moderately negative (resp. positive). Second, pinging on the bid (resp. ask) side erodes

everything when both the HFT’s inventory and the depth imbalance are above (resp. below)

zero. These imply that when the HFT holds a directional position that matches the likely course

of a mid-price change, his pinging’s only aim is to chase the short-term price momentum. The

reason is similar to the one given for Figure 3, and it is because Amazon has much higher

mid-price jump intensities so that the HFT can afford to be more aggressive. Nevertheless, it is

not optimal for the HFT to deploy momentum strategies via market-taking as it is too expensive

and the price jump is already in favor of the HFT’s inventory. However, if the depth imbalance

is extremely high, and the HFT carries inventory that is against the likely directional move of

price, we observe that the HFT would actually use momentum strategies in the case of Amazon

(purple areas). The large cost of market orders is absorbed by the reduction in inventory risk

and the almost certain, short-term benefit from the anticipated price jump.

Finally, Figure 5 and Figure 6 are discussed together, which demonstrate the optimal

HFT strategies for Amazon (right) towards the terminal date T and compare them to those for

Intel (left). From these two figures, we notice that the optimal strategies for Amazon closely

resemble those for Intel, despite the differences seen in Figure 3 and Figure 4 when t << T .

Once more, this is the result of inventory management concern being a dominant force as time

draws closer to the end, so that establishing directional positions to pursue short-term price

momentum is no longer one of the objectives of the HFT.
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6.2 Percentage Attributions of Optimal Strategies

In this part, I conduct Monte Carlo simulation studies to quantify the properties of the

HFT’s optimal strategies on the three stocks: Intel, Qualcomm and Amazon. The number of

Monte Carlo runs is set to be NMC = 10000, and I use a standard Euler scheme to simulate

the paths of the state variables (P, S, F,X, Y ) as well as the exogenous market order arrivals

(M b,Ma).

Table 4 summarizes the (Monte Carlo average) percentage attributions of the optimal HFT

to three types of activity: traditional market-making/inventory-control, pinging, and momen-

tum/directional trading via market orders.35

There are two main implications that we can learn from Table 4. Firstly, for stocks with

narrow spreads on average and abundant order book depths such as Intel, the HFT behaves

like a market maker in the traditional sense. He is providing liquidity to the market most of

the time. As a result, pinging activities account for only 20% of the optimal strategies and

approximately 70% of the strategies are in the realm of liquidity provision (market-making) and

inventory management. It corresponds to what we saw in the profiles of the optimal strategies

for Intel early on, as Intel’s spread level is often equal to δ. Secondly, for stocks like Amazon

with wide spreads on average and an order book that has low depths and volatile movements, the

HFT looks less like a market maker. Instead, he acts more like a short-term profit/momentum

chaser, since pinging and momentum trading together account for about 70% of the strategies

for Amazon. In particular, pinging constitutes nearly 50% of the optimal strategies. This also

matches with the profiles of the optimal strategies for Amazon, where momentum trading and

pinging constitute the majority of the strategy profiles under S = δ and S = 2δ respectively.

Pinging can be considered as a strategy that demands liquidity from the market when its
35The percentage breakdowns are calculated as follows. For each one of the simulations, I compute the number

of choices attributable to each type of the activity/strategy chosen optimally under the numerical solution given
the simulated state variables. Then I divide these numbers by the total number of activities, which equals
T/∆T = 7200, to arrive at the corresponding percentage numbers. Finally, I average these percentage numbers
across all 10000 simulations to obtain the numbers shown in Table 4.
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objective is to build directional inventory position. Hence for stocks with wide spreads and low

book depths, the HFT is mainly a market taker and quite often he is trying to take liquidity in

order to bet on the directional moves of price.36

Next, I compared the pinging percentages obtained from the model (as shown in Table 4)

to the pinging percentages observable from the data to see how much pinging in the data can

be rationalized by the model. To calculate pinging percentages in the data, I first compute

the number of cancelled pinging activities for different stocks in a similar fashion to Hasbrouck

and Saar (2009). This is defined as the number of limit orders submitted inside the spread and

then cancelled in less than 2 seconds. Second, I need to compute the number of pinging orders

that execute against hidden orders inside the spread. This is somewhat problematic since such

pinging orders are identical to market orders that hit hidden orders. In order to deal with this

issue, I treat non-consecutive orders executing on hidden orders as pinging orders. Therefore,

the number of total pinging activities are calculated as the sum of the number of cancelled

pinging activities and the number of pinging orders hitting hidden orders. I then divide the

number of total pinging activities by the total number of order book activities to arrive at the

pinging percentages obtainable from the data:

Pinging % in the data =
Number of total pinging activities

Total number of order book activities
.

Finally, the model’s pinging percentages are gauged against those from the data in Table 5.

As clearly seen from Table 5, the pinging percentages produced by the model match quite

closely to the percentages from the data. Moreover, at least over 70% of the pinging observable

from the data can be captured by the model, and the number is higher for stocks with high

depths and low spreads (like Intel). Hence the result indicates that most of the pinging activities
36For each of the three stock types, I checked 10 stocks, including the representative ones (Intel, Qualcomm,

Amazon) being focused here. The percentage attributions are similar, as well as the optimal strategy profiles,
i.e. the HFT is more of a market maker (resp. taker) and the pinging percentage is lower (resp. higher) if the
stock under consideration has higher (resp. lower) order book depths and narrower (resp. wider) spreads.
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observed in the data can be rationalized by the model with the two mechanisms of inventory

control and trend chasing.

Table 6 further breaks down the roles that the mechanisms of inventory control and mo-

mentum chasing play in rationalizing pinging activities in the model. There are two noticeable

features from Table 6. Firstly, for stocks with high depths and narrow spreads such as Intel,

inventory control and momentum chasing contribute comparably to the rationalization of ping-

ing. This can be seen from the similar resulting pinging percentages given by the model if either

of the mechanism is shut down. Secondly, for stocks with low depths and wide spreads such as

Amazon, momentum chasing carries more weight than inventory control in the rationalization

of pinging. This is because the pinging percentage produced by the model decreases by a larger

amount when the channel of price momentum is shut down than when the channel of hidden

order is.

Additionally, Table 6 also implies that both inventory control and trend chasing are nec-

essary for the purpose of pinging rationalization. Less than 50% of the pinging in the data is

rationalized by the model if either mechanism is turned off, suggesting that both mechanisms

are indispensable.

6.3 Auxiliary Predictions

Besides pinging rationalization, the model also yields a couple of other interesting auxiliary

predictions regarding pinging activities with respect to depth imbalances. They are presented

in this subsection.

The first auxiliary prediction of the model is related to the directions of pinging activities.

The model implies that if the HFT sees positive (resp. negative) depth imbalance and hence

positive (resp. negative) price momentum more often, he is more likely to pining from the buy

(resp. sell) side and take positive (resp. negative) directional bets due to trend chasing motives.

Consequently, it yields the following prediction:
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Prediction 1. There is more pinging from the buy (resp. sell) side if depth imbalance is more

frequently positive (resp. negative).

Now I check this prediction against data. To do this, I divide each trading day into 30-

second intervals.37 Next, I calculate the number of buy and sell pinging activities in each of

these intervals in a similar manner to the computation of the number of pinging activities shown

in Section 6.2. In addition, I also compute the durations (measured in seconds) of positive and

negative imbalance in each interval. Then I use the following regression to measure and test the

effect of imbalance durations on pinging activity directions:

POt = α + βDoIt + x′tγ + εt.

POt denotes the number of buy or sell pinging activities and DoIt the duration (measured

in seconds) of positive or negative depth imbalance in interval t. xt stands for other control

variables which include DoIt−1, average spread and volatility of imbalance in interval t, and εt

is an error term.

The regression is performed separately for buy pinging activities on positive imbalance and

sell pinging activities on negative imbalance, and across all trading days in June 2012. The final

parameter estimates are calculated in the same way as in Table 3, i.e. time series averages of

daily parameter estimates. Overall, I find that the parameter β is statistically significant for all

three types of stocks, with a value around 0.28 on average. This shows that the first auxiliary

prediction is confirmed in the data.

The second auxiliary prediction of the model concerns the influence of depth imbalance

volatilities on the frequencies of cancelled pinging activities. The model implies that If momen-

tum strengthens (imbalance widens) by a large amount, contemporaneously the HFT would

cancel his pinging orders and use market orders instead to chase momentum. And if mo-
37The results are similar if I use 15-second or 1-minute intervals instead of 30-second intervals.
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mentum weakens by a large amount or even reverses (imbalance reduces by a large amount or

reverses), contemporaneously the HFT would also cancel his pinging orders as his pinging orders

risk being adversely hit. This implication thus yields the following prediction:

Prediction 2. If depth imbalance is more volatile, there should be more cancelled pinging ac-

tivities occurring at the same time.

I employ a similar procedure as before to check this prediction, i.e. I divide each trading day

into 30-second intervals and compute the number of cancelled pinging activities in each interval.

Then I use the following regression to measure and test the effect of imbalance volatilities on

cancelled pinging orders:

CPOt = α + βV oDt + x′tγ + εt.

CPOt denotes the number of cancelled pinging orders and V oDt the log of depth imbalance

volatility in interval t. xt again stands for other control variables which include V oDt−1, average

spread and number of market order arrivals in interval t, and εt is an error term.

The regression is performed across all trading days in June 2012. The final parameter

estimates are also calculated as the time series averages of daily parameter estimates. Overall,

I find that the parameter β is statistically significant for all three types of stocks as well.

Nevertheless, the magnitude of β is much higher for stocks with high depths and narrow spreads

(with a value around 3.3) compared to stock with low depths and wide spreads (with a value

less than 1). Therefore, the result suggests that the second auxiliary prediction is by and large

confirmed in the data too.

7 Conclusion

In this paper, I build a continuous-time, partial equilibrium model on the optimal strategies

of HFTs without any learning or manipulative ingredients to rationalize pinging activities ob-

served in the data. The model improves on the works of Ho and Stoll (1981) as well as Guilbaud
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and Pham (2013) by introducing hidden orders inside the bid-ask spread and short-term price

momentum. The HFT then uses pinging orders inside the spread to either control inventory

or chase price trends. I demonstrate that for stocks with high order book depths and narrow

spreads, pinging accounts for 20% of the optimal strategies in the model, whereas this number

goes up to 50% for stocks with low order book depths and wide spreads. I then compare these

pinging percentages from the model to their corresponding counterparts in the data, and find

that over 70% of the pinging activities in the data are captured by the model. The result thus

suggests that most of the pinging in reality can be rationalized by my model. Furthermore, I

show that for low-depth and wide-spread stocks, the majority of the pinging in the model oc-

curs due to the momentum-chasing motive of the HFT. However, for high-depth and low-spread

stocks, the inventory control motive of the HFT would play a similar role to the momentum-

chasing motive in rationalizing pinging activities. In addition, I also develop a couple of other

auxiliary predictions based on the model’s implications. They are both assessed on and found

to be consistent with the data in general. Therefore, my model gives the overall message that

pinging activities do not necessarily have to be manipulative and can be mostly rationalized as

part of the standard dynamic trading strategies of HFTs.

8 Appendix

8.1 Data Description

In the first part of the appendix, I will give a detailed description of the limit order book data

used in this paper. I utilize the NASDAQ TotalView-ITCH 4.0 database, which includes all real-

time messages of limit order submissions, cancellations, executions and hidden order executions

for every trading day since 7:00am EST when NASDAQ’s electronic limit order book (LOB)

system starts accepting incoming limit orders, stamped to millisecond precision. The system is

initialized by an empty order book where all overnight limit orders are resubmitted automatically
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at the beginning of each day. The TotalView-ITCH data record a unique identification for any

limit order and I can identify the attribute of a limit order (cancelled, executed or neither) by

tracking it through its order ID. Furthermore, trades are identified via the records of limit orders

and hidden order executions. Since the trading direction of limit orders and hidden orders is

recorded, I can exactly identify whether a trade is buyer-initiated or seller-initiated. Hence

the LOB at any time can be reconstructed (up to millisecond precision) through continuously

updating the book system according to all reported messages, which exactly represents the

historical real-time-disseminated order book states of NASDAQ.

Furthermore, I consolidate all trade transactions into one single trade from a market order

if they are logged at the same time-stamp in the data and have the same initiation types. In

addition, I use the reconstructed LOB data between 9:45am and 15:45pm only, in order to avoid

erratic effects that are likely to occur at market opening or closure.

8.2 Proofs for Various Lemmas and Propositions

The second part of the appendix is devoted to the proofs for several lemmas and propositions,

which are omitted in the main paper.

Proof of Lemma 1: On one hand, I can show that the maximal value of (4.5) is smaller

than that of (4.6). This is because, for any admissible strategy such that YT = 0, we im-

mediately obtain Q(XT , YT , PT , FT , ST ) = XT . On the other hand, given an arbitrary admis-

sible strategy θ and its associated state variable processes (X, Y, P, F, S), I can consider an

alternative strategy θ̃, coinciding with θ up to time T and employing an market order that

liquidates all the inventory YT at the terminal date T . The associated processes of the state

variables (X̃, Ỹ , P, F, S) under θ̃ satisfy (X̃t, Ỹt, Pt, Ft, St) = (Xt, Yt, Pt, Ft, St) for all t < T , and

X̃T = Q(XT , YT , PT , FT , ST ), ỸT = 0. Therefore, this shows that the maximal value of (4.6) is

smaller than that of (4.5), hence (4.5) is equivalent to (4.6).

Proof of Lemma 2: The lower bound is obvious, since V (t, x, y, p, f, s) = Q(x, y, p, f, s)
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by adopting the simple strategy that sets θtkt = y and terminates the problem immediately at

time t. On the other hand, we have

V = (x+ py) + sup
θ

Et
[
(XT − x) + (PTYT − py)− |YT |

(ST
2
−HT + ε

)
− γ

∫ T

t

Y 2
u−d[P, P ]u

]
≤ (x+ py) + sup

θ
Et
[
(XT − x) + (PTYT − py)− |YT |

(ST
2
−HT + ε

)]
.

Since all the jump intensities (λS, λJ1,2, λ
a, λb) are finite constants, the term

sup
θ

Et
[
(XT − x) + (PTYT − py)− |YT |

(ST
2
−HT + ε

)]

cannot be greater than the finite, maximum profit achievable through a combination of a market-

making strategy that participates in every trade when market orders arrive (an upper bound

on XT − x, denoted by C0) and a directional, frictionless market-taking strategy that bets on

the mid-price jumps (an upper bound on (PTYT − py)− |YT |
(
ST

2
−HT + ε

)
, denoted by C1).

Proof of Lemma 3: As stated under (4.9) in the main paper, only the infinitesimal

generators (LP , LF , LS) for the value function V and the value of Etd[P, P ]t require explicit

expressions. They are given below:

Etd[P, P ]t =

(
1

4
λJ1 + λJ2

)
dt

LP ◦ V (t, x, y, p, f, s) =
(
V (t, x, y, p+ δ/2, f, s)ψ1(f) + V (t, x, y, p− δ/2, f, s)(1− ψ1(f))

)
λJ1dt

+
(
V (t, x, y, p+ δ, f, s)ψ2(f) + V (t, x, y, p− δ, f, s)(1− ψ2(f))

)
λJ2dt

LF ◦ V (t, x, y, p, f, s) = Vf (αFf)dt+
1

2
Vffσ

2
Fdt

LS ◦ V (t, x, y, p, f, s) =
( 3∑
j=1

ρij[V (t, x, y, p, f, jδ)− V (t, x, y, p, f, iδ)]
)
λSdt ,

where Vf and Vff are the first and second order partial derivatives of V against the state variable

F . In addition, EtdPt =
(
λJ1

δ
2
(2ψ1(Ft)− 1) + λJ2 δ(2ψ2(Ft)− 1)

)
dt.
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Proof of Proposition 1: To prove Proposition 1, I need to show that the value function

V in (4.7) is the unique viscosity solution to (4.8) and (4.9). Since I have established the

necessary growth (boundness) conditions on V that are shown in Lemma 2, the proposition

– the existence and the uniqueness of the viscosity solution V (a.k.a. the value function) – is

then a direct application of standard arguments and results from stochastic control theory, e.g.

Seydel (2009a,b), or Øksendal and Sulem (2007), Chapter 9.

Proof of Lemma 4: It is clear that the quasi-variational inequality (4.10) and the terminal

condition (4.11) are simplified versions of (4.8) and (4.9), if I can decompose the value function

V (t, x, y, p, f, s) as x+ py+ ν(t, y, f, s). The required decomposition can be established by first

noting that the mid-price P has constant jump intensities and jump size distributions depending

only on the state variable F , and then extending to my scenario the argument for a simpler case

shown in Guilbaud and Pham (2013).

Proof of Proposition 2: I shall prove Proposition 2 by first establishing three properties

for my numerical scheme and then applying the theorem from Barles and Souganidis (1991).

Lemma. (Monotonicity)

For any ∆T > 0 such that ∆T ≤
(
λS + (π1 + (1− π1)λa) + (π1 + (1− π1)λb)

)−1, the operator A

defined in (d) of the numerical scheme is non-decreasing in φ, i.e.

if φ < φ̃, then A(t, y, f, s, φ) ≤ A(t, y, f, s, φ̃), ∀t, y, s and f .

Proof. From the expression in (e) of the numerical scheme, it is clear that ga(f, s, θmk,bt ) <

π1 + (1 − π1)λa, ∀f, s, θmk,bt , and gb(f, s, θmk,at ) < π1 + (1 − π1)λb, ∀f, s, θmk,at . Thus 1 −

∆Tλ
S − ∆Tg

a(f, s, θmk,bt ) − ∆Tg
b(f, s, θmk,at ) > 0 as long as ∆T ≤

(
λS + (π1 + (1 − π1)λa) +

(π1 + (1− π1)λb)
)−1

<
(
λS + ga(f, s, θmk,bt ) + gb(f, s, θmk,at )

)−1, which implies that L̃(t, y, f, s, φ)

is monotone in φ (as the sum of coefficients in front of φ is positive) and so is A(t, y, f, s, φ).

Lemma. (Stability)

For any ∆T ,∆Y ,MY ,∆F ,MF > 0, there exists a unique solution $ to (4.14)-(4.15), and the
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sequence {$} is uniformly bounded.

Proof. By the definition of the backward scheme (4.14)-(4.15) (and (4.12)-(4.13)), the

solution $ exists and is unique. The uniform bound then follows from the growth condition

(lower and upper bounds) on the reduced-form value function ν (a modification on Lemma 2,

i.e. the bounds on V ).

Lemma. (Consistency)

The scheme (4.14)-(4.15) is consistent in the sense that, for all (t, y, f) ∈ [0, T )×R×R and any

smooth test function φ, as (∆T ,∆Y ,MY ,∆F ,MF ) → (0, 0,∞, 0,∞), and (t′, y′, f ′) → (t, y, f),

we have

lim
1

∆T

[L̃(t′ + ∆T , y
′, f ′, s, φ)− φ(t′, y′, f ′, s)]

=
∂φ

∂t
+ y

EtdPt
dt

+ LF ◦ φ+ LS ◦ φ− γy2Etd[P, P ]t
dt

+

sup
θmk

{
ga(f, s, θmk,bt ) ·

(
φ(t, y + 1, f, s)− φ(t, y, f, s) + s/2− δθmk,bt

)
+

gb(f, s, θmk,at ) ·
(
φ(t, y − 1, f, s)− φ(t, y, f, s) + s/2− δθmk,at

)}

and

lim M̃ ◦ L̃(t′, y′, f ′, s, φ) = sup
ζ

{
φ(t, y + ζ, f, s)− |ζ|(s/2 + ε) + |y|

∫
H

H dG(H | s, f)

}

Proof. This follows from the result established in Section 6.1.2 of Chen and Forsyth (2008).

Proposition. (Convergence) The solution $ to the numerical scheme (4.14)-(4.15) and the

corresponding discretized policies converge locally uniformly, respectively, to the reduced-form

value function ν and the optimal strategies on [0, T ] × R × R as (∆T ,∆Y ,MY ,∆F ,MF ) →

(0, 0,∞, 0,∞), ∀s ∈ S.

Proof. Given the properties of monotonicity, stability and consistency of the numerical

scheme, this is a direct application of the result of Barles and Souganidis (1991).
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Table 1: Parameters of order book characteristics

The table summarizes the parameters to be estimated that govern the exogenous evolutions of the limit
order book processes, as well as their respective estimation procedures. S stands for the bid-ask spread,
F for the depth imbalance at the best quotes, and P for the mid-price. Prob. is an abbreviation for
the word probability.

Parameters Explanation Estimation Procedure

λS , ρ Jump intensity and transition matrix of S Non-parametric estimators
αF , σF Mean-reversion and volatility parameters of F Maximum likelihood
λJ1,2 Jump intensities of P Non-parametric estimators
β1,2 Prob. distribution parameters of directions of P jumps Logistic regressions
κ, π1,2 Prob. distribution parameters of hidden orders Logistic regressions
ς0,1 Parameters of limit order fill rates Logistic regressions
λM,a, λM,b Market order arrival intensities Non-parametric estimators

Table 2: Fixed Parameters

This table depicts the values of the fixed, non-estimated parameters that are used in my numerical
analysis of the optimal HFT strategies. I choose the per share fee of market orders to be $0.003, which
corresponds to the same transaction fee stated by NASDAQ for its stocks. Furthermore, the tick size
δ is set to be $0.01, which is the tick size for all NASDAQ stocks that have prices above $1. However,
I make the tick size $0.1 for Amazon, for the same reason indicated in the note under Table 3. The
word MC is an abbreviation for Monte Carlo.

Description Value

Discretization/localization parameters T Time length in seconds 3600
∆T Size of time step in seconds 0.5
MY Inventory grid bound (in lot) 30
∆Y Inventory grid step size (in lot) 1
MF Depth imbalance grid bound 10
∆F Depth imbalance grid step size 0.01

Model constants δ Tick size 0.01
ε Per share fee 0.003
γ Inventory penalization 2
ζmax Max market order size (in lot) 10

Backtest parameters NMC Number of MC simulation paths 10000
X0 Initial cash 0
Y0 Initial inventory 0
P0 Initial mid-price of stock 10
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Table 3: Order Book Parameter Estimates

This table shows the average values of the daily limit order book parameter estimates in the month of
June 2012 for the three representative stocks Intel (INTC), Qualcomm (QCOM) and Amazon (AMZN),
using order book data reconstructed from NASDAQ TotalView-ITCH 4.0 real-time message feeds.
Newey-West HAC standard errors are in parentheses. The standard errors of the transition matrix
estimates are not shown since they are close to zero. Intensity parameters are all measured at per
second frequency. In addition, I normalize the tick size δ to be $0.1 for Amazon, since on average, the
spread and limit order prices of Amazon tend to be in multiples of $0.1 instead of the minimum tick
size $0.01 used for Intel and Qualcomm. For definitions of all the parameters, please refer to Table 1.

INTC QCOM AMZN

Spread λS 0.161/s 0.312/s 0.578/s
(0.010) (0.017) (0.027)

ρ

 0 1 0
0.99 0 0.01

0 1 0

  0 0.97 0.03
0.95 0 0.05
0.08 0.92 0

  0 0.743 0.257
0.222 0 0.778
0.138 0.862 0


Imbalance αF 0.308 0.547 0.734

(0.016) (0.027) (0.035)
σF 0.777 1.429 2.336

(0.029) (0.053) (0.074)
Mid-price λJ1 0.161/s 0.307/s 0.522/s

(0.010) (0.018) (0.027)
β1 2.744 2.651 2.610

(0.077) (0.076) (0.075)
λJ2 0.052/s 0.075/s 0.121/s

(0.003) (0.005) (0.007)
β2 4.766 2.921 1.881

(0.244) (0.257) (0.129)
Hidden Order κ 1.196 1.036 0.992

(0.034) (0.030) (0.021)
π1 0.238 0.233 0.230

(0.010) (0.010) (0.009)
π2 0.125 0.117 0.114

(0.006) (0.006) (0.006)
MO arrival λM,a 0.110/s 0.130/s 0.181/s

(0.006) (0.006) (0.012)
λM,b 0.110/s 0.130/s 0.179/s

(0.004) (0.006) (0.010)
Fill rate ς0 1.320 1.454 1.648

(0.039) (0.055) (0.066)
ς1 0.399 0.462 0.673

(0.019) (0.022) (0.031)
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Table 4: Percentage Breakdown of the Optimal HFT Strategies

The table reports, for the three representative stocks Intel (INTC), Qualcomm (QCOM) and Amazon
(AMZN), the (Monte Carlo average) percentage attributions of the optimal HFT to three types of
activity: traditional market-making/inventory-control, pinging, and momentum/directional trading via
market orders. For the explanation on how these percentage attributions are obtained, please refer to
Footnote 35 in the main article.

INTC QCOM AMZN

Market-making/Inventory-control 70.50% 58.30% 31.80%
Pinging 19.70% 28.10% 46.70%
Momentum (via market orders) 9.80% 13.60% 21.50%

Table 5: Model’s Pinging v.s. Data’s Pinging

This table compares the pinging percentages (pinging as a percentage of all limit order book activities)
obtained from the model to the pinging percentages observable from the data for the three representative
stocks Intel (INTC), Qualcomm (QCOM) and Amazon (AMZN), in order to illustrate how much pinging
in the data can be rationalized by the model (i.e. the % of data’s pinging captured by model). Pinging
percentages produced by the model are approximations to the corresponding numbers shown in Table
4. For the detailed explanation on how pinging percentages from the data are calculated, please refer
to Page 33 in the main article.

INTC QCOM AMZN

Pinging percentage observed in data 23% 39% 70%
Pinging percentage produced by model 20% 30% 50%
Percentage of data’s pinging captured by model 85% 75% 70%

Table 6: Further Breakdown on Pinging

The table shows for the three representative stocks Intel (INTC), Qualcomm (QCOM) and Amazon
(AMZN), the percentage of the model’s optimal HFT strategies that is attributable to pinging when
one of the limit order book features is eliminated from the model. No hidden orders means the existence
probabilities of the hidden orders in the model are set to zero, i.e. the parameters of π1 and π2 are fixed
at zero. No price momentum means the depth imbalance F of the limit order book does not have any
predictive power on the directions of the mid-price jumps in the model, i.e. the parameters β1 and β2

are set to zero, which implies that the mid-price has equal probabilities of jumping up or down.

Pinging percentage in the model

INTC QCOM AMZN

No hidden orders 8% 16% 32%
No price momentum 12% 14% 18%
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Figure 1: Optimal Strategy, INTC, t = 10, spread = δ (left) / 2δ (right)

The figure shows the optimal HFT strategy profile for Intel (INTC) at time t = 10, with spread S
equal to δ (left panel) and 2δ (right panel). The HFT’s inventory and the depth imbalance levels are
shown on the horizontal and the vertical axes respectively. The optimal strategy is computed via the
implementation of my numerical scheme (4.14)-(4.15), using the parameter estimates in Table 3 and the
fixed parameters in Table 2 as inputs. For given values of the inventory level and the depth imbalance,
each colored region represents a particular type of HFT strategy, which is stated in the figure.

(A) (B)

Figure 2: Optimal Strategy, INTC, t = T − 3, spread = δ (left) / 2δ (right)

This figure shows the optimal HFT strategy profile for Intel (INTC) at time t = T − 3, with spread
S equal to δ (left panel) and 2δ (right panel). For given values of the inventory level and the depth
imbalance, each colored region represents a particular type of HFT strategy, which is stated in the
figure. “Mkt MK” in the right panel stands for market making.

(A) (B)
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Figure 3: Optimal Strategy, spread = δ, t = 10, INTC (left) v.s. AMZN (right)

This figure compares the optimal HFT strategy profile for Intel (INTC, left panel) with that for Amazon
(AMZN, right panel) at time t = 10, with spread S equal to δ. For given values of the inventory level
and the depth imbalance, each colored region represents a particular type of HFT strategy, which is
stated in the figure.

(A) Intel (B) Amazon

Figure 4: Optimal Strategy, spread = 2δ, t = 10, INTC (left) v.s. AMZN (right)

This figure compares the optimal HFT strategy profile for Intel (INTC, left panel) with that for Amazon
(AMZN, right panel) at time t = 10, with spread S equal to 2δ. For given values of the inventory level
and the depth imbalance, each colored region represents a particular type of HFT strategy, which is
stated in the figure.

(A) Intel (B) Amazon
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Figure 5: Optimal Strategy, spread = δ, t = T − 3, INTC (left) v.s. AMZN (right)

This figure compares the optimal HFT strategy profile for Intel (INTC, left panel) with that for Amazon
(AMZN, right panel) at time t = T − 3, with spread S equal to δ. For given values of the inventory
level and the depth imbalance, each colored region represents a particular type of HFT strategy, which
is stated in the figure.

(A) Intel (B) Amazon

Figure 6: Optimal Strategy, spread = 2δ, t = T − 3, INTC (left) v.s. AMZN (right)

This figure compares the optimal HFT strategy profile for Intel (INTC, left panel) with that for Amazon
(AMZN, right panel) at time t = T − 3, with spread S equal to 2δ. For given values of the inventory
level and the depth imbalance, each colored region represents a particular type of HFT strategy, which
is stated in the figure. “Mkt MK” in both panels stands for market making.

(A) Intel (B) Amazon
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