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Abstract

The relation between macroeconomic fundamentals and the cross section of asset returns

is studied through the lens of dynamic stochastic general equilibrium (DSGE) models. We

provide a full-information Bayesian estimation of the model using seven macroeconomic vari-

ables and extract the time series of three fundamental shocks to the economy for the period

of 1966Q1-2010Q3: neutral technology (NT ) shock, investment-specific technological (IST )

shock, and monetary policy (MP ) shock. Tests based on the General Method of Moments

(GMM) show that the factor model with estimated latent shocks as risk factors performs

better than and the model-implied pricing kernel performs as well as the Fama-French three-

factor models at the 5% significance level in explaining the cross-sectional returns of a large

set of assets including the 25 size/BM, 48 industry, and 8 bond portfolios. Our results show

that DSGE models, which have been successful in matching macroeconomic dynamics, have

great potential in capturing asset price dynamics as well.
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1 Introduction

One of the key issues in asset pricing is to understand the economic fundamentals that drive

the fluctuations of asset prices. Modern finance theories on asset pricing, however, have mainly

focused on the relative pricing of different financial securities. For example, the well-known Black-

Scholes-Merton option pricing model considers the relative pricing of option and stock while taking

the underlying stock price as given. The celebrated Capital Asset Pricing Model (CAPM) relates

individual stock returns to market returns without specifying the economic forces that drive market

returns. Modern dynamic term structure models also mainly focus on the relative pricing of bonds

across the yield curve. These models tend to assume that the yield curve is driven by some latent

state variables without explicitly modeling the economic nature of these variables.

Increasing attention has been paid in the literature to relate asset prices to economic funda-

mentals as evidenced by the rapid growth of the macro finance literature. For example, the macro

term structure literature has been trying to relate term structure dynamics to macro fundamen-

tals. By incorporating the Taylor rule into traditional term structure models, several studies have

shown that inflation and output gap can explain a significant portion of the fluctuations of bond

yields. The investment based literature has also tried to relate equity returns to firm fundamen-

tals, thus giving economic meaning to empirical based factors (such as HML and SMB) for equity

returns. Current attempts to connect macro variables with asset prices, however, are typically

based on partial equilibrium analysis. Without a well specified general equilibrium model, it is not

clear that the exogenously specified pricing kernels in these “reduced-form” models are consistent

with general equilibrium.

The New Keynesian Dynamic Stochastic General Equilibrium (DSGE) models offer such a

framework to understand the link between asset prices and economic fundamentals. DSGE models

have become a dominant modeling framework in macroeconomics and have been widely used by

both academics and central banks around the world for policy analysis, (see, e.g., Clarida, Gaĺı and
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Gertler 2000). However, most existing studies on DSGE models in the macroeconomic literature,

such as Christiano, Eichenbaum and Evans (2005) and Smets and Wouters (2007), have mainly

focused on the ability of DSGE models in explaining macroeconomic dynamics. If the fundamental

fluctuations identified by DSGE models are true economic risks, they should also explain the

movements of asset prices because financial assets represent claims on real productive assets.

Therefore, financial prices provide an alternative perspective to examine the soundness of DSGE

models. Moreover, since financial prices are forward looking and contain market expectations for

future economic activities, one can potentially better identify model parameters and latent shocks

by incorporating financial prices in the estimation of DSGE models.

In this paper, we study the link between macroeconomic fundamentals and asset pricing

through the lens of New Keynesian DSGE models. In particular, we study whether the model-

implied stochastic discount factor (pricing kernel) and latent shocks have any explanatory power

of the returns of a wide range of financial assets. We focus on three latent shocks: neutral technol-

ogy (NT) shock, investment-specific technological (IST) shock, and monetary policy (MP) shocks.

These three shocks are the most studied risks in the asset pricing literature (see, for example,

Balvers and Huang 2007, Kogan and Papanikolaou 2013, and Bernanke and Kuttner 2005). Our

analysis is based on the DSGE model considered in Christiano, Trabandt and Walentin (2011)

(CTW), which is closely related to Christiano, Eichenbaum and Evans (2005) and includes all the

major ingredients of DSGE models. CTW show that this model matches a wide range of macroe-

conomic variables well. To our knowledge, this paper provides the first study that examines the

ability of DSGE models in explaining the cross-sectional stock and bond returns. Our paper makes

two important contributions to the macro literature on DSGE models as well as the asset pricing

literature.

First, we develop full-information Bayesian Markov Chain Monte Carlo (MCMC) methods

for estimating DSGE models using macroeconomic variables. Whereas the Bayesian moment

matching methods in CTW essentially match the unconditional moments of the macro variables,
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our full-information Bayesian MCMC methods fully exploit the conditional information contained

in the likelihood function of the macro data. As a result, our methods provide more efficient

estimation of model parameters. More important, our Bayesian MCMC methods make it possible

to back out the latent shocks, and hence the pricing kernel, from the economy described by the

DSGE model. In contrast, the Bayesian moment matching methods cannot back out the latent

shocks because they can only match the long-run average features of the data.

Second, we empirically test whether the model-implied pricing kernel and latent shocks price

the cross-section of asset returns. Specifically, we evaluate the performance of three pricing kernel

models: the model-implied pricing kernel (Model 1), a linear factor model using the estimated

latent shocks as risk factors (Model 2), and the Fama-French three-factor model (Model 3) while

the last model is used as the benchmark. The pricing kernel in Model 1 is constructed based

on the DSGE model parameters and latent shocks estimated from the Bayesian MCMC method

and hence is invariant to test assets. In contrast, the linear coefficients in Model 2 and 3 need

to be estimated and their values generally vary with different sets of test assets. As suggested

by Lowellen, Nagel and Shanken (2010) and Daniel and Titman (2012), we use a large set of

test assets including the 25 size/BM and 48 Fama and French (1997) industry portfolios, U.S.

government securities portfolios with maturity of 30, 20, 10, 7, 5, 2, and 1 years, and a long-term

corporate bond portfolio.

Model estimation and comparison are conducted based on the General Method of Moments

(GMM). Two types of weighting matrices, identity matrix and the variance-covariance matrix of

the returns on test assets, are used for robustness and they generate largely consistent results.

With the identity weighting matrix, linear coefficients in Models 2 and 3 are chosen to minimize the

sum of squared pricing errors (SSPE). The variance-covariance matrix of the returns on test assets

as a choice of weighting matrix is suggested by Hansen and Jagannathan (1991, 1997), denoted

as the Hansen-Jagannathan (HJ) weighting matrix. With the HJ weighting matrix, coefficients

are chosen to minimize the Hansen-Jagannathan (HJ) distance, which measures the least squares
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distances between the proposed pricing kernel and the set of admissible pricing kernels that can

correctly price the return space spanned by the test assets. That is, the HJ-distance is a measure

of model misspecification errors. Both weighting matrices are invariant to the estimated pricing

kernels and hence can be used for performance comparison of different models. Statistical tests

based on SSPE (Hall and Pelletier, 2011) and HJ-distance (Li, Xu and Zhang, 2010) are conducted

to compare the performance of the three models for the full set of test assets and three of its

subgroups: 25 size/BM portfolios, 48 industry portfolios, and 8 bond portfolios, respectively.

Tests based on GMM with the HJ weighting matrix show that Model 2, the linear factor model

with estimated latent shocks as risk factors, is the best model among the three. For the full set of

test assets, the HJ-distance of Model 2 is the smallest, followed by those of Model 3, the Fama-

French three-factor model, and Model 1, the model-implied pricing kernel. The p-values under

the null hypotheses that Models 2 and 3 and Models 1 and 3 have equal HJ-distances are 4.97%

and 5.24%, respectively. Therefore, at the 5% significance level, the model with estimated latent

shocks prices the cross section of asset returns better than the Fama-French three-factor model,

while the model-implied pricing kernel performs as well as the Fama-French three-factor model.

For the three subgroups of test assets, Model 2 has the smallest HJ-distances for the 48 industry

portfolios and the 8 bond portfolios, while the Fama-French three-factor model has the smallest

HJ-distance for the 25 size/BM portfolios. However, the differences in HJ-distances among the

three models are mostly statistically insignificant for those subgroups.

Tests based on GMM with identity weighting matrix present a similar picture on the compar-

ison of the three models. We use the J statistic, measured as the sum of squared pricing errors

scaled by their variance-covariance matrix, to evaluate the overall goodness of fit of the proposed

pricing kernel models. For the full set of test assets, Model 2 has the smallest and Model 1 has

the largest J values. The p-values of the null hypotheses that Models 2 and 3 and Models 1 and

3 have equal SSPE’s are 30.04% and 8.87%. Moreover, Model 2 has the smallest J values for all

three subgroups of test assets. However, none of the differences in SSPE’s among the three models
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are statistically significant.

Our result is a testament of the power of the DSGE approach. Note that the latent shocks

are extracted from macroeconomic data only and the model-implied pricing kernel is invariant to

test assets. It is thus striking that the model-implied pricing kernel explains the cross section of

asset returns as well as the Fama-French three-factor model. And the model with estimated latent

shocks as risk factors performs even better than the Fama-French three-factor model. Our results

highlight the possibility of integrating macroeconomics and asset pricing under a unified modeling

framework.

Our paper is most related to Smets and Wouters (2007), who estimate a similar DSGE model

with seven latent shocks using Bayesian MCMC method. However, their focus is to match and

forecast macroeconomic dynamics. Moreover, Smets and Wouters (2007) estimate a log-linearized

model, which is not suitable to study asset pricing questions, while we estimate a model solved to

the second-order. Our model setup is the same as the one in Christiano, Trabandt and Walentin

(2011) and closely related to Christiano, Eichenbaum and Evans (2005). The focus of these two

papers are on examining what economic mechanisms, such as wage rigidities, working capital, and

variable capital utilization, are important for capturing the observed macroeconomic dynamics

while our focus is on the asset pricing implications of the DSGE model.

Our paper is also related to the literature that aims to explain cross-sectional stock returns

using macroeconomic variables, pioneered by Chen, Roll and Ross (1986). The most related ones

are Balvers and Huang (2007), Papanikolaou (2011) and Kogan and Papanikolaou (2013), and

Bernanke and Kuttner (2005), who study the asset pricing implications of the NT, IST, and MP

shocks, respectively. The three shocks in those papers are constructed independent of each other

while our three latent shocks are simultaneously constructed from a general equilibrium framework.

Moreover, the focus of our paper is not on the asset pricing implications of specific latent shocks,

instead is on the methodology that estimates latent shocks, not limited to these three studied

in the current paper, and the model-implied stochastic pricing kernels based on macroeconomic
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variables and Bayesian MCMC methods.

The rest of the paper is organized as follows. Section 2 introduces the DSGE model. Section 3

discusses the full-information Bayesian estimation methods and model implications on asset prices.

Section 4 empirically examines the asset pricing implications of the model-implied pricing kernel

and risk factors in the cross section. Section 5 concludes.

2 The Model

The DSGE model that we estimate is taken from CTW. The modeled economy contains a per-

fectly competitive final goods market, a monopolistic competitive intermediate goods market, and

households who derive utility from final goods consumption and disutility from supplying labor

to production. Nominal price rigidities and wage rigidities in the intermediate goods market are

modeled as in Calvo (1983). Government consumes a fixed fraction of GDP every period and the

monetary authority sets the nominal interest rate according to a Taylor rule. There are three ex-

ogenous shocks in the economy: neutral technology (NT) shocks, investment-specific technological

(IST) shocks, and monetary policy (MP) shocks. CTW show that the model matches vey well

an important set of macroeconomic variables including: changes in relative prices of investment,

real per hour GDP growth rate, unemployment rate, capacity utilization, average weekly hours,

consumption-to-GDP ratio, investment-to-GDP ratio, job vacancies, job separation rate, job find-

ing rate, weekly hours per labor force, and Federal Funds Rates. Next, we present the model in

details.

2.1 Production sector

There are two industries in the production sector, final goods industry and intermediate goods

industry. The production of the final consumption goods uses a continuum of intermediate goods,
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indexed by i ∈ [0, 1], via the Dixit-Stiglitz aggregator

Yt =

[∫ 1

0

Y
1
λf

i,t di

]λf
, λf > 1 , (1)

where Yt is the output of final goods, Yi,t is the amount of intermediate goods i used in the

final goods production, which in equilibrium equals the output of intermediate goods i, and λf

measures the substitutability among different intermediate goods. The larger λ is, the more

substitutable the intermediate goods are. Since the final goods industry is perfectly competitive,

profit maximization leads to the demand function for intermediate goods i:

Yi,t = Yt

(
Pi,t
Pt

) λf
λf−1

, (2)

where Pt is the nominal price of the final consumption goods and Pit is the nominal price of

intermediate goods i. It can be shown that goods prices satisfy the following relation:

Pt =

(∫ 1

0

P
− 1
λf−1

i,t di

)−(λf−1)
. (3)

The production of intermediate goods i employs both capital and labor via the following

homogenous production technology

Yi,t = (ztHi,t)
1−αKα

i,t − z+t ϕ , (4)

where zt is the neutral technology shock, Hi,t and Ki,t are the labor service and capital service,

respectively, employed by firm i, α is the capital share of output, and ϕ is the fixed production

cost. Finally, z+t is defined as

z+t = Ψ
α

1−α
t zt ,
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where Ψt is the investment-specific technology shock, measured as the relative price of consumption

goods to investment goods. Assume that zt and Ψt evolve as follows:

µz,t = µz + ρz µz,t−1 + σze
z
t , where µz,t = ∆ log zt , e

z
t ∼ IIDN (0, 1) , (5)

µψ,t = µψ + ρψ µψ,t−1 + σψe
ψ
t , where µψ,t = ∆ log Ψt , e

ψ
t ∼ IIDN (0, 1) . (6)

The intermediate goods industry is assumed to have no entry and exit, which is ensured by choosing

a fixed cost ψ that brings zero profits to the intermediate goods producers in the steady state.

Intermediate goods producer i rents capital service Kit from households and its net profit at

period t is given by PitYit − rKt Kit −WtHit. The producer takes the rent of capital service rKt

and wage rate Wt as given but has market power to set the price of its goods in a Calvo (1983)

staggered price setting to maximize its profits. With probability ξp, producer i cannot reoptimize

its price and has to set its price according to the following rule,

Pi,t = π Pi,t−1

and with probability 1− ξp, producer i sets price Pi,t to maximize its profits, i.e.,

max
{Pi,t}

Et
∞∑
τ=0

(
ξp β

)τ
νt+τ

[
Pi,tYi,t+τ | t −Wt+τHt+τ | t

]
(7)

subject to the demand function in equation (2). In the above objective function, νt+τ is the

marginal utility of nominal wage and Yi,t+τ | t and Ht+τ | t refer to the output and labor hiring,

respectively, by producer i at time t+ τ if the last time when price Pi is reoptimized is period t.
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2.2 Households

Following CTW, we assume that there is a continuum of differentiated labor types indexed with

j and uniformly distributed between zero and one. A typical household has infinitely many

members covering all the labor types. It is assumed that a household’s consumption decision is

made based on utilitarian basis. That is, every household member consumes the same amount of

consumption goods even though they might have different status of employment. CTW show that

a representative household’s life-long utility can be written as

∞∑
t=0

βt

[
log (Ct − bCt−1)− AL

∫ 1

0

h1+φjt

1 + φ

]
, (8)

subject to the budget constraint

Pt

(
Ct +

It
Ψt

)
+Bt+1 + PtPk′,t∆t ≤

∫ 1

0

Wjthjt dj +XK
t K̄t +Rt−1Bt (9)

for t = 0, 1, · · · ,∞. Here, hjt is the number of household members with labor type j who are

employed, Bt is the nominal bond holdings purchased by household at t − 1 , Pk′,t is the market

price of one unit capital stock in real term, ∆t is the amount of capital purchased from the market,

XK
t is the net cash payment to the household by renting out capital K̄t, given by

XK
t = Pt

[
ut r

K
t −

a(ut)

Ψt

]
.

The wage rate of labor type j is determined by a monopoly union who represents all j-type workers

and households take the wage rate of each labor type as given.

Households own the economy’s physical capital K̄. The amount of capital service Kt available

for production is given by

Kt = ut K̄t ,
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where ut is the utilization rate of physical capital and utilization incurs a maintenance cost

a(u) = b σa u
2/2 + b(1− σa)u+ b (σa /2− 1) , (10)

where b and σa are constants and chosen such that steady state utilization rate is one and at the

steady state a(u = 1) = 0. Note that the maintenance cost a(u) is measured in terms of capital

goods, whose relative price to consumption goods is 1/Φt. A representative household accumulates

capital stock according to the following rule:

K̄t+1 = (1− δ) K̄t + F (It, It−1) + ∆t ,

where ∆t is the capital stock purchased by the representative household and equals zero in equi-

librium because all households are identical. Here, F (It, It−1) is the investment adjustment cost,

defined as

F (It, It−1) =

(
1− S

(
It
It−1

))
It

and

S(xt) =
1

2

{
exp

[
σs
(
xt − exp(µ+

z + µψ)
)]

+ exp
[
−σs

(
xt − exp(µ+

z + µψ)
)]
− 2
}
,

where xt = It/It−1 and exp(µ+
z +µψ) is the steady state growth rate of investment. The parameter

σs is chosen such that at the steady state S(exp(µ+
z + µψ)) = 0 and S ′(exp(µ+

z + µψ)) = 0. Note

that investment It is measured in terms of capital goods. The consumption goods market clearing

is then given by

Yt = Ct +Gt + Ĩt ,

where Gt is government spending and Ĩ is investment measured in consumption goods, which also
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includes the capital maintenance cost a(ut), i.e.,

Ĩ =
It + u(at)

Φt

.

2.3 Labor unions

There are labor contractors who hire all types of labor through labor unions and produce a

homogenous labor service Ht, according to the following production function

Ht =

[∫ 1

0

h
1
λw
jt dj

]λw
, λw > 1 , (11)

where λw measures the elasticity of substitution among different labor types. The intermediate

goods producers employ the homogenous labor service for production. Labor contractors are

perfectly competitive, whose profit maximization leads to the demand function for labor type j

hjt = Ht

(
Wjt

Wt

) −λw
λw−1

(12)

It is easy to show that wages satisfy the following relation:

Wt =

(∫ 1

0

W
− 1
λw−1

j,t dj

)−(λw−1)
, (13)

where Wj,t is the wage of labor type j and Wt is the wage of the homogenous labor service.

Assume that labor unions face the same Calvo (1983) type of wage rigidities. Each period,

with probability ξw, labor union j cannot reoptimize the wage rate of labor type j and has to set

the wage rate according to the following rule

Wjt+1 = πtµz+
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and with probability 1− ξw, labor union j chooses Wjt to maximize households’ utility

Et
∞∑
τ=0

(βξw)τ
[
νt+τWjtht+τ | t − AL

h1+φjt+τ | t

1 + φ

]
(14)

subject to the demand curve for labor type j in equation (12). Here, hjt+τ | t is the supply of type

j labor at period t+ τ if the last time when labor union j reoptimizes wage rate Wjt is period t.

2.4 Fiscal and monetary authorities

Following CTW, fiscal authority in the model simply transfers a fixed fraction g of output as

government spending, i.e.,

Gt = g Yt .

Monetary authority sets the level of the short-term nominal interest rate according to the following

Taylor rule

log

(
Rt

R

)
= ρR log

(
Rt−1

R

)
+ (1− ρR)

[
ρπ log

(πt
π

)
+ ρy log

(
Yt
Y

)]
+ Vt. (15)

where Rt is the short-term interest rate, R, π, and Y are steady state values for interest rate,

inflation, and output, and Vt is the monetary policy shock, which follows the process

Vt = ρV Vt−1 + σV e
V
t , (16)

with eVt ∼ IIDN (0, 1).
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2.5 Model implications on asset prices

Household’s utility maximization gives us the stochastic discount factor as follows:

Mt = β exp (−∆ct+1 −∆qt+1) , (17)

where qt is defined as

exp(−qt) =
1

1− b/∆ct
− Et

[
b

∆ct+1 − b

]
.

The return on any asset i, Rit+1, at t+ 1 satisfies the following Euler equation

Et [Rit+1Mt+1] = 1 .

3 Full-Information Bayesian MCMC Estimation

In this section, we develop full-information Bayesian MCMC method for estimating the aforemen-

tioned DSGE model based on observed macroeconomic variables. We choose seven macroeconomic

variables following Smets and Wouters (2007): per capita output growth (dy), per capita consump-

tion growth (dc), per capita investment growth (di), wage growth (dw), logarithm of inflation (π),

logarithm of 3-month T-Bill rate (r), and logarithm of average weekly hours per capita (h) with

average normalized as 1. The three fundamental exogenous shocks are neutral technology shocks

{µz,t}, investment-specific technology shocks {µψ,t} and monetary policy shocks {Vt}, defined in

equations (5), (6), and (16). Given the initial states, the time-series of the aforementioned three

exogenous shocks completely determine the outcome of the economy.
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3.1 Solution of the model

Our goal is to solve and estimate the economic system described in Section 2 using the actual

economic outcomes observed in the data. The model is solved in Dynare 1 to the second order

approximation and the details of the solution are provided in the appendix of CTW. Define the

vector of state variables at time t as St, the vector of endogenous variables that we would like

to match with actual data as Υt, and the the vector of exogenous shocks as Ut = {ezt , e
ψ
t , e

V
t }.

State variables and the variables to be matched with data evolve according the following rules,

respectively,

St = ΓS (St−1, Ut,Θ) , (18)

Υt = Γ (St−1, Ut,Θ)

where Θ is the vector of model parameters

Θ = [β, φ, b, α, δ, ηg, ξp, ξw, K, λf , λw, σa, σs, πss, ρk, ρπ, ρy,mz, µψ, σz, σψ, σv, ρz, ρψ, ρv]

For any given initial values of state variables S0 and exogenous shocks U0 and the time-series of

exogenous shocks, {Us}ts=1, state variables can be obtained by iterating on equation (18), written

as

St = ΓS
(
ΓS
(
· · ·ΓS

(
ΓS (S0, U0,Θ) , U1,Θ

)
· · ·
)
, Ut,Θ

)
≡ ΓS,(t)

(
S0, {Us}ts=1,Θ

)
.

Thus, the model-implied variables Υt can be easily computed as Υt = Γ (St−1, Ut,Θ). Our goal

is to choose model parameters Θ and latent variables {Ut}Tt=1 such that the model-implied Υt is

as close to the corresponding values in actual data, Υobs
t , as possible. The functions Γ and ΓS are

second-order polynomials of St and Ut given by Dynare, where the coefficients in these polynomials

1Please find detailed information on Dynare at www.dynare.org.
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are determined by the values of the parameter set Θ. 2

3.2 Full-information Bayesian estimation

Define the time series of observable variables as Υobs =
{

Υobs
t

}T
t=1

and assume Υobs
t are observed

with independent pricing errors

Υobs
t = Υt + εt = Γ(Xt−1, Ut,Θ) + εt

where Υobs
t = {dy, dc, di, dw, π, r, h}, and εt = {ε1t, · · · , ε7t} with εit ∼ N(0, σ2

i ) for i = 1, · · · , 7.

Υt is the model implied values from the Γ(·) function that is solved numerically using Dynare

package, and the dynamics of Ut is determined through the following evolution equations


µz,t = µz(1− ρz) + ρzµz,t−1 + σze

z
t

µψ,t−1 = µψ(1− ρψ) + ρψµψ,t−1 + σψe
ψ
t

Vt = ρV Vt−1 + σV e
V
t

.

Since Ut (t = 1, · · · , T ) can be uniquely specified by the sequence (µz,t, µψ,t, Vt), the main objective

of our analysis is to estimate the model parameters, σi (i = 1, · · · , 7) and Θ, and latent state vari-

ables, defined as Xe = {Xe
t }

T
t=1 where Xe

t = [µz,t, µψ,t, Vt], using observation Υobs
t (t = 1, · · · , T ).

The biggest challenge of the analysis is that the marginal likelihood based on parameters has to

be obtained by integrating out high dimensional variables (of the order of 3×T dimension due to

latent state variables), creating extremely heavy computing burdens. Bayesian MCMC methods

can be used to estimate parameters and latent variables in this situation. In contrast to classical

statistical theory, which uses the likelihood L(Θ) ≡ p(Υobs|Θ), Bayesian inference adds to the like-

lihood function the prior distribution for Θ, called π(Θ). The distribution of (Υobs,Xe) and π(Θ)

combine to provide a joint distribution for (Υobs,Xe,Θ) from which the posterior distribution of

2The details of the solution method can be found on www.dynare.org.
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(Θ,Xe) given Υobs is produced

p(Θ,Xe|Υobs) =
p(Υobs,Xe,Θ)∫

p(Υobs,Xe,Θ)dXedΘ
∝ p(Υobs,Xe,Θ) .

In our context, it is

p(Θ,Xe|Υobs) ∝ p(Υobs|Xe,Θ)× p(Xe|Θ)× π(Θ)

= p(Υobs
1 |Xe,Θ)× p(Υobs

2 |Υobs
1 ,Xe,Θ)× · · · × p(Υobs

T |[Υobs
1 , · · ·Υobs

T−1],X
e,Θ)

×p(Xe|Θ)× π(Θ)

∝
T∏
t=1

7∏
i=1

1

σi
exp{− 1

2σ2
i

[Υobs
t (i)−Υt(i)]

2}

×
T∏
t=1

1

σz
exp{− 1

2σ2
z

[µz,t − µz(1− ρz)− ρzµz,t−1]2}

×
T∏
t=1

1

σψ
exp{− 1

2σ2
ψ

[µψ,t − µψ(1− ρψ)− ρψµψ,t−1]2}

×
T∏
t=1

1

σV
exp{− 1

2σ2
V

[Vt − ρV Vt−1]2} × π(Θ) ,

where Υobs
t (i) and Υt(i) are the observed and model implied values for the ith macroeconomic

variable. In general, it is difficult to simulate directly from the above high dimensional posterior

distribution. The theory underlying the MCMC algorithms is called Clifford-Hammersley Theorem

that can be used to ease computational burden. This theorem states that the joint distribution

p(Θ,Xe|Υobs) can be represented by the complete conditional distributions p(Θ|Xe,Υobs) and

p(Xe|Θ,Υobs). MCMC algorithm is done iteratively. In each iteration, each parameter is updated

based on most recent value of all other parameters and latent variables through sampling from

the corresponding complete conditional distribution, and the latent variables at each time t is also

updated in the similar fashion. As this is done, the chains converge (theoretically) to the target

posterior distribution. Therefore, after a sufficient number of samples, called a burn-in period, the
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algorithm is then sampling from a converged target posterior distribution.

To find parameter estimates requires some additional machinery. Use of calculus methods will

only work nicely if the prior distributions are conjugate priors, leading to tractable solutions. How-

ever, in our analysis here, parameters and latent variables are involved into the likelihood through

the Dynare package. The solution through the Dynare package is done numerically, resulting in

intractable posterior distributions. We therefore turn to Metropolis Hastings Algorithm (MH) for

updating both Θ and Xe. The MH algorithm is an adaptive rejection sampling method where

candidate draw is proposed and then accepted with probability proportional to the ratio of the

likelihood of the proposed draw to the current draw. This means that if the new position has a

higher likelihood (defined using the posterior distribution), then the parameter values are updated

with probability 1. Alternatively, if they are less likely, the parameter values are updated with

probability according to the likelihood ratio. Thus the parameter values will tend to stay near

the highest probability regions when being sampled and adequately cover the probability space.

Given a vector of starting values for the parameters and latent variables, the steps are as follows.

For the jth parameter θj in Θ (j = 1, ..., 25) in the gth iteration:

• Step 1. Specify a candidate distribution, h(θj|θ(g−1)j );

• Step 2. Generate a proposed value for parameters, θ∗j ∼ h(θj|θ(g−1)j );

• Step 3. Compute the acceptance ratio

rg =
p(θ∗j |θ[−j],Xe,Υobs)× h(θ∗j |θ

(g−1)
j )

p(θ
(g−1)
j |θ[−j],Xe,Υobs)× h(θ

(g−1)
j |θ∗j)

where p(·|θ[−j],Xe,Υobs) represents a complete conditional distribution for parameter θj and

the notation θ[−j] contains the most updated parameters except for θj in Θ (see details in

the Appendix);
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• Step 4. Generate u from an uniform distribution Uniform[0, 1], then set

θ
(g)
j =

 θ∗j if rg ≥ u

θ
(g−1)
j if rg < u

;

• Step 5. Do this for all θj for j = 1, ..., 25. Then set g = g + 1 and return to Step 1.

If the candidate distribution is symmetric, the MH algorithm has acceptance ratio equivalent to

p
(
θ∗j |θ[−j],Xe,Υobs

)/
p
(
θ
(g−1)
j |θ[−j],Xe,Υobs

)
. In implementation, we chose N(θ

(g−1)
j , c2) with a

constant variance c2 as a candidate distribution for h(θj|θ(g−1)j ). The MH algorithm is conducted

iteratively on each parameter in Θ and on each latent variable at each time point t = 1, · · · , T .

In estimation, we draw posterior samples using the above described MCMC, and use the means of

the posterior draws as parameter estimates and the standard deviations of the posterior draws as

standard errors of the parameter estimates after a burn-in period. Detailed description about the

priors, posterior distributions, and the updating procedures for parameters and latent variables in

our model are provided in Appendix A.

3.3 Goodness of model fit

Table 1 presents the estimated posterior means and standard errors of model parameters, which

are largely consistent with what CTW find in their estimation. Figure 1 plots the time-series of

model-implied and empirical macroeconomic variables. The model-implied output growth (dy),

investment growth (di), hours (h), risk-free rate (r), inflation (π) measure very well with the

empirical counterparts. However, the model-implied consumption growth (dc) and wage growth

(dw) cannot match the volatile high frequency movement in the data, even though both variables

capture the low-frequency movements.

To quantify the goodness of our model fit, we regress the empirical variable on its model-implied

counterpart, i.e., Xi,t = αi + βiX̂i,t + εi,t. Panel A of Table 2 reports the coefficient estimates and

18



the adjusted R-squared, R̄2. All the beta coefficients are highly significant, indicating a significant

correlation between the model-implied seven time-series with their empirical counterparts. The

adjusted R-squared presents a similar picture as Figure 1. The model is able to capture 99% of the

variations in the three-month T-Bill rate, 93% in hours, 85% in inflation, 63% in output growth

and 62% in investment growth, however, can only capture 15% of the variation in consumption

growth and 11% in wage growth. Overall, the model-implied variables match the data pretty well,

especially given that there are only three latent shocks. We expect the model fit to be significantly

improved with additional latent shocks as in Smets and Wouters (2007).

4 Empirical Analysis

With the estimated parameter values and the time series of latent shocks, the stochastic dis-

count factor (pricing kernel) can be computed for our sample period of 1966Q1:2010Q3 based on

equation (17). In this section, we test whether the model implied pricing kernel and the latent

shocks can explain the cross-section of asset returns. For comparison, we use the Fama and French

three-factor model (FF3) as the benchmark. In particular, we examine three asset pricing models:

Model 1 : m1
t = mmodel

t ,

Model 2 : m2
t = b2 + bz e

z
t + bψ e

ψ
t + bV e

V
t ,

Model 3 : m3
t = b3 + bmkt rmkt,t + bsize rsize,t + bhml rhml,t ,

where mt is the empirical pricing kernel and b’s are constant to be estimated. The pricing kernels

in Model 1 to 3 are the model-implied pricing kernel mmodel
t , a linear combination of the estimated

latent shocks {ezt , e
ψ
t , e

V
t }, and a linear combination of the Fama-French market, size, and value

factors {rmkt,t, rsize,t, rhml,t} (the so-called Fama-French three-factor model), respectively. Since

the pricing kernel in Model 1 is constructed based on the DSGE model parameters and latent

shocks, it is invariant to test assets. In contrast, the linear coefficients in Models 2 and 3 need to
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be estimated using moment conditions defined by equation (19), which will be discussed below,

and generally vary with the specific test assets used. To estimate the pricing kernels in Models

2 and 3 and compare the performance of the aforementioned three asset pricing models, we take

the approach of generalized method of moments (GMM).

Assume that we have n test assets to be priced. The asset pricing models imply

E
[
mi
t+1(b)Rt+1

]
= E[Pt] , (19)

where mi
t+1 is the stochastic pricing kernel in Model i, Rj,t+1 is the return vector on test assets,

and Pt is the corresponding payoff that equals one if Rt+1 is gross return and zero if Rt+1 is excess

return. Define a vector of pricing error ut ≡ mi
t+1(b)Rt+1−Pt and its sample mean gT ≡ 1

T

∑T
t=1 ut.

The GMM estimate of the parameter vector b minimizes a quadratic form of the sample mean of

the pricing errors (Cochrane, 2005)

b̂ = argmin{b}gT (b)′W gT (b)

where W is the weighting matrix.

The issue is how to choose the weighting matrix W . There are three widely used weighting

matrices in the empirical asset pricing literature. The so-called optimal weighting matrix is the

inverse of the sample variance-covariance matrix of the pricing errors. Hansen (1982) shows

that this weighting matrix gives the smallest asymptotic covariances of the estimated parameters.

However, this weighting matrix depends on the parameter estimates and varies with the estimated

asset pricing models. Thus, it cannot be used to make model comparisons and does not serve our

purpose. Cochrane (1996) advocates the use of identity matrix as the weighting matrix, which

is equivalent to minimizing the sum of squared pricing errors (SSPE) for the given set of test

assets. Besides its implementability for model comparison, this method provides the best graphical

representation of predicted returns on the test assets versus their average returns. However, as
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Kandel and Stambaugh (1995) point out, as long as the pricing errors are not zero, one can find a

linear reformation of the test assets that have arbitrarily large or small pricing errors. In another

words, the estimated pricing kernel is not robust to portfolio reformation.

An alternative weighting matrix is proposed by Hansen and Jagannathan (1997) that does not

vary with the estimated asset pricing models. Hansen and Jagannathan (1997) develop a distance

metric, referred as the HJ-distance, to measure the distance between the proposed pricing kernel

and the set of correct pricing kernel. They show that the HJ-distance (δ) can be expressed as 3

δ =
{
E
[
mi(b)R− P

]′ E[RR′]−1E[mi(b)R− P ]
}1/2

. (20)

The sample counterpart of equation (20) is given by δT = [gT (b)′ET [RR′]−1 gT (b)]1/2 where

ET [RR′] = RR′/T is the sample estimate of E[RR′]. Hansen and Jagannathan (1997) note that

parameter vector b can be chosen to minimize δ. Thus, the model estimation problem becomes

b̂ = argmin{b}gT (b)′ET [RR′]−1 gT (b) . (21)

It is clear that equation (21) is a standard GMM problem with weighting matrix being W =

ET [RR′]−1, referred as the Hansen-Jagannathan (HJ) weighting matrix.

The economic interpretation of the HJ-distance is that δ is the maximum pricing error for the

asset space expanded by the set of test assets with the norm of individual asset return equal to

one. The value of δ is invariant to portfolio reformation of test assets. To see this, form a portfolio

of test assets with return R̃ = λR and payoff P̃ = λP with nonsingular matrix λ. The HJ-distance

3Please refer to Hansen and Jagannathan (1997) for the detailed description of the HJ-distance and the deriva-
tion of equation (20).
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associated with the new portfolio is

{
E [mi(b)λR− λP ]

′ E[λRR′λ′]−1E[mi(b)λR− λP ]
}1/2

=
{
E [mi(b)R− P ]

′ E[RR′]−1E[mi(b)R− P ]
}1/2

.

Therefore, the HJ-distance approach does not suffer from the Kandel and Stambaugh (1995)

critique. A potential problem with the HJ-distance is that E[R′R] might be near singular in

which case inversion is problematic (Cochrane, 2005). In our estimations, we do not encounter

inversion problem.

In our empirical analysis, both the identity matrix and the HJ weighting matrix are used in

model estimation and evaluation for robustness. To compare the performance of the three models,

we conduct two model selection tests. The first one is the the model selection test for strictly

non-nested (Models 1 and 3 in our case) and overlapping models (Models 2 and 3) based on HJ-

distance, developed by Li, Xu and Zhang (2010). The relative performance of two models are

evaluated based on the difference in their HJ-distances. The second test is developed by Hall

and Pelletier (2011) for models estimated via GMM with identify weighting matrix. The relative

performance of the competing models are evaluated on the differences in their SSPE’s. 4

Our test assets include the commonly used 25 Fama-French size/BM portfolios with additional

48 Fama and French (1997) industry portfolios, 7 portfolios of the U.S. Treasury securities with

maturities of 30 years, 20 years, 10 years, 7 years, 5 years, 2 years and 1 year, a portfolio of

long-term corporate bonds, and risk-free rate. 5 Lowellen, Nagel and Shanken (2010) and Daniel

and Titman (2012) show that returns of the 25 Fama-French size/BM portfolios can be easily

explained as long as the risk factors under interest correlate with Fama-French size and book-to-

4Details on these two tests can be find in Theorem 2 in Li, Xu and Zhang (2010) and Theorem 3 in Hall and
Pelletier (2011).

5The industry of Healthcare only starts from 1969 with three firms initially while the rest of our data starts
from 1966. In our main results, we discard the return data from Healthcare industry. For robustness, we conduct
all the tests based on the sample starting from 1969 with the data from Healthcare industry included. The results
are largely consistent.
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market factors because of the factor structure in those 25 portfolios returns. Both papers suggest

to include other portfolios in the test, such as industry and bond portfolios. We also add risk-free

rate to test assets so that the estimated pricing kernels give the average risk-free rate. 6 Returns on

25 size/BM portfolios, 48 industry portfolios and risk-free rates are taken from Kenneth French’s

website. Returns on portfolios of U.S. Treasury securities with various maturities are from CRSP

U.S. Treasury and Inflation Indexes and returns on the portfolio of long-term corporate bonds are

from Amit Goyal’s website. 7

Table 3 presents the results of GMM estimation with the HJ weighting matrix. Panel A shows

the estimated parameter values in the pricing kernels, the HJ-distances, and the p-values of test

statistics based on the full set of test assets. The HJ-distance measures the model misspecification

error of the proposed model. Among the three models, the factor model with estimated latent

shocks as risk factors (Model 2) has the smallest HJ-distance, δ2 = 1.37, and the model-implied

pricing kernel (Model 1) has the largest HJ-distance, δ2 = 1.44. The Fama-French three factor

model (Model 3) has a HJ-distance of 1.41. The p-values of the hypotheses that the HJ-distances

of Models 1 and 3 and Models 2 and 3 are equal, i.e., δ1 = δ3 and δ2 = δ3, is 5.24% and 4.97%,

respectively. That is, at the 5% significance level, the model-implied pricing kernel performs as

well as the Fama-French three-factor model and the model with estimated latent shocks as risk

factors performs better than the Fama-French three-factor model. However, the null hypothesis

that the HJ-distance of the proposed pricing kernel is zero is rejected for all three models, indicated

by the values of p(δ = 0) less than 1%.

Panels B to D in Table 3 present the test results based on the three subgroups of test assets,

25 size/BM portfolios, 48 industry portfolios, and 8 bond portfolios, respectively. Model 2 has the

smallest HJ-distance for the last two subgroups and Model 3 has the smallest HJ-distance for the

6Hansen and Jagannathan (1997) show that linear pricing kernel with a constant parameter that minimizes
the HJ-distance will match the mean of the admissible pricing kernel that prices the test assets. Therefore, adding
risk-free rate to test assets guarantees that the estimated pricing kernel prices risk-free rate correctly in the GMM
estimation with HJ weighting matrix. In the GMM estimation with identity weighting matrix, we normalize the
mean of the pricing kernel to the average risk-free rate.

7We thank Kenneth French and Amit Goyal for making the data publicly available.
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25 size/BM portfolios among the three models. This is not surprising given that the Fama-French

three-factor model is designed to explain these 25 portfolio returns. However, even in such a case,

the Fama-French three-factor model does not perform significantly better than the model with

estimated latent shocks, indicated by p(δ1 = δ3) being 25.29%. Moreover, the null that the HJ-

distance is zero is rejected for Models 1 and 3 based on all three subgroups of test assets, indicated

by the values of p(δ = 0) less than 1% in Panels B to D. On the contrary, Model 2 successfully

explains the returns on 48 industry portfolios and the 8 bond portfolios, with p(δ2 = 0) being

19.22% and 8.60%, respectively. Therefore, tests based on HJ-distances indicate that Model 2 is

the best model among the three for either the full set or subgroups of test assets.

Table 4 presents the results of GMM estimation with identity weighting matrix. The pricing

kernels are normalized at the inverse of the average risk-free rate, m̄. Panel A shows that estimated

parameter values in the pricing kernels, average SSPE’s, the overidentification J statistics, and

their p-values for all three models based on the full set of test assets. The J statistic is the sum

of squared pricing errors weighted by their variance-covariance matrix and is used to evaluate

the overall goodness of fit of the proposed models. Similar to the results based on HJ-distances,

Model 2 has the best performance among the three with a J statistic of 530.39, compared to

1726.66 from Model 1 and 1653.21 from Model 3. However, Model 3 has the smallest average

SSPE (SSPE scaled by the number of test assets), being 0.42, compared to 0.62 from Model 2

and 3.33 from Model 1. The comparison between J and SSPE indicates that Model 3 matches

better the average returns of the portfolios that have large return volatilities while Models 1 and

2 match better the ones with low return volatilities. The p-values of the null hypotheses that

SSPE1 = SSPE3 and SSPE2 = SSPE3 are 8.59% and 29.57%, respectively. Therefore, the

three models have statistically indifferent SSPE’s. However, all three models are rejected by the

overidentification tests based on the J statistics indicated by the values of p(J) less than 1%.

Panels B to D report the test results based the subgroups of test assets: 25 size/BM portfolios,

48 industry portfolios, and the 8 bond portfolios, respectively. Based on the overidentification
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J test, Model 2 is not rejected for the subgroups of the 25 size/BM portfolios and the 8 bond

portfolios, however is rejected for the 48 industry portfolios with the values of p(J) being 91.58%,

10.85%, and 0.00%, respectively. In contrast, Models 1 and 3 are rejected based on all three

subgroups of test assets with the values of p(J) less than 1%. The model selection tests based

SSPE indicate that the three models have statistically indifferent SSPE’s for all three subgroups

of test assets.

In sum, for the full set of test assets, the model selection tests based on HJ-distance indicate

that the factor model with estimated latent shocks performs than and the model-implied pricing

kernel performs as well as the Fama-French three-factor model at the 5% significance level. The

model selection tests based on SSPE indicate that the three models perform equally well. Note

that while the test based on SSPE only compares how well the competing pricing kernels price the

test assets, the test based on HJ-distance compares how well they price the asset space spanned

by the test assets. In that sense, the latter test is a more powerful test on the asset pricing theory

presented in equation (19).

The fact that Model 2 performs better than Model 1 implies that the DSGE model used in the

estimation is subject to model misspecification errors. However, the sources of risks identified by

the DSGE model and the Bayesian MCMC method, i.e., the latent shocks, have great potential

in explaining the cross section of asset returns.

5 Conclusion and Future Research

A full-information Bayesian Markov Chain Monte Carlo (MCMC) method is developed for es-

timating DSGE models using macroeconomic variables only. We implement this method on a

standard medium-size DSGE model in CTW to obtain the model parameters and three exogenous

latent shocks: neutral technology shock, investment-specific technology shock, and monetary pol-

icy shock. Based on the estimations, we construct the model-implied stochastic discount factor
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and a linear factor model with estimated latent shocks as risk factors for the period of 1966Q1-

2010Q3. GMM tests show that at the 5% significance level, the model-implied pricing kernel

performs as well as and the factor model with estimated latent shocks performs better than the

Fama-French three-factor model in pricing the large set of test assets including the 25 size/BM,

48 industry, 7 government bond and a long-term corporate bond portfolios.

For simplicity, our model incorporates only the three most studied shocks in macroeconomics

and asset pricing. Smets and Wouters (2007) show that there are other shocks important for cap-

turing the observed macroeconomic dynamics. Moreover, the recent macroeconomic literature has

proposed several new shocks such as risk shock, which is the shock on cross-sectional idiosyncratic

uncertainty in Christiano, Motto and Rostagno (2014), and financial shock, which is the shock

on firms’ borrowing constraint in Jermann and Quadrini (2012). Those shocks are likely to have

significant impacts on asset prices. One way to extend the current study is to incorporate those

aforementioned shocks in our framework and explore the asset pricing implications of the richer

model. Another fruitful research direction is to add financial variables, such as returns on the

market portfolio, to the set of variables that the model matches and see whether information from

financial markets helps DSGE models to match macroeconomic dynamics.

26



A Bayesian MCMC Estimation

In this appendix, we provides a brief description about the priors, posterior distributions, and the

updating procedures for parameters and latent variables in our model.

• Posterior of σi (i = 1, · · · , 7): Set the prior of σi as σ2
i ∼ IG(a, b), where a, b are hyper-

parameters. The posterior of σ2
i is

σ2
i ∼ IG(

T

2
+ a,A)

where

A =
T∑
t=1

1

2
(Υobs

t (i)−Υt(i))
2 + b .

• Posterior of θj (j = 1, · · · , 25): Set the prior of θj as θj ∼ N(m,M2) where m,M are

hyper-parameters. The posterior of θj is

p
(
θj|θ[−j],Xe,Υobs

)
∝

T∏
t=1

7∏
i=1

1

σi
exp{− 1

2σ2
i

[Υobs
t (i)−Υt(i)]

2}

×
T∏
t=1

1

σz
exp{− 1

2σ2
z

[µz,t − µz(1− ρz)− ρzµz,t−1]2}

×
T∏
t=1

1

σψ
exp{− 1

2σ2
ψ

[µψ,t − µψ(1− ρψ)− ρψµψ,t−1]2}

×
T∏
t=1

1

σV
exp{− 1

2σ2
V

[Vt − ρV Vt−1]2} × π(Θ)× exp{−(θj −m)2

2M2
} ,

where θ[−j] contains the most updated parameters except for θj in Θ. In implementation,

we simplify the above posterior through abandoning terms that do not depend on θj, and

use MH algorithm to update θj.

• Posterior of {µz,t, µψ,t, Vt} (t = 1, · · · , T ): The posterior distribution of µz,t (for 1 ≤ t < T )
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is

p
(
µz,t|Θ, {µz,1, · · · , µz,t−1, µz,t+1, · · · , µz,T}, {µψ,t}Tt=1, {Vt}Tt=1,Υ

obs
)

∝
T∏
s=t

N∏
i=1

exp{− 1

2σ2
i

[Υobs
t (i)−Υt(i)]

2}

× exp{− 1

2σ2
z

[µz,t − µz(1− ρz)− ρzµz,t−1]2}

× exp{− 1

2σ2
z

[µz,t+1 − µz(1− ρz)− ρzµz,t]2} .

For t = T , the posterior distribution only involves the first two terms in the above equation.

Again, MH algorithm is used to update µz,t. Updating of µψ,t and Vt (t = 1, · · · , T ) are done

in the same way. The analogous posterior distribution for µψ,t is,

p
(
µψ,t|Θ, {µψ,1, · · · , µψ,t−1, µψ,t+1, · · · , µψ,T}, {µz,t}Tt=1, {Vt}Tt=1,Υ

obs
)

∝
T∏
s=t

N∏
i=1

exp{− 1

2σ2
i

[Υobs
t (i)−Υt(i)]

2}

× exp{− 1

2σ2
ψ

[µψ,t − µψ(1− ρψ)− ρψµψ,t−1]2}

× exp{− 1

2σ2
ψ

[µψ,t+1 − µψ(1− ρψ)− ρψµψ,t]2} .

The analogous posterior distribution for Vt is,

p
(
Vt|Θ, {V1, · · · , Vt−1, Vt+1, · · · , VT}, {µz,t}Tt=1, {µψ,t}Tt=1,Υ

obs
)

∝
T∏
s=t

N∏
i=1

exp{− 1

2σ2
i

[Υobs
t (i)−Υt(i)]

2}

× exp{− 1

2σ2
V

[Vt − ρV Vt−1]2}

× exp{− 1

2σ2
V

[Vt+1 − ρV Vt]2} .
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Figure 1: Observed and Model-Implied Macroeconomic Variables

This figure plots the estimated the observed (in red) and model-implied (in black) time series of consumption

growth (dc), output growth (dy), investment growth (di), wage growth (dw), (normalized) hours (h), 3-month

T-Bill rate (r), and inflation (π) during 1966Q1 - 2010Q3.
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Table 1: Estimated Parameter Values

This table reports the parameters values estimated using the Bayesian Markov Chain Monte Carlo method based on

50,000 Monte Carlo iterations. Observed macroeconomic variables used in the estimation are output growth (dy),

consumption growth(dc), investment growth (di), wage growth (dw), logarithm of inflation (π), 3-month T-Bill (r),

and employment (h). Sample period is 1966Q1 - 2010Q3.

Parameter Posterior Mean Posterior Standard Error

β 0.9980 0.0005
φ 1.3838 0.0366
b 0.9598 0.0111
α 0.2308 0.0006
ξp 0.6022 0.0064
ξw 0.8232 0.0029
λf 1.1640 0.0024
λw 1.0373 0.0008
σa 0.2463 0.0242
σs 4.6910 0.2075
πss 1.0071 0.0023
ρR 0.7947 0.0036
ρπ 1.6597 0.0524
ρy 0.1505 0.0079
µz 0.0038 0.0001
µψ 0.0025 0.0003
ρz 0.1207 0.0664
ρψ 0.7455 0.0500
ρv 0.3101 0.0534
σz 0.0026 0.0004
σψ 0.0029 0.0003
σv 0.0021 0.0001
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Table 2: Summary Statistics

The table provides the summary statistics on how well the model-implied variables match their observed counter-

parts and the correlation matrix of the estimated latent shocks. Panel A reports the estimated coefficients and

adjusted R2 of the following regression: Xt = α + βX̂t + et for output growth (dy), consumption growth(dc), in-

vestment growth (di), wage growth (dw), logarithm of inflation (π), 3-month T-Bill (r), and average weekly hours

per capita(h), respectively, where Xt is the observed value and X̂t is the corresponding model-implied value. Panel

B of this table reports the correlation matrix between latent variables, i.e., the neutral technology shock (NT ),

investment-specific technology shock (IST ), and monetary policy shock (MP ). All data are sampled quarterly

from 1966Q1 to 2010Q3.

Panel A: Goodess of Model Fit

α β R̄2

dc -0.08 0.72 0.15
( -0.82) ( 5.74)

dy -0.06 0.66 0.63
( -1.30) ( 17.49)

di -0.10 0.82 0.62
( -0.67) ( 17.19)

dw -0.17 0.79 0.11
( -1.37) ( 4.79)

h -0.26 0.94 0.93
( -2.82) ( 49.87)

r 0.26 0.96 0.99
( 21.10) (115.84)

π 0.36 0.92 0.85
( 14.23) ( 32.34)

Panel B: Correlations Matrix of Latent Shocks

NT IST MP

NT 1.00

IST −0.16 1.00

MP 0.26 −0.33 1.00
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Table 3: GMM Tests with HJ Weighting Matrix

This table presents the estimations and comparisons of the three asset pricing models based on the Hansen-

Jagannathan distance (δ). The stochastic discount factor (pricing kernel) of the first model is computed from the

DSGE model. The coefficients in the pricing kernels of Models 2 and 3 are chosen to minimize the corresponding

HJ-distances. The HJ-distances and their corresponding p-values are provided for all three models. To compare the

performance of the three models, the p-value of the hypothesis that Models 1 and 3 are observationally equivalent,

i.e., p(δ1 = δ3), and the p-value of the hypothesis that Models 2 and 3 are observationally equivalent, i.e., p(δ2 = δ3),

are provided. Details on the test assets can be found in Section 4. The sample is 1966Q1:2010Q3. The t-statistics

are in parentheses and Newey-West corrected with lag 5.

Panel A: 25 Size/BM + 48 Industry + 8 Bond Portfolios

Model 1: mt = mmodel
t

δ1 p(δ1 = 0) p(δ1 = δ3)
1.00 1.44 0.00% 5.24%

Model 2: mt = b2 + bz e
z
t + bψ e

ψ
t + bV e

V
t

b2 bz bψ bV δ2 p(δ2 = 0) p(δ2 = δ3)
0.87 -0.30 -0.54 -0.46 1.37 0.01% 4.97%

( 7.79) ( -1.45) ( -3.04) ( -2.03)

Model 3: mt = b3 + bmkt rmkt,t + bsize rsize,t + bhml rhml,t

b3 bmkt bsmb bhml δ3 p(δ3 = 0)
1.08 -0.22 -0.06 -0.26 1.41 0.00%

( 9.27) ( -1.71) ( -0.58) ( -2.45)

Panel B: 25 Size/BM Portfolios

Model 1: mt = mmodel
t

δ1 p(δ1 = 0) p(δ1 = δ3)
1.00 0.73 0.02% 3.16%

Model 2: mt = b2 + bz e
z
t + bψ e

ψ
t + bV e

V
t

b2 bz bψ bV δ2 p(δ2 = 0) p(δ2 = δ3)
0.98 -0.46 -0.28 -0.01 0.69 0.14% 25.29%

( 5.14) ( -0.99) ( -0.85) ( -0.01)

Model 3: mt = b3 + bmkt rmkt,t + bsize rsize,t + bhml rhml,t

b3 bmkt bsmb bhml δ3 p(δ3 = 0)
1.08 -0.22 -0.07 -0.28 0.66 0.16%

( 14.78) ( -1.69) ( -0.69) ( -2.66)
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Table 3 Continued

Panel C: 48 Industry Portfolios

Model 1: mt = mmodel
t

δ1 p(δ1 = 0) p(δ1 = δ3)
1.00 0.68 2.29% 21.89%

Model 2: mt = b2 + bz e
z
t + bψ e

ψ
t + bV e

V
t

b2 bz bψ bV δ2 p(δ2 = 0) p(δ2 = δ3)
0.96 -0.44 -0.37 -0.07 0.63 19.22% 36.96%

( 11.09) ( -1.49) ( -1.48) ( -0.28)

Model 3: mt = b3 + bmkt rmkt,t + bsize rsize,t + bhml rhml,t

b3 bmkt bsmb bhml δ3 p(δ3 = 0)
0.99 -0.22 0.10 0.05 0.65 4.38%

( 17.16) ( -1.75) ( 0.93) ( 0.43)

Panel D: 8 Bond Portfolios

Model 1: mt = mmodel
t

δ1 p(δ1 = 0) p(δ1 = δ3)
1.00 0.45 0.04% 16.63%

Model 2: mt = b2 + bz e
z
t + bψ e

ψ
t + bV e

V
t

b2 bz bψ bV δ2 p(δ2 = 0) p(δ2 = δ3)
0.78 0.41 -0.94 -0.72 0.33 8.60% 65.53%

( 4.59) ( 0.74) ( -2.18) ( -1.07)

Model 3: mt = b3 + bmkt rmkt,t + bsize rsize,t + bhml rhml,t

b3 bmkt bsmb bhml δ3 p(δ3 = 0)
1.08 -0.56 -0.14 0.06 0.37 0.98%

( 7.16) ( -1.41) ( -0.23) ( 0.09)
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Table 4: GMM Tests with Identity Weighting Matrix

This table presents the estimations and comparisons of the three asset pricing models based on GMM with identity

matrix. The stochastic discount factor (pricing kernel) of the first model is computed from the DSGE model.

The coefficients in the pricing kernels of Models 2 and 3 are chosen to minimize the sum of squared pricing

errors (SSPE). The average SSPE, overidentification J statistic and its p-value are provided for each model.

Model selection tests in Hall and Pelletier (2011) is conducted to compare the goodness of fit between Models 1

and 3 and between Models 2 and 3, respectively. The p-values of the tests under the null hypothesis that the

difference in the average SSPE’s of the two competing models is zero are provided under p(SSPE1 = SSPE3)

and p(SSPE2 = SSPE3). Details on the test assets can be found in Section 4. The sample is 1966Q1:2010Q3.

The t-statistics are in parentheses and Newey-West corrected with lag 5.

Panel A: 25 Size/BM + 48 Industry + 8 Bond Portfolios

Model 1: Mt = mmodel
t

J p(J) SSPE1 p(SSPE1 = SSPE3)
1.00 1726.66 0.00% 3.33 8.59%

Model 2: Mt = m̄+ bz e
z
t + bψ e

ψ
t + bV e

V
t

bz bψ bV J p(J) SSPE2 p(SSPE2 = SSPE3)
-0.93 -0.55 -0.63 530.39 0.00% 0.62 29.57%

( -1.73) ( -1.11) ( -0.69)

Model 3: Mt = m̄+ bmkt rmkt,t + bsize rsize,t + bhml rhml,t

bmkt bsmb bhml J p(J) SSPE3

-0.27 0.07 -0.18 1654.21 0.00% 0.42
( -2.41) ( 0.67) ( -1.65)

Panel B: 25 Size/BM Portfolios

Model 1: Mt = mmodel
t

J p(J) SSPE1 p(SSPE1 = SSPE3)
1.00 141.45 0.00% 4.76 5.71%

Model 2: Mt = m̄+ bz e
z
t + bψ e

ψ
t + bV e

V
t

bz bψ bV J p(J) SSPE2 p(SSPE2 = SSPE3)
-0.49 -1.57 -1.96 13.58 91.58% 0.51 29.52%

( -0.61) ( -1.45) ( -0.70)

Model 3: Mt = m̄+ bmkt rmkt,t + bsize rsize,t + bhml rhml,t

bmkt bsmb bhml J p(J) SSPE3

-0.22 -0.06 -0.30 87.99 0.00% 0.15
( -1.83) ( -0.61) ( -2.97)
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Table 4 Continued

Panel C: 48 Industry Portfolios

Model 1: Mt = mmodel
t

J p(J) SSPE1 p(SSPE1 = SSPE3)
1.00 319.72 0.00% 3.09 9.45%

Model 2: Mt = m̄+ bz e
z
t + bψ e

ψ
t + bV e

V
t

bz bψ bV J p(J) SSPE2 p(SSPE2 = SSPE3)
-0.92 -0.33 -0.38 105.57 0.00% 0.43 38.49%

( -1.68) ( -0.77) ( -0.54)

Model 3: Mt = m̄+ bmkt rmkt,t + bsize rsize,t + bhml rhml,t

bmkt bsmb bhml J p(J) SSPE3

-0.33 0.25 -0.06 194.61 0.00% 0.36
( -2.89) ( 2.03) ( -0.41)

Panel D: 8 Bond Portfolios

Model 1: Mt = mmodel
t

J p(J) SSPE1 p(SSPE1 = SSPE3)
1.00 44.68 0.00% 0.30 17.11%

Model 2: Mt = m̄+ bz e
z
t + bψ e

ψ
t + bV e

V
t

bz bψ bV J p(J) SSPE2 p(SSPE2 = SSPE3)
-0.51 0.04 0.89 9.01 10.85% 0.01 49.94%

( -1.01) ( 0.06) ( 1.25)

Model 3: Mt = m̄+ bmkt rmkt,t + bsize rsize,t + bhml rhml,t

bmkt bsmb bhml J p(J) SSPE3

-0.67 0.47 -0.91 15.95 0.70% 0.01
( -1.18) ( 0.43) ( -1.31)
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