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Abstract

Short lived arbitrage opportunities can arise when the prices of asset pairs do not adjust

to information at the same speed. These opportunities are toxic because they expose in-

vestors to the risk of trading with arbitrageurs at stale quotes. Hence, more frequent toxic

arbitrage opportunities and a faster arbitrageurs’ response to these opportunities can impair

liquidity. We provide supporting evidence using data on triangular arbitrage in currency

markets. In our sample, a 1% increase in the likelihood that a toxic arbitrage terminates

with an arbitrageur’s trade (rather than a quote update) is associated with a 4% increase

in bid-ask spreads. Our findings suggest that fast arbitrageurs’ response to toxic arbitrage

opportunities enhances pricing efficiency while raising trading costs for other market partic-

ipants.
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1 Introduction

Arbitrageurs play a central role in financial markets. When the Law of One Price (LOP)

breaks down, they step in, buying the cheaper asset and selling the expensive one. Thereby,

arbitrageurs enforce the LOP and make markets more price efficient. In theory, arbitrage

opportunities should disappear instantaneously. In reality, they do not because arbitrage is

not frictionless. As Duffie (2010) points out: “The arrival of new capital to an investment

opportunity can be delayed by fractions of a second in some markets, for example an electronic

limit order-book market for equities, or by months in other markets, such as that for catastrophe

risk insurance.”

Well-known frictions (e.g., short-selling costs, funding constraints etc.) explain why some

arbitrage opportunities persist (see Gromb and Vayanos (2010)). However, these frictions are

less likely to play out for arbitrage opportunities lasting fractions of a second. For such very

short lived opportunities, attention costs and technological constraints on traders’ speed are

the main impediments to a seamlessly Law of One Price. These barriers are falling as some

arbitrageurs invest massively in fast trading technologies to react ever faster to arbitrage op-

portunities, making them even more short lived. Their profits per opportunity are small but

short lived arbitrage opportunities are very frequent because of the proliferation of derivatives

securities (e.g., ETFs, options, futures) and market fragmentation. Accordingly, returns on

high speed arbitrage are high: a report from the Tabb group estimates profits of high frequency

arbitrageurs at $21 billion for year 2009 alone (see Sussman et al. (2009)).

This evolution raises questions about the social value of arbitrage, in particular high speed

arbitrage. For instance, in its report on recent changes in market structures, the SEC asks

whether arbitrage strategies ”benefit or harm the interests of long-term investors and market

quality in general.[...]” (see U.S. Securities and Exchange Commission (2010), Section B, p.51).

At first glance, questioning the social value of arbitrage is surprising: economists tend to view

arbitrage as beneficial because it enhances price efficiency. Moreover, arbitrageurs implicitly act

as liquidity providers when they correct mispricings due to transient demand or supply shocks

(“price pressures” effects). In this view, not only arbitrageurs make prices more efficient but

they also reduce illiquidity costs for other investors (see, for instance, Holden (1995), Gromb

and Vayanos (2002), and Gromb and Vayanos (2010)).1

1For instance, Gromb and Vayanos (2002) write (on p.362): “In our model, arbitrage activity benefits all
investors. This is because through their trading, arbitrageurs bring prices closer to fundamentals and supply
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For high speed arbitrage opportunities, this view is incomplete, however. Indeed, these

opportunities do not arise only because of transient supply and demand shocks. Asynchronous

adjustments in asset prices following new information can also cause very short lived breakdowns

of the LOP. In these cases, in enforcing the LOP, arbitrageurs expose their counterparties (e.g.,

market makers) to the risk of trading at stale quotes (“being picked off”).2

Consider, for instance, two “market makers” (or limit order books) A and B trading the

same asset in two different trading platforms. Suppose that good news about this asset arrives.

Market maker A instantaneously marks up his quotes while B is slower. If, as a result, A’s bid

price exceeds B’s ask price momentarily, there is an arbitrage opportunity.3 If arbitrageurs are

fast enough, they buy the asset from B, before the latter updates his quotes, and they resell it

to A, at a profit. As B sells the asset at a price lower than its fair value, he incurs a loss, as if

he had been trading with better informed investors.

Thus, asynchronous price adjustments to information in asset pairs generate “toxic” arbi-

trage opportunities in the sense that these opportunities raise the risk of trading at stale quotes

for market makers.4 Dealers require a compensation for this form of adverse selection (Copeland

and Galai (1983)). Thus, illiquidity should be higher when the fraction of arbitrage opportuni-

ties that are toxic is higher. Moreover, illiquidity should be higher when the likelihood that a

toxic arbitrage opportunity terminates with an arbitrageur’s trade is higher. Our main goal in

this paper is to test these two predictions.

We check that these predictions are well-grounded using a simple model of cross-market

arbitrage in pairs of similar assets with specialized market makers. In the model, arbitrage

opportunities can be either toxic (due to asynchronous price adjustments to news) or non toxic

(due to liquidity shocks). As in the data, an arbitrage opportunity terminates either with an

arbitrageur’s trade or a market maker’s quote update, depending on who observes the arbitrage

opportunity first. We solve for equilibrium bid-ask spreads in each asset and traders’ optimal

speed of reaction to arbitrage opportunities. Thus, in equilibrium, illiquidity and the duration

of arbitrage opportunities (a measure of pricing efficiency) are jointly determined. The model

liquidity to the market.”
2This problem is not new. In the 90s, professional day traders (so-called SOES bandits) were picking off

Nasdaq dealers with stale quotes by using Nasdaq’s Small Order Execution System (a system that guaranteed
automatic execution of market orders up to a certain size at Nasdaq dealers quotes). See Harris and Schultz
(1997) and Foucault et al. (2003).

3This situation is not uncommon. Shkilko et al. (2008) show that ask and bid prices for stocks listed on
Nasdaq and the NYSE (and traded on multiple markets) are crossed 3.5% of the time during a day.

4Our definition of a toxic trade follows Easley et al. (2012). They write (p.1458): “Order flow is regarded as
toxic when it adversely selects market makers who may be unaware that they are providing liquidity at a loss.”
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generates our two main predictions and has two additional implications about the durations

of arbitrage opportunities. First, when the arbitrage mix becomes more toxic, arbitrage op-

portunities should be shorter, even though bid-ask spread costs borne by arbitrageurs should

be higher. The reason is that in equilibrium, market makers have more incentive to react fast

to arbitrage opportunities (by updating their quotes) when they expect more of them to be

toxic. This effect also induces arbitrageurs to be faster so that overall arbitrage opportunities

are shorter. A similar logic implies that a technological change allowing traders to be faster

should reduce the duration of arbitrage opportunities, even though it may increase illiquidity

by raising the odds that arbitrageurs pick off dealers’ stale quotes.

Our tests use data on triangular arbitrage opportunities for three currency pairs (dollar-

euro, dollar-pound, and pound-euro).5 Although our predictions and methodology apply to any

type of high frequency arbitrage opportunities, we focus on triangular arbitrage opportunities

for a couple of reasons.

The first one is practical. For our tests, we must accurately measure when an arbitrage

begins, when it terminates, how it terminates (with a trade or a quote update), and we must

track prices after the arbitrage terminates (to identify arbitrage opportunities that are toxic;

see below). This requires data on pairs of related assets (not just one asset) with a level of

precision that is not easily available to researchers. Our data has the required granularity: for

three currency rates, we observe all orders and trades from January 2003 to December 2004 in

Reuters D-3000 (one of the two interdealer trading platforms used by foreign exchange dealing

banks at the time of our sample) with a time stamp accuracy of 10 milliseconds.

Second, strategies exploiting triangular arbitrage opportunities are not hindered by taxes,

short-selling constraints, or funding constraints and the risk of these strategies is very limited.

Hence, standard limits to arbitrage cannot explain why triangular arbitrage opportunities are

not eliminated immediately (see Pasquariello (2014)). The most likely explanation is that,

as in our model, technological constraints limit the speed at which traders react to arbitrage

opportunities. Thus, triangular arbitrage opportunities are very similar to other high speed

opportunities: they are (i) frequent (we observe more than 37,000 in our sample), (ii) very short-

lived (they last less than one second on average), (iii) more efficiently exploited by machines

than by humans, and (iv) they deliver razor blade profits per opportunity (1 to 2 basis points

5One can buy dollars with euros in two ways: (i) directly by trading in the dollar-euro market or (ii) indirectly
by first buying pounds with euros and then dollars with pounds. If the price (in euros) of these two strategies
differs then a triangular arbitrage opportunity exists.
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in our sample).6

As any other arbitrage opportunities, triangular arbitrage opportunities arise for two rea-

sons: (i) asynchronous price adjustments of different currency pairs to new information or (ii)

price pressures effects. By definition, price pressure effects are followed by reversals, whereas

asynchronous price adjustments are eventually followed by permanent shifts in exchange rates.7

Thus, we use price patterns following the occurrence of arbitrage opportunities to sort them into

two groups: toxic (followed by permanent changes in exchange rates) and non-toxic (followed

by price reversals). With this approach, we obtain 15,908 toxic arbitrage opportunities (about

32 per day), i.e., about 41% of all arbitrage opportunities in the sample. Moreover, we find that

about 75% of toxic arbitrage opportunities terminate with an arbitrageur’s trade.

As predicted we find a positive and significant relationship between the fraction of arbitrage

opportunities that are toxic and illiquidity. Specifically, on days in which this fraction is higher,

illiquidity is higher (after controlling for standard determinants of illiquidity). For instance,

a one standard deviation increase in the fraction of arbitrage opportunities that are toxic is

associated with an increase of about 3% in average effective spreads for the currencies in our

sample. Thus, the arbitrage mix matters: pairs of related assets are less liquid when arbitrage

opportunities in these pairs are more frequently due to asynchronous price adjustments than

price pressures.

Our second prediction is that an increase in the likelihood that a toxic arbitrage oppor-

tunity terminates with an arbitrageur’s trade should raise illiquidity. Our model shows that

this likelihood is jointly determined with illiquidity in equilibrium. To account for this endo-

geneity, we use an instrumental variable approach. Until July 2003, traders had to manually

submit their orders to Reuters D-3000. In July 2003, Reuters introduced the “AutoQuote API”

functionality (API means “Application Programming Interface”). Traders using this function-

ality can directly feed their algorithms to Reuters D-3000 data and let these algorithms submit

orders automatically. AutoQuote API marked therefore the onset of algorithmic trading on

6Kozhan and Tham (2012) use the same data to measure the profitability of triangular arbitrage opportunities.
7Suppose that euro/dollar dealers receive information that calls for an appreciation of the euro and raise

their bid and ask quotes (expressed in dollars per euro). If this appreciation is large enough and dealers in,
say, the dollar-pound market are slow to adjust their quotes, there is a triangular arbitrage opportunity: one
can indirectly buy dollars with euros at a price less than the current bid price in the dollar/euro market. The
arbitrage vanishes when dealers in the dollar pound market adjust their quotes or arbitrageurs hit stale quotes
in this market. In either case, there is no reversal of the initial euro/dollar rate. Alternatively, if euro/dollar
dealers temporarily accumulate a large short position in euro, they will mark up the value of the euro against
the dollar to attract sellers of euros and reduce their risk exposure. If this price pressure effect is large enough,
a triangular arbitrage opportunity arises. However, in this case, as dealers’ short position decreases, their quotes
will revert (see Ho and Stoll (1981), Grossman and Miller (1988), or Hendershott and Menkveld (2014)).
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Reuters D-3000, allowing traders to react faster to triangular arbitrage opportunities.8 Thus,

we instrument arbitrageurs’ relative speed with AutoQuote API.

The first stage of the IV regression shows that the likelihood that a toxic arbitrage oppor-

tunity terminates with a trade (rather than a quote update) increases by about 4% following

the introduction of AutoQuote API. Thus, Autoquote API raised arbitrageurs’ relative speed of

reaction to arbitrage opportunities, consistent with anedoctal evidence that algorithmic trading

in foreign exchange markets was initially used for exploiting triangular arbitrage opportunities

(see Chaboud et al. (2014)).

The second stage of our IV regression shows that an increase in the likelihood that a toxic

arbitrage opportunity terminates with a trade has a positive effect on illiquidity, as conjectured.

Specifically, a 1% increase in this likelihood is associated with a 0.08 basis points increase in

quoted bid-ask spreads in our sample (3 to 6% of the average bid-ask spread depending on the

currency pair). The economic size of this effect is significant given the trading volume for the

currency pairs in our sample (we estimate that a 0.08 basis points increase in quoted spread

raises the total cost of trading for the currency pairs in our sample by about $161, 000 per

day). We find similar effects when we use effective spreads and the slope of limit order books

(a measure of market depth) as measures of market illiquidity.

Thus, consistent with our predictions, (a) the fraction of arbitrage opportunities that are

toxic and (b) the frequency with which these opportunities are effectively exploited (a proxy

for arbitrageurs’ relative speed of reaction) are associated with a less liquid market. Yet, faster

arbitrageurs also increase pricing efficiency. For instance, the introduction of AutoQuote API

coincides with a 6.8% (about 60 milliseconds) decrease in the average duration of arbitrage

opportunities in our sample. This finding is consistent with Chaboud et al. (2014), who find

that algorithmic trading reduces the likelihood of observing a triangular arbitrage opportunity

when one samples market data every second. Moreover, this duration of is negatively related

to the daily fraction of arbitrage opportunities that are toxic, again as predicted by the model.

Several papers suggest that liquidity facilitates arbitrage and thereby enhances price effi-

ciency (see Holden et al. (2014)). In this paper, however, we consider the reverse relation:

the effect of arbitrageurs on liquidity. Kumar and Seppi (1994) emphasize the connection be-

8Hendershott et al. (2011) use the implementation of the NYSE “autoquote” software in 2003 as an instrument
for the level of algorithmic trading in NYSE stocks. The NYSE autoquote functionality is different from Reuters
AutoQuote API since the former automates the dissemination of updates in best quotes for NYSE stocks while
the latter automates order entry. Automation of order entry clearly accelerates the speed at which traders can
react to market events.
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tween cross-asset arbitrageurs and informed trading as we do in this paper. However, to our

knowledge, our paper is first to test whether high speed arbitrage is a source of illiquidity.9

Our paper is also related to papers on the effect of speed in securities markets.10 Several

of these papers argue that fast informed traders raise adverse selection costs for slower traders.

Our empirical finding that illiquidity is higher on days in which toxic arbitrage opportunities

terminate more frequently with an arbitrageur’s trade is consistent with this view. However,

our contribution is not to test whether adverse selection is a source of illiquidity: this is well

known. What is new is to show that high speed arbitrage is a source of adverse selection and

that, for this reason, the relative likelihood of toxic and non toxic arbitrage opportunities (the

“arbitrage mix”) in an asset pair is a determinant of its liquidity. To our knowledge, these

empirical findings about arbitrage are novel and contribute to the question of whether high

speed arbitrageurs are beneficial.

Arbitrage opportunities in the foreign exchange market (either violations of covered interest

parity or triangular arbitrage) are well documented.11 However, existing papers on these op-

portunities do not study the effect of arbitrageurs on liquidity. A few papers have also analyzed

the extent to which market makers in FX markets are exposed to adverse selection (e.g., Lyons

(1995), Bjønnes and Rime (2005)) and the source of informational asymmetries in FX markets

(e.g., Bjønnes et al. (2011)). We complement them by showing that arbitrageurs’ orders can

be, in some circumstances, a source of adverse selection.

The next section derives our testable hypotheses. Section 3 describes the data, explain how

we classify arbitrage opportunities in toxic and non-toxic arbitrage opportunities and present

the main empirical findings of the paper. Additional results are presented in Section 4. We

conclude in Section 5.

9Roll et al. (2007) show that there exist two-way relations between index futures basis and stock market
liquidity. In particular, a greater index futures basis Granger-causes greater stock market illiquidity. Roll et al.
(2007) argue that this effect could be due to arbitrageurs’s trades but do not specifically show that these trades
explain the relation.

10See, for instance, Biais et al. (2014), Budish et al. (2014), Foucault et al. (2003), Foucault et al. (2012),
Garvey and Wu (2010), Hendershott and Moulton (2011), Hoffman (2012), Jovanovic and Menkveld (2012),
Menkveld and Zoican (2014), or Pagnotta and Phillipon (2013).

11See, for instance, Akram et al. (2008), Fong et al. (2008), Fenn et al. (2009), Mancini-Griffoli and Ranaldo
(2011), Marshall et al. (2008), Kozhan and Tham (2012), Ito et al. (2013), Chaboud et al. (2014) and Pasquariello
(2014).
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2 Hypotheses Development

In this section, we present the model that guides our empirical analysis. The model is similar

to Foucault et al. (2003) but allow for cross market arbitrage (Foucault et al. (2003) consider

reactions to public information arrival in a single asset). We deliberately keep the model very

simple in order to better highlight the economic forces that we seek to identify in the data.

Extensions are discussed in Section 2.3.

2.1 A model of cross-market arbitrage

Consider two risky assets X and Y . The model has three dates, t ∈ {0, 1, 2}. At t = 2, each

asset pays a single cash-flow, θ̃X and θ̃Y with θ̃X = σθ̃Y . Thus, a portfolio with a long position

of σ shares of asset Y and a short position of one share of asset X is riskless. Let vX and vY

be the expected payoffs of assets X and Y at t = 0. We have:

vX = σ × vY . (1)

There are two market makers (called X and Y ) and one arbitrageur. Each market maker is

specialized in one asset (trades only this asset). At t = 0, market maker j ∈ {X,Y } learns his

valuation mj for asset j (see below). Then, at t = 1, the market makers simultaneously post

an ask price, aj and a bid price bj for j ∈ {X,Y } with:

aj = mj +
Sj
2
, (2)

and

bj = mj −
Sj
2
. (3)

Thus, Sj is the bid-ask spread for asset j. In asset X, quotes are firm for QX = 1 share and in

asset Y for QY = σ shares.

Market maker X’s valuation for asset X is equal to its expected payoff, i.e., mX = vX .

With probability (1 − α), this is also the case for market maker Y : mY = vY . Alternatively,

with probability α, market maker Y experiences a shock to his valuation for one of two possible

reasons. First, with probability ϕ, he receives news about the payoff of asset Y and revises his

expectation about the payoff of this asset by ε, where ε = 1/2 (good news) or −1/2 (bad news)

with equal probabilities. His valuation is then mY = vY + ε . Alternatively, with probability
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(1−ϕ), market maker Y is hit by a liquidity shock δ. In this case, mY = vY + δ where δ = 1/2

or −1/2 with equal probabilities.

This liquidity shock captures changes in liquidity providers’ valuations due to risk manage-

ment concerns (so called “price pressures;” see Hendershott and Menkveld (2014) for instance).

For instance, a market maker with a large long position in one asset will be less willing to buy

other assets with positively correlated payoffs and more eager to sell these for hedging purposes.

This corresponds to a negative δ in our model.

If there is no shock to market maker Y ’s valuation (probability (1 − α)) then there is no

arbitrage opportunity. For instance, buying σ shares of asset Y at aY and selling one share of

asset X at bX yields a zero payoff portfolio but costs (SX + σSY )/2. In this case, a liquidity

trader arrives in the market to buy or sell QX or QY shares of asset X or Y , with equal

probabilities.

If instead there is a shock to market maker Y ’s valuation then there is an arbitrage oppor-

tunity if SX + σSY < σ. For instance, suppose that this shock is positive. The arbitrageur can

then buy one share of asset X at price aX = vX + SX
2 and sell σ shares of asset Y at price

bY = vY + 1/2− SY /2. With this trade, she locks in a sure gain of:

ArbProfit = σ × bY − aX = (σ − SX − σSY )/2. (4)

By symmetry, the arbitrageur’s profit is identical if market maker Y experiences a negative

valuation shock.

The expected profit of market maker X on a trade with the arbitrageur depends on the

nature of market maker Y ’s valuation shock. Consider again the previous example. If the

valuation shock is due to news then market maker X will lose money on his trade with the

arbitrageur. Indeed, in this case, asset X is worth vtX + σ/2 and the market maker sells it at

aX = vX + SX
2 . Thus, the market maker’s expected profit is (SX−σ)/2, which must be negative

if the arbitrageur chooses to trade (i.e., if SX +σSY < σ). If instead, the shock to market maker

Y ’s valuation is due to a liquidity shock then market maker X earns a profit equal to half his

bid-ask spread when he trades with the arbitrageur.

In sum, arbitrage opportunities due to news arrival about asset Y expose market maker X

to a form of adverse selection (the risk of trading a stale quotes) while arbitrage opportunities

due to liquidity shocks in asset Y generate profits for market maker X. For this reason, we
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refer to the former type of arbitrage opportunity as toxic and to the latter type as non-toxic.

Hence, parameter ϕ characterizes the composition of arbitrage opportunities (the “arbitrage

mix”): the higher is ϕ, the higher is the likelihood that a given arbitrage opportunity is toxic.

To complete the model, we need to specify when and how an arbitrage opportunity ter-

minates. We assume that it takes a time Da and Dm for the arbitrageur and market maker

X, respectively, to observe the arbitrage opportunity. These reaction times are exponentially

distributed with parameter γ (for the arbitrageur) and λ (for market maker X). Hence, the

market maker’s and the arbitrageur’s average reaction times are 1/λ and 1/γ, respectively. The

higher are λ and γ, the faster are the traders. We therefore refer to λ and γ as traders’ speed,

respectively.

If the arbitrageur detects first the opportunity (Da < Dm), she exploits it. If instead market

maker X is first to observe the opportunity, he cancels his quote if the arbitrage opportunity

is toxic (to avoid trading at a loss with the arbitrageur) and does nothing if the arbitrage

opportunity is non toxic (to earn a profit by trading with the arbitrageur).12 Hence, in this

case, the arbitrageur trades with probability one. The trading round terminates either with

a trade by the arbitrageur or a cancellation of his quotes by market maker X (in reality, the

market maker will then resubmit new quotes around his updated valuation; this can easily be

incorporated in the model by extending it to multiple trading rounds).

Conditional on the arrival of news in asset Y , the likelihood that an arbitrage opportunity

terminates with a trade by the arbitrageur, denoted π, is:

π ≡ Pr (Da < Dm) =
γ

λ+ γ
, (5)

because Dm and Da are exponentially distributed. Thus, π increases when the arbitrageur

becomes relatively faster, i.e., when γ
λ increases. Thus, π can be seen as a measure of the

arbitrageur’s relative speed.

In practice, traders’ response time to market events (e.g., an arbitrage opportunity) is called

latency (see Moallemi and Saglam (2013) or Pagnotta and Phillipon (2013)). Latencies are

stochastic because traders cannot control the time required by platforms to process their orders

and this time will be affected by a myriad of factors (e.g., trading activity). However, with

12For simplicity, we assume that market maker X learns the nature of the shock in asset Y upon observing
the arbitrage opportunity. For instance, he can check whether the opportunity coincides with news to infer the
nature of market maker Y ’s valuation shock.
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investments in technologies (e.g., in hardware and software, datafeed, dedicated communication

lines, co-location etc.) and attention (e.g., computer capacity), traders can reduce the time it

takes for them to communicate with a trading platform and receive messages from the platform.

These investments are costly, however.13 Hence, we assume that if the market maker operates

at speed λ then he bears a cost Ψm(λ) = cmλt
2 . Similarly, if the arbitrageur operates at speed

γ then she bears a cost Ψa(γ) = caγt
2 . The cost of speed for market maker Y is irrelevant: this

market maker has no reason to be fast since arbitrage opportunities always originates in asset

Y .

Allowing for the possibility that ca 6= cm will be useful to analyze the effects of differential

shocks to traders’ speed. However, our predictions do not depend on whether the market

maker or the arbitrageur has the smallest cost of being fast. In practice, differences in marginal

costs of speed between the arbitrageur and the market maker might stem from differences in

opportunity costs of attention for each type of activity. Alternatively, these costs could be

identical but, for the same investment in speed, market design could enable one type of trader

to react more quickly to new information (jumps in the value of asset Y ).14 For instance,

suppose that ca = cm = c but an investment of γ̂ in speed for the arbitrageur produces an

actual speed of only γ = κγ̂ with κ < 1. The optimal speed for the arbitrageur is then identical

to the case in which his marginal cost of speed is c/κ.15 Thus, an increase in κ is observationally

equivalent to a reduction in ca

cm .

Given our assumptions, the expected profit of market makers X, Y, and the arbitrageur are:

ΠX(SX ;λ, γ) = −ϕαπt
2

(σ − SX) +

(
1− α(2ϕ− 1)

4

)
SX −

cmλ

2
, (6)

ΠY (SY ) = (2α(1− (1− π)ϕ) + 1− α)QY
SY
4
, (7)

Πa(SX , SY ;λ, γ) = αϕπ
(σ − SX − σSY )

2
+ α(1− ϕ)

(σ − SX − σSY )

2
− caγ

2
. (8)

The first term in (6) is market maker X’s expected losses when he trades with the arbitrageur

13Attention can be interpreted literally as the effort that human traders must exert to follow prices in different
markets. It can also represent the computing capacity that traders allocate to a particular task, e.g., detecting
an arbitrage opportunity in a specific pair of assets. Allocating greater capacity to this specific task reduces the
capacity available for other tasks, which generates an opportunity cost.

14For instance, Hendershott and Moulton (2011) find that changes in the trading technology used by the
NYSE in 2006 (the introduction of the so-called “Hybrid Market”) increased the execution speed of market
orders submitted by off-floor traders by a factor of 2. See Figure 2 in Hendershott and Moulton (2011).

15This follows directly from the first order conditions that characterize traders’ optimal choices of speed. See
the next section.
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at stale quotes in a toxic arbitrage opportunity. The second term is his expected profit when

he trades with liquidity traders or with the arbitrageur in non toxic arbitrage opportunities.

Finally, the last term is the cost of speed for the market maker. Market maker Y trades with

probability (α(1− (1− π)ϕ) + (1− α)/2) and earns the half bid-ask spread for asset Y in this

case. He does not invest in speed since he is never exposed to the risk of trading at stale quotes.

The first two terms in the arbitrageur’s expected profit are the arbitrageur’s expected gain on

toxic and non toxic arbitrage, respectively. The last term is her cost of speed.

2.2 Testable predictions

We focus on equilibria in which market makers set competitive bid-ask spreads. Thus, SY = 0.

In asset X, the competitive spread depends on traders’ speeds (since they affect π and the

market maker’s cost). We require that the speeds chosen by the arbitrageur and the market

maker maximize their expected profit for each possible level of the bid-ask spread in asset X.

That is, for a given bid-ask spread SX and for SY = 0, equilibrium speeds, γ∗ and λ∗ are such

that (i) λ∗ maximizes (6) when γ = γ∗ and (ii) γ∗ maximizes (8) when λ = λ∗.

Thus, when λ∗ > 0 or γ∗ > 0, traders’ speeds solve the following system of first order

conditions ∂Πa

∂γ = 0 and ∂Πm

∂λ = 0.16 The unique equilibrium is such that:

λ∗(SX ; ca, cm) =
ϕα(σ − SX)r

cm(1 + r)2
, (9)

γ∗(SX ; ca, cm) =
ϕα(σ − SX)r

ca(1 + r)2
, (10)

where r =
(
cm

ca

)
. Equilibrium speeds are strictly positive if SX ≤ σ, i.e., if arbitrage is profitable.

This will be the case in equilibrium (see below).

Not surprisingly, the traders’ optimal speed decreases in their cost of speed (e.g., γ∗ decreases

in ca). As expected, they also decrease in the bid-ask spread. Indeed, an increase in the bid-ask

spread reduces the transfer from market maker X to the arbitrageur when a toxic arbitrage

opportunity arises and thereby both traders’ incentive to react fast to an arbitrage opportunity.

Equations (9) and (10) imply that:

γ∗(SX ; ca, cm)

λ∗(SX ; ca, cm)
= r = cm/ca. (11)

16Clearly, traders’ expected profits are concave in their speed. Hence, solving the first order conditions is
sufficient to obtain equilibrium speeds.
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Thus, traders’ relative speeds, and therefore π, are only determined by their marginal costs in

equilibrium. Equations (5) and (11) yield:

π∗(r) =
γ∗

λ∗ + γ∗
=

r

1 + r
. (12)

Hence, in equilibrium, the likelihood that a toxic arbitrage terminates with an arbitrageur’s

trade, π∗ increases in the ratio, r, of the market maker’s cost of speed to the arbitrageur’s cost

of speed. If cm = ca then π∗ = 1/2.

Substituting λ∗ in the expected profit of market maker X (eq. (6)), we solve for the zero

profit bid-ask spread in asset X. We obtain:

S∗X =
2ϕαπ∗(r)(2− π∗(r))σ

2ϕαπ∗(r)(2− π∗(r)) + (1− α(2ϕ− 1))
. (13)

The equilibrium competitive spread increases with σ, the size of arbitrage opportunities and is

always less than σ, as conjectured previously. Market maker’s X’s exposure to the risk of being

picked off by arbitrageurs also depends on ϕ and π∗(r). This risk increases when arbitrage

opportunities are more likely to be toxic (ϕ is higher) or, holding this likelihood constant, when

arbitrageurs are faster (π∗(r) is higher). Our two main testable implications follow.

Implication 1a. Consider a pair of asset X and Y linked by a no-arbitrage relation. An

increase in the likelihood that an arbitrage opportunity is toxic (ϕ) causes an increase in the

bid-ask spread of asset X.

Implication 1b. Consider a pair of asset X and Y linked by a no-arbitrage relation. An

increase in the likelihood (π∗) that a toxic arbitrage opportunity terminates by an arbitrageur’s

trade causes an increase in the bid-ask spread of asset X.

The economics for these two predictions is straightforward: when arbitrageurs exploit arbi-

trage opportunities due to asynchronous price reactions to news, they adversely select market

makers who adjust their quotes slowly. Yet, to our knowledge they are novel and have not been

tested so far. The likelihood, π∗, that a toxic arbitrage opportunity terminates with an arbi-

trageur’s trade (rather than a quote update) is endogenous and potentially determined by the

bid-ask spread (since traders’ speeds are). In testing Implication 1b, one must therefore account

for the endogeneity of π∗. The model suggests to use shocks to the arbitrageur’s relative cost

of speed (ca/cm) as a source of exogenous variations for π∗. Indeed, a decrease in the relative

cost of speed for the arbitrageur (i.e., an increase in r) triggers an increase in π∗ and, through
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this channel only, an increase in the bid-ask spread. This yields the following implication.

Implication 2. Consider a pair of asset X and Y linked by a no-arbitrage relation. A

reduction in arbitrageurs’ cost of speed (ca) relative to market makers’ cost of speed (cm) triggers

an increase in π∗ – the probability of an arbitrageur’s trade, conditional on the occurrence of a

toxic arbitrage – and, through this channel, it increases bid-ask spreads.

As explained previously, changes in market structures that affect traders’ speeds are equiva-

lent to variations in r = cm/ca. Insofar as these changes only affect liquidity through their effect

on traders’ speeds and therefore π∗, Implication 2 shows that they provide good instruments to

measure the effect of π∗ on the bid-ask spread, i.e., to test Implication 1b. We use this approach

in Section 3.5.

The model has also predictions for the durations of arbitrage opportunities. This is inter-

esting because we can measure these durations empirically and they are obviously related to

the speed at which traders react to events. Let D be the duration of an arbitrage opportunity

(the “time-to-efficiency.”) The expected time-to-efficiency is:

E(D) = ϕE (Min{Da, Dm}) + (1− ϕ)E(Da) =
(1 + r)− ϕ
γ∗(S∗X)(1 + r)

. (14)

As speed is costly, equilibrium speeds are never infinite. Thus, in equilibrium, arbitrage oppor-

tunities do not immediately vanish, so that E(D) > 0. The duration of arbitrage opportunities

however goes to zero as ca or cm go to zero because the arbitrageur or the market maker be-

come increasingly fast in reacting to the opportunity. Thus, arbitrage opportunities can be very

short-lived in equilibrium, as observed in our data.

An exogenous increase in the bid-ask spread of assetX translates into arbitrage opportunities

that last longer because they induce the arbitrageur to invest less in speed (γ∗ decreases in

SX). This is consistent with Deville and Riva (2007) who find that deviations from put-call

parity last longer for less liquid options and Chordia et al. (2008) who find that short-horizons

(five minutes) returns predictability (using past trades and returns to forecast future returns) is

higher when bid-ask spreads are higher. However, bid-ask spreads and durations are determined

simultaneously in equilibrium. For this reason, there exist cases in which a change in the

environment can simultaneously increase bid-ask spreads and yet make the duration of arbitrage

opportunities shorter because arbitrageurs have more incentive to react fast, despite the larger

bid-ask spread.
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Consider for instance a technological change that reduces ca and cm but for which the effect

on ca is bigger. Hence r increases. As ca and cm are lower, the arbitrageur and the market maker

react faster to arbitrage opportunities, holding the bid-ask spread constant (see (9) and (10)).

However, the bid-ask spread becomes larger in equilibrium because r is larger (Implication

2). This indirect effect reduces the arbitrageur’s incentive to be fast and therefore the market

maker’s incentive to be fast as well. Nevertheless, the direct effect always dominates the indirect

effect, which yields our next testable implication.

Implication 3: Consider a decrease in ca and cm that eventually triggers an increase in

r (i.e., the decrease in ca is larger). This decrease should trigger a reduction in the average

duration of arbitrage opportunities (see the appendix for a formal proof).

Chaboud et al. (2014) find that algorithmic trading leads to fewer triangular arbitrage

opportunities per second in the FX market. They also find that this reduction is mainly due to

the action of algorithmic arbitrageurs hitting quotes of slower, human, traders. These findings

are consistent with the logic of the model. Indeed, suppose that algorithmic trading reduces the

cost of being fast for arbitrageurs. Then, r and therefore π∗ increases. As a result, one should

observe that arbitrage opportunities terminate more frequently with arbitrageurs’ trades when

algorithmic trading increases, as found by Chaboud et al. (2014). Moreover, the duration of

arbitrage opportunities should decrease (Implication 3). Hence, if one tests for the presence

of arbitrage opportunities at fixed time intervals (say, every second), one should observe a

negative relationship between algorithmic trading and the frequency of arbitrage opportunities,

even though the true likelihood of these opportunities (α in the model) is unaffected by algo

trading.

Finally, consider the effect of ϕ (the likelihood that an arbitrage opportunity is toxic con-

ditional on the occurrence of an opportunity) on the duration of arbitrage opportunities. The

direct effect of an increase in ϕ is to induce the arbitrageur and the market maker to react

faster to arbitrage opportunities (holding SX constant, γ and λ increase in ϕ; see (9) and (10)).

The indirect effect however is that the equilibrium bid-ask spread increases (Implication 1). In

general, the first effect dominates, except when α and ϕ are both large.

Implication 4: The average duration of arbitrage opportunities decreases with the likelihood

that an arbitrage opportunity is toxic, ϕ when ϕ ≤ 1/2 or α ≤ (4ϕ − 1)−1. (see the appendix

for a formal proof).

In the model, parameter α controls the fraction of arbitrage trades relative to the number
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of trades occurring for other reasons (liquidity motives in the model). In our data, the number

of arbitrage opportunities relative to the total number of trades is small. Thus, α is likely to

be small empirically and well below 1/3 which is a sufficient condition for α < (4ϕ− 1)−1 when

ϕ > 1/2. Hence, empirically, we expect the duration of arbitrage opportunities to be negatively

related to ϕ.

[Insert Figure I about here]

Figure I illustrates the four testable implications of the model. We set α = 0.1 and σ = 3.5

basis points, which is close to our estimate of the size of triangular arbitrage opportunities in

our data (see below). We measure time in seconds. We fix the cost of speed for the market

maker at cm = 0.056 and let the arbitrageur’s cost, ca, vary from 0 to 0.1. When ca = 0.02,

this implies that r = 2.8 and π = 74%, which is the average value of π in the data (see Table II

below). Moreover, we estimate the average value of ϕ to be 41% (see Table II). When ca = 0.02

and ϕ = 41%, the average duration of an arbitrage opportunity is about 700 milliseconds

in equilibrium, which is close to the average duration in our data. For these values of the

parameters, the equilibrium bid-ask spread is S∗X = 0.24 basis points, which is about 8% to

15% of the average bid-ask spread in our data (depending on the currency). In reality, market

makers certainly bear other costs than just adverse selection costs due to arbitrageurs’ trades in

toxic opportunities (those captured by our model). In fact these costs should only be a fraction

of total adverse selection costs for market makers and cannot therefore be a too large fraction

of the bid-ask spread.17

2.3 Extensions

We briefly discuss some extensions of the model. For brevity, we omit full derivations of the

equilibrium in each case discussed below. They are available upon request. We have checked

that our testable implications still hold in each case.

Competition Among Arbitrageurs. The baseline model features a single arbitrageur.

The case with M > 1 arbitrageurs is straightforward to analyze and delivers identical im-

plications.18 Not surprisingly, as M increases, the equilibrium bid-ask spread becomes larger

because the likelihood that one arbitrageur reacts first to the arbitrage opportunity becomes

17Bjonnes and Rime (2005) find that adverse selection costs account for about 70% to 80% of foreign exchange
dealers’s bid-ask spreads in their sample.

18In this case, an arbitrageur who chooses a speed γi exploits the arbitrage opportunity with probability
γi

λ+
∑j=M

j=1
γj

.
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higher. Moreover, if r ≤ M
(M−1) then, in equilibrium, the market maker always chooses a zero

speed (this never happens when M = 1). Intuitively, when the number of arbitrageurs increases,

each increment in the market maker’s speed has a smaller effect on the likelihood that she can

update her quote before being hit by an arbitrageur.19 As a result the marginal benefit of speed

is lower for the market maker. If the number of arbitrageurs and r are large enough then the

market maker is better off not investing in speed at all.

Market-makers As Arbitrageurs. We assumed that arbitrageurs and market makers are

distinct agents. This is not required. For instance, suppose that there is free entry in market

making and arbitrage activities (M → ∞). Just before t = 0, each firm decides whether to be

a market maker (post quotes) or an arbitrageur. As there is free entry in both market making

and arbitrage, arbitrageurs’ expected profit is zero in equilibrium.20 Market-makers’ expected

profit is also zero since the bid-ask spread is competitive. Thus, all firms are indifferent between

both roles and one can be randomly selected to be a market maker.

Shocks in assets X and Y . Suppose that at t = 0, the shock to market makers’ valuation

happens in asset Y or X with probabilities αβ and α(1 − β), respectively. In the baseline

model, β = 1. When 0 < β < 1, market makers in each asset are exposed to toxic arbitrage

trades and therefore each market features a bid-ask spread. If the arbitrageur takes a long-short

position in each asset, as in the baseline model, her expected profit depends on both SX and SY

(see (4)). Accordingly her optimal speed now depends on both spreads and for this reason the

bid-ask spreads in each market become interdependent. Solving for the equilibrium in closed

form becomes significantly more complex. The equilibrium can be solved numerically, however.

Numerical simulations show that our predictions still hold in this more general case.

3 Empirical Analysis

3.1 Data

Our tests use tick-by-tick data from Reuters D-3000 for three currency pairs: US dollar/euro

(dollars per euro), US dollar/pound sterling (dollars per pound), and pound sterling/euro

(pounds per euro) (hereafter USD/EUR, USD/GBP and EUR/GBP respectively). Reuters

19This likelihood is λ
λ+Mγ

when each arbitrageur chooses a speed of γ. Thus, a marginal increase in λ increases

the market maker’s chance of being first by Mγ
(λ+Mγ)2

. This decreases with M .
20When M goes to infinity, each arbitrageur’s speed (γ∗) goes to zero but arbitrageurs’ aggregate speed (Mγ∗)

remains strictly positive in equilibrium.
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D-3000 is one of the two electronic trading platforms for interdealer spot trading in the FX

market over our sample period (the other one being Electronic Broking Services (EBS)).21 The

sample period contains 498 days from January 2, 2003 to December 30, 2004.22 The Bank for

International Settlement (BIS, 2004) estimates that currency pairs in our sample account for

60 percent of all foreign exchange (FX) spot transactions at the time of our sample.

Reuters D-3000 is an electronic limit order book market similar to that used in major equity

markets. On this system, foreign exchange dealing banks (“FX dealers”) can post quotes (by

submitting limit orders) or hit quotes posted by other dealers (by submitting market orders).23

Trade sizes are only allowed in multiple of millions of the “base” currency. Our dataset contains

all orders (limit and market) submitted to Reuters D-3000 over the sample period.

Our dataset has at least two attractive features for our tests. First, it is very rich. For

each order submitted to Reuters D-3000, the dataset reports the currency pair in which the

order is submitted, the order type (limit or market), the time at which the order is entered, the

size of the order, and the price attached to the order for a limit order. We also know for each

transaction whether the market (or marketable) order initiating the transaction is a buy order

or a sell order. As each order has a unique identifier, we can track it over its life. Thus, we

can reconstruct the entire limit order book of each currency at any point in time. In this way,

we can use the slope of the book as a measure of market illiquidity, in addition to standard

measures such as bid-ask spreads. Furthermore, and more importantly for our purpose, we can

identify whether an arbitrage opportunity terminates with a trade (the submission of a market

order) or quote updates in limit order books for the three currencies in our sample. We can

therefore accurately measure the frequency with which a toxic arbitrage opportunity terminates

21See Pierron (2007), Osler (2008), King and Rime (2010), and King et al. (2012) for excellent descriptions
of participants, market structure and recent developments in foreign exchange markets. The FX market is a
two-tier market. In the first tier, FX dealers trade exclusively with end-users (e.g., hedge funds, mutual funds,
pension funds, corporations, etc.). The second-tier is an interdealer market. In this market, dealers can trade (i)
bilaterally (by calling each other), (ii) through voice brokers, or (iii) electronic broker systems (EBS and Reuters
D-3000). In the last decade, the market share of EBS and Reuters D-3000 has considerably increased and was
already large at the time of our sample (see Pierron (2007) and King et al. (2012)). At the time of our sample,
interdealer trades for currency pairs in our sample account for about 53% of all interdealer trading in foreign
exchange markets. King et al. (2012) note that the frontiers between the two-tiers of the FX market have been
breaking down in recent years.

22The foreign exchange (FX) market operates around the clock, all year long. However, trading activity in this
market considerably slows down during weekends and certain holidays. Hence, as is standard (see, for instance,
Andersen et al. (2003)), we exclude the following days from our sample: weekends, the U.S. Independence Day
(July 4 for 2003 and July 5 for 2004), Christmas (December 24 - 26), New Years (December 31 - January 2),
Good Friday, Easter Monday, Memorial Day, Thanksgiving and the day after and Labor Day.

23Dealers use both types of orders. Using data from Reuters’ trading platform, Bjønnes and Rime (2005)
(Table 11) show that some market makers frequently use market orders to build up speculative positions and
limit orders to reduce their position.
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with a trade, that is, π∗, in the model. This is important for testing Implication 1b.

Second, the time stamp of the data has an accuracy of one-hundredth of a second. Hence, we

can accurately measure when an arbitrage opportunity begins, when it finishes, and its duration.

Furthermore, we can track the evolution of prices after an arbitrage opportunity terminates. As

explained below, we use this feature to classify arbitrage opportunities in toxic and non-toxic

opportunities, which is another requirement for our tests.

At the time of our sample, Reuters D-3000 had a dominant market share in USD/GBP

and EUR/GBP but its competitor, Electronic Broking Service (EBS), had the Lion’s share of

trades in the USD/EUR pair. This is not a problem for our tests because we exclusively focus on

triangular arbitrage opportunities within Reuters D-3000. When an arbitrageur exploits a toxic

arbitrage opportunity in Reuters D-3000, it inflicts a loss on market makers with stale quotes

on this platform. Hence, quotes in Reuters D-3000 should reflect this risk, as predicted by our

model. We will however underestimate the frequency of triangular arbitrage opportunities in

the currency pairs in our sample, as some might arise between Reuters D-3000 and EBS and

within EBS. However, estimating this frequency is not our goal.

For a given currency pair, measures of market liquidity on Reuters D-3000 and EBS are

correlated because they are affected by common factors. We will therefore use liquidity measures

from EBS to control for systematic time-series variations in liquidity in these pairs. Our EBS

data, acquired from ICAP, are similar to those for Reuters D-3000 with one important difference.

The time-stamps of quotes, trades etc. are accurate only up to the second. In particular, all

trades occurring within the same second receive the same time stamp.24 Thus, data from EBS

cannot be used to accurately measure when a triangular arbitrage opportunity (across trading

systems or within EBS) starts, and when and how it terminates.25 For this reason, we just use

EBS data as controls in our regressions (see below).

3.2 Toxic and Non-toxic Arbitrage Opportunities

In this section, we explain how we identify triangular arbitrage opportunities in our data and

how we classify them into two groups: toxic and non-toxic opportunities. This classification is

an important step for our tests.

24Representatives from EBS told us that they do not provide data at a more granular level.
25For example, suppose two market orders and two limit orders are submitted in a second in which an arbitrage

opportunity occurs and that the arbitrage starts and terminates within this second. EBS data do not allow us
to identify whether the arbitrage terminates due to a market order (a trade) or a limit order (a quote update).
Hence, we cannot compute our proxy for π∗ using EBS data.
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3.2.1 Triangular Arbitrage Opportunities

Let A
i/j
t be the number of units of currency i required, at time t, to buy one unit of currency

j and B
i/j
t be the number of units of currency i received for the sale of one unit of currency j.

These are the best bid and ask quotes posted by market makers in currency i vs. j at time t. A

trader can buy one unit of currency j with currency i directly, at cost A
i/j
t or indirectly by first

buying A
k/j
t units of currency k with currency i and then buying one unit of currency j at Ak/j

in the market for currency k vs. j. The cost of this alternative strategy is Â
i/j
t ≡ A

i/k
t × A

k/j
t .

Similarly, a trader with one unit of currency j can sell it directly in exchange of B
i/j
t units of

currency i by trading in the market for i vs. j. Alternatively, he can obtain B̂
i/j
t = B

i/k
t ×B

k/j
t

units of currency i by first selling currency j for Bk/j units of currency k and then by selling

these units of currency k for B
i/k
t × Bk/j

t units of currency i. We refer to Â
i/j
t and B̂

i/j
t as the

synthetic quotes for currency j in the i vs. j market.

A triangular arbitrage opportunity exists when

Â
i/j
t < B

i/j
t or, (15)

B̂
i/j
t > A

i/j
t . (16)

In the first case, one can secure a risk free profit equal to (B
i/j
t − Â

i/j
t ) units of currency i by

selling one unit of currency j in the market of currency j vs. i while simultaneously buying it

at price Âi/j with two transactions in other currency pairs. In the second case, one can secure

a risk free profit equal to (B̂
i/j
t − A

i/j
t ) units of currency i by buying one unit of currency j in

the market of currency j vs. i while simultaneously selling it at price B̂i/j . These two arbitrage

opportunities cannot occur simultaneously because (15) and (16) cannot both be true at the

same time; see Kozhan and Tham (2012).

Reuters D-3000 charge brokerage and membership fees. These fees may vary across traders

and some are fixed (e.g., the subscription fee to the Reuters D-3000 platform). To account for

these costs and other possible unobserved frictions, we say that a triangular arbitrage opportu-

nity exists at time t iff one of the two following inequalities is satisfied:

B
i/j
t − Â

i/j
t

Âi/j
− z > 0, (17)

B̂
i/j
t −A

i/j
t

B̂
i/j
t

− z > 0, (18)

20



where z is the cost of exploiting an arbitrage opportunity (expressed as a fraction of synthetic

quotes) over and above bid-ask spread costs. Chaboud et al. (2014) argue that this cost is well

below one basis points. Hence, we, conservatively, set z = 1 basis point.

Table I provides an example. It gives best quotes (ask and bid) for the three currency pairs

(EUR/USD, GBP/USD, and EUR/GBP) in our sample at a given point in time. These quotes

are such that there is no triangular arbitrage opportunity, even for z = 0.

Table I: Triangular Arbitrage Opportunities: An Example

Exchange rate (i/j) Bid Ask Mid-Quote ((Bid + Ask)/2)

$/e 1.0770 1.0780 1.0775

$/£ 1.6255 1.6265 1.6260

£/e 0.6622 0.6632 0.6627

Now suppose that the best quotes in $/e become A$/e = 1.075 and B$/e = 1.074 (a

depreciation of the euro against the dollar). If the quotes of the other currency pairs are

unchanged, we have B̂$/e = 1.0764. As B̂$/e > A$/e = 1.075, there is a triangular arbitrage

opportunity. An astute arbitrageur can buy at least 1 million euros at 1.075 dollar per euro and

resell them instantaneously at 1.0764 dollar per euro (with two transactions in other currencies).

If the arbitrageur successfully executes the three transactions required for this arbitrage before

quotes are updated, she makes a profit of, at least, $1, 400.

There are two ways in which the arbitrage opportunity can be eliminated. The first possi-

bility is that market makers update their quotes before an arbitrageur actually profits from the

opportunity. For instance, market makers in the USD/GBP market may update their quotes

and post new ones at, say, A$/£ = 1.6215 and B$/£ = 1.6213. The second possibility is that

an arbitrageur exploits the arbitrage opportunity by, as we just explained, submitting (i) buy

market orders in the $/e market and (ii) sell market orders in the $/£, and £/e markets.

Thus, in our empirical tests, we identify how arbitrage opportunities start and terminate as

follows.

1. Starting from a state in which there is no-arbitrage opportunity (i.e., a state in which

(17) and (18) do not hold), we record the latest quoted best bid and best ask prices for

the three currency pairs each time a new limit order is submitted and we check whether

a triangular arbitrage opportunity exists using (17) and (18).26

26The arrival of a market order cannot create an arbitrage opportunity. For instance, suppose that A
i/j
t > B̂

i/j
t
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2. If an arbitrage opportunity exists, we deduce that the limit order arrival created the

arbitrage opportunity. We therefore record the order arrival time, t0, as the time at which

the arbitrage opportunity begins. We call the currency pair in which the limit order was

submitted the “initiating currency” since the arbitrage opportunity is triggered by a price

revision in this currency.

3. We then record the first time t1 at which the triangular arbitrage opportunity disappears

and we record (t1 − t0) as the duration of the arbitrage opportunity. We also record

whether the arbitrage opportunity terminates with a trade or quote updates.

3.2.2 Classifying Arbitrage Opportunities

For our tests, we must measure the fraction (ϕ) of arbitrage opportunities that are toxic and

the likelihood that a toxic arbitrage opportunity terminates with a trade from an arbitrageur

(π). For this, we must first classify triangular arbitrage opportunities into two subgroups: toxic

and non-toxic.

We proceed as follows. As in Shive and Schultz (2010), we consider that an arbitrage

opportunity is due to a price pressure effect (i.e., is non-toxic) if the price change at the origin

of this opportunity reverts after the opportunity terminates.27 If instead this price change

persists after the arbitrage opportunity terminates, we consider that the arbitrage opportunity

is due to asynchronous permanent price adjustments in the rates of the three currencies. We

classify this opportunity as being toxic.

More specifically, for each triangular arbitrage opportunity in our sample, we compare the

exchange rate for the three currency pairs when the arbitrage opportunity begins (time t) and

when it terminates (time t+ τ). If these rates are identical at dates t and t+ τ or if they do not

move in a direction consistent with a toxic triangular arbitrage opportunity, we classify them

as being non-toxic (that is, due to a price pressure effect). Remaining arbitrage opportunities

are classified as toxic.

and Â
i/j
t > B

i/j
t , so that, at time t, there is no-arbitrage opportunity. Buy (sell) market orders in the market

for currency i vs. j can only push A
i/j
t upward (B

i/j
t downward) because they deplete the limit order book for

currency i vs. j on the sell (buy) side. Thus, buy and sell market orders in the market for currency i vs. j do

not create arbitrage opportunities. In contrast, if a market maker posts a new ask price A
i/j

t+
at time t+ such

that A
i/j

t+
< B̂

i/j
t then he creates an arbitrage opportunity. The same is true for orders arriving in other currency

pairs and affecting the synthetic quotes.
27Shive and Schultz (2010) show that profitable arbitrage opportunities exist in dual-class stocks because the

bid price of the voting share sometimes exceeds the ask price of the non-voting share. They also find that these
arbitrage opportunities arise either from price pressures effects or asynchronous price adjustments, the former
case being more frequent than the latter (as in our sample; see below).

22



Insert Figure II about here.

Figure II illustrates this methodology by considering four arbitrage opportunities that actu-

ally occurred in our sample. In Panels A and B, the solid and the dashed lines show the evolution

of bid and ask quotes (Ai/j and Bi/j) and synthetic quotes (Âi/j and B̂i/j) during these ar-

bitrage opportunities, respectively. In Panel A, actual and synthetic quotes of the currency

pairs initiating the arbitrage opportunity shift permanently to a new level when the arbitrage

opportunity terminates. The pattern is consistent with the arrival of information regarding fun-

damentals.28 Thus, we classify these opportunities as toxic. In contrast, in Panel B, only the

quotes of the initiating pair change during the arbitrage opportunity. Moreover, these quotes

revert to their initial level when the arbitrage opportunity terminates. This pattern (reversal

and the absence of changes in the synthetic quotes) is consistent with price movements arising

from price pressure effects. Accordingly, we classify these arbitrage opportunities as non-toxic.

Insert Figure IV about here

Using this methodology, we identify 37, 689 triangular arbitrage opportunities in our sample,

of which 15, 908 are classified as toxic. Panel A of Figure IV shows the time-series of the daily

number of (a) all triangular arbitrage opportunities (light grey line) and (b) toxic arbitrage

opportunities (black line) in our sample. There is substantial daily variation in the number of

arbitrage opportunities with some days having a high number of arbitrage opportunities (e.g.,

in May or June 2003) and other days having much fewer opportunities. There are on average 32

(s.d=20.83) toxic triangular arbitrage opportunities and 45 non-toxic arbitrage opportunities

per day.

Panel B of Figure IV shows average intra-day patterns in the number of arbitrage opportu-

nities. The bulk of the activity for currency pairs in our sample occurs when European and U.S.

markets are open, that is, from 7:00 GMT (European markets open) until 17:00 GMT (Euro-

pean markets close). Not surprisingly, most arbitrage opportunities occur during this period,

with peaks when trading activity in the U.S. and in Europe overlap (13:00 to 17:00). Hence, for

constructing the variables used in our tests (see below), we only retain observations from 7:00

to 17:00 GMT.

28Empirical studies of foreign exchange markets have found that macroeconomic news announcements or
headlines news on Reuters are associated with jumps in exchange rates (see Andersen et al. (2003) or Evans and
Lyons (2008)).
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In robustness checks (not reported), we have checked that our empirical findings are not sen-

sitive to extending the window of observation for price reversals after an arbitrage opportunity

terminates.

3.3 Variables of interest

We now describe the variables used in our empirical analysis. On each day t, we define ϕ̂t as

the ratio of the number toxic arbitrage opportunities on day t to the total number of arbitrage

opportunities on this day:

ϕ̂t =
No. of toxic arbitrage opportunities on day t

No. of all arbitrage opportunities on day t
. (19)

This ratio is a proxy for ϕ, i.e., the likelihood that an arbitrage opportunity is toxic. It charac-

terizes the arbitrage mix on day t.

Another important variable in our model is π, the likelihood that a toxic arbitrage oppor-

tunity terminates by an arbitrageur’s trade. As a proxy for π, we use the daily fraction of toxic

arbitrage opportunities that terminate with a trade (the submission of market orders). We

denote this fraction by π̂toxt on day t:

π̂tox
t =

No. of toxic arbitrage opport. that terminate with a trade on day t

No. of toxic arbitrage opportunities on day t
. (20)

Similarly, on each day, we also compute the fraction, denoted π̂nontoxt , of non-toxic arbitrage

opportunities that terminate with an arbitrageur’s trade: π̂nontoxt . That is:

π̂nontox
t =

No. of non-toxic arbitrage opport. that terminate with a trade on day t

No. of non-toxic arbitrage opportunities on day t
. (21)

Another important variable in our model is σ (see (13)), the size of toxic arbitrage opportunities.

To obtain a proxy for σ, we proceed as follows. Suppose that a toxic arbitrage opportunity occurs

at time τ on date t. For each currency pair (say i/j), let f
i/j
τ,t =

A
i/j
τ,t+B

i/j
τ,t

2 and f̂
i/j
τ,t =

Â
i/j
τ,t+B̂

i/j
τ,t

2

be the mid-quotes based on actual quotes and synthetic quotes, respectively, at the time of the

arbitrage opportunity. We then compute, σ̂toxt , the daily average percentage absolute difference

between f
i/j
τ,t and f̂

i/j
τ,t for all currency pairs and use it as a proxy for the size of toxic arbitrage

opportunities on day t.

In our tests, we will also use currency-specific controls known to be correlated with measures

of market illiquidity: the average daily trade size in each currency (denoted trsizeit in currency

24



i on day t); the daily realized volatility, i.e., the sum of squared five minutes mid-quote returns

in each currency (denoted volit); and the daily number of orders (entry of new limit and market

orders as well as limit order updates) denoted nrordersit. This variable measures the level of

activity on Reuters D-3000 on each day.

We use three different measures of illiquidity in each currency pair i: (i) the average daily

percentage quoted bid-ask spread (spreadi,t for currency pair i on day t), that is, the absolute

quoted spread divided by the mid-quote; (ii) the average daily effective spread (espreadi,t), i.e.,

twice the average absolute difference between each transaction price and the mid-quote at the

time of the transaction; and (iii) the average daily slope of the limit order book (slopeit). For

currency i, slopeit is the average of: (i) the ratio of the difference between the second best ask

price and the first best ask price at date t to the number of shares offered at the best ask price

and (ii) the same ratio using quotes on the buy side of the limit order book. Hence, slopeit is

higher when the number of shares offered at the best quotes is lower and the second best prices

in the book are further away from the best quotes. A higher slopeit is associated with a less

liquid market.

Finally, we compute the duration of each arbitrage opportunity and we denote the average

duration (Time-To-Efficiency) of toxic (resp., non toxic) arbitrage opportunities on day t by

TTEtoxt (resp., TTEnontoxt ).

3.4 Summary statistics

Table II presents descriptive statistics for all of the variables used in our analysis. Panels A

and B present the characteristics of toxic and non-toxic arbitrage opportunities. Both types

of arbitrage opportunities vanish very quickly: they last on average for about 0.894 seconds

(standard deviation: 0.301) and 0.518 seconds (s.d.: 0.199), respectively.

Insert Table II here

On average, the daily fraction of toxic arbitrage opportunities is ϕ̂ = 41.5% (s.d.= 10%).

The average size of a toxic arbitrage opportunity, σ̂tox, is 3.535 basis points (s.d. = 0.757). The

average daily arbitrage profit (expressed in percentage term after accounting for trading costs

as in (17) and (18)) on a toxic arbitrage opportunity is 1.427 basis points (s.d.= 0.277). These

statistics are similar for non-toxic arbitrage opportunities.
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Quotes are valid for at least one million of basis currency on Reuters. Thus, the minimum

average profit opportunity on a toxic (resp. non-toxic) triangular arbitrage opportunity is

$143 (resp., $161) or $4,576 ($8,583.42) per day. As a point of comparison, Brogaard et al.

(2013) report that, after accounting for trading fees, high frequency traders in their sample

earn $4,209.15 per stock-day (see Table 4 in Brogaard et al. (2013)) on their market orders (i.e.,

liquidity taking orders) in large-cap stocks and much less in small caps. This is of the same

order of magnitude as daily revenues on triangular arbitrage opportunities in our sample.29

The likelihood that a toxic arbitrage opportunity terminates with a trade (π̂tox) is 74.1%

on average (s.d.= 0.110). Thus, arbitrageurs are on average relatively faster than traders with

posted quotes in the limit order book. The likelihood that a non-toxic arbitrage opportunity

(π̂nontox) terminates with a trade is higher on average (80.7%). This is consistent with the

model: traders with posted quotes in non initiating currencies have no incentive to cancel their

quotes when a non toxic arbitrage opportunity occur. This implies that π̂nontox should be larger

than π̂tox, as we find. There are several possible reasons why yet π̂nontox is less than 1: (i) market

makers with posted quotes in non initiating currencies might sometimes wrongly believe than an

arbitrage opportunity is toxic, (ii) the price pressure at the origin of the arbitrage opportunity

disappears because the market maker in the initiating currency trades elsewhere (e.g., on EBS),

and (iii) our classification of arbitrage opportunities is imperfect.

In any case, arbitrage opportunities terminate in more than 2/3 of the cases with a trader

hitting quotes posted in limit order books rather than with traders updating their quotes. This

is consistent with Chaboud et al. (2014) who find (i) a significant negative relationship between

liquidity taking (i.e., market orders) algorithmic orders and the frequency of triangular arbitrage

opportunities over one minute intervals and (ii) no such relationship between liquidity making

(i.e., limit orders) algorithmic orders (see Table II in Chaboud et al. (2014)).

Panel C of Table II reports summary statistics for our various measures of illiquidity, sep-

arately for the Reuters and the EBS trading platforms. Average quoted and effective bid-ask

spreads are very tight (between 1 basis point and 5 basis points). The most illiquid currency

pair is GBP/USD. For instance, on Reuters, the average effective spread for this pair is 2.073

basis point while the effective spread for EUR/GBP (the most liquid pair on Reuters) is 0.96

29Another benchmark for daily profits on triangular arbitrage profits are actual daily profits by dealers in FX
markets. Bjønnes and Rime (2005) find an average daily profit of about $12,000 for four currency dealers (we
infer this number from the weekly profits they report on page 597 of their paper). Hence, profits on triangular
arbitrage opportunities would not appear negligible for the trading desks studied by Bjønnes and Rime (2005).
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basis points. Measures of illiquidity are much higher on EBS for the GBP/USD and EUR/GBP

pairs, probably because they are more heavily traded on Reuters D-3000 at the time of our

sample. For instance, in EUR/GBP, quoted spreads on Reuters are equal to 1.35 basis points

on average vs. 2.5 basis points for EBS. In contrast, EBS is more liquid for the EUR/USD pair.

Finally, Panel D presents descriptive statistics for the distribution (mean, standard deviation,

min and max values, etc.) of other control variables used in our regressions.

Insert Table III about here

Table III reports the unconditional correlation of the variables used in our tests. Consistent

with Implication 1a, measures of illiquidity for the three currency pairs in our sample are

positively and significantly correlated with ϕ̂, the fraction of arbitrage opportunities. Moreover,

as expected, all measures of illiquidity are also positively and significantly correlated with the

size of toxic arbitrage opportunities, (σ̂tox).

The correlation between π̂tox (our proxy for π∗t ) and measures of illiquidity is positive (con-

sistent with Implication 1b) in the model) but not significantly different from zero. This may

stem from the fact that π̂tox and bid-ask spreads are jointly determined. For instance, an

increase in market activity can simultaneously increase arbitrageurs’ speed relative to market

makers (as market makers’ attention constraints are more likely to be binding) and reduce bid-

ask spreads (as market makers are contacted more frequently by liquidity traders). In contrast,

the correlation between π̂nontox and measures of illiquidity is in general significantly negative

for all currency pairs in the sample. This is expected because, as discussed earlier, market

makers benefit from non-toxic arbitrage trades. First, market makers who initiate the arbitrage

opportunity can share risks with arbitrageurs. Furthermore, market makers in non-initiating

currencies earn the bid-ask spread on trades with arbitrageurs (as, from their standpoint, non

toxic arbitrage trades are uninformed).

The correlation between π̂nontox and π̂tox is slightly positive and statistically significant. This

low correlation indicates that daily variations in π̂nontox and π̂tox contain different information

and are not driven by the same factors. This again is consistent with the idea that market makers

in non-initiating pairs should behave differently in toxic and non-toxic arbitrage opportunities.

According to our model, they should update their quotes as quickly as possible in toxic arbitrage

opportunities whereas they have no reason to do so when arbitrage opportunities are non-toxic.
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The duration of toxic arbitrage opportunities (TTEtox) and the various measures of market

illiquidity are positively correlated. That is, toxic arbitrage opportunities last longer on average

when the market for the three currency pairs is more illiquid. This observation is also consistent

with the model. Other things equal, a higher bid-ask spread induces arbitrageurs (and therefore

market makers) to react more slowly to arbitrage opportunities, which eventually results in more

persistent arbitrage opportunities (see the discussion following (14)).

3.5 Tests

3.5.1 Is toxic arbitrage a source of illiquidity?

In this section, we test whether an increase in the likelihood that an arbitrage opportunity is

toxic, ϕt, is a source of illiquidity, as predicted by Implication 1a. To test this implication, we

estimate the following equation:

illiqit = ωi + ξt + b2volit + b3ϕ̂t + b4σ̂
tox
t + b5trsizeit + b6nrordersit + b7illiq

EBS
it + εit, (22)

where illiqit is one of our three proxies for illiquidity for currency i on day t and ωi and ξt

are, respectively, currency and time fixed-effects (dummies for each month in our sample).

Coefficient b3 measures the sensitivity of illiquidity to our proxy for ϕ and should be positive

according to Implication 1a. The model also implies that the bid-ask spread of each currency

should be larger on days in which the size of toxic arbitrage opportunities, proxied by σ̂toxt , is

higher. Thus, we expect b4 to be positive. In estimating these effects, we control for various

variables that are known to affect bid-ask spreads: the daily realized volatility (volit), the daily

average trade size (trsizeit), and the daily number of orders (nrordersit). For each illiquidity

measure, we also include its EBS counterpart (illiqEBSit ) in our set of explanatory variables

to control for market-wide unobserved variables that create daily variations in the illiquidity

of the currency pairs in our sample (and which therefore should affect illiquidity similarly on

Reuters D-3000 and EBS). We estimate equation (22) with OLS using standard errors robust

to heteroscedasticity and time series autocorrelation.

Insert Table IV

Results are reported in Columns (1), (2) and (3) of Panel B in Table IV. For all illiquidity

measures, we find that illiquidity is higher when the fraction of arbitrage opportunities that are
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toxic is higher, as predicted by Implication 1a. This effect is both statistically and economically

significant. For instance, for the effective bid-ask spread, we find that b3 = 0.485 (t-stat=7.38).

Thus, an increase of ϕ̂ by one standard deviation (i.e., 0.1) is associated with an increase of

0.0485 basis points for the bid-ask spread (i.e., about a 3% increase in the spread). We also find

that the effect of the size of toxic arbitrage opportunities is positive and statistically significant,

as implied by (13) in the model. Other control variables have the usual sign. For instance, daily

changes in illiquidity are positively associated with realized volatility and negatively associated

with trading activity measured by the number of orders.

In the model, market participants are assumed to know the likelihood, ϕ, that a given

arbitrage opportunity is toxic. In Panel A of Table IV, we show that the fraction of arbitrage

opportunities that are toxic on day t, ϕ̂t, can be forecast using information from past trading

days. Specifically, we estimate a model in which ϕ̂t depends on its 20 past realizations (to

capture persistence in the level of ϕ̂t) and various market characteristics on day t − 1 for the

three currencies in our sample (namely, their average quoted spreads on day t−1, their realized

volatility on day t− 1, the number of orders submitted in each currency on day t− 1, and the

average trade size in each currency on day t− 1). The forecasting model predicts ϕ̂t well with

an adjusted R2 of 44%.

We then use the forecasting model to decompose ϕ̂t into an anticipated component and an

unanticipated component, vϕ̂t (the residual of the forecasting equation). We then reestimate

equation (22) with both components as explanatory variables and reports estimates in Column

(4), (5) and (6) of Table IV (Panel B). We find that both the anticipated and unanticipated

components of ϕ̂t are positively and significantly associated with all measures of illiquidity.

We cannot discard the possibility that omitted variables drive both variations in our mea-

sures of illiquidity and ϕ̂t. However, the fact that illiquidity is also positively related to the

unanticipated component of ϕ̂t alleviates this concern.

3.5.2 Are faster arbitrageurs a source of illiquidity?

We now test whether an increase in the likelihood, π∗, that a toxic arbitrage terminates with an

arbitrageur’s trade has a positive effect on illiquidity (Implication 1b). To this end, we include

πtox (our proxy for π) as an additional explanatory variable in our baseline regression (22).
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Specifically, we estimate:

illiqit = ωi+ξt+b1π̂
tox
t +b2volit+b3ϕ̂t+b4σ̂t+b5trsizeit+b6nrordersit+b7illiq

EBS
it +εit. (23)

Implication 1b states that b1 should be significantly positive: illiquidity should be larger when

a toxic arbitrage opportunity is more likely to terminate with an arbitrageur’s trade. In the

model, π is endogenous and simultaneously determined with the bid-ask spread. To address

this issue, we use an instrumental variable (IV) approach to estimate b1. Implication 2 shows

that a shock to arbitrageurs’ relative cost of speed (parameter r in the model) can serve as an

instrument to identify the effect of π̂tox on illiquidity. Indeed, in the theory, this shock affects π∗

without directly affecting illiquidity (the equilibrium bid-ask spread is related to r only through

the effect of r on π∗; see equation (22)).

Hence, as an instrument for π, we use a technological shock that affects the speed at which

traders can react to arbitrage opportunities on Reuters D-3000. In July 2003, Reuters D-3000

introduced a new functionality, “Reuters AutoQuote API” (Application Programming Inter-

face). This functionality allows traders to use an algorithm to submit orders on their Reuters

terminal rather than enter trading instructions manually using a Reuters keyboard, as was done

until July 2003. The introduction of “Reuters AutoQuote API” therefore marked the beginning

of algorithmic trading on Reuters since it allowed traders to input Reuters datafeed in their algo-

rithms and let the algorithms make trading decisions.30 Pierron (2007) emphasizes the interest

of APIs for arbitrageurs: “This allows a full benefit from algorithmic trading, since it enables

the black box to route the order to the market with the best prices and potential arbitrage across

markets despite the fragmentation of the various pools of liquidity in the FX market.” Similarly,

Chaboud et al. (2014) note that (on p.2058): “From conversations with market participants,

there is widespread anedoctal evidence that in the very first years of algorithmic trading in this

[FX] market, a fairly limited number of strategies were implemented with triangular arbitrage

among the most prominent.”

Initially, Reuters allowed only a limited number of clients to use the AutoQuote API func-

tionality because of capacity constraints as APIs’ users consume more bandwidth than manual

users. This does not in itself invalidate our tests because our implications hold even if there is

only one fast arbitrageur (as in the baseline model). However, a low usage of Autoquote makes

30The electronic broker EBS launched a similar service, “EBS Spot Ai”, in 2004; see King and Rime (2010)
and Chaboud et al. (2014).
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it more difficult for us to detect its effect.

Insert Figure III about here.

Automated trading activity often generates a higher order-to-trade ratio, i.e., the number

of orders to the number of trades in a market (see Hendershott et al. (2011) for instance).

Figure III presents a time series of the daily value of this ratio on Reuters D-3000 for the three

currencies in our sample. Dashed lines in this figure indicate the average levels of the ratio before

and after July, 1st 2003. There is a clear upward shift in the order-to-trade ratio on Reuters

D-3000 in July 2003, consistent with increased automation of trading due to the introduction

of Autoquote.

AutoQuote API (henceforth AutoQuote for brevity) enables all traders (arbitrageurs and

market makers) to react faster to changes in limit order books and therefore arbitrage oppor-

tunities. It might therefore either increase or decrease arbitrageurs’ relative speed of reaction

(r in the model). Thus, the sign of the effect of AutoQuote on π̂toxt can be positive or negative.

However, as long as this effect exists (i.e., AutoQuote affects π̂toxt ), the introduction of Auto-

Quote on Reuters D-3000 can be used as an instrument to test whether the effect (b1) of π̂tox on

illiquidity is positive. A second condition for the introduction of AutoQuote to be a valid instru-

ment is that it satisfies the exclusion restriction, i.e., the introduction of AutoQuote should not

be correlated with the error term in (23). In other words, the introduction of AutoQuote should

affect illiquidity only through its effect on π̂tox (after controlling for other variables appearing

in (23)). This is plausible because, to our knowledge, there is no obvious mechanism by which

technological changes such as AutoQuote API should affect the usual determinants of bid-ask

spreads, namely, order processing costs, inventory holding costs, or adverse selection costs due

to private information.

The first stage of the IV is:

π̂toxt = ωi+ξt+a1ADt+a2volit+a3ϕ̂+a4σ̂t+a5trsizeit+a6nrordersit+a7illiq
EBS
it +uit, (24)

where ADt is our instrument (a dummy equal to 1 after July 2003 and zero before). Estimates

for this regression are reported in Columns (1), (3) and (5) of Table V.31 We find that the

introduction of AutoQuote on Reuters D-3000 has a significant positive effect on the likelihood

31The first stage regression is slightly different for each illiquidity measure because one of the control (the
illiquidity of EBS) varies with the illiquidity measure. Estimates of coefficients for the first stage are very similar
across all illiquidity measures, however.
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that an arbitrage opportunity terminates with a trade rather than a quote update. The coef-

ficient (a1) on the dummy variable, ADt, is equal to 0.04 and statistically significant. Thus,

the likelihood that a toxic arbitrage opportunity terminates by an arbitrageur’s trade (π̂tox)

increases by about 4% after July 2003. The instrument does not seem to be weak (the F

statistics is around 16 in all specifications).32 Overall, the first stage regression indicates that

AutoQuote increased arbitrageurs’ relative speed of reaction to toxic arbitrage opportunities in

the currency pairs in our sample. This is consistent with the view that algorithmic trading in

the FX market is, at least at the time of our sample, predominantly used to exploit triangular

arbitrage opportunities (see Chaboud et al. (2014))

Estimates for the second stage of the IV are reported in Columns (2), (4), and (6) of Table V.

As in Table IV, for all illiquidity measures, we find a positive and statistically significant relation

between the likelihood that an arbitrage opportunity is toxic (ϕ̂) and illiquidity. Moreover,

consistent with the model, an increase in the size of arbitrage opportunities (σ̂) has also a

significant and positive effect on all measures of illiquidity. The size of these effects are not

different from those reported in Table IV (Panel B).

As predicted, the effect of π̂tox on illiquidity, b1, is positive and statistically significant at

the 1% level for all measures of illiquidity. For instance, a 1% increase in π̂toxt raises the quoted

bid-ask spread by 0.07934 basis points (t-stat = 3.7).33 The economic size of this effect is

significant as well since 0.07934 basis points represents 4% of the average bid-ask spread (about

2 basis points) for currencies in our sample. Hence the effect of AutoQuote on π̂toxt (4% on

average) raised bid-ask spreads by about 16% for currency pairs in our sample.

Another way to evaluate the economic significance of this finding is to consider the effect

of an increase of 1% in π̂tox on daily trading costs in the three currencies in our sample. The

average trade size for the currencies considered in our sample is quite large: $2.390 million

in GBP/USD (dollar value of £1.386 million), $1.655 million in EUR/USD (dollar value of

e1.401), and $1.831 million in EUR/GBP (dollar value of e1.548) (see Table II). Moreover,

there are about 4,692 transactions per day in GBP/USD, 2,365 in EUR/USD and 2,841 in

EUR/GBP. Hence, the total increase in trading cost per day due to a 1% increase in π̂tox is at

32Bound et al. (1995) (p.446) mention that “F statistics close to 1 should be cause for concern”.
33We have also estimated equation (24) with OLS. In this case, we find that π̂tox is positively related with

illiquidity but the relationship is not statistically significant. This suggests that the endogeneity bias for b1 is
negative. This direction is consistent with intuition: arbitrageurs are likely to pay more attention to arbitrage
opportunities (and therefore be faster) on days in which bid-ask spreads are smaller because they can earn larger
profits on these days. This effect should partially offset the true effect of an exogenous increase in arbitrageurs’
relative speed on spreads.
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least 0.07934bps× ($2.390× 4, 692 + $1.655× 2, 365 + $1.831× 2, 841) = $161, 296 for the three

markets in total or about $40 million per year.34 Thus, even a small increase in arbitrageurs’

speed can be rather costly for other market participants.

As a robustness check, we have also estimated (24) using hourly estimates of each variable in

our regressions rather than daily estimates. Qualitatively, the findings are very similar and, in

economic terms, they are stronger. For instance, an increase of 1% in π̂tox triggers an increase

of 0.08 basis points for the effective spread when we estimate (23) at the hourly frequency vs.

0.034 basis points at the daily frequency. For brevity, we do not report the estimates obtained

with tests at the hourly frequency. They are available upon request.

3.5.3 Time-to-efficiency

We now test our auxiliary predictions regarding the duration of arbitrage opportunities (Impli-

cations 3 and 4). Implication 3 states that a decrease in the cost of being fast for arbitrageurs

and market makers should reduce the duration of arbitrage opportunities even if the decrease

is relatively larger for arbitrageurs (so that π̂tox). Hence, we should observe a negative effect of

AutoQuote on the duration of arbitrage opportunities even though it raises trading costs (see

previous section). Implication 4 further predicts that the duration of arbitrage opportunities

should be shorter on days in which the fraction of arbitrage opportunities that are toxic is

higher.

We test these two predictions by estimating the following regression:

log(TTEt) = ωi + ξt + a1ADt + a2volit + a3ϕ̂t + a4σ̂t
tox + a5trsizeit + a6nrordersit + uit, (25)

where TTEt is the average duration of arbitrage opportunities. Estimates are reported in Table

VI. In Column 1, the dependent variable is the duration of toxic arbitrage opportunities while

in Column 2 the dependent variable is the duration of all arbitrage opportunities.35

Consistent with Implication 3, AutoQuote is associated with a decrease in the duration of

toxic arbitrage opportunities by about 6.8%.36 Similar estimates are obtained when we use the

34As a point of comparison, Naranjo and Nimalendran (2000) estimate the annualized increased in trading
costs due to adverse selection created by unanticipated interventions of the Bundesbank and the FED in currency
markets to about $55 million per year.

35The expected duration of toxic arbitrage opportunities is E(Min{Da, Dm}) = r
γ∗(S∗

X
)(1+r)

in the model. It

is easily checked that Implications 3 and 4 also hold for E(Min{Da, Dm}).
36As the dependent variable is log(TTEt), a1 measures the percentage change in time-to-efficiency after the

introduction of AutoQuote. The average time-to-efficiency in toxic arbitrage opportunities is 0.89 seconds in our
sample. Hence, AutoQuote coincides with a reduction of about 62 milliseconds in the duration of toxic arbitrage
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average duration of all arbitrage opportunities. We also find that, on average, the duration of

toxic arbitrage opportunities is shorter when the fraction of arbitrage opportunities that are

toxic, ϕ̂, is higher, which again is consistent with the model. In contrast, the effect of ϕ̂ on the

duration of all arbitrage opportunities is statistically non significant.

Overall, the empirical findings suggest that pricing efficiency can come at the expense of

market liquidity. The introduction of AutoQuote (algorithmic trading) or an increase in the

fraction of arbitrage opportunities that are toxic induce arbitrageurs (and market makers) to

correct arbitrage opportunities more quickly. This effect reduces the duration of arbitrage

opportunities and therefore improves pricing efficiency. Yet, faster arbitrageurs raise market

makers’ exposure to the risk of being picked off, which impairs market liquidity.

4 Additional tests

4.1 Heterogeneous effects across currencies

The likelihood that one currency pair initiates a toxic arbitrage opportunity is not equal across

all currency pairs. Specifically, 51% of all toxic arbitrage opportunities can be traced back to

a jump in the EUR/USD rate. In contrast, the GBP/USD and EUR/GBP pairs initiate only

28.68% and 20.32% of all toxic arbitrage opportunities, respectively. These findings suggest

that the EUR/USD pair leads other currency pairs in our sample in terms of price discovery

(i.e., shocks to fundamentals are reflected first the EUR/USD market). Thus, the EUR/USD

pair frequently plays the role of asset Y in our model while the two other pairs (GBP/USD and

EUR/GBP) play the role of asset X. Hence, we expect market makers in the EUR/USD pair to

be less exposed to toxic arbitrage trades than in other currencies. Accordingly, illiquidity in this

pair should be less sensitive to (i) the likelihood of occurrence of toxic arbitrage opportunities

(ϕ̂) than the other pairs and (ii) the likelihood that market makers are picked off when a toxic

arbitrage opportunity occurs (π̂tox).

To test these additional predictions, we re-run our IV regression for each individual currency

pair separately. That is, we allow the effect of AutoQuote to be currency specific. Panels A,

B, and C of Table VII present the results for each currency pair in our sample. Realizations

of control variables in the first stage and the second stage are specific to each currency pair

(e.g., the average trade size in a given day is specific to each currency). Yet, consistent with our

opportunities.
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earlier results, we find that AutoQuote is associated with a significant increase in π̂tox, which

is roughly the same across all currencies.

As expected, the effect of the fraction of toxic arbitrage opportunities in the three currency

pairs (ϕ̂) still has a positive and significant effect (at the 5% level) on the illiquidity of GBP/USD

and EUR/GBP but it has only a mildly significant effect on the quoted and the effective spreads

of the EUR/USD pair (and no significant effect on the slope of the limit order book in this

pair). We also find that the effect of π̂tox on the quoted bid-ask spread is much weaker for the

EUR/USD pair than in other currencies. In contrast, and surprisingly, the effect of π̂tox on

other measures of illiquidity seems sometimes stronger than in other currency pairs.

Insert Tables VII about here

4.2 Exposure to toxic arbitrage trades or other forms of adverse selection?

By picking off stale quotes, arbitrageurs expose market-makers to adverse selection. This form

of adverse selection is similar to that highlighted in other models of market making with in-

formed investors (e.g., Copeland and Galai (1983)). An important difference, however, is that

arbitrageurs’ advantage does not stem from private information or a superior ability to process

existing information. Rather, their profit only stems from speed: a quicker reaction than other

market participants to publicly available and easy to process information (a textbook arbitrage

opportunity).

A natural question is whether our measures of market makers’ exposure to arbitrageurs’

picking off risk (ϕ̂ and π̂tox) is distinct from other existing measures of adverse selection. We

consider two alternative measures. First, the immediate period following a macro-economic

announcement is often associated with an increase in informational asymmetries because some

market participants are better at processing information. For instance, Green (2004) find that

the informational content of trades in treasury bond markets increases in the few seconds

following scheduled macro-economic announcements. Accordingly, market makers require a

greater compensation for adverse selection costs just after macro-economic announcements.

This effect is naturally stronger when macro-economic announcements are more surprising (that

is, differ more from traders’ forecasts).

If ϕ̂ and π̂tox proxies for informational asymmetries associated with macro-economic an-

nouncements, we would expect their effects on illiquidity to be weaker when we control for

surprises in macro-economic announcements. To test whether this is the case, we use data
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from Money Market Survey (MMS), provided by InformaGM, to construct macroeconomic an-

nouncement surprises in the different geographical areas (EMU, U.K., and U.S.) relevant for

our currency pairs.

The MMS data provide median forecasts of all macro-economic announcements by market

participants (collected on the Thursday prior to the announcement week) and their actual

realization on the day of the announcement. Announcement surprises are measured as the

realized announced value minus the median forecast. Following Andersen et al. (2003), we

standardize announcements surprises by their standard deviation. Specifically, the surprise Nkτ

of announcement type k (e.g., non-farm payroll, CPI, unemployment, etc.) on day τ is,

Nkτ =
Akτ − Fkτ

σk
,

where Akτ and Fkτ are the actual announcement value and median forecast of this value,

respectively (σk is the standard deviation of Akτ − Fkτ ). For each area, we build on each

day a macro-economic announcement variable (namely macroEMU
t , macroUKt , and macroUSt )

equal to the sum of all macro-economic announcements surprises in this area. Macro-economic

announcements in at least one geographical area are frequent in our sample so that there are

only 102 days without any macro-announcements.

Easley et al. (2011) and Easley et al. (2012) advocate the use of VPIN (“volume-synchronised

probability of informed trading”) as a measure of high-frequency order flow toxicity (adverse

selection).37 Thus, on each day t, we compute a VPIN metric (V PIN i
t ) for each currency pair

i in our sample. Specifically, following Easley et al. (2012)’s methodology, in each trading day

t, we group successive trades into 50 equal volume buckets of size V i
t , where V i

t is equal to the

trading volume in day t for currency i divided by 50. The V PIN i
t metric for currency pair i

and day t is then

V PIN i
t =

50∑
τ=1

∣∣∣V i,S
τ − V i,B

τ

∣∣∣
50× V i

t

,

where V i,B
τ and V i,S

τ are the amount of base currency purchased and sold, respectively, within

the τ th bucket for currency pair i.38 We find a significant a positive correlation among the

37VPIN is an alternative to the PIN measure that has been extensively used in finance; see Easley et al. (2012).
38Computation of VPIN requires classifying market orders into two groups: buys and sales so that V i,Bτ and

V i,Sτ can be computed. This is straightforward with our data because we observe whether a market order is a
buy or a sale. Hence, we do not need to infer the direction of market orders from price changes as in Easley et al.
(2012).
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VPIN measures for the three currency pairs in our sample. In contrast, correlation between

π̂tox and the VPIN of each currency are much lower and significantly different from zero only

for the EUR/USD (correlation equal to 0.07) and the EUR/GBP (correlation equal to 0.09)

pairs. This already suggests that π̂tox and V PIN do not capture the same information about

market makers’ exposure to adverse selection.

Table VIII reports the result of the IV regression when we control for surprises in macro-

economic announcements (macroEMU , macroUK , macroUS), and V PIN for each currency.

Consistent with Green (2004), we find that macroeconomic surprises are positively associated

with illiquidity. Effects of surprises on our measures of illiquidity, however, are only marginally

significant (at the 10% level).39 We also find a positive and marginally significant relation

between VPIN and quoted or effective bid-ask spreads. However, and more importantly, the

effects of ϕ̂ and π̂tox on illiquidity remain positive and significant for all measures of illiquidity.

Furthermore, estimates of the effect of these variables are very similar to those reported in

Table V. Hence, ϕ̂ and π̂tox contain information about market makers’ exposure to adverse

selection, that is not captured by VPIN and not associated with informational asymmetries

around macro-economic announcements.

Insert Table VIII about here

5 Conclusions

The Law of One Price frequently breaks down at high frequency. The faster arbitrageurs correct

deviations from the Law of One Price, the higher is pricing efficiency. This conclusion does not

necessarily hold for liquidity. Indeed, a fast response of arbitrageurs to opportunities caused

by asynchronous price adjustments of related assets to information (“toxic arbitrage opportu-

nities”) is a source of illiquidity because it increases liquidity suppliers’ risk of trading at stale

quotes. Through this channel, high speed arbitrage can impair market liquidity. We provide

evidence for this channel using a sample of triangular arbitrage opportunities. Specifically we

find that bid-ask spreads for the currency pairs in our sample are larger on days in which

(a) the frequency of toxic arbitrage opportunities is higher and (b) the frequency with which

arbitrageurs successfully exploit these opportunities is higher.

39Informational asymmetries created by surprises in macroeconomic announcements quickly fade away. Hence,
it is difficult to detect their effect using daily measures of market illiquidity.
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One important take away of our analysis is that the nature of short lived arbitrage oppor-

tunities matters. If, in today’s markets, these opportunities are predominantly due to stale

quotes rather than price pressures then there is ground for regulatory intervention. In particu-

lar, limiting arbitrageurs’ speed (e.g., by randomizing the execution time of their market orders)

should improve liquidity, at the cost of a small increase in the duration of arbitrage opportu-

nities.40 Future empirical research should therefore explore more systematically whether short

lived arbitrage opportunities are mainly due to price pressure effects or stale quotes. This is a

pre-requisite to better understand the social value of high speed arbitrage.

40The negative effect of arbitrage on liquidity should be a concern because, eventually, it reduces investors’
ability to realized their gains from trade and therefore investors’ welfare.
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Appendix

Derivation of Implications 3 and 4

First, substituting the expression for the equilibrium spread, S∗X (given in (13)) in (10), we

obtain the arbitrageur’s speed, γ∗(S∗X) in equilibrium:

γ∗(S∗X) =
(ϕαr)(1− α(2ϕ− 1))

(ca(1 + r)2)(2ϕαπ∗(r)(2− π∗(r)) + (1− α(2ϕ− 1)))
σ (26)

Substituting (26) in (14), we obtain:

E(D) =
(2ϕα(2+r

1+r ) + (1− α(2ϕ− 1))(2+r
r ))(ca(1− ϕ) + cm)

ϕα(1− α(2ϕ− 1))σ
(27)

We deduce that ∂E(D)
∂r > 0. Using the fact that r = cm

ca , we deduce from (27) that a decrease in

ca and cm that eventually result in an increase in r lowers the expected duration of an arbitrage

opportunity (Implication 3).

Using (26), we also deduce γ∗(S∗X) increases with ϕ if α(4ϕ − 1) < 1. This condition is

automatically satisfied when ϕ ≤ 1/2 or when ϕ > 1/2 and α < (4ϕ − 1)−1. We deduce from

(14) that the average duration of an arbitrage opportunity decreases with ϕ.
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Figures

Figure I: Testable Implications

This figure shows the equilibrium bid-ask spread (in bps) as (a) a function of the likelihood of a toxic arbitrage opportunity,
ϕ (Panel A), (b) the likelihood that an arbitrageur trades when a toxic arbitrage opportunity occurs, π∗ (Panel B), (c) the
relative cost of speed for the market maker r (Panel C). It also shows the duration of arbitrage opportunities (in seconds)
as (i) a function of the likelihood of a toxic arbitrage opportunity, ϕ (Panel D) and (b) the cost of speed for the arbitrageur,
ca (Panel E). In all cases, we set σ = 3.5bps and α = 0.1.
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Figure II: Toxic vs. Non-Toxic Arbitrage Opportunities

This figure shows how we classify triangular arbitrage opportunities into toxic and non-toxic opportunities using four
triangular arbitrage opportunities that occurred in our sample. In each panel, the arbitrage opportunity starts at time t
and ends at time t+ τ . The solid line shows the evolution of best ask and bid prices in the currency pair that initiates the
arbitrage opportunity. The dashed lines show the evolution of best bid and ask synthetic quotes. In Panel A, we provide
two examples of opportunities that we classify as toxic because they are associated with permanent shifts in exchange
rates. In Panel B, we provide two examples of opportunities that we classify as non-toxic because the exchange rate in the
currency pair initiating the arbitrage opportunity eventually reverts to its level at the beginning of the opportunity.

Panel A: Toxic Arbitrage Opportunities

Panel B: Non-Toxic Arbitrage Opportunities
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Figure III: AutoQuote and Order to Trade Ratio.

This figure shows the evolution of the order to trade ratio the ratio (defined as daily number of orders to daily number
of trades for the three currency pairs in our sample) from January 2003 to December 2004. The dashed lines indicate the
average levels of the order to trade ratio before and after July, 1st 2003.
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Figure IV: Number of Arbitrage Opportunities

Panel A shows the time series of the daily number of all triangular arbitrage opportunities (grey line) and toxic arbitrage
opportunities (black line) in our sample. Panel B shows the intra-day pattern of toxic and non-toxic arbitrage opportunities
in our sample. Time is GMT.

Panel A: Daily Numbers of Arbitrage Opportunities

Panel B: Intraday Pattern in the Number of Arbitrage Opportunities
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Tables

Table II: Descriptive Statistics

This table presents the descriptive statistics for the variables used in our tests for each currency pair i ∈ {GU,EU,EG),
where indexes GU , EU , and EG refer to the GBP/USD, EUR/USD, and EUR/GBP currency pairs, respectively. In
Panel A (Panel B), we present descriptive statistics for variables that are specific to our set of toxic (non-toxic) arbitrage
opportunities. TTEtoxt (TTEnontoxt ) denotes the duration in seconds of toxic (non-toxic) arbitrage opportunities on day t;
nrarbtoxt (nrarbnontoxt ) is the number of toxic (non-toxic) arbitrage opportunities in day t; π̂toxt (π̂nontoxt ) is the number
of toxic (non-toxic) arbitrage opportunities in day t that terminate with a trade divided by the total number of toxic (non-
toxic) arbitrage opportunities in this day; ϕ̂t is the number of toxic (non-toxic) arbitrage opportunities in day t divided
by the number of arbitrage opportunities in this day; σ̂toxt (σ̂nontoxt ) is the average size of toxic (non-toxic) arbitrage
opportunities in day t (in basis points); profittoxt (profitnontoxt ) is the average profit in basis points on toxic (non-toxic)
triangular arbitrage opportunities in day t (calculated as explained in Section 3.2.1). The t-stat column reports t-statistics
for significance of the mean differences of the variables computed using toxic and non-toxic arbitrage opportunities. Panel
C presents descriptive statistics for the illiquidity measures (all expressed in basis points) used in our tests: spreadit is
the average quoted bid-ask spread in currency pair i on day t; espreadit is the average effective spreads in currency pair
i on day t; slopeit is the slope of the limit order book in currency pair i on day t. Superscript EBS is used when these
variables are measured using EBS data. Panel D presents summary statistics for control variables used in our tests: volit
is the realized volatility (in percentage) of 5-minutes returns for currency pair i in day t; nrordersit (in thousands) is the
total number of orders (market, limit, or cancelations) in currency pair i on day t; trsizeit is the average daily trade size
(in million) for currency pair i on day t; nrtrit is the daily number of trades (in thousands) in currency pair i on day t.
The sample period is from January 2, 2003 to December 30, 2004.

Variable Mean Std.Dev. Min Q1 Median Q3 Max t-stat

Panel A: Toxic Arbitrage

TTEtoxt 0.894 0.301 0.262 0.725 0.847 1.006 4.060

nrarbtoxt 32.01 20.83 1 17 28 43 124

π̂toxt 0.741 0.110 0 0.685 0.743 0.804 1.000

ϕ̂t 0.415 0.100 0.080 0.354 0.429 0.482 1.000

σ̂toxt 3.535 0.757 2.224 3.112 3.439 3.843 13.61

profittoxt 1.427 0.277 1.115 1.336 1.401 1.470 6.668

Panel B: Non-toxic Arbitrage

TTEnontoxt 0.518 0.199 0.025 0.389 0.485 0.611 1.899 23.2

nrarbnontoxt 45.22 38.40 2 27 40 55 740 -6.75

π̂nontoxt 0.807 0.082 0.412 0.755 0.800 0.867 1.000 -10.7

ϕ̂nontoxt 0.617 0.119 0.340 0.538 0.598 0.676 1.577 -29.0

σ̂nontoxt 3.531 0.841 2.404 3.058 3.350 3.747 9.662 0.08

profitnontoxt 1.618 0.571 1.218 1.417 1.512 1.610 7.280 -6.72

Panel C: Illiquidity Measures

spreadGUt 2.741 0.309 2.089 2.523 2.725 2.937 5.258

spreadEUt 2.530 0.509 1.572 2.160 2.458 2.800 5.281

spreadEGt 1.352 0.259 0.922 1.184 1.331 1.473 4.421

espreadGUt 2.073 0.255 1.578 1.904 2.045 2.205 3.784

espreadEUt 1.886 0.459 1.152 1.593 1.812 2.080 5.815

espreadEGt 0.966 0.180 0.671 0.841 0.945 1.052 2.838

slopeGUt 1.120 0.162 0.774 1.011 1.109 1.217 2.635

slopeEUt 1.111 0.275 0.494 0.928 1.088 1.266 2.493

slopeEGt 0.541 0.132 0.312 0.455 0.524 0.604 1.605

spreadEBSGUt 5.253 1.157 2.421 4.687 5.093 5.580 12.82

spreadEBSEUt 1.139 0.046 1.050 1.103 1.136 1.164 1.336

spreadEBSEGt 2.520 0.807 1.431 2.064 2.376 2.803 11.11

espreadEBSGUt 5.112 3.467 2.375 3.237 4.165 5.796 27.90

espreadEBSEUt 0.998 0.065 0.899 0.958 0.985 1.020 1.420

espreadEBSEGt 2.082 1.847 0.901 1.245 1.589 2.189 24.23

slopeEBSGUt 3.860 3.246 1.125 2.377 3.122 4.332 47.97

slopeEBSEUt 0.296 0.041 0.205 0.266 0.294 0.323 0.441

slopeEBSEGt 1.833 2.448 0.444 1.011 1.428 1.980 39.47
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Table II continued.

Variable Mean Std.Dev. Min Q1 Median Q3 Max

Panel D: Common Variables

volGU 0.683 0.268 0.117 0.532 0.622 0.753 2.456

volEU 0.827 0.386 0.258 0.616 0.744 0.920 4.363

volEG 0.387 0.094 0.203 0.325 0.381 0.440 1.256

nrordersGU 17.65 6.091 0.576 12.51 17.62 22.45 32.22

nrordersEU 19.05 6.831 0.188 14.78 18.15 22.88 44.07

nrordersEG 14.77 5.810 0.307 9.326 16.07 19.41 28.93

trsizeGU 1.386 0.043 1.247 1.357 1.382 1.415 1.509

trsizeEU 1.401 0.056 1.000 1.365 1.396 1.434 1.605

trsizeEG 1.548 0.076 1.294 1.497 1.541 1.591 1.853

nrtrGU 4.692 1.505 0.175 3.634 4.523 5.639 9.611

nrtrEU 2.365 0.707 0.027 1.859 2.377 2.870 4.103

nrtrEG 2.841 0.811 0.068 2.301 2.761 3.318 6.329

Nr. days 498
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Table IV: The Arbitrage Mix (ϕ) and Market Illiquidity

In Panel A, we report OLS estimates of the following regression:

ϕ̂t = b0 + b1spreadGU,t−1 + b2spreadEU,t−1 + b3spreadGE,t−1 + b4nrordersGU,t−1 + b5nrordersEU,t−1

+ b6nrordersGE,t−1 + b7volGU,t−1 + b8volEU,t−1 + b9volGE,t−1 + b10trsizeGU,t−1 + b11trsizeEU,t−1

+ b12trsizeGE,t−1 +

20∑
j=1

cj ϕ̂t−j + vϕ̂,t,

where indexes GU , EU , EG refer to the GBP/USD, EUR/USD, and EUR/GBP currency pairs, respectively and ϕt is the
number of toxic arbitrage opportunities in day t divided by the number of arbitrage opportunities in this day. In panel B,
we report OLS estimates of the following two regressions:

illiqit = ωi + ξt + b1ϕ̂t + b2volit + b3σ̂toxt + b4trsizeit + b5nrordersit + b6illiqEBSit + εit and

illiqit = ωi + ξt + c1vϕ̂,t + c2fittedϕ̂,t + c3volit + c4σ̂toxt + c5trsizeit + c6nrordersit + c7illiqEBSit + εit,

where fittedϕ,t and vϕ̂,t are, respectively, the predicted value of ϕt and the residual from the regression estimated in Panel
A; σ̂toxt is the average size of toxic arbitrage opportunities in day t (in basis points); spreadit is the average quoted bid-ask
spread (in basis points) in currency pair i on day t; espreadit (in basis points) is the average effective spreads in currency
pair i on day t; slopeit is the slope of the limit order book in currency pair i on day t. Superscript EBS is used for measures
of these variables computed using EBS data; volit is the realized volatility (in percentage) of 5-minutes returns for currency
pair i in day t; nrordersit (in thousands) is the total number of orders (market, limit or cancelations) in currency pair
i on day t; trsizeit is the average daily trade size (in million) for currency pair i on day t; t-statistics in parenthesis are
calculated using robust standard errors correcting for heteroscedasticity and serial correlation. The sample period is from
January 2, 2003 to December 30, 2004.

Panel A: Forecasting ϕ̂

spreadGU,t−1 -0.034 (-1.99)

spreadGE,t−1 0.060 (2.56)

nrordersGU,t−1 0.002 (2.21)

trsizeGU,t−1 -0.185 (-1.98)

trsizeGE,t−1 0.109 (2.10)

ϕ̂t−1 0.158 (3.33)

ϕ̂t−2 0.104 (2.23)

ϕ̂t−3 0.115 (2.59)

ϕ̂t−7 0.099 (2.20)

ϕ̂t−12 0.106 (2.37)

ϕ̂t−13 0.219 (4.87)

ϕ̂t−15 0.116 (2.52)

Adj.R2 44.39%

Panel B

(1) (2) (3) (4) (5) (6)

spread espread slope spread espread slope

ϕ̂ 0.622 (7.47) 0.485 (7.38) 0.407 (9.34)

vϕ̂ 0.425 (4.49) 0.342 (4.05) 0.251 (4.92)

fittedϕ̂ 0.816 (5.58) 0.646 (5.20) 0.635 (8.48)

vol 0.299 (8.01) 0.370 (7.45) 0.177 (9.44) 0.283 (7.63) 0.357 (7.13) 0.167 (9.23)

σ̂tox 0.158 (10.5) 0.187 (5.26) 0.074 (10.1) 0.157 (10.2) 0.189 (5.11) 0.073 (9.45)

trsize -0.341 (-3.37) -0.276 (-2.17) -0.385 (-7.25) -0.352 (-3.35) -0.287 (-2.10) -0.389 (-7.07)

nrorders -0.011 (-8.52) -0.009 (-7.00) -0.007 (-10.0) -0.013 (-8.72) -0.010 (-7.11) -0.007 (-10.0)

illiqEBS 0.026 (3.47) -0.004 (-1.80) 0.002 (2.16) 0.021 (2.83) -0.004 (-2.10) 0.002 (1.85)

Adj.R2 86.54% 87.81% 82.90% 86.96% 88.03% 83.80%

Currency pair FE YES YES YES YES YES YES

Month dummies YES YES YES YES YES YES
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Table V: Arbitrageurs’ Relative Speed (π̂tox) and Market Illiquidity

This table reports IV estimates of the following regression for i ∈ {GU,EU,EG}:
illiqit = ωi + ξt + b1π̂toxt + b2volit + b3ϕ̂t + b4σ̂t + b5trsizeit + b6nrordersit + b7illiqEBSit + εit, where indexes GU ,
EU , and EG refer to the GBP/USD, EUR/USD, and EUR/GBP currency pairs, respectively. We instrument π̂toxt
with the introduction of AutoQuote on Reuters D-3000 (see the text). The first stage regression of the IV is: π̂toxt =

ωi + ξt + a1ADt + a2volit + a3ϕ̂t + a4σ̂t + a5trsizeit + a6nrordersit + a7illiqEBSit + uit, where ADt is a dummy variable
equal to one after July 2003 and zero before. π̂toxt is the number of toxic arbitrage opportunities on day t that terminate
with a trade divided by the total number of toxic arbitrages of day t; ϕ̂t is the number of toxic arbitrage opportunities in
day t divided by the number of arbitrage opportunities in this day; σ̂toxt is the average size of toxic arbitrage opportunities
in day t (in basis points); spreadit is the average quoted bid-ask spread (in basis points) in currency pair i on day t;
espreadit (in basis points) is the average effective spreads in currency pair i on day t; slopeit is the slope of the limit order
book in currency pair i on day t. Superscript EBS is used for measures of these variables computed using EBS data; volit
is the realized volatility (in percentage) of 5-minutes returns for currency pair i in day t; nrordersit (in thousands) is the
total number of orders (market, limit or cancelations) in currency pair i on day t; trsizeit is the average daily trade size
(in million) for currency pair i on day t; t-statistics in parenthesis are calculated using robust standard errors correcting
for heteroscedasticity and serial correlation. The sample period is from January 2, 2003 to December 30, 2004.

spread espread slope

1st stage 2nd stage 1st stage 2nd stage 1st stage 2nd stage

π̂tox 7.934 (3.91) 3.443 (3.70) 4.526 (3.96)

AD 0.040 (4.09) 0.042 (4.12) 0.040 (4.10)

vol -0.009 (-0.75) 0.374 (3.72) -0.009 (-0.77) 0.401 (8.65) -0.009 (-0.76) 0.220 (3.87)

ϕ̂ -0.011 (-0.31) 0.691 (2.29) -0.011 (-0.31) 0.511 (3.68) -0.010 (-0.28) 0.445 (2.61)

σ̂tox -0.011 (-2.14) 0.238 (4.93) -0.012 (-2.17) 0.221 (9.94) -0.011 (-2.11) 0.120 (4.39)

trsize 0.002 (0.66) -0.128 (-0.30) 0.001 (0.84) -0.196 (-0.98) 0.001 (0.76) -0.265 (-1.09)

nrorders 0.014 (0.27) -0.004 (-0.77) 0.012 (0.22) -0.006 (-2.62) 0.016 (0.30) -0.003 (-1.01)

illiqEBS -0.003 (-3.88) 0.021 (0.79) -0.003 (-3.85) -0.002 (-0.43) -0.003 (-3.89) 0.001 (0.08)

Adj.R2 2.34% 34.40% 2.34% 62.18% 2.35% 25.56%

Fstat 16.7 16.9 16.8

Currency pair FE YES YES YES

Month dummies YES YES YES
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Table VI: Toxic Arbitrage and Time-to-Efficiency

In this table, we present estimates of the following regression using OLS:

log(TTEt) = ci + ξt + a1ADt + a2volit + a3ϕ̂t + a4σ̂t + a5trsizeit + a6nrordersit + uit,

where TTEt is the time-to-efficiency on day t of toxic arbitrage opportunities (Toxic column) or any (both toxic and
non-toxic) arbitrage opportunity (All column), AD (AutoQuote Dummy) is a dummy variable equal to one after July, 2003
and 0 before; ϕ̂t is the number of toxic arbitrage opportunities in day t divided by the number of arbitrage opportunities
in this day; σ̂toxt is the average size of arbitrage opportunities in day t (in basis points); volit is the realized volatility
(in percentage) of 5-minutes returns for currency pair i in day t; nrordersit (in thousands) is the total number of orders
(market, limit or cancelations) in currency pair i on day t; trsizeit is the average daily trade size (in million) for currency
pair i on day t; t-statistics in parenthesis are calculated based on robust standard errors correcting for heteroscedasticity
and serial correlation. The sample period is from January 2, 2003 to December 30, 2004.

Dep.Var: log(TTE) Toxic All

AD -0.068 (-3.04) -0.057 (-2.93)

vol -0.084 (-3.15) -0.105 (-4.53)

ϕ̂ -0.248 (-2.95) 0.050 (0.68)

σ̂tox 0.070 (6.59) 0.085 (9.22)

trsize 0.022 (0.18) 0.015 (0.14)

nrorders -0.012 (-7.29) -0.010 (-7.40)

Adj.R2 21.24% 33.33%
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Table VII: Currency-Level Tests

In this table, we estimate the following regression for each currency pair separately:

illiqit = ωi + ξt + b1π̂toxt + b2volit + b3ϕ̂t + b4σ̂t + b5trsizeit + b6nrordersit + b7illiqEBSit + εit for i ∈ {GU,EU,EG},
where indexes GU , EU , and EG refer to the GBP/USD, EUR/USD, and EUR/GBP currency pairs, respectively. For
each currency pair, we estimate this regression using an IV approach in which we instrument π̂toxt with the introduction of
AutoQuote on Reuters D-3000 (see the text). The first stage regression of the IV is: π̂toxt = ωi + ξt + a1ADt + a2volit +

a3ϕ̂t + a4σ̂t + a5trsizeit + a6nrordersit + a7illiqEBSit + uit, where ADt is a dummy variable equal to one after July 2003
and zero before. π̂toxt is the number of toxic arbitrage opportunities that terminate with a trade on day t divided by the
total number of toxic arbitrages on day t; ϕ̂t is the number of toxic arbitrage opportunities in day t divided by the number
of arbitrage opportunities in this day; σ̂toxt is the average size of toxic arbitrage opportunities in day t (in basis points);
spreadit is the average quoted bid-ask spread (in basis points) in currency pair i on day t; espreadit (in basis points)
is the average effective spreads in currency pair i on day t; slopeit is the slope of the limit order book in currency pair
i on day t. Superscript EBS is used when these variables are computed using EBS data; volit is the realized volatility
(in percentage) of 5-minutes returns for currency pair i in day t; nrordersit (in thousands) is the total number of orders
(market, limit or cancelations) in currency pair i on day t; trsizeit is the average daily trade size (in million) for currency
pair i on day t; t-statistics in parenthesis are calculated using robust standard errors correcting for heteroscedasticity and
serial correlation. The sample period is from January 2, 2003 to December 30, 2004.

spread espread slope

1st stage 2nd stage 1st stage 2nd stage 1st stage 2nd stage

GBP/USD

π̂tox 5.216 (5.12) 3.024 (5.71) 2.008 (5.52)

AD 0.058 (6.79) 0.062 (6.39) 0.059 (7.01)

vol 0.010 (0.48) 0.231 (2.00) 0.008 (0.36) 0.345 (5.06) 0.010 (0.46) 0.091 (2.12)

ϕ̂ -0.033 (-0.66) 0.946 (3.63) -0.034 (-0.68) 0.559 (3.95) -0.033 (-0.66) 0.417 (4.09)

σ̂tox -0.023 (-2.36) 0.273 (4.91) -0.023 (-2.44) 0.210 (7.75) -0.023 (-2.27) 0.127 (7.05)

trsize 0.137 (2.38) -0.915 (-2.00) 0.139 (2.32) -0.116 (-0.40) 0.139 (2.34) -0.721 (-3.43)

nrorders -0.004 (-6.10) 0.001 (0.54) -0.004 (-5.65) 0.002 (0.77) -0.004 (-6.44) -0.004 (-3.05)

illiqEBS 0.001 (0.48) 0.030 (1.34) 0.001 (1.10) 0.006 (1.18) 0.001 (0.53) 0.006 (2.93)

Adj.R2 1.37% 8.80% 1.40% 20.78% 1.37% 15.42%

Fstat 46.1 32.6 49.1

EUR/GBP

π̂tox 1.427 (4.61) 0.678 (3.64) 0.389 (1.86)

AD 0.064 (7.74) 0.070 (7.92) 0.065 (7.23)

vol 0.081 (3.11) 0.964 (12.7) 0.066 (2.26) 0.782 (12.4) 0.093 (3.03) 0.552 (11.9)

ϕ̂ -0.059 (-1.36) 0.500 (10.2) -0.056 (-1.24) 0.311 (13.3) -0.058 (-1.32) 0.224 (13.7)

σ̂tox -0.024 (-3.73) 0.096 (6.06) -0.025 (-3.77) 0.068 (6.60) -0.024 (-3.72) 0.036 (5.79)

trsize 0.014 (0.33) -0.326 (-5.75) 0.015 (0.35) -0.093 (-2.29) 0.013 (0.31) -0.321 (-21.5)

nrorders -0.005 (-7.17) -0.010 (-14.9) -0.005 (-7.19) -0.010 (-13.8) -0.005 (-7.46) -0.010 (-20.6)

illiqEBS 0.005 (2.02) 0.026 (2.17) 0.004 (4.24) 0.006 (2.79) 0.002 (5.61) 0.001 (0.35)

Adj.R2 1.24% 48.41% 1.41% 62.37% 1.35% 67.96%

Fstat 59.9 62.7 52.3

EUR/USD

π̂tox 0.402 (0.45) 2.818 (3.32) 4.679 (2.36)

AD 0.041 (3.12) 0.034 (5.35) 0.029 (2.54)

vol 0.000 (-0.03) 0.015 (0.54) 0.014 (1.44) -0.053 (-2.06) -0.003 (-0.39) 0.062 (2.09)

ϕ̂ 0.012 (0.27) 0.199 (2.07) 0.015 (0.31) 0.312 (1.58) 0.017 (0.36) 0.051 (0.20)

σ̂tox -0.011 (-1.13) 0.091 (5.05) -0.008 (-0.93) 0.152 (5.81) -0.015 (-1.50) 0.120 (1.83)

trsize 0.081 (1.01) -0.227 (-0.88) 0.096 (1.24) -0.683 (-1.29) 0.077 (0.99) -0.641 (-1.61)

nrorders -0.002 (-2.43) -0.009 (-3.89) -0.001 (-1.82) -0.020 (-6.45) -0.002 (-2.33) 0.001 (0.69)

illiqEBS -0.234 (-1.98) 6.679 (17.1) -0.240 (-4.23) 4.059 (11.3) -0.121 (-1.01) 4.396 (9.48)

Adj.R2 0.41% 74.82% 0.62% 44.32% 0.08% 13.79%

Fstat 9.73 28.6 6.45

Month dummies YES YES YES
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Table VIII: Toxic Arbitrage or Other Forms of Adverse Selection?

This table reports IV estimates of the following equation for i ∈ {GU,EU,EG}:
illiqit = ωi + ξt + b1π̂toxt + b2volit + b3ϕ̂t + b4σ̂toxt + b5trsizeit + b6nrordersit + b7illiqEBSit + b8V PINit

+b9macroUSt + b10macroUKt + b11macroEMU
t + uit, for i ∈ {GU,EU,EG}.

We instrument π̂toxt with the introduction of Reuters D-3000 AutoQuote (see the text). The first stage regression of the
IV is:

π̂toxt = ωi + ξt + a1ADt + a2volit + a3ϕ̂t + a4σ̂toxt + a5trsizeit + a6nrordersit + a7illiqEBSit + a8V PINit
+a10macroUSt + a11macroUKt + a12macroEMU

t + uit for i ∈ {GU,EU,EG}.
Indexes GU , EU , and EG refer to the GBP/USD, EUR/USD, and EUR/GBP currency pairs, respectively. π̂toxt is the
number of toxic arbitrage opportunities that terminate with a trade on day t divided by the total number of toxic arbitrages
on this day; ϕ̂t is the number of toxic arbitrage opportunities in day t divided by the number of arbitrage opportunities
in that day; σ̂toxt is the average size of arbitrage opportunities in day t (in basis points); spreadit is the average quoted
bid-ask spread (in basis points) in currency pair i on day t; espreadit (in basis points) is the average effective spreads in
currency pair i on day t; slopeit is the slope of the limit order book in currency pair i on day t. Superscript EBS is used
when these variables are computed using EBS data; volit is the realized volatility (in percentage) of 5-minutes returns for
currency pair i in day t; nrordersit (in thousands) is the total number of orders (market, limit or cancelations) in currency
pair i on day t; trsizeit is the average daily trade size (in million) for currency pair i on day t; V PINit is a measure of
adverse selection in currency pair i on day t (see Easley et al. (2012)); macroUS , macroUK , and macroEMU are measures
of surprises in macro economic announcements on day t in the U.S., the U.K., and the EMU, respectively. t-statistics
in parenthesis are calculated based on robust standard errors correcting for heteroscedasticity and serial correlation. The
sample period is from January 2, 2003 to December 30, 2004.

spread espread slope

1st stage 2nd stage 1st stage 2nd stage 1st stage 2nd stage

π̂tox 8.007 (3.74) 3.359 (3.51) 4.692 (3.78)

AD 0.038 (-3.90) 0.040 (3.94) 0.038 (3.91)

vol -0.001 (-0.02) 0.321 (3.16) -0.001 (-0.04) 0.419 (9.14) -0.001 (-0.03) 0.185 (3.13)

ϕ̂ -0.015 (-0.42) 0.744 (2.44) -0.015 (-0.42) 0.517 (3.78) -0.014 (-0.40) 0.470 (2.67)

σ̂tox -0.021 (-3.53) 0.309 (4.76) -0.021 (-3.57) 0.210 (7.24) -0.020 (-3.51) 0.164 (4.35)

trsize 0.044 (0.82) -0.447 (-1.01) 0.042 (0.77) -0.195 (-0.97) 0.046 (0.85) -0.412 (-1.62)

nrorders -0.003 (-3.71) 0.001 (0.24) -0.003 (-3.68) -0.005 (-1.93) -0.003 (-3.72) -0.001 (-0.28)

illiqEBS 0.002 (0.55) 0.025 (0.93) 0.001 (0.81) -0.001 (-0.23) 0.001 (0.59) 0.001 (0.21)

V PIN -0.039 (-0.45) 1.142 (1.56) -0.039 (-0.44) 0.329 (1.00) -0.041 (-0.46) 0.307 (0.73)

macroUS -0.002 (-1.75) 0.017 (1.92) -0.002 (-1.76) 0.008 (1.98) -0.002 (-1.76) 0.010 (1.88)

macroUK -0.012 (-2.16) 0.095 (1.74) -0.012 (-2.17) 0.038 (1.56) -0.012 (-2.15) 0.053 (1.69)

macroEMU -0.010 (-1.80) 0.081 (1.55) -0.010 (-1.78) 0.036 (1.53) -0.010 (-1.80) 0.044 (1.45)

Adj.R2 3.14% 33.88% 3.16% 62.41% 3.14% 23.97%

Fstat 15.2 15.2 15.3

Currency pair FE YES YES YES

Month dummies YES YES YES
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